

Software Engineering Group
Department of Computer Science
Nanjing University
http://seg.nju.edu.cn

Technical Report No. NJU-SEG-2017-IC-002

2017-IC-002

Sketch-Guided GUI Test Generation for Mobile Applications
Chucheng Zhang, Haoliang Cheng, Enyi Tang, Xin Chen, Lei Bu, Xuandong Li

Automated Software Engineering 2017

Most of the papers available from this document appear in print, and the corresponding copyright is held by the

publisher. While the papers can be used for personal use, redistribution or reprinting for commercial purposes is

prohibited.

http://seg.nju.edu.cn/

Sketch-Guided GUI Test Generation

for Mobile Applications

Chucheng Zhang Haoliang Cheng Enyi Tang∗ Xin Chen Lei Bu Xuandong Li

State Key Laboratory for Novel Software Technology, Nanjing University, Nanjing, China

Software Institute of Nanjing University, Nanjing University, Nanjing, China
∗Corresponding author: eytang@nju.edu.cn

Abstract—Mobile applications with complex GUIs are very
popular today. However, generating test cases for these appli-
cations is often tedious professional work. On the one hand,
manually designing and writing elaborate GUI scripts requires
expertise. On the other hand, generating GUI scripts with record
and playback techniques usually depends on repetitive work that
testers need to interact with the application over and over again,
because only one path is recorded in an execution. Automatic
GUI testing focuses on exploring combinations of GUI events.
As the number of combinations is huge, it is still necessary to
introduce a test interface for testers to reduce its search space.

This paper presents a sketch-guided GUI test generation
approach for testing mobile applications, which provides a
simple but expressive interface for testers to specify their testing
purposes. Testers just need to draw a few simple strokes on
the screenshots. Then our approach translates the strokes to a
testing model and initiates a model-based automatic GUI testing.
We evaluate our sketch-guided approach on a few real-world
Android applications collected from the literature. The results
show that our approach can achieve higher coverage than existing
automatic GUI testing techniques with just 10-minute sketching
for an application.

I. INTRODUCTION

Until November 2016, the number of available mobile

applications in the Google Play store is over 2.5 million [4].

Many of these applications provide rich features that help

billions of users to communicate with each other. Hence,

testing these applications is important. However, as most of the

mobile applications interact with users through a graphical user

interface (GUI), generating test cases for these GUI applications

is a challenge.

Two classical approaches have been widely applied to GUI

testing: manually writing GUI scripts as test cases that describe

sequences of GUI actions, or recording the sequences of GUI

events as test cases for playback later when testers execute

the application under test. Both approaches strongly rely on

manual work of professional testers. On the one hand, testers

need to design and write quite a number of elaborate GUI

scripts with their expertise in GUI testing. On the other hand,

record and playback sequences of GUI events often depend on

repetitive work that testers need to interact with the application

over and over again, because only one path is recorded in an

execution.

To free testers from the burden of tedious manual work,

researchers have proposed a few techniques that generate

Fig. 1. An Example of Sketching to Generate High Score GUI Inputs in the
Game of Angry Birds

GUI test cases automatically [3, 5, 6]. These techniques

generate sequences of GUI events essentially by exploring

the possible event combinations in applications. As the number

of combinations of GUI events is often huge, how to reduce

the exploring space (search space) for the automatic testing

techniques is an important problem.

In this paper, we propose a sketch-guided GUI test generation

approach for testing mobile applications, which covers combi-

nations of GUI events following a sketch-based specification

from testers. Testers just draw a few simple strokes on the

screenshots as the sketches to specify their testing purposes.

Then our approach translates the sketches to a testing model

and initiates a model-based automatic GUI testing.

For example, when testers want to explore the GUI events

effectively in the the game Angry Birds1(shown in Figure 1),

they need to generate test cases that shoot a bird at the slingshot

every time by dragging it as shown in Figure 1a. With different

shooting angles and power, they get different scores. Existing

techniques are difficult to uncover the high score GUI test case

in the game, which is hidden in a lot of GUI event sequences

1http://www.angrybirds.com

978-1-5386-2684-9/17/$31.00 c© 2017 IEEE ASE 2017, Urbana-Champaign, IL, USA
Technical Research - New Ideas

38

For Research Only

that dragging the bird in different ways. The manual techniques

need tedious labor effort to replay the shooting over and over

again with various shooting angles and power, while other

automatic techniques try to traverse all the GUI components

in the application other than just dragging the bird in different

ways.

Our sketch-guided approach is good at working on such

testing tasks. Testers just simply draw a few strokes as

Figure 1b, which specifies their testing purposes. In other

words, they specify a range of GUI event sequences that they

want our test engine to explore deeply by a simple sketch.

The sketch in Figure 1b consists of 3 stroke components with

different colors: a dragging action in blue, a range specifier

in purple, and an existential quantifier in red. The dragging

stroke makes our test engine focus on the bird-shooting GUI

inputs during the testing, and the range specifier specifies the

range to which the generated test scripts should drag the bird.

At last, testers draw a quantifier to specify the target of the

testing, which is just to find one GUI event sequence that get

the score higher than a value in the game.

II. SKETCH-GUIDED APPROACH

This section presents the technical details of our sketch-

guided GUI test generation. Testers provide a subject program

for testing, and draw a few input sketches on the screenshots

taken by our testing framework. Our framework processes the

sketch with 2 stages, and outputs GUI test scripts accordingly.

In the first stage, the framework recognizes the input sketches

to a symbolic layout with attributes ripping from the subject

program. Then in the second stage, it builds a model from the

symbolic layout defined by the input sketches, and generates

GUI test cases by traversing paths in the model. The rest of this

section describes the technical details of every stage separately.

A. Sketching Language & Sketch Recognition

The first stage of our workflow recognizes primitive shapes

in the input sketches, and generates a symbolic sketch layout

that holds the information of shapes and matches the GUI

widgets to each corresponding shape.

We design an expressive but simple sketching language,

which defines only 4 types of primitive shapes: the action

strokes, range specifiers, quantifiers, and boolean connectors.

Figure 2-5 present the primitive shapes in our sketching system.

Every action stroke describes a user action in the GUI testing,

such as touching on a button or dragging an icon. After drawing

an action stroke, the tester draws immediately a range specifier

to delineate a set of GUI components that are affected by the

action. Quantifiers and boolean connectors further specify the

logical conditions and logical relations of the actions with

different GUI components, so we also call them logical shapes.

For example, the tester can draw an existential quantifier (∃)

after a range specifier, which means the testing system just

needs to find one GUI component in the specified range that

makes the event sequence satisfy the test oracle.

Note that not everything in our framework is represented by

the sketch. Specifically, testers specify the text-input actions

Touch

Point

*

(a) touch

Touch

Point

*

(b) long touch

*

Start

Point

*

End

Point

(c) drag

Fig. 2. Typical Types of Action Strokes in Our System

(a) a range specifies 3 buttons in
the middle of screen

(b) a range specifies 5 widgets at
the bottom of screen

Fig. 3. Examples of Range Specifiers on Screenshots

(a) Exists

(∃)
(b) Forall

(∀)
(c) Exists a Subse-

quent Action (∃̂)
(d) For All Subse-

quent Actions (∀̂)

Fig. 4. Types of Quantifiers in Our System

(a) boolean AND (⊗) (b) boolean OR (⊕) (c) boolean NOT (⊖)

Fig. 5. Types of Boolean Connectors in Our System

and the test oracle directly through a textbox in our system and

links them to the symbolic layout later after other sketches are

recognized. The test oracle is some constraints that should

be satisfied when the generated test cases are performed,

such as Color(x,y)==RGB(200,0,0) where x and y

are coordinates of a user-specified point. If the application

crashes during testing, the test oracle is always unsatisfied.

39

For Research Only

Figure 2 shows several typical types of action strokes, which

specify the user actions in the application’s GUI systems. For

a touchscreen-based mobile application, the typical actions

such as touching, long touching a GUI widget, or dragging

a widget to another place are expressed separately as strokes

in Figure 2a, Figure 2b, and Figure 2c. Testers can further

extend the system with more GUI actions when necessary. Our

sketching system not only recognizes the action strokes, but

also records the coordinates of key points and its corresponding

GUI widgets specified by the strokes. For example, when a

tester draws a drag action on the screenshot, our system records

the coordinates of its start point and end point along with the

information of GUI widgets at these points.

Our system rips the information of GUI widgets from the

application under test when we take the screenshots, and binds

every screenshot with the bound of widgets on it. When the

tester draws an action on a screenshot, our system directly

obtains the information of widgets from the binding. The range

specifiers shown in Figure 3 also use such a technique to

collect the widget information in the range. Usually, the range

specifiers denote a set of GUI widgets in the application as

Figure 3a and Figure 3b show. In some Games, it also denotes

a set of coordinates on the screen when our system does not

get any widgets in the range like Figure 1b.

For every range specifier, we designate a quantifier in our

sketching language. The quantifier specifies the quantity of

events in the range that satisfy the oracle, which affects the

search condition in our test generation. For example, the

universal quantifier (∀) in Figure 4b requires all events in

the range to eventually satisfy the condition in the test oracle,

whereas the existential quantifier (∃) in Figure 4a drives the test

engine to search for just one event that satisfies the condition,

which is often used in generating a GUI event that triggers

the bug. We introduce 2 recursive quantifiers in our sketching

language shown in Figure 4c and Figure 4d. We call them the

recursive existential quantifier (∃̂) and the recursive universal

quantifier (∀̂) separately, which recursively specify the quantity

of all subsequent actions of the current event in the range.

We also introduce the boolean connectors in our sketching

language to make it expressive and powerful. Figure 5 presents

the boolean connectors in our system, which represents boolean

and (⊗) in Figure 5a, or (⊕) in Figure 5b, and not (⊖) in

Figure 5c.

The following context-free grammar (also called BNF,

Backus-Naur form) defines the syntax of our sketching lan-

guage:

sketch→tracelist

tracelist→eventtrace ∣ tracelist, eventtrace

eventtrace→eventstep ∣ eventtrace; eventstep (1)

∣ eventtrace ∶ tracelist

eventstep→actionset ∣ eventstep boolcon actionset

actionset→act ∣ act + range + quant

where the act, range, quant, and boolcon in the grammar

means an action stroke, range specifier, quantifier, and boolean

connector separately, and the punctuation marks in the grammar

such as +, ∶, ; and , are gestures or buttons in our sketching

system that specify the relations of shapes in the sketch. The

grammar defines the drawing order for testers in producing

their sketches. Testers start their sketching by drawing an

action stroke to specify an event (such as touch) on a GUI

widget. Then they optionally add a range specifier to make the

event affect on a set of widgets, and a quantifier to present

the quantity of events in the range that satisfy the oracle. At

this point, testers have specified an actionset with actions on

different widgets, and they draw boolean connectors to connect

multiple actionsets and build an eventstep in their testing.

An eventtrace is either a sequence of eventsteps connected

with semicolons in the grammar, or a fork from an eventstep

in the trace to a list of eventtraces with a colon at the fork

point. A sketch is finally a tracelist that consists of multiple

eventtraces.

B. Event-flow Modeling & Script Generation

The second stage of our workflow builds a GUI model for

test generation from the symbolic sketch layout generated by

the previous stage. The symbolic sketch layout L is defined as

a 3-tuple ⟨l,W,Oe⟩, where l is a symbolic tracelist organized

as the grammar in Equation 1, W is a mapping that maps the

coordinates in l to the widgets in the application under test,

and Oe is another mapping that maps every eventtrace in l

to a test oracle specified by the tester.

The coordinate-widget map L.W in the sketch layout L

stores the bound of every widget in the application under test.

When our framework queries the coordinates of a point pt on

a screenshot, the map L.W (pt) analyzes the bound of every

widget and returns the widget that the sketch locates the point

in. We translate all coordinates to widgets in our GUI model.

So the output test scripts can directly perform actions on the

GUI widgets, which generalizes the testing on devices with

different screen resolutions.

Our framework models the sketch layout as a partial

abstract event-flow graph (P-aEFG), which is a variation of

the event-flow graph (EFG) defined by Memon et al. for GUI

testing [13]. Not as the EFG models representing all possible

event sequences on a GUI, our P-aEFG just partially extracts the

abstract event-flow that represents possible interactions defined

by the sketch. Hence, the P-aEFG is often smaller. In our P-

aEFG, a vertex represents an abstract event that summarizes the

events may be performed at the same application state. And an

edge in a P-aEFG from the vertex v1 to v2 means that an event

e2 in the abstract event v2 may be performed immediately after

every event e1 in the abstract event of v1, and every sequence

of e1, e2 should be tested when it is specified by the sketch.

We formally define a P-aEFG (G) as a 4-tuple ⟨V,E,V0,O⟩,
where:

1) V is a vertex set and each vertex v ∈ V is an abstract event

specified in the sketch. An abstract event represents a set

of events that may be performed at the same application

state.

40

For Research Only

Algorithm 1 Abstract Event-flow Modeling

Input: L⟨l,W,Oe⟩
Output: G⟨V,E,V0,O⟩

1: for all es ∈ eventStep(L.l) do

2: tv ← syntaxTree(es)

3: for all pt ∈ pointCoodinate(tv) do

4: tv ← tv[pt ↪ L.W (pt)] //substitute coordinates to widget

5: end for

6: V(es) ← tv //hold the vertex for every eventstep

7: G.V ← G.V ∪ {tv}
8: end for

9: for all “es1; es2” ∈ subString(L.l) do

10: G.E ← G.E ∪ {(V(es1),V(es2))}
11: end for

12: for all “et ∶ tlist” ∈ subString(L.l) ∧ ∀et′ ∈ tlist do

13: es1 ← lastEventStep(et)

14: es2 ← firstEventStep(et′)

15: G.E ← G.E ∪ {(V(es1),V(es2))}
16: end for

17: for all et ∈ eventTrace(L.l) do

18: es← firstEventStep(et)

19: G.V0 ← G.V0 ∪ {V(es)}
20: end for

21: G.O ← oracleParse(L,V)

Algorithm 2 oracleParse: Marks Every Test Oracle on

the Path of the Abstract Event-flow Graph

Input: L⟨l,W,Oe⟩, V //the map holds the vertex for each eventstep

Output: O //the map binds every oracle to the path

1: for all et ∈ eventTrace(L.l) do

2: p← V(firstEventStep(et))

3: P ← P ∪ {p} //put the path p to the setP

4: ∀p ∈ P do

5: if “es1; es2”∈ subString(et)

∧ V(es1) == lastVertex(p) then

6: p←addVertex(p,V(es2)) //catenate a vertex at the end

7: else if “et′ ∶ tlist” ∈ subString(et)

∧ V(lastEventStep(et′)) == lastVertex(p) then

8: P ← P − {p}
9: for all et′′ ∈ tlist do

10: p′ ←addVertex(p,V(firstEventStep(et′′)))

11: P ← P ∪ {p′}
12: end for

13: end if

14: end for

15: ∀p ∈ P, O(p) ← L.Oe(et)
16: P ← ∅
17: end for

2) E ⊆ V ×V is a directed edge set between vertices. An edge

(v1,v2) ∈ E iff ∀e1 ∈ v1, ∀e2 ∈ v2, e1 may be performed

immediately after e2, and the combination of e1, e2 should

be tested according to the specification.

3) V0 is a set of start vertices representing the events that

are available for the testers when the application starts.

4) O is a map that binds every test oracle to the path in the

graph. A path p in the P-aEFG is a sequence of vertices

(v1, v2, ..., vn) ∈ V × V × ... × V , while a test oracle o is

a constraint that the application should satisfy when the

corresponding sequence of events have been performed.

Algorithm 1 parses the sketch layout L and builds the P-

aEFG model G for test case generation. It first generates the

vertices of the graph from the sketch layout (line 1-8). The

function eventStep at line 1 returns a set of all top-level

eventsteps that is syntactically not a substring of any other

eventstep in the sketch layout. As every eventstep denotes

the events may be performed at the same application state,

we generate the vertex of our P-aEFG by substituting the

coordinates of points to the corresponding widgets in the

syntax tree of an eventstep. After the substitution, every

range specifier in the symbolic sketch layout becomes a set of

corresponding GUI widgets in the abstract event. Line 9-16

of Algorithm 1 links vertices with edges depending on the

gestures (a semicolon or a colon) in the sketch layout. Then it

stores all the start vertices in G.V0 (line 17-20). Finally, the

algorithm marks every test oracle on the path of the P-aEFG

by calling oracleParse at line 21, and stores it in the map

G.O of the P-aEFG.

Algorithm 2 depicts details of the function oracleParse,

which extracts the oracle constraints from the symbolic layout

L.Oe and marks them on the path p in the P-aEFG. Since testers

have specified the oracle constraints for every eventtrace

during sketching, Algorithm 2 seeks the set of paths P that

corresponds to the symbolic event trace et (line 4-14), and

marks the oracle constraints in the returned map (line 15).

After building the P-aEFG model G, our framework gen-

erates test cases directly by traversing the P-aEFG model.

Generally, every GUI test case corresponds to a path in G,

which is defined by a sequence of GUI events and an oracle

constraint in our testing system. For every path p in the model

G, our framework picks the first event from the start set G.V0,

develops a sequence of GUI events by picking the events one

by one along the path, gets the oracle constraint from G.O(p),
and outputs the test case to a GUI test script.

III. EVALUATION

We have implemented a prototype of our sketch-guided

testing system2, and performed our evaluation on 10 Android

applications collected by Choi et al. [9], which are listed in

Table I. All the applications are open source projects from

F-Droid app market. The smallest project is music note

with 1345 instructions in its bytecode, whereas the largest one

is anymemo with 72145 bytecode instructions. Further details

of each project can be referred to [9, 10].

We recruited 12 volunteers who were 3rd-year college

students in Computer Science from our university to evaluate

the system. All of them are familiar with Android devices but

only 6 of them have taken the software testing class in our

university. We pair every one of them with a student who has

2http://software.nju.edu.cn/eytang/artifacts/sketch/sketchgeneration.tar.gz.

41

For Research Only

TABLE I
CODE COVERAGE COMPARISON OF THE SKETCH-GUIDED TESTING

AND A FEW RECENT AUTOMATIC GUI TESTING TECHNIQUES

App
% Line Coverage % Branch Coverage

Monkey AndroidRipper MobiGUITAR Sketch-guided SwiftHand Sketch-guided

music note 46.85 4.01 29.83 84.12 62.30 73.63

whohas 59.35 16.31 32.89 78.35 54.40 61.39

explorer 69.36 2.52 16.49 69.40 62.94 53.42

weight 45.07 14.97 17.32 70.06 51.45 62.02

tippy 78.62 7.68 13.35 88.97 61.50 65.82

myexpense 42.57 12.82 9.48 62.04 34.40 45.42

mininote 29.15 4.25 6.39 41.89 24.20 28.14

mileage 30.60 9.52 14.68 59.79 24.50 39.64

anymemo 25.51 2.80 3.99 51.97 36.20 41.67

sanity 22.17 3.99 9.36 31.33 16.69 18.69

Average 44.93 7.89 15.38 63.79 42.86 48.98

TABLE II
BRANCH COVERAGE (%) OF THE SKETCH-GUIDED TESTING

WITH DIFFERENT SKETCHING TIME

最新版本：

表 ：

表 ：分支覆盖

App 2 min 4 min 6 min 7 min 8 min
after 2 minute

Extra Feedback

music note 52.75 72.73 73.31 73.61 73.63 73.63

whohas 25.32 60.83 61.28 61.36 61.39 61.39

explorer 45.39 47.30 47.31 47.36 47.37 53.42

weight 42.40 42.45 42.48 42.48 42.48 62.02

tippy 16.84 41.44 44.30 44.36 44.39 65.82

myexpense 6.04 9.83 18.08 36.45 38.64 45.42

mininote 25.49 25.68 25.77 25.77 25.80 28.14

mileage 16.83 20.07 25.68 32.37 37.05 39.64

anymemo 4.95 17.18 23.57 29.79 33.31 41.67

sanity 2.17 5.39 9.96 11.45 11.68 18.69

表 ：行覆盖 不进论文

not taken the software testing class, so every test group consists

of two volunteers. With a 5-minute training, we ensure that all

volunteers work with our testing system correctly.

Every test group is assigned only 8 minutes to complete their

sketching in the evaluation. Then our testing system generates

test cases and performs the testing with a 15-minute time limit

on an Apple MacBook Pro with Intel Core i5 CPU 2.6GHz,

and 8GB Physical Memory. After that, testers have an extra

2 minutes to provide a feedback and fix the sketches, which

can further be processed with our testing system for 5 minutes.

Hence, the total time of our sketch-guided testing is up to 30

minutes.

We compare the code coverage of our sketch-guided testing

with 30-minute running of a few recent automatic GUI testing

tools, Monkey, AndroidRipper [1], MobiGUITAR [2], and

SwiftHand [9]. Monkey is an automated fuzz testing tool

provided by the Android development kit, which creates

random inputs without considering application’s state. An-

droidRipper [1] and MobiGUITAR [2] are two state-of-the-

art model-based GUI testing tools for mobile applications.

SwiftHand [9] is a recent tool that optimizes the exploration

strategy of test generation with a machine learning algorithm.

We perform every tool on the same platform and environment

as our sketch-guided testing, and collect the line coverage with

Emma3. Because the internal instrumentation of SwiftHand,

which is a critical part of SwiftHand’s functionality, conflicts

with Emma (as Choudhary et al. mentioned [10]), we just

compare the branch coverage of our sketch-guided approach

with SwiftHand.

Table I depicts the results of our comparison. To reduce

the randomness and non-deterministic nature introduced by

different test groups, we present the average results in the table.

From the results, our sketch-guided approach obtains higher

code coverage than the automatic GUI testing techniques, which

means the guidance of the sketches is helpful in GUI testing.

The line coverage of our sketch-guided approach is 41.98%

higher than Monkey, 708.49% higher than AndroidRipper,

and 314.76% higher than MobiGUITAR in average. And the

average branch coverage of our sketch-guided approach is

3http://emma.sourceforge.net/

14.76% higher than SwiftHand. Our comparison results of

Monkey, AndroidRipper, and SwiftHand are in accordence

with the experiments in [10].

An exception in Table I is that the branch coverage of

SwiftHand on explorer is a little higher than the sketch-

guided testing. The reason is that explorer only provides

simple features of browsing files in the current device, and

testers cannot specify meaningful guidance other than randomly

surfing in the file system. So the line coverage of Monkey,

which creates random inputs to test the application, is similar to

our sketch-guided testing on explorer. However, SwiftHand

applies a machine learning strategy to the control flow, which

focuses on the internal structure of the application and achieves

higher coverage on explorer. Nonetheless, our sketch-

guided testing achieves higher branch coverage than SwiftHand

on most applications, which indicates that testers’ guidance

is still better than machine learning algorithms with current

technology.

From the results in Table I, all the 4 GUI testing techniques

achieve low coverage on a few applications such as sanity,

because a large number of modules and features in the appli-

cation are not activated by GUI actions, but the environments,

such as sensors, GPS, etc. Our sketch-guided approach does

not support the environment testing currently. Such limitation

can be overcome by extending our sketching system in future.

We collect the sketches at different scheduled time from

testers in our testing, and compute the code coverage from the

sketches of different sketching time to estimate the necessary

manual effort in our sketch-guided testing. Table II presents

the branch coverage that our sketch-guided testing achieves

with different sketching time. From Table II, simple mobile

applications only need a very short sketching time (just less

than 2-4 minutes) to achieve a stable code coverage, and all

the applications in our evaluation can achieve good coverage

in about 8-minute sketching time. Hence, the manual effort in

our sketch-guided testing is acceptable.

IV. RELATED WORK

As smartphones and tablets become very popular today,

various techniques focus on testing GUIs of mobile applications,

such as guiding random testing with different strategies [11],

42

For Research Only

applying static analysis to improve the testing quality [7, 19],

combining GUI ripping with other testing techniques [15], test-

ing mobile applications with symbolic execution [20], and even

the computer vision technique [8]. Some recent research on the

record-and-replay techniques proposes lightweight approaches

to reproduce high-bandwidth stream of inputs and concurrency

events [23]. Choi et al. present the tool SwiftHand [9], which

generates test scripts for mobile applications with a machine

learning algorithm. A few empirical studies compare different

testing tools publicly available [10]. All these techniques do not

provide the sketch-guided interface as ours, which conveniently

helps testers to specify their testing purposes.

Memon et al. provide a survey on model-based testing

techniques for GUI-based applications [16], and define a GUI

model called Event-flow Graph (EFG) [13, 17]. The EFG model

has later been improved by the observe-model-exercise paradig-

m [21] and a few regression testing techniques [12, 14, 18].

Nguyen et al. integrate these techniques in GUITAR [22], a

tool for testing GUIs of PC applications. And two branches

of the tool, AndroidRipper [1] and MobiGUITAR [2], are

further developed for testing mobile applications with different

model traversing strategy. Different from these model-based

approaches, our sketch-guided GUI testing provides a natural

interface for testers to specify their testing purposes. The

sketches both guide the model generation and the model

traversing stages, and effectively improve the test coverage.

V. CONCLUSION AND FUTURE WORK

We present a sketch-guided GUI test generation approach

for testing mobile applications. Testers just need to draw a

few simple strokes on the screenshots following the syntax of

the sketching language we defined in our system. Then our

approach translates the strokes to the Partial Abstract Event-

Flow Graph (P-aEFG), and initiates a model-based automatic

GUI testing. We evaluate our sketch-guided approach on a few

real-world Android applications collected from the literature.

The results show that our approach can achieve higher coverage

than existing automatic GUI testing techniques with just 10-

minute sketching for an application. In the future, we will

extend our approach to support in testing the environment of

mobile applications, which guides the application in different

device environments and uncovers more bugs consequentially.

ACKNOWLEDGEMENTS

This research was supported in part by National Natural

Science Foundation of China (No. 61772260, 61402222,

61632015 and 61690204) and National Key Research and

Development Program of China (No. 2016YFB1000802).

REFERENCES

[1] D. Amalfitano, A. R. Fasolino, P. Tramontana, S. De Carmine, and A. M.
Memon. Using GUI ripping for automated testing of android applications.
In Proceedings of the 27th IEEE/ACM International Conference on

Automated Software Engineering, ASE 2012, pages 258–261, 2012.
[2] D. Amalfitano, A. R. Fasolino, P. Tramontana, B. D. Ta, and A. M.

Memon. MobiGUITAR: Automated model-based testing of mobile apps.
IEEE Software, 32(5):53–59, Sept. 2015.

[3] S. Anand, M. Naik, M. J. Harrold, and H. Yang. Automated concolic
testing of smartphone apps. In Proceedings of the ACM SIGSOFT 20th

International Symposium on the Foundations of Software Engineering,
FSE 2012, pages 59:1–59:11, 2012.

[4] AppBrain. Android operating system statistics. http://www.appbrain.
com/stats/stats-index, last accessed in November 2016.

[5] T. Azim and I. Neamtiu. Targeted and depth-first exploration for
systematic testing of android apps. In Proceedings of the 2013

International Conference on Object Oriented Programming Systems

Languages & Applications, OOPSLA 2013, pages 641–660, 2013.
[6] Y. M. Baek and D. H. Bae. Automated model-based android GUI testing

using multi-level GUI comparison criteria. In 2016 31st IEEE/ACM

International Conference on Automated Software Engineering (ASE),
pages 238–249, Sept. 2016.

[7] P. Barros, R. Just, S. Millstein, P. Vines, W. Dietl, M. d’Amorim, and
M. D. Ernst. Static analysis of implicit control flow: Resolving java
reflection and android intents. In 30th International Conference on

Automated Software Engineering (ASE), pages 669–679, 2015.
[8] T.-H. Chang, T. Yeh, and R. C. Miller. GUI testing using computer

vision. In Proceedings of the SIGCHI Conference on Human Factors in

Computing Systems, CHI ’10, pages 1535–1544. ACM, 2010.
[9] W. Choi, G. Necula, and K. Sen. Guided GUI testing of android apps

with minimal restart and approximate learning. In Proceedings of the

2013 International Conference on Object Oriented Programming Systems

Languages & Applications, OOPSLA 2013, pages 623–640, 2013.
[10] S. R. Choudhary, A. Gorla, and A. Orso. Automated test input generation

for android: Are we there yet? In 30th International Conference on

Automated Software Engineering (ASE), pages 429–440, 2015.
[11] L. Clapp, O. Bastani, S. Anand, and A. Aiken. Minimizing GUI event

traces. In Proceedings of the 2016 24th ACM SIGSOFT International

Symposium on Foundations of Software Engineering, FSE 2016, pages
422–434, New York, NY, USA, 2016. ACM.

[12] Z. Gao, Z. Chen, Y. Zou, and A. M. Memon. SITAR: GUI test script
repair. IEEE Transactions on Software Engineering, 42(2):170–186, Feb.
2015.

[13] A. M. Memon. An event-flow model of GUI-based applications for
testing. Software Testing, Verification and Reliability, 17(3):137–157,
Sept. 2007.

[14] A. M. Memon. Automatically repairing event sequence-based GUI
test suites for regression testing. ACM Trans. Softw. Eng. Methodol.,
18(2):4:1–4:36, Nov. 2008.

[15] A. M. Memon, I. Banerjee, and A. Nagarajan. GUI ripping: reverse
engineering of graphical user interfaces for testing. In 10th Working

Conference on Reverse Engineering, 2003. WCRE 2003. Proceedings.,
pages 260–269, Nov. 2003.

[16] A. M. Memon and B. N. Nguyen. Advances in automated model-based
system testing of software applications with a GUI front-end. In M. V.
Zelkowitz, editor, Advances in Computers, volume 80 of Advances in

Computers, pages 121–162. Elsevier, 2010.
[17] A. M. Memon, M. L. Soffa, and M. E. Pollack. Coverage criteria for

GUI testing. In 8th European Software Engineering Conference Held

Jointly with 9th International Symposium on Foundations of Software

Engineering, ESEC/FSE-9, pages 256–267, 2001.
[18] A. M. Memon and Q. Xie. Studying the fault-detection effectiveness

of GUI test cases for rapidly evolving software. IEEE Transactions on

Software Engineering, 31(10):884–896, Oct. 2005.
[19] N. Mirzaei, J. Garcia, H. Bagheri, A. Sadeghi, and S. Malek. Reducing

combinatorics in GUI testing of android applications. In Proceedings of

the 38th International Conference on Software Engineering, ICSE ’16,
pages 559–570, New York, NY, USA, 2016. ACM.

[20] N. Mirzaei, S. Malek, C. S. Păsăreanu, N. Esfahani, and R. Mahmood.
Testing android apps through symbolic execution. SIGSOFT Softw. Eng.

Notes, 37(6):1–5, Nov. 2012.
[21] B. Nguyen and A. Memon. An observe-model-exercise paradigm to test

event-driven systems with undetermined input spaces. IEEE Transactions

on Software Engineering, 40(3):216–234, March 2014.
[22] B. N. Nguyen, B. Robbins, I. Banerjee, and A. M. Memon. GUITAR: an

innovative tool for automated testing of GUI-driven software. Automated

Software Engineering, 21(1):65–105, 2014.
[23] Z. Qin, Y. Tang, E. Novak, and Q. Li. MobiPlay: A remote execution

based record-and-replay tool for mobile applications. In Proceedings of

the 38th International Conference on Software Engineering, ICSE ’16,
pages 571–582, 2016.

43

For Research Only

