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Abstract

Symbolic execution is a promisii
methodology. It systematically explor
tion space and can generate test cases
One significant practical challenge for

gram paths in real-world programs. Various 188
been proposed for guiding symbolic execution, b
generally inefficient and ad-hoc. In this paper, we in
novel, unified strategy to guide symbolic execution to less €x-
plored parts of a program. Our key idea is to exploit a speci
type of path spectra, namely the length-n subpath program
spectra, to systematically approximate full path information
for guiding path exploration. In particular, we use frequency
distributions of explored length-n subpaths to prioritize “less
traveled” parts of the program to improve test coverage and
error detection. We have implemented our general strategy in
KLEE, a state-of-the-art symbolic execution engine. Evalu-
ation results on the GNU Coreutils programs show that (1)
varying the length n captures program-specific information
and exhibits different degrees of effectiveness, and (2) our
general approach outperforms traditional strategies in both
coverage and error detection.

Categories and Subject Descriptors D.2.4 [Software Engi-
neering]: Software/Program Verification—Reliability, Vali-
dation; D.2.5 [Software Engineering]: Testing and Debu-
gging—Symbolic execution

Keywords less traveled, path spectra, symbolic execution
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1. Introduction

Testing is one of the most important software validation
techniques, and arguably the most practical and widely-
used. However, traditional approaches, such as random test-
ing and manual testing, although useful, can be inef-
fective [[13} 25} 31]]. Symbolic execution [10} is another
classical technique for software testing and analysis. It can
be used for systematically testing a program and test input
eneration with high coverage. Instead of using concrete in-
ut, symbolic execution uses symbolic values as input and
es a program’s execution space. When symbolic exe-
ncounters a branch condition, it forks the execution
ollgving both branch directions and updating the cor-
g path constraints on the symbolic input. When it

reaches a p, exit or hits an error, the current path con-
straint willibe solyed nd a concrete test case that drives
program e ion is program location. However, in prac-

tice, a program

guide and optimize
wever, these path
guidance techniques for symbo i
ineffective and ad-hoc.

to guide symbolic execution to explore
fectively.” At the high-level, we aim to exp
paths” of a program as it can help improve gest
locate more defects. Although most commonly adopted in
practice, it is folklore that statement and branch coverage
metrics may not accurately reflect how thorough a program
has been exercised by a set of test cases. The recent work on
Csmith gives more concrete evidence. Csmith is a ran-
dom C program generation tool specifically developed to find
bugs in C compilers. The randomly generated C programs
yield roughly the same statement and branch coverage as the
test suites in the tested compilers (e.g., GCC and Clang/L-
LVM), but they triggered a few hundred new bugs in GCC



and Clang/LLVM alone. Thus to measure “less traveled”, a
more flexible and general notion is needed.

Our key conceptual idea is to adapt a variant of path
coverage, the length-n subpath coverage (where each subpath
has n branches). Program profiling [4] [27] has been
effectively used to understand the behavior of a program.
It can also be applied to measure test coverage using different
program spectr ropose the use of length-n subpath

covered length-n s
execution to not yet g
use of length-n subp
coverage. One extremc
branch coverage, when

s agnatural spectrum of program
ntrivial degenerative case of

1. The othegextreme maps to
complete path coverage, when n = og diab
propose to use length-n subpath % [
program paths for exploration. Different Chei€¢
systematic coverage, and we show that t}
yet complementary benefits.

In more detail, we maintain a priority qiieue
subpath spectra information on the explore
program. For an explored (sub)-path 7 = (s, s
each s;(0 < i < k) corresponds to a branch loca
the direction taken in the execution. We compute 7’s length-
n subpath fragments (i.e., “n-grams”) and store each in
along with its frequency information. When we need to decide
which pending paths to explore, we examine P and select a
pending path 7’ with the lowest frequency length-n subpath
at its frontier. We terminate the path reaching the exit point or
hitting an error. This process repeats until either the program
has been fully explored, or we have reached a preset time
limit or coverage threshold.

We have implemented our general strategy in KLEE [[7]],
a state-of-the-art symbolic execution tool. To evaluate the
effectiveness of our strategy, we ran KLEE on the GNU
Coreutils programs [[[1] by varying the guidance strategies,
including our own and the most common traditional strategies
built into KLEE. We compared the quality of the generated
test cases by measuring their statement coverage and defect
detection capabilities. The results show that our strategy can
guide symbolic execution to cover the program faster and
find more bugs than the evaluated traditional strategies. In
summary, we have the following key findings: 1) different
choices of n exhibit different behavior and capture program-
specific information; and 2) the proposed unified strategy
significantly outperforms the other strategies.

In this paper, we make the following main contributions:

rts

® We introduce the novel concept of using subpath program
spectra as a unified strategy to guide symbolic execution
and present the details on how to realize the strategy.

e We implement the general strategy within KLEE and
extensively evaluate its effectiveness against common
traditional strategies.

main (x, y) { < Entry >
S0t if (x>y § P
s1: x = f(x);
else
S2: H <50> )
sst g (%, y);
541 return;
: S ss\'
>
int f (a) { \—
S5 if (a>0)
S6: ABORT; - -
else < Sg >
S7: return -a;
P
} \SS/'
g (a, b) {
S8 if (a == 0) - \
59: if (b==0) Z S
S10° ABORT;
else )
811+ ; s
else ( 10 ,>
S12t print a/b;
5131 return; N
} (s

(a) Example Program (b) Control Flow

Figure 1. An example program.

est of the paper is structured as follows. Section 2]

de ils on how to use length-n subpath program
speetidto gu mbolic execution. We also give necessary
backgrou n syimbolic execution and use an example to
illustrate ghe ben our approach. In Section 3| we de-
scribe the i and evaluation of our approach. We
survey related

xploration strategy.
We start with some necessafy backgr@find on symbolic exe-

cution and path spectra.

2.1 Symbolic Execution Backgréind

The concept of symbolic execution w
King in 1976. It is a practical testing and afalysi§fapproach
that utilizes and combines testing and 1fica-
tion. Recent years have witnessed an impr ¢ amount of
work [}, 51 7, [8 (17, [18] 24} 26, 32]] on building practical
symbolic execution techniques and tools for improving test
input generation and bug finding. The key idea of symbolic
execution is to substitute the actual data with symbolic value
as the input data. The corresponding program operations are
replaced with symbolic expressions, so the output of the pro-
gram can be represented as formulas on the symbolic input.
To illustrate the procedure of symbolic execution, we use
the example program in Figure[T} At the entry point of the
program, symbolic execution generates an original execution



state £S. An execution state maintains 1) the symbolic values
(z and y), 2) the corresponding symbolic expressions (such
as x = f(z) in s1), and 3) symbolic path constraint PC
of the input (such as > y in sg), which can represent a
specific path of the program. The symbolic execution engine
then executes the program with £S. When it encounters a
conditional statement “if (e) s; else s3” (such as sq in the
program), it ge a new execution state £S’. The new
state £S5’ copi i

ES’ is updated to
ES is updated to
explore both sides 0
more execution states a
applied to decide which
executed next at each fork (i.e., a cond
from conditionals or loops in the sQ

During this process, a constraifit so
the satisfiability of the path constraint i

Therefore, ES and ES’ can
iti@nal statement. As more and
, different strategies are
is desirable to be

reaches an exit point of the program or hits an‘€for, tHg p
exploration terminates and the corresponding path €onstain
is solved to find a concrete input, if any. Assuming e
execution state is always selected, under the Depth-Fifst
Search (DFS) strategy, the path sgs2s3s1251354 is the fi
case generated and the path constraint is ~(x > y) A—(x ==
0), then the constraint solver can generate a concrete input
(1,0) (i.e, = 1 and y = 0). This input is typically
equivalent to many other test cases following the same paths.
When we execute the program with this concrete input, it can
repeat the same path as the execution state did originally via
symbolic execution.

However, in realistic programs, loops or recursion can lead
to a large or even infinite number of paths (in theory). In most
situations, one has to set a time limit on symbolic execution.
Thus, it is important to guide symbolic execution to select
profitable states to explore during its search. Consider KLEE,
a state-of-the-art symbolic execution engine. It has several
built-in traditional search strategies [[7]]:

® Depth-First Search (DFS) always selects the latest ex-
ecution state among all the states to explore next. This
strategy has little overhead in selecting a state, however,
it typically explores fewer parts of the program and gets
stuck when it encounters a tight loop — a loop with few
statements that iterates many times.

® Random State Search (RSS) randomly selects a pending
state to explore. This strategy can explore the program
more uniformly and avoid the situation with tight loops
with a symbolic condition creating new states rapidly (fork
bombing). The problem of RSS is that it may repeatedly
generate test cases that have the same effect as those
generated earlier.

® Random Path Selection (RPS) uses a binary execution
tree to record the information on explored parts of the
program, where the leaves are current states and the
internal nodes are the forks. It selects states by traversing
the execution tree from the root and randomly picks a
direction when it encounters a branch until it reaches a leaf.
With this strategy, those states high up in the execution
tree have greater chance to be chosen because these states
have fewer constraints to satisfy and may be more likely
to explore uncovered parts of the program. RPS can avoid
the fork bombing problem affecting RSS, but as RSS, it
may also repeatedly generate similar test cases.

e Coverage-Optimized Search (COS) uses heuristics to
compute which state has better chance to cover new code
very soon. It calculates a weight for the states to be chosen
and selects a state w.rt. the weight. Various factors, such
as the minimum distance to an uncovered instruction and
the query cost, are taken into account to calculate the
weight for each state. This strategy is not general and may
not perform well for every program.

Using search heuristics, such as the ones above, is one
possible approach to deal with the problem of path explosion
in symbolic execution. Traditional methods mostly perform

lind, random search, thus cannot explore the program uni-
fo and thoroughly.

e X ength-n Subpath Program Spectra

Tagtteéfively guide symbolic execution, we believe that the

enerate test cases with higher cov-
detection capabilities. To capture
to “less traveled” parts, we need
mate the behavior of the program. To
application of program

program behavior. It counts occl

events during a program’s executi se ts can

based on different types of events provi
spectra that can help characterize the program’
and provide signatures of a program’s runti
Below we list a few of the most widely used program spectra:

® Branch Hit Spectra: Recording the executed conditional
branches.

® Branch Count Spectra: Recording the execution count for
each conditional branch.

e Complete Path Spectra: Recording the complete paths that
were explored.

® Path Spectra: Recording the explored intraprocedural
loop-free paths.



e Path Count Spectra: Recording the executed count for
each intraprocedural loop-free path.

The above profile information can be used in many ways,
such as compiler optimizations [2} 3]], regression testing [20],
coverage measuring, and many other applications that need
to analyze program behavior. Reps er al. [27] use path spec-
tra to deal with “Year 2K Problem.” They compared
spectra from di
date-depen
various types of sp
exposure of regressig
a single program sp
havior differences.
help us understand a pro
sively from different aspects.

From the above discussion, differe
vide different perspectives to un
cution behavior. We can use program
the effect of different test generation te

However, there does not exist
at can discover all program be-
rent program spectra can

other hand, branch coverage, statement coverage or functi
coverage are too shallow to accurately capture the effecti
ness of test suites. The random C program generation too
Csmith has been used to discover hundreds of new bugs
in mainstream C compilers, such as GCC and Clang/LLVM.
However, as the authors have noted, the generated test cases
and the compilers’ test suites are very similar with respect to
the three coverage metrics mentioned above.

To fill the gap between complete path coverage and
branch coverage, we adopt the concept of length-n subpath
program spectra. It is a variant of complete path coverage.
A complete path is a unique sequence of branch conditions
from the entry of a program to its exit, and we can represent
it as m = (sg, s1,...,Sk) where each s; corresponds to
a conditional branch (i.e., fork) and the branch direction
taken in the program. We represent a length-n subpath as
(Si41,Sit2,- - -, Si+n), Which is a consecutive sub-sequence
from a complete path.

By varying n, we obtain a spectrum of modeling precision.
When n = 1, it degenerates to branch coverage. At the other
extreme, we obtain complete path coverage when n = oo
(i.e., unbounded).

2.3 Subpath-Guided Search

To measure which parts are “less traveled”, we propose to use
length-n subpath. However, it is time-consuming to build the
whole length-n subpath matrix during symbolic execution.
Instead, we use statistical analysis of the already covered
length-n subpaths to decide which execution state(s) may
lead the path exploration to the “less traveled” parts. We call
this general, uniform strategy Subpath-Guided Search (SGS).

Algorithm 1: Subpath-Guided Search Strategy (Part 1)
Initialization:
1: PriorityQueue<pathSegmentCount> P;
2: Vector<executionState> ESVector;
3. executionState initialState;
4: Integer pathSegmentLength;
Begin symbolicExecution:
5: ESVector.add(initialState);
6: while ESVector.size>0 || ITIME_OUT do
7. executionState ES = selectState();
P[ES.7]++;
while ES.instructionType != FORK || EXIT &&
!FoundError do
10: ES.executelnstruction();
11:  end while
12:  if ES.instructionType = EXIT || FoundError then
13: generateTestCase();

8:
9:

14: ESVector.remove(ES);

15: continue;

16:  end if

17:  if ES.instructionType = FORK then

18: instruction Fr = ES.currentInstruction;
19: ES2 = new executionState(ES);

20: ES.newNode = Fr(T)

: updatePathSegment(ES);
if 'P.contains(ES.7) then
P.add(ES.,0);

The main algorithm is shown i
rithm 2] We use a structure e = (mr, f) f
where 7 is the subpath (of length n), f is
m in the explored parts of the program, which i ated
by counting the number of times that 7 h
before. A priority queue P is maintained and the subpath
with the lowest frequency is at the top of the queue. For each
execution state £S, a corresponding subpath 7 is maintained,
which is composed of the latest n branch conditions executed
of ES. The execution state with the lowest count of 7 is
selected to continue the symbolic execution (Algorithm [T}
Line 7). We break ties, if any, at random. When an execution
state Sy, (ES in Algorithm[T)) is picked, the frequency of the
corresponding subpath 7, (ES.7 in Algorithm/[T} Line 8) is in-
creased by 1. As described in Section[2.1] at every fork point




Steps | Pending Path | Priority Queue Path to Pick | Generate Case
1 L:s0¢ (*50¢,0),(*s0£,0) 2
2:s0f
2 1:s50¢ (*s0£,0),(*58¢,0),(*s5£,0),(s0r,1) | 3 80f88F54
ZZSOfSBt
3280f58f
3 1:50; (*50¢,0),(*s8¢,0),(s8f,1).(s05,1) | 2
2330f58t
L:soq (*50¢,0),(*59¢,0),(*s59£,0),(s8¢,1), | 3 505889154
2:50 581 59¢ (ssr.1),(s05,1)
S0 fS8tS9f
(*50¢,0),(*59¢,0),(591,1),(s8¢,1), | 2 50 58¢59¢510
Sot (sgf,1).(s0y,1)
(*50¢,0),(89¢,1),(59 £, 1),(58¢,1), 1
ssr,1).(sof,1)
7 l:s0¢85¢ “®:,0),(*s57,0),(50¢,1),(59¢,1), | 2
2:50155 1),(s3¢,1),(s37,1),(s0¢,1)
8 L:so¢8s5¢ 5¢,0),(85¢,1),(s0¢,1),(59¢,1), 3 S0¢S5t56
2:50155 £ 58t gt 1),(*ssr,1),(s0,1)
3280t85f83f
9 1:s0;85 158t 0t.1),(s9¢,1), 2 50¢5558 154

Algorithm 2: Subpath-Guided Search Strategy (Part 2)

Begin selectState
1: Vector<executionState> selectSet;
2: for 0<i<ESVector.size() do
3:  if P(ESVector[i].pathSegment)=P.lowest then
4 selectSet.add(ESVectorl[i]);
5:  end if
6:  i++;
7: end for
8: Integer random = randomInteger() mod selectSet.size()

9: return selectSet[random];
End selectState

10:
Begin updatePathSegment(executionState ES)
11: ES.7w.add(ES.newNode);

12: if ES.7.length > pathSegmentLength then
13:  ES.m.removeFirstBranchCondition();
14: end if
End updatePathSegment(executionState ES)

2:50¢S5 S8 f sgr,1),(s0z,1)

b}

ecution state ES), is generated (Algorithm

newdex
L ﬁstates ES), and ES), (ES2in Algorithm Line
19) will ex th sides of the fork, so we update the cor-

respondin@ subpaths g
T + Fr( lgg
a fork point F'z4W
be either T or
than n, the first bra
[ updatePathSegment). The

After updating the priority quel

state with the lowest count

minated or the symbolic exploration ti

conditig

of 7 (

the benefits of SGS, we use length-1 sub

symbolic exploration to generate test caseg fo

N

ESk and ES), to 7, + Fr(T) and
all} Lines 20 and 25). F'r(x) denotes
direction it chooses, where x can
ength of the new subpath is larger
be removed (Algoritm
we checKithe priority queue P.

tState).
ave ter-

program in Figure[T]and compare it with the depth-first search
strategy. To have a fair comparison, we assume that our strat-
egy breaks ties by selecting the latest execution state as DFS
does. There are 7 complete paths in the example program. To
generate test cases to cover all the statements, DFS needs to
explore all 7 paths. The procedure of length-1 subpath guided
search is shown in Tablem Node s;; represents a branch node
s; with the true direction taken, while s;; denotes a branch
node s; taking the false direction. The column “Pending Path”
records the corresponding paths of the unterminated execu-



Steps | Pending Path Priority Queue Path to Pick | Generate Case
1 Lisot (*s0¢,0),(*s0£,0) 2
2:s0f
2 1:50¢ (*50¢,0),(*s05581,0),(*s0887,0),(s0,1) 3 8088154
2550f38t
3:50f88f
: (*s0¢,0),(*s0558:,0),(s0£887,1),(s507,1) 2
(*50£,0),(*58¢591,0),(*s8: 59 £,0).(50 £ 581, 1), 3 801585954
(sogssf.1)(sor.1)
(*50£,0),(*s8¢591,0),(8¢89 £, 1),(50 £ 58¢,1), 2 80£58t59¢510
9 (sorssyf.1).(sor,1)
6 L:s0¢ (*s01,0),(s8¢59¢,1),(88¢597,1),(s0 7 58¢,1), 1
D,(s0z,1)
7 1:s0¢85¢ 0),(*s0t857,0),(58¢50¢,1),(S8¢ 50 £, 1), 2
2:80155¢ s0r88f.1),(s0¢,1),(s07,1)
8 L:s0¢55¢ 0),(*s5558t,0),(*s5 758 7,0).(88¢50¢,1), | 3 S0tS5FS8fS4
2:50¢85f S8t (sgibor, st-1),(s0885,1),(s0¢,1),
3:50t55f58f (Sof,l
9 1:s0¢55¢ (*s0:5580).("85 ¢ (s5f58f,1),(s8t59¢,1), | 2
2:50¢85 f S8t (sstsof,1),(sop 58 orsgf.1).(s0e,1),
(soz,1)
10 L:sq¢85¢ (*s0t55¢,0),(s5 ¢ 1),(fsgesge,l), | 3 80¢55¢56
2:s0¢85558¢89¢ | (FsstSor,1),(S0r 8¢,
3:50t85 58805 | (sof.1)

Table 2. Length-2 subpat

tion states, the column “Priority Queue” shows the count
and position changes of the length-1 subpath, the structure
e = (m, f) with a x in the priority queue indicates that there
are unterminated execution states which have the correspond-
ing subpath 7. When an execution state reaches the exit of
the program, the corresponding test case will be generated
and shown in the rightmost column, then the execution state
is terminated and removed from the pending path.

In the first 7 steps, subpath-guided search has the same
selection as DFS. Three test cases are generated, which cover
all the sub-paths started from sg. Three unterminated execu-
tion states with the path so; 55, S0¢557 58 and so¢ 5553 can
be chosen. In step 8, the branch condition s5; becomes the
“least traveled” part compared to sgy and sg, subpath-guided
search then drives symbolic execution to explore that branch
and the case with the path sgs5s¢ is generated as the 4th case,
while DFS will select the third execution state. In step 9, for
all the count of the length-1 subpath is 1, subpath-guided
search selects the latest execution and generates the test case
for sg¢s5¢85754. It takes only 5 cases to cover all the state-
ments in the example program with the guidance of length-1
SGS.

Differe
guidance. Tabl

pe selection in the first 7
encies of the length-
e corresponding to
sub-path s5 753y
and, in length-

steps. The length-2 SGS co
2 sub-paths. In step 8, the ¢

has never been explored before. ©
1 SGS, the sub-path sgy is explore

symbolic execution to possibly explore moree di
program. We see that the length-2 SGS t
than length-1 SGS to generate cases covering all statements
of the example program.

The subpath-guided search can also avoid the fork bomb-
ing problem, if we replace s1; with ”s;: while (a < 10)
a++;”, the DFS strategy will keep creating new execution
states in s{; and lead to the starvation of the other states.
Conversely, in our strategy, when both conditions in s/, are
executed once, it prefers those states with a zero count of
the corresponding subpath to the loop entrance. When all the



zero count subpaths are explored, the loop entrance node will
be explored again.

2.4 Discussions

Subpaths with different lengths provide various program spec-
tra and conceptually capture different levels of “less traveled”
program parts. In our approach, shorter subpaths are more
similar to using branch condition, and thus may guide
er those uncovered statements with

e explored parts, thus some ex-
ecution states may gha same corresponding subpaths.
In this case, symbo plOratien may ignore some special
execution states that [c8 ﬁar program parts. On the
other hand, longer subpatifs'may divide the execution states
with smaller granularity, but some red
be generated. In the next section
such trade-offs and show how to s
benefits of different choices of n.

3. Evaluation and Analysis

This section presents our evaluation and analy f the pr
posed strategy. It describes details of our evaluati@n de$ign,
setup, and results. In particular, we show that, on realt
grams, our strategy systematically captures program-specific
information and exhibits varying levels of effectiveness wi
different choices of n, and it performs significantly better
than traditional strategies in terms of test coverage and error
detection.

3.1 Evaluation Design and Setup

We have implemented the proposed length-n subpath guided
search in KLEE [[7, 23]}, a state-of-the-art symbolic execution
engine built on top of the LLVM compiler infrastructure.
KLEE can process a large number of concurrent states and
has strong support for handling interactions with the external
environment [9]]. KLEE also provide different built-in search
strategies, including traditional DFS, random state search,
and some other heuristic search strategies. Adding our unified
search strategy to KLEE, we are able to directly compare their
effectiveness and trade-offs in test case generation not on toy
programs, but realistic programs from GNU Coreutils.

Research Questions. Through empirical analysis, we hope
to answer the following key research questions:

(R1) What impact do different choices of n have? Can they
be effectively combined?

(R2) How does our strategy compare with the traditional
strategies?

In particular, for (R1), we aim to understand what different
characteristics the test suites generated from different n’s
have in terms of coverage and error detection. We will
also understand whether there is a uniformly best n. As
for (R2), we seek to understand how our strategy compares

Program | ELOC | Mutant || Program | ELOC | Mutant
base64 3989 1204 || nohup 3875
basename 4026 356 || od 4463 6762
cat 3953 paste 3837 1525
chcon 4343 1313 || pathchk 3857 1078
chgrp 4278 672 || pr 4626
cksum 3983 1066 || printenv 3881
comm 3997 820 || printf 4251 2745
csplit 8589 pwd 3969
cut 4195 2821 || readlink 4154 284
date 5688 m 4560
dd 4734 5450 || rmdir 3892 454
df 4314 seq 3927
dircolors 4093 1527 || setuidgid 3878 548
dirname 3889 209 || shuf 4508
du 5790 2168 || sleep 4199 381
echo 3884 split 4428 2169
env 3937 334 || stat 4210
expand 3916 1144 || stty 4718
expr 9565 2333 || sum 4068 954
factor 3896 sync 3919 89
false 3897 tail 4495
fmt 3860 tee 3966 593
fold 3891 1064 || test 3577
groups 4002 232 || touch 4744 1660
head 4170 tr 4150 6640
id 4067 true 3888
4617 tsort 3856 1120
3919 tty 3847
3829 272 || uname 3810
unexpand 3903 1336
uniq 4048
unlink 3865 186
uptime 3896
users 3907
we 4075 2205
3856
3901
oreutils.
to traditional strategies also in terms of géver; d error

detection. We have designed and ran a set offéXp
answer these questions.

Evaluation Subjects. To measure the e
ferent length-n subpath guided search strategy. Following
KLEE, we have selected GNU COREUTILS utilities as the
test subjects. They are the basic file, shell and text manipula-
tion utilities on the GNU operating system [11]]. The version
of COREUTILS that we use is 6.11 (as from the tutorials from
KLEE’s website). All the experiments were ran on a server
with Intel(R) Xeon(R) X7542 CPU (18 cores, 2.67GHz). The
operating system is Ubuntu 10.04. The programs we use are
shown in Table Bl The column “ELOC” shows the size of
the programs in terms of the number of executable lines of



code (ELOC). ELOC shows the total executable lines of the
final executable we ran KLEE on after optimization. Because
KLEE may invoke library code to execute some parts of
the program we test, we also include the library code when
measuring the raw size of the programs, again following
KLEE [[7]. From the table, we can see that the size for most
programs ranges between 3K to 4K, while six programs have
more then 5K 1i is statistical information shows that
toy problems. In addition, we have
to evaluate the effectiveness of the

Traditional Strategies.

heuristics: Depth-First Search (DFS), tom State Search

(RSS), Random Path Selection (RPS % on Uniform
CGOL C

used by KLEE are random-path interleaved with nurs:
For subpath-guided search, we choose the length to range
over {1, 2,4, 8} for comparison.

We ran KLEE on each program with the command:

./run<program> --search-strategy
--max—-time 3600
--sym-args 0 3 10
-—-sym-files 2 8

The option --max-time 3600 sets the time limit to
3,600 seconds. The option —--sym-args 0 3 10 allows
KLEE to replace 0 to 3 command line arguments of the pro-
gram with at most length 10. The option --sym-files 2 8
tells KLEE to make at most 2 standard input symbolic files
with maximal length 8. It is noted that KLEE can generate
test cases for those unterminated execution states after the
time limit. However, for some strategies, there are many
unterminated states, which may consume much of the algo-
rithms’ time and lead to inaccurate time limits. To be fair in
our comparison, we ignore the test cases corresponding to un-
terminated execution states and compare different strategies
with the test cases generated within the given time limit.

3.2 Test Coverage Results

Our first set of evaluations focuses on evaluating the test
coverage (in particular statement coverage) of the generated
test cases under different search strategies. We use the tool
gcov to compute the statement coverage information. It can
be used in conjunction with GCC and generate executables
to profile an instrumented program. KLEE provides a tool to
replay the test cases on the corresponding executable and
gcov can calculate statement coverage. When measuring

coverage, we only consider the code in the program itself and
do not include the library code since it is invoked from many
programs to avoid counting them multiple times. By default,
KLEE generates one test case for each terminated path.
However, for larger programs, it is quite costly to compute
and re-execute the test cases covering explored parts of the
program. Since our goal is to measure statement coverage, we
use the --only-output-states-covering-new option
on the KLEE command line, so that KLEE only outputs
test cases for the paths covering new instructions in the main
utility code (or hit an error).

We have selected 75 programs in COREUTILS for cover-
age comparison. Table ] shows the result of the comparison.
We show the distribution of the coverage under each search
strategy. In addition, the row “Avg.” shows the average cov-
erage information across all programs. The row “Best” lists
the total number of programs with best coverage (for ties, we
count 1 for each).

Result 1: SGS yields higher coverage. From Table 4] we
observe that subpath-guided search (SGS) performs better
than the other strategies, across all choices of n. The NURS
strategies do not perform well. One possible explanation is
that we ignore the cases corresponding to unterminated states.

he results demonstrate the disadvantages of the random

hoices: sometimes they cannot drive the execution states to

(RPS) strategy has similar results as length-8

bpath guided search, which shows that for the

rams, length-8 subpaths seem long enough
plete paths.

to approxifjate c

ify

Result 2:
though the len

t n for SGS. We observe that al-

m n for about half
hs exhibit different
ify the guidance of

programs), it is still not thg
of the programs. Different
characteristics, so we need a
different lengths.

As we discussed in Section |Z[,

vide a more comprehensive exploration of the program. To
find out the power of combining different lengths’ results,
we ran KLEE on the benchmarks with the guidance of each
length subpath for 15 minutes. We replayed the test suites
individually and then combined all the test cases to see their
effects.

Result 3: Combined SGS performs the best. Table |§| pre-
sents the coverage distribution of the individual subpath-
guided search and the combined strategy. We observe that
individual strategies can quickly achieve high statement




Cov. SGS SGS SGS SGS | RSS | DES | RPS | NURS | NURS | NURS | NURS

n= n=2|n=4|n= covnew | depth icnt | md2u
90-100% 18 18 21 13 14 11 17 11 16 11 11
80-90% 4 12 9 10 5 3 9 3 4 5 4
70-80% 14 16 12 13 5 6 12 2 12 3 3
60-70% 17 11 12 15 12 11 12 4 14 5 6
60%- 22 18 21 24 39 44 25 55 29 51 51
Avg.(% 7 | 72.87 | 72.35 | 66.95 | 60.56 | 56.12 | 68.38 46.87 | 6435 | 51.72 | 50.50
Best 38 29 24 20 16 23 14 21 14 15

Table 4. The

Cov.
90-100%
80-90%
70-80%
60-70%
60%- 28

A.Cov(%) | 66.06
Best 24

Table 5. The coverage distribution of subpath guid
with 15 minutes time limit and the result of the combi
cases. The row “Best” is the comparison result of the t
cases generated with individual strategies under 60 minutes
time limit, and the combined test cases of those in 15 minutes.

coverage and saturate, and the combined strategy in 15
minutes can already outperform all the other strategies in
KLEE, each with 60 minute time limit. The comparison
results of the total number of best coverage among the
individual strategies in 1 hour and the combined strategy in
15 minutes each are shown in the row “Best”. We can see that
the combined strategy has the best coverage in almost 80%
of the programs and the average coverage is also significantly
higher.

We also examined the speed to find test cases covering new
statements or branches by tracing the number of terminated
states when each test case is generated and replaying the
cases one by one to see the trend of increasing coverage.
In some bigger programs, length-1 SGS terminates fewer
execution states when generating new test cases than the
longer lengths. However, when the coverage reaches a certain
level, it becomes difficult to find new test cases, while the
longer n’s can still guide path exploration to find new test
cases and ultimately gain higher coverage.

Result 4: SGS yields more bug reports. When KLEE ex-
plored the programs, it also issued some bug reports. Table 6]
summarizes this information from the first set of evaluations
in Table ] There are four kinds of bugs reported [23]):

distribution of the COREUTILS programs under the guidance of different search strategies.

e Model: KLEE does not support certain program states. For
example, KLEE cannot support symbolic sizes to malloc.

® Exec: Some problems prevented KLEE from executing
the program, such as unknown instructions, a call to an
invalid function pointer, or inlined assembly.

e Ptr: Stores or loads of invalid memory locations.

e External: KLEE failed when invoking external functions
with symbolic arguments.

In Table [6] we only show the programs where different
h strategies yielded bug reports. The Model, Exec, and
I bugs may be resulted from imprecise modeling in
However, to illustrate that our strategy was able to
issues while the other strategies did not, we
s of bugs in the table. We observe that

subpath-
types of
test cases
strategies did

ther strategies. Below we list some
ies reported bugs, but the other

e dir: BothSGSn =1a
The command line arg
n = 1) and “-ccab A /"\{g
null directory A caused anGuts6
the library readdir.c:33 from

enerated a Ptr error.

°
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failed on an external call to fstatat ()"int
library fts.c:1394.

shuf: Both SGS n = 1 and n = 2 generated a Model
error. KLEE reported that the command line arguments
“-103-7@” (with n = 1) and “-i3-8_” (with n = 2) need
to malloc with a symbolic argument, while KLEE does
not support and has to concretize the argument.

test: SGS n = 2 reported an Exec execution error. KLEE
cannot execute the program with the command line argu-
ments “ -t +01”, which makes KLEE execute the function
syscall() in the POSIX support code £d.c:901 with
symbolic arguments.



Strategy SGS SGS SGS SGS | DFS | RSS | RPS | NURS | NURS | NURS | NURS
Programs n= n=2|n=4|n=8 covnew | depth icnt | md2u
chcon *1,1
chgrp 1,1 1,1 1,1 1,1 1,1 1,1 1,1 1,1 1,1 1,1
csplit *1,2 1,1 1,1 1,1 1,1
dir *2,1 *2,1 1,1 1,1 1,1 1,1 1,1 1,1 1,1 1,1
head *1,2 1,1 *1,2 *1,2 1,1
Is 1,1 *2,1 1,1 1,1 1,1 1,1 1,1 1,1 1,1 1,1 1,1
od 1,3 1,4 *1,8 *1,8 1,1 1,6 1.4 1,2 1,3 1,2 1,2
printf *1,1 1,1
rm 1,1 *1,2 1,1 1,1 1,1 1,1 1,1
shuf
split 1,1 1,1 1,1 1,1 1,1 1,1 1,1 1,1
stat *2,1 1,1 | *2,1 1,1 1,1 1,1 1,1 1,1
test
unexpand 1,1 1,1 1,1 1,1 1,1

types, and the second for the total number
performed best in bug finding.

The error reports from different search strategies
that our strategy were able to trigger such issues but the ot@er
strategies did not. We can also observe that the guidan
under different subpath lengths may lead to different bug
reports.

Result 5: SGS has acceptable overhead. 1In this experi-
ment, we observed that each search strategy has quite similar
total number of explored paths as the other strategies on
most programs. This indicates that the SGS strategy does not
incur much time overhead. As for space overhead, KLEE
ran out of memory and crashed for a few programs, mainly
because the constraint solver consumed too much memory.
This happened for almost all the search strategies and may be
attributed to some specific paths of the programs. This means
that our SGS strategy also has similar and acceptable space
overhead compared to the other strategies.

3.3 Mutation Testing Results

To further compare the usefulness of the generated test
cases under different search strategies, we applied mutation
testing [[12]] to measure the quality of the generated test cases.
In mutation testing, small changes are applied to a program
P to generate a set of “faulty” programs called mutants. A
test suite is then executed on the original program and the
mutants. If the test data can detect the mutated code, we say
the test suite kills a mutant. The ability to find bugs of a test
suite can be measured by the number of mutants it kills.

We used a state-of-the-art mutation testing tool for C
MILU to generate mutants for the programs in CORE-
UTILS. 21 pre-defined mutation operators are applied to
make simple replacements to the programs in COREUTILS,

nonempty cell has two numbers: the first for the number of reported error
eports. A cell with a **’ indicates that the corresponding search strategy

uch as replacing “++” with “=” or “>” with “<”. Then we
eplayed the test cases generated under each search strategy
on riginal version and the mutants, compared their out-
taidecide whether a mutant was killed by the test suite.

oy s in COREUTILS do not produce output or

t ut 1s_environment related (such as date and df),
it is ‘difficudfto tell whether the different outputs between
original c@de and t is caused by the test suite we used.
In this ca i 0 of the programs for this mutant
testing evaluati

Table [3]
program, its corres

mutants. Because the evaluation results from Section
show that the combined subpath-guided search strategy is the
most effective in terms of statement coverage, we also added
the combined strategy to our mutant testing evaluation.

The results are shown in Table [7l Since the number
of mutants for the programs varies widely, we use three
dimensions to present the results. The column “Total Kill”
denotes the total number of mutants killed by the test suite
generated under the corresponding search strategy. Because
some programs have a large number of mutants killed while



Strategy Ave. Kill Rate | Total Kill | Best
n=1 26.00% 14529 14
n=2 27.65% 16072 8
n=4 26.04% 14930 9
n=2~8 26.96% 13951 8
Combined SGS 32.17% 19719 24
RSS 23.03% 12267 4
DFS 18.63% 9632 2
25.16% 13349 6

19.58% 10211 2

11105 3

icnt 9987 2
2

fewer killed mutants. Thus, we calculate“th
for each program and show the average killirate
“Ave.Kill Rate”. Like what we did in the state

evaluation, we count, for each strategy, its number
killed mutants and show the result in column “Best™

Result 6: SGS kills more mutants. From the result, we

see that the subpath-guided search strategies perform better
than the other strategies in KLEE. The combined subpath-
guided search kills the most mutants and has the highest
average kill rate. It should be noted that in this evaluation
that the combined search strategy has the best killed number
in about 60% of the programs we analyzed, which is signifi-
cantly lower than the corresponding result from the statement
coverage evaluation (around 80%). One possible explana-
tion for this result is that we generated test cases for every
terminated execution state, which took more time than only
generating test cases covering new statements or branches.
In the combined search, each strategy only ran for 15 min-
utes, and sometimes that is not long enough to explore more
parts of the program. Nonetheless, the SGS strategies and its
combined version still outperforms all the other strategies.

3.4 Discussions

Our approach provides a general, unified framework to sys-
tematically guide symbolic execution using subpath program
spectra. We can use a specific n for different purposes. If we
want to cover more parts of the program in a short amount
of time, a small n (such as 1) can be the desirable choice
as it ignores much of the contextual information and can
explore program paths with less conditional branches at the
very beginning. However, the limited contextual information
cannot provide powerful guidance when the coverage reaches
a certain level, while some specific parts of the program may
need certain loop or iteration times to enter. In this case, a
larger n will be a more suitable choice as we can explore

the program with more program specific information and
thus cover the program more thoroughly. On the other hand,
longer n’s may also be prone to guide symbolic execution
to redundantly explore some paths and reduce the efficiency
and effectiveness of path exploration. The combined strategy
using different length n appears to be striking a good balance
between efficiency and effectiveness.

4. Related Work

We have proposed a unified technique to guide symbolic path
exploration to tackle the problem of path explosion, which
is a significant challenge for symbolic execution because
systematically executing all feasible paths in large programs
is costly. This section surveys closely related work on this
topic. Many techniques have been proposed in the literature
to handle the problem from different aspects: path guidance,
path pruning, and parallel execution.

Path Guidance Techniques. Different search strategies
have been proposed and used in symbolic or concolic test-
ing. The EXE tool by Cadar et al. [8] employs a Best-First
Search strategy, which checks all execution states and picks
the best one according to some heuristics. Hybrid Concolic

esting [24] is a technique proposed to interleave random
esting with concolic execution to obtain a deep and wide
tion. The control-flow guided search strategy [[6] con-
weighted control flow graph (CFG), guiding the
ati the nearest currently uncovered parts based on
disfance in the CFG when the concolic testing needs to
chodse br: e negate. The fitness-guided search strat-
egy [32] €alculates ess values from explored paths to
target pre ess gains for the branches to be
flipped, then s r paths and branches to cover the
[18] proposes a new search algo-

rithm, generational
of path explosion and imperf
to Best-First Search, genera
each expanded execution, s
one with the top score to run and
in Pex [30] shares some similarity

from the explored paths, which provides better guidance. Our
combined strategy also offers a good balance of cost and
effectiveness, and can be fruitfully incorporated in existing
(directed) symbolic execution engines.

Path Pruning Techniques. There also exist techniques that
address the path explosion problem by path pruning. The
RWset analysis technique [5] tracks the memory locations
read and written by the program to determine whether a
path can explore new program behavior. Those execution
states that are deemed to produce the same effects as some



already explored paths will be pruned to reduce the number
of explored paths. The tool eXpress introduces dynamic
symbolic execution for regression test generation and prunes
paths that do not expose behavioral differences while ex-
ploring new program versions. The SMART [16] technique
performs concolic testing compositionally by adapting in-
terprocedural static analysis. While these path pruning tech-
niques focus on ing redundant path explorations, our
technique foc iding symbolic execution to explore

to tackle the path eXplesien problem and may be fruitfully
combined. O

Parallel Symbolic E. 0 ally, there are also com-
plementary parallel symbagfliC execution teghni
posed to mitigate the path explosion 4
execution. They use simple static pag
divide the symbolic execution tré

plore the partitions utilizing multi-core
from cloud or grid computing environ

in symbolic
iques to help
parallel ex-

vailable

5. Conclusion and Future Work

In this paper, we have introduced a general, unifi

work to intelligently guide symbolic execution to impr
test coverage and error detection. Our key insight is to
length-n subpath program spectra to systematically steer path
exploration to less explored parts of a program. We have
implemented our framework in a state-of-the-art symbolic
execution engine KLEE. Results on a large number of small
to medium size real-world programs show that our unified
search strategy can generate test cases with higher coverage
in less time compared to common traditional strategies. We
also show that the generated test cases can help locate more
bugs. Finally, we have proposed a natural combination of the
specialized strategies under different choices of n and show
that it offers the best trade-offs of cost and effectiveness. We
believe that our general framework can be incorporated in
existing symbolic execution engines besides KLEE (such as
Pex and JPF) and have potential applications in other soft-
ware testing and analysis problems that require path-based
analysis.

There are several interesting avenues for future work. First,
we would like to explore how to effectively interleave our
strategy with other strategies to more intelligently break ties
among states with same subpath frequencies. Second, we are
also interested in investigating how to dynamically adjust n,
for example, by tracking certain program properties. Once
the current n cannot provide worthwhile profit for its cost
(determined by the properties we track), we may adjust n.
Other promising directions include synergistic combinations
with path pruning or parallel symbolic execution. Beyond
symbolic execution, it would be interesting to apply the same
concept to other testing and analysis problems, especially
those that rely on path analysis.
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