
 

 
 

Software Engineering Group 
Department of Computer Science 
Nanjing University 
http://seg.nju.edu.cn 

 

 

 

 

Technical Report No. NJU-SEG-2015-IC-002 

2015-IC-002 

 

 

Optimizing Deterministic Garbage Collection in NAND Flash 

Storage Systems  

Qi Zhang, Xuandong Li, Linzhang Wang, Tian Zhang, Yi Wang, Zili Shao 

 

 

Real-Time and Embedded Technology and Applications Symposium 2015 
 

 

 

 

 

 

 

Most of the papers available from this document appear in print, and the corresponding copyright is held by the 

publisher. While the papers can be used for personal use, redistribution or reprinting for commercial purposes is 

prohibited. 

http://seg.nju.edu.cn/


Optimizing Deterministic Garbage Collection in
NAND Flash Storage Systems

Qi Zhang Xuandong Li Linzhang Wang Tian Zhang Yi Wang Zili Shao
State Key Laboratory for Novel Software Technology Department of Computing

Nanjing University The Hong Kong Polytechnic University

Abstract—NAND flash has been widely adopted as storage
devices in real-time embedded systems. However, garbage collec-
tion is needed to reclaim space and introduces a lot of time
overhead. As the worst system latency is determined by the
worst-case execution time of garbage collection in NAND flash,
it is important to optimize garbage collection so as to give a
deterministic worst system latency. On the other hand, since the
garbage collection does not happen very often, optimizing garbage
collection should not bring too much overhead to the average
system latency.

This paper presents for the first time a worst-case and
average-case joint optimization scheme for garbage collection in
NAND flash. With our scheme, garbage collection can be post-
poned to the latest stage so improves the average system latency.
By combining partial garbage collection and over-provisioning,
our scheme can guarantee that one free block is enough to hold
all pages from both write requests and valid-page copies. The
experiments have been conducted on a real embedded platform
and the results show that our technique can improve both worst-
case and average-case system latency compared with the previous
works.

I. INTRODUCTION

NAND flash has been widely adopted as storage devices
in real-time embedded systems due to its small size, low
power consumption, high density and good shock resistance.
However, NAND flash storage systems may adversely impact
the worst-case system performance in real-time systems. In
particular, garbage collection is needed to reclaim space in
NAND flash. Compared with read/write operations, a garbage
collection operation takes much longer time in which we need
to copy valid pages (page is the basic unit for read and write
operations) from a victim block to a free block (block is the ba-
sic unit for erase operations, and a block contains many pages)
and then erase the victim block. Therefore, it is important to
optimize garbage collection, as it determines the worst system
latency in NAND flash. On the other hand, garbage collection
does not happen very often, and it should be triggered only
when a NAND flash system does not have enough free space.
Thus, optimizing garbage collection should not bring too much
overhead to the average system performance in NAND flash.
This paper addresses worst-case and average-case optimization
for garbage collection in NAND flash.

Deterministic garbage collection in NAND flash has been
studied in the previous works. The problem that garbage
collection in NAND flash causes deadline misses in real-time
embedded systems is first studied in [1], in which a real-time
garbage collection mechanism is proposed to reduce the worst-
case execution time of garbage collection. In their mechanism,
“over-provisioning” is applied to map a small logical space

(the capacity that users are able to see and use) to a big
physical space (the capacity that a NAND flash really has).
By doing this, in a block, there must exist a certain amount of
invalid pages, because multiple physical pages will be mapped
to one logical page. In such a way, the number of valid-
page copies can be guaranteed to be less than a fixed value
based on an over-provisioning ratio; therefore, the worst-case
execution time of garbage collection can be reduced. However,
by performing both valid-page copies and block erase in one
garbage collection operation, the execution time of garbage
collection is still very long.

In [2], partial garbage collection is proposed to divide a
garbage collection operation into several small steps and the
time of each step is not longer than that of one erase operation.
By interleaving each partial garbage collection step with the
service of a read/write request, the worst system latency is
deterministic, as the longest operation time in NAND flash is
to erase a block in which it cannot respond to I/O requests.
However, with this scheme, once a block is full, it will be put
into a garbage collection queue, and partial garbage collection
is performed if the queue is not empty. As garbage collection
is triggered very early, a lot of unnecessary erase operations
are introduced. Thus, the average system performance is not
good. To solve this problem, a distributed partial garbage
collection scheme is proposed in [3], in which the garbage
collection queue is distributed to each logical block, and
garbage collection is managed by each logical block in a
distributed manner. The distributed partial garbage collection
can effectively postpone garbage collection so as to improve
the average system performance. However, its space overhead
is too big, and it does not completely solve the average
performance degradation from the early garbage collections.

In this paper, we study the worst-case and average-case
joint optimization for garbage collection in NAND flash (called
WAO-GC). In our scheme, garbage collection can be post-
poned to the latest stage with only a few free blocks left. As
valid pages may become invalid later in NAND flash, postpon-
ing garbage collection can avoid unnecessary valid-page copies
and erase operations, thereby optimizing the average system
latency. By combining partial garbage collection and over-
provisioning, our scheme can achieve deterministic optimizing
worst system latency, while guaranteeing that one free block
is big enough to hold all pages from both write requests and
valid-page copies when a victim block is reclaimed via the
partial garbage collection. We conduct experiments using both
real applications on the evaluation board and standard bench-
marks which are commonly used in the research community.

We implemented our scheme as a block device driver, and

14978-1-4799-8603-3/15/$31.00 ©2015 IEEE

For Research Only



evaluate it with a set of benchmarks and real applications
on a real embedded platform. FTLs with real-time garbage
collection schemes including Real-time GC [1], GFTL [2],
and RFTL [3] are implemented in evaluation. The experimental
results show that our scheme can effectively improve the worst-
case and average-case system latency compared with the above
FTLs.

The remainder of this paper is organized as follows.
Section II introduces the background. The worst-case and
average-case system latency are discussed in Section III. Our
garbage collection scheme is presented in Section IV. Sec-
tion V presents the experimental results. The related work is
introduced in VI. The conclusion and future work are presented
in Section VII.

II. BACKGROUND

A. NAND Flash Storage System and FTL

In recent years, many emerging memory techniques [4],
[5], [6], [7], [8], [9] have been proposed and NAND flash
memory has been widely adopted in many kinds of embed-
ded systems. A typical NAND flash storage system usually
includes two layers, the flash translation layer (FTL) and
the memory technology device (MTD) layer. The MTD layer
provides primitive functions such as read, write, and erase that
directly operate on a flash memory system. The FTL emulates
a flash memory system as a block device so that the file
systems can access the flash memory transparently. The FTL
usually provides three components: address translator, garbage
collector, and wear-leveler. In an FTL, the address translator
translates addresses between logical addresses and physical
addresses based on a mapping table; the garbage collector
reclaims space by erasing obsolete blocks in which there exist
invalid data; the wear-leveler is an optional component that
distributes write or erase operations evenly across all blocks, so
the lifetime of a flash memory system can be improved. Many
FTL schemes [10], [11], [12], [13], [14] have been designed
to improve the NAND flash storage system.

B. Garbage Collection

One of the major functions in an FTL is to perform garbage
collection to reclaim space. In a garbage collection operation,
for a victim block, its valid pages are copied (read out and
written to) to a free block and the victim block is erased for
reuse.

Figure 1(a) shows an example of a garbage collection
operation. As the victim block contains 4 valid pages, in the
garbage collection, we need to copy them to a free block,
in which a page copy consists of one page read and one page
write, and then the victim block is erased. Using the parameters
in Table II, it takes about 4 × (25 + 200) + 1500 = 2400μs
to finish this garbage collection operation by ignoring other
negligible time overhead and only considering the major time
from read (25 μs per page), write (200 μs per page) and erase
(1500 μs per block) operations.

To shorten the latency introduced by garbage collection, the
partial garbage collection mechanism is proposed in GFTL[2].
With this mechanism, for the same garbage collection opera-
tion in Figure 1(a), the operation is divided into several small
steps, and each step interleaves with the service of a read or

write request. The time of each step is not longer than that
of one erase operation which is the longest operation time in
which it cannot respond to I/O requests. By doing this, as
shown in Figure 1(b), I/O requests can be responded in no
more than 1500 μs.

III. WORST-CASE AND AVERAGE-CASE SYSTEM
LATENCY

In this section, we first define the latency of a data request,
and then formulate the worst-case and average-case system
latency.

In a NAND flash storage system, I/O requests are served by
an FTL that fetch data from the NAND flash and return them
to the file system. In the WCET (Worst-Case Execution Time)
analysis of a real-time task, we need to consider the storage
system latency of a request when the task sends requests to
NAND flash storage systems. Given a read or write request,
we define the storage system latency of the request as the
time period from the point when the request is issued from
the file system to the point when the request has been served
and the result has been returned from the FTL. To simplify
the definition of data request, we define each data request in
FTL has only one page read/write operation in this paper. The
storage system latency of a request is mainly decided by the
read/write page operation and the garbage collection, whose
execution time are several orders of magnitude larger than
these of other operations of the FTL. Thus, we consider the
execution time of read/write page operation and block erase
operation when discussing the system latency of a request in
this paper.

The latency of a request may vary a lot. For example, using
the parameters in Table II, if a read request arrives when the
system is idle, its system latency is 25 μs. However, if it arrives
just after the garbage collection starts as shown in Figure 1(c),
with the conventional garbage collection or the partial garbage
collection, its latency will be 2400 + 25 = 2425 μs or 225 +
25 = 250 μs. For a NAND flash storage system, we define
the worst system latency and the average system latency as
the longest latency time and the average latency for all read
and write requests, respectively.

As shown in Figure 1(c), garbage collection plays a very
important role influences the latency of a request. Let ter be
the block erase time, twr be the page write time, and trd be the
page read time. The worst system latency can be minimized
by the partial garbage collection, and its optimal value can be
represented as follows:

Optimal WCET = ter +max{twr, trd} = ter + twr (1)

The average system latency is influenced by the garbage
collection operations that happened during read and write
requests, and can be calculated as follows:

Nrd × trd +Nwr × twr +
∑

i=1→NGC
tGCi

Nrd +Nwr

(2)

In the above equation, Nrd and Nwr are the numbers of
read and write requests, respectively, NGC is the number of
the garbage collection operations involved, and tGCi

is the
execution time of the ith garbage collection. The optimal
average system latency is achieved when there is no any

15

For Research Only



(a)
2) Erase the vicitm block. 

Victim Block Free Block Victim Block

   to a free block.
1) Copy valid pages

Free Page Valid Page Invalid Page

Copy four pages and erase one block

2400 us

The partial garbage collection Erase 1 blockCopy 1 page I/O Copy 1 page

225 us

I/O Copy 1 page

225 us

I/O Copy 1 page

225 us

I/O I/O

225 us 1500 us

Barbage collection: Copy four pages and erase one block

The response time: 2425 us

Read one page

25 us2400 us

Response

The convential garbage collection

A read request arrives just after the garbage collection starts

Copy 1 page

225 us

Copy 1 page

225 us

Copy 1 page

225 us

Copy 1 page

(c)

25 us

Read one page
Responsethe garbage collection starts

Erase 1 block

1500 us225 us

The partial garbage collection

A read request arrives just after

The response time: 250 us

Tw (Page write time): 200 us
Te (Block erase time): 1500 us

Tr (Page read time): 25 us

The NAND flash parameters

The convential garbage collection

Step 1 Step 2 Step 3 Step 4 Step 5

(b)

Fig. 1. (a) Illustration of a garbage collection operation. (b) Illustration of the partial garbage collection, by which the garbage collection operation in (a)
is divided into small steps and each step is interleaving with the service of a read/write request. (c) The different response times of a read request with the
conventional garbage collection in (a) and the partial garbage collection in (b), respectively (using the NAND flash parameters in Table II).

garbage collection operation during all write and read requests,
and it can be represented as follows:

Optimal Average =
Nrd × trd +Nwr × twr

Nrd +Nwr

(3)

IV. OPTIMIZING DETERMINISTIC GARBAGE COLLECTION
IN NAND FLASH STORAGE SYSTEMS

In this section, we present our optimizing deterministic
garbage collection scheme. We first introduce the basic idea
in Section IV-A and then present our scheme in Section IV-B.
The implementation in FTLs is introduced in Section IV-C.
Finally, we analyze the performance in Section IV-D.

A. Overview

To archive deterministic the worst system latency, We apply
the partial garbage collection scheme by which each read or
write request can only be influenced by at most one partial
garbage collection step, so tGCi

is not bigger than ter in
Equation 2. In order to optimize the average system latency,
as shown in Equation 2, we need to reduce the number of the

garbage collection operations happening during the process of
serving read and write requests. Furthermore, we should reduce
the execution time of the garbage collection involving in read
or write requests. In our scheme, garbage collection can be
postponed to the latest stage when there is about to out of
space. As valid pages may become invalid later in NAND flash,
postponing garbage collection can avoid unnecessary valid-
page copies and erase operations so as to reduce the garbage
collection overhead. With the above two strategies, the average
system latency can be improved and at the same time we can
give a deterministic worst system latency.

������ ��	�
 �� ��	�


����� ����
� �

������� ����

�	��� �����
����� �




����� ���� �	��

������ ����
�����

������ ���

Fig. 2. Illustration of the basic idea of our garbage collection scheme.

16

For Research Only



Figure 2 shows the basic idea of our garbage collection
scheme. First, when a victim block is selected, our scheme
can guarantee that it contains at most λ valid pages. Second,
the victim block will be reclaimed through the partial garbage
collection. Suppose coping λ valid pages and erase a victim
block requires k partial garbage collection steps and each
step will be executed after each write data request, the entire
garbage collection process will be completed after k write
requests so we need to store these k pages. Let π be the page
number in one block. As long as

k + λ ≤ π

is satisfied, we can use one free block to hold both λ valid
pages from the victim block, and k pages from write requests
during reclaiming the victim block. After k partial garbage
collection steps, the victim block becomes free, so we can
always provide one free block for garbage collection.

B. Garbage Collection Scheme

In our scheme, we combine the partial garbage collection
with the over-provisioning. Partial garbage collection can be
invoked in the system idle time to avoid being out of free
space quickly. However, the system idle time depends on
the workload and requires operating system information. In
this paper, we consider the extreme worst case and want
to postpone the garbage collection as late as possible. As
shown above, to achieve the joint worst-case and average-case
optimization, the key is to satisfy k + λ ≤ π. With the partial
garbage collection, we first obtain the maximum valid pages
allowed in a victim block (the maximum value of λ). k is the
number of partial steps needed to reclaim a victim block with
λ valid pages, so we have the following equations:

α = �
ter

trd + twr

� (4)

k = �
λ

α
�+ 1 (5)

Equation 4 shows how many page copies (represented by
α) we can finished in one partial step. With the partial garbage
collection, the longest atom time of a partial step is the time
to erase a block. Therefore, α can be obtained by dividing
ter (the time to erase one block) with the summation of trd
and twr (the time to read and write one page for one page
copy). Then Equation 5 can be obtained that represents how
many partial steps are needed to reclaim one block with λ
valid pages (λ/α valid-page copies and one erase operation).

As a result, based on k + λ ≤ π, we have:

�
λ

α
�+ 1 + λ ≤ π (6)

In a NAND flash storage system, α is fixed. Thus, based on
Equation 6, we can obtain the maximum value of λ, i.e., the
maximum valid pages allowed in a victim block. By making
use of over-provisioning strategy, our scheme can guarantee
the number of valid pages in victim block is less than the
maximum allowed value of λ (i.e., the upper bound of λ,
represented by U(λ)).

In our over-provisioning strategy, a big physical space in
a NAND flash storage system is mapped to a small logical

Logical Address Space (Λ)
3GB

Physical Address Space (N)
4GB

= /N
Address Mapping

File System

Provide Available Address Space

Fig. 3. The over-provisioning strategy.

space in the file system. As shown in Figure 3, there is a 3
GB logical address space mapping to the entire 4 GB physical
address space. When the flash space is almost full, there are
at least a number of invalid pages in the flash (1GB in the
Figure 3). Suppose we use σ to present the ratio between the
logical and physical space, σ = Λ/N , where Λ represents the
number of logical pages from the file system, while N denotes
the total number of data pages in the physical space. When the
flash is almost full (i.e., only one free block left), by adopting
greedy strategy to select the victim block contains the least
valid pages, the upper bound of the λ can be calculated using
the following equation.

U(λ) = �σ × π� (7)

Here we present a simple proof. Suppose there are M data
blocks and each block has π pages, according to the definition,
the total number of physical data pages is N = π × M and
the total number of valid pages is σ × π × M . By selecting
the victim block which has the least number of valid pages
(denoted as λmin), there should be at least λmin valid pages
in each of the rest data blocks. Suppose the λmin is more
than U(λ) (i.e., U(λ) + 1), the total number of valid page is
�σ × π� × M + M . The value is more than the pre-defined
value of σ×π×M , which causes a contradiction. As a result,
the λmin is no more than the U(λ).

The value of U(λ) is independent to the workload and only
related to the space configuration (σ) and the flash specification
(π). Therefore, our scheme can guarantee the maximum value
of λ from over-provisioning strategy. By combining Equations
5 and 6, we can get the relationship between partial garbage
collection and space configuration in Equation 8. The upper
bound of σ only depends on the constants α and π. Therefore,
our scheme can satisfy k + λ ≤ π only when the ratio of
logical address space and physical address space is configured
lower than the upper bound of U(σ).

U(σ) =
(π − 1)α

(α+ 1)π
(8)

Figure 4 shows an example of our garbage collection
scheme. Suppose there are 4 data blocks, each of which has
8 data pages (π = 8), and execution time of read (trd), write
(twr), and erase operation (ter) are 60μs, 600μs, and 1500μs,
respectively. Therefore, α = �1500/(60 + 600)� = 2 and the
upper bound of σ is ((π−1)α)/((α+1)π) = (7×2)/(3×8) ≈
0.583, which means the logical address space is at most 58.3%
of the physical address space. We defines σ = 0.5 in this

17

For Research Only



Victim  Block Data Block Victim  Block Data Block

Victim  Block Data Block

Free BlockNext Victim  Block

W1 Copy pages W2 Copy pages W3 Erase BlockR W R W

A Garbage Collection Process 
Handle request 

without GC

A write request arrives 
from file system

Response

Write response time: 1920us

600us 1320us

R

Read response time: 60us

I/O
A read request 
arrives from file 

system

Response

Next GC 
Process

Optimized garbage 
collection 

Partial GC Step 1:

Copy valid pages

Handle 
W1

Handle 
W2

Handle 
W3

Copy valid pages

Erase block

Next GC 
Process

Partial GC Step 2:

Partial GC Step 3:

Erased block can be used 
for the next GC process

Selected victim block 
has 4 valid pages

Handle Two Read Requests: 
Not cost free pages

Free Page

Valid Page

Invalid Page

Page Read Time: 60us
Page Write Time: 600us

Block Erase Time: 1500us

The NAND Flash Parameters

Fig. 4. An example to illustrate our garbage collection process

example, thus, when the flash is full, we can see the total
number of valid pages is at most (4×8)×0.5 = 16. If selecting
a victim block by adopting greedy strategy, there is at most 4
valid pages in the block. Therefore, we can generate at most
k = λ/α + 1 = 4/2 + 1 = 3 partial garbage collection steps.
As shown in the example, when there is one free block left
in the flash and the after handling the write request W1 to
the first page, our scheme executes partial step 1 to copy first
two valid pages. We schedule the partial step 2 as the step 1,
and then there are two coming read requests. Since the read
requests will not cost free data pages, our scheme will not
schedule partial steps to read requests. Finally, the last partial
step 3 will erase the victim block to reclaim a new free block.
The entire garbage collection process costs k+λ = 3+4 = 7
pages but can reclaim a free block which has 8 data pages.
The next data request will not trigger any partial steps until
there is only one free block left again and at that time, the last
reclaimed block can be used for the next garbage collection
process. Therefore, it can satisfy the k + λ ≤ π by using
only one free data block and there is the lowest impact to
data requests bounding the worst case system latency of write
request to the lowest level, which can achieve jointly optimized
the worst-case and average-case latency.

C. Implementation in FTLs

As an important component, our scheme will work with the
address translator and wear-leveler in FTLs. We will discuss
the implementation of FTLs to provide optimizing worst-case
and average-case.

Address Translator: Address translation scheme will im-
pact the data storing and garbage collection strategy. There
are many address mapping schemes in FTLs[15], [16], [17],

[18], [13], [19], which can be categorized to block-level map-
ping, page-level mapping and hybrid-level mapping scheme.
In order to achieve the optimizing deterministic worst-case
performance, our scheme adopts partial garbage collection
technique and uses one block to handle the valid page copies
and the coming data requests. Since the logical addresses from
victim blocks and data requests are unpredictable, it requires
address translator can freely translate the logical address to
physical address and allocate data to any free pages. To achieve
the optimizing average-case latency, the garbage collection
should be postponed as late as possible. That requires the
garbage collection trigger point independent from the logical
address of the coming data request. On the other hand, over-
provisioning can guarantee the reclaimed free pages based on
global victim block selection in the full usage of flash memory.
Therefore, data in our scheme can be stored in any data block
and the page-level mapping information should be recorded.

The block-level mapping and hybrid-mapping schemes are
not applicable to our garbage collection scheme because they
cannot record the fine-granularity address mapping informa-
tion. While, in page-level mapping scheme, data blocks can
store data from any logical address since each local page to
physical page mapping is recorded. As a result, the physical
space of flash is fully utilized and the garbage collection can be
triggered when there is only one free block. Therefore, address
translator is implemented by adopting page-level address map-
ping scheme, which can provide intrinsic high performance
and help our garbage collection scheme to achieve worst-case
and average-case optimization. The drawback of page-level
mapping scheme is the RAM space cost. There have been
several on-demand approaches [20], [21], [18], and our scheme
can adopt these approaches to significantly reduce the RAM
cost.

18

For Research Only



Wear-leveler: Wear-leveler influences the endurance of
the flash memory and relates to garbage collection strategy.
Since our scheme optimizes the average-case performance by
postponing garbage collection as late as possible, the erase
counts of each block is improved. In order to balance the erase
counts of each data block, our scheme will also check the block
erase counts when selecting the victim block. When multiple
blocks have the same least number of valid pages, our wear-
leveler will select the block that has lower number of erase
counts as the victim block. For many cold blocks that are not
updated frequently, we do some block swaps between the hot
block and cold block when the number of left free blocks
does not meet the garbage collection threshold. Therefore, our
scheme does not incur much garbage collection overhead and
can improve the lifetime by balancing the block erase counts.

D. Performance Analysis

In this section, we analyze the system performance and
space utilization of our scheme and give comparison with the
representative real-time schemes.

The Worst System Performance: The system latency in the
worst case consists of the data request execution time and the
upper bound of garbage collection execution time. As shown
in Table I, we use U(er) and U(ew) to represent the page
read operation time and write operation time, respectively.
GFTL [2] uses block-level mapping scheme, where the log-
ical page number is written into the OOB area. There are
many OOB read operations when handling one data request.
RFTL [3] uses hybrid-level mapping scheme and the mapping
table is partially stored in the OOB area so that it also exists
some OOB operations. U(t) denotes the upper bound of the
system latency in the worst case and the value of Ideal and
RTGC scheme depends on the upper bound of the entire
garbage collection process execution time. GFTL schedules
partial garbage collection step to any data request so impacts
the read performance. Since the our scheme adopts page-level
mapping scheme whose mapping table is maintained in the
RAM, there is no extra OOB operations compared with GFTL
and RFTL. Therefore, WAO-GC can improve the upper bound
of the worst system latency.

Average System Performance: Garbage collection incurs
the largest overhead in NAND flash memory storage systems
due to the valid page copies and block erasing. WAO-GC
adopts page-level mapping scheme that can fully use each page
in the flash and delay the partial garbage collection only when
there is about to out of space. Compared to our scheme, GFTL
predefines a number of physical blocks as the write buffer and
maintains a central garbage collection queue to decide which
logical block executing garbage collection. RFTL pre-allocates
three physical blocks (i.e., primary block, replacement block,
and buffer block) to one logical block so that the execution
of partial garbage collection is limited to the corresponding
logical block. That is, once the primary physical block of the
corresponding logical block is full, even there exists free space
in many physical blocks belonging to other logical blocks,
GFTL and RFTL all trigger garbage collection. Threshold
in Table I represents the garbage collection trigger condition.
Ideal and our scheme trigger garbage collection only when
there is one free block left in the flash. GFTL and RFTL
trigger garbage collection when the physical block allocated

to the logical block number (LBN) from the request is full.
RTGC triggers garbage collection according to the space usage
from the real-time tasks so cannot give a fixed threshold
and buffer length without tasks information. Therefore, the
garbage collection in GFTL or RFTL is invoked very early
and the space utilization may be very low under the unbalance
workload. As a result, the average system performance is
degraded by such an early invoked garbage collection and the
high number of block erase counts indirectly impacts on the
endurance of the flash memory.

V. EVALUATION

To evaluate the effectiveness of the proposed optimizing
deterministic garbage collection scheme, we have conducted
a set of experiments on a real embedded platform. In this
section, we first introduce the experimental environment and
performance metrics. Then we present experimental results
and discussion. We compare WAO-GC with Pure-Page-Level
scheme [22], RTGC [1], GFTL [2], and RFTL [3], in terms of
four performance metrics: system latency in the worst case,
average system latency, valid page copies, and block erase
counts.
A. Experimental Environment and Performance Metrics

Fig. 5. Experimental platform. (a) A top view of the platform. (b) The core
board that integrates an ARM 11 process core, 256 MB SDRAM, and an 8Gb
NAND flash memory. (c) Video playing test.

We use an embedded developing board to conduct ex-
periments. Both the proposed WAO-GC technique and rep-
resentative schemes (i.e., Pure-Page-Level FTL [22], RTGC
[1], GFTL [2], and RFTL [3]) are implemented in the em-
bedded developing board. Figure 5 illustrates the embedded
developing board. The board employs an ARM 11 processor
core (Samsung S3C6410) with ARMv6 architecture. The ARM
processor core is running at 532 MHz, and it consists of a 16
KB instruction cache and a 16KB data cache. The platform
has a core board (Figure 5(b)) with an 8Gb NAND flash
memory (K9K8G08U0B[23]) and 256 MB SDRAM, and a
mother board with some physical interfaces.

Figure 6 illustrates the framework of our experimental
platform. We conduct experiments using both real applications
on the evaluation board and standard benchmarks which are
commonly used in the research community. Specifically, we
build a NFS (Net File System) [24] and perform file operations
on the evaluation board. They can reflect the real workload of
the system in accessing the NAND flash memory chip.

We also use standard benchmarks: Bonnie [25], Postmark
[26] and Tiobench [27] to evaluate the proposed approach.

19

For Research Only



TABLE I. SERVICE GUARANTEE BOUNDS OF IDEAL CASE [22], RTGC [1], GFTL [2], RFTL [3], AND THE PROPOSED WAO-GC

Bounds Ideal RTGC GFTL RFTL WAO-GC
U(er) trdpg trdpg trdpg + πtrdoob trdpg + trdoob trdpg
U(ew) twrpg twrpg twrpg twrpg + trdoob twrpg

U(λ) π σ × π π π σ × π
U(t) U(ew) + U(eG) U(ew) + U(eG) ter +max{U(er), U(ew)} max{U(er), ter + U(ew)} max{U(er), ter + U(ew)}

Threshold 1 N/A isFull(LBN) isFull(LBN) 1
Lbuf N/A N/A N(k + 1)/2 2× π ×N k

�������	
��
��	����	�����	������

�����	�����������	����
�����!	��"���	���"��#

��
��

	�
��

��
�

$������	����	������

&'�*

��++��	�����

������	���������� ��"���	���� ����#

��� <=>?�

>
������

��������!�
�������@	=������!@	

��������#

�JJ���������
����@	�=�����@	

��	���\#

������	����

�
^

��
	�

�"
��

�	
�

��"
��

_���	�J���

`�����	�J���

������	����

Fig. 6. The framework of experimental platform.

These benchmarks have different features. Benchmark Bonnie
can perform a number of file seeks and meta-data operations
to test the file system performance. Benchmark Tiobench uses
many threads concurrently accessing a specified file directory,
while benchmark Postmark creates a large amount of files
under a specified file directory. VFS (Virtual File System) is
used to hide different file system features and provide generic
interfaces for user space programs. When our applications
or benchmarks work under a specified file directory, the file
operations are passed to the file system through the system
call. After the file system receives these requests, it interprets
these requests and issues requests to the lower device driver,
such as FTL, mainly in terms of a sector (or page) reading and
writing. Buffer cache is adopted by the file system to improve
the file system performance. If the buffer cache could not
handle requests or the system is ideal, the victim or cached data
will be transferred to the lower FTL. FTL maps these requests
to the physical NAND flash memory with the help of MTD
(Memory Technology Device). Our experimental results are
generated in the FTL layer. Since user could not access kernel
space data directly, we make use of /PROC file system to build
communication between user space and kernel space by means
of creating a specified file under the /proc file directory. Our
test results are obtained through /PROC file system.

We implemented Pure-Page-Level FTL, RTGC, GFTL,
RFTL and our scheme as block device drivers and ported ARM
Linux 2.6.38 on this embedded platform. The Linux kernel
loads these drivers as kernel modules implemented between the

TABLE II. PARAMETERS OF THE NAND FLASH MEMORY
(K9K8G08U0B[23]).

Parameter Value
Total capacity 8Gb
The number of planes per element 4
The number of blocks per plane 2048
The number of pages per block 64
Page size 2KB
Block size 128KB
Endurance 100K P/E Cycles
Page read latency 25μs
Page write latency 200μs
Block erase latency 1500μs

file system and the MTD layer. After these FTLs are inserted
into the kernel, the corresponding device files will be created
under the /dev directory. Then with the help of file system
formatting tools such as mkfs.ext2, the file system information
is written in the NAND flash memory. By mounting these
device files to a specified file directory, the NAND flash
memory can be operated through normal file operations, such
as file creation, file reading, etc. The basic parameters of the
NAND flash memory is shown in Table II and we use the
Linux kernel function do gettimeofday to measure the system
latency. Due to the operating system handling time, the latency
time from the kernel function may not be consistent with the
pure NAND flash memory operations executing time. For fair
comparison, we format the entire NAND flash memory first
before every experimental evaluation.

We use the following metrics to evaluate the performance
of our approach: 1) System latency in the worst case. It is
the longest system latency when handling data requests from
the benchmarks and applications. 2) Average system latency.
We divide the total request latency by the counts to get the
average system latency. 3) Valid page copies. We record the
number of valid page copies to show the overhead of the
garbage collections. 4) Block erase counts. We also measure
the number of block erase counts to show the frequency of the
garbage collection.

B. Results and Discussion

In this section, we present the experimental results in terms
of four performance metrics: system latency in the worst
case, average system latency, valid page copies and block
erase counts. we use Pure-Page-Level, RTGC, GFTL, RFTL,
and WAO-GC to represent the evaluation results generated by
the schemes in [22], [1], [2], [3], and the proposed scheme,
respectively.

1) Worst Case System Latency: By making use of partial
garbage collection technology, GFTL, RFTL, and our scheme
can guarantee the system latency of the data request in the

20

For Research Only



�

�

�

�

�

��

�
�
��
��
�
�
�
	
�

�
�	
�
�

��
�
�
�

�������

��	
�����������

�����

�����

�����

(a) Bonnie
�

�

�

�

�

��

�
�
��
��
�
�
�
	
�

�
�	
�
�

��
�
�
�

�������

��	
�����������

�����

�����

�����

(b) Postmark

�

�

�

�

�

��

�
�
��
��
�
�
�
	
�

�
�	
�
�

��
�
�
�

�������

��	
�����������

�����

�����

�����

(c) Tiobench
�

�

�

�

�

��

�
�
��
��
�
�
�
	
�

�
�	
�
�

��
�
�
�

�������

��	
�����������

�����

�����

�����

(d) NFS

Fig. 7. Worst Case Latency

worst case. As shown in Figure 7, WAO-GC can achieve
lower system latency in the worst case compared to GFTL,
RFTL. That because, both GFTL and RFTL has extra OOB
operations to get the real mapping information, while WAO-
GC maintains all page-level mappings into RAM. The benefits
on worst case system latency in our scheme are mainly from
the page-level mapping scheme, which will also incur large
RAM cost. In the experimental results, WAO-GC can improve
47.14% and 19.80% on system latency in the worst case
compared to GFTL and RFTL, respectively. Pure-Page-Level
cannot provide a deterministic garbage collection execution
time so that their worst system latency is worse than that in
our scheme. Since the running operation system is a general
Linux and is not modified to support real-time tasks, RTGC
cannot reclaim free pages for each real-time task so cannot
provide deterministic data request serve time. However, RTGC
adopts over-provisioning strategy that can reduce the number
of valid pages in the victim block. Therefore, the worst system
latency of RTGC is lower than that in Pure-Page-Level FTL
scheme. Compared to Pure-Page-Level and RTGC, WAO-GC
can archive 40.51% and 40.24% reduction on worst case
system latency, respectively.

2) Average System Latency: Given that the worst case does
not happen frequently, optimizing garbage collection for giving
a deterministic worst case system latency should not bring too
much overhead to the average system latency. Therefore the
average system latency is one of the most important metrics
represent the system performance. The experimental results are
shown in Figure 8. From the results, GFTL and RFTL suffer
from significantly average performance degradation compared
with Pure-Page-Level scheme and our scheme. That is because
our scheme adopts page-level address mapping scheme that
can freely manage the data and postpone the partial garbage
collection as late as possible. Compare to our scheme, GFTL
adopts block-level mapping scheme and once a logical block is
fully used, the corresponding physical block is added to central
garbage collection queue to do partial garbage collection. As
a result, there is a large number of unnecessary and early trig-
gered garbage collections. RFTL pre-allocates three physical
blocks to one logical block and when the logical block is full,
the partial garbage collection is triggered within the allocated

���

���

���

���

���

���

���

���

���

���

���

�
�
�
��
�
�
��
�
	�


�
�
�
�
�
�

�������

��	
�����������

�����

�����

�����

(a) Bonnie
���

���

���

���

���

���

���

���

���

���

���

�
�
�
��
�
�
��
�
	�


�
�
�
�
�
�

�������

��	
�����������

�����

�����

�����

(b) Postmark

���

���

���

���

���

���

���

���

���

���

���

�
�
�
��
�
�
��
�
	�


�
�
�
�
�
�

�������

��	
�����������

�����

�����

�����

(c) Tiobench
���

���

���

���

���

���

���

���

���

���

���

�
�
�
��
�
�
��
�
	�


�
�
�
�
�
�

�������

��	
�����������

�����

�����

�����

(d) NFS

Fig. 8. Average System Latency

���

���

���

���

���

���

�
�
��
�

�������

��	
�����������

�����

�����

�����

(a) Bonnie
���

���

���

���

���

���

�
�
��
�

�������

��	
�����������

�����

�����

�����

(b) Postmark

���

���

���

���

���

���

�
�
��
�

�������

��	
�����������

�����

�����

�����

(c) Tiobench
���

���

���

���

���

���

�
�
��
�

�������

��	
�����������

�����

�����

�����

(d) NFS

Fig. 9. The Normalized Number of Valid Page Copies

blocks. Therefore, RFTL also triggers garbage collection early
and requires lots of extra physical flash space. In experimental
results, our scheme can achieve an average 47.01% and 93.48%
reduction on average system latency compared to RFTL and
GFTL and even sightly better than that in Pure-Page-Level
mapping scheme due to over-provisioning strategy that can
reduce valid page copies in victim block.

3) Valid Page Copies: The number of valid page copies in
garbage collection decides the time overhead of the garbage
collection process. By making use of page-level address map-
ping scheme, WAO-GC can fully use the free pages in the
flash and postpone the garbage collection. Moreover, the over-
provisioning strategy limits the logical address space so that
reduce the number of valid pages in the victim block. As a
result, there are more invalid pages in victim blocks when the
flash memory is almost full. In GFTL and RFTL, once the
logical block is full, the partial garbage collection is triggered,
even though there may exist many free blocks belongs to other
logical blocks. The early garbage collections reduce the chance
to invalid the page on handling the data request in the future.
As shown in Figure 9, GFTL and RFTL have a lot number of

21

For Research Only



���

���

���

���

���

���
�
�
��
�

�������

��	
�����������

�����

�����

�����

(a) Bonnie
���

���

���

���

���

���

�
�
��
�

�������

��	
�����������

�����

�����

�����

(b) Postmark

���

���

���

���

���

���

�
�
��
�

�������

��	
�����������

�����

�����

�����

(c) Tiobench
���

���

���

���

���

���

�
�
��
�

�������

��	
�����������

�����

�����

�����

(d) NFS

Fig. 10. The Normalized Number of Block Erase Counts

valid page copies while Pure-Page-Level scheme, RTGC and
our scheme which adopt page-level mapping scheme have very
low valid page copies overhead. Compare to Pure-Page-Level
scheme, both RTGC and our scheme can archive fewer number
of valid page copies by using over-provisioning.

4) Block Erase Counts: The number of block erase counts
will influence the average system response time and the
endurance of the NAND flash memory. As shown in the
Figure 10, our scheme can significantly reduce 50.08% and
71.64% block erase counts compared with GFTL and RFTL,
respectively. That is because, for central partial garbage collec-
tion policy in GFTL and distributed partial garbage collection
policy in RFTL, the condition to trigger garbage collection
depends on the usage of logical blocks. There is a lot of
unnecessary garbage collection operations in these schemes.
Since RTGC reduces the logical address space to guarantee
the reclaimed free space, it can archive lower block erase
counts compared to Pure-Page-Level scheme. We observe that
the number of block erase counts of our scheme is very close
to the one in RTGC.

������������	�
 ��� ��� ���� �����

���

���

���

���

���

���

�
�
��
�

����������	
�����

������������������

Fig. 11. The Space Utilization Ratio.

C. Overhead

In order to provide deterministic garbage collection and
optimizing average performance, both our scheme and previous
schemes cost extra flash space as the write buffer or using for
over-provisioning. Due to different address mapping schemes,
the RAM space overhead are also different. Our scheme can
get the space utilization ratio σ according to the space config-
uration. In the experiment, as shown in Figure 11 the space
utilization is U(σ) = ((64−1)×6)/((6+1)×64) = 84.38%,
where α = 6. Our scheme costs about 15.62% flash space.
In GFTL, there is a central write buffer to serve the coming
write requests when running partial garbage collection. While
in RFTL, it exists a distributed write buffer (i.e., buffer block)
for each logical block. The buffer length in GFTL is limited by
N(k+1)/2 so the flash space overhead is about 10.16%. RFTL
pre-allocated three physical blocks to one logical block thus it
costs about 66.7% physical address space. Since RTGC cannot
get the real-time task information, we set σ = 0.75 as the ratio
between the logical space and physical space. Pure-Page-Level
scheme does not apply any optimizing mechanisms so that the
space utilization is closed to 100%. Since our scheme adopts
page-level mapping scheme, the RAM overhead of our scheme
is larger than those adopt block-level or hybrid-level mapping
schemes. Although our scheme has physical space and RAM
space cost, it can not only guarantee the serve time under worst
case, but also optimize the average system latency compared
with previous works.

VI. RELATED WORKS

In the previous studies, there are several research works
about real-time NAND flash memory storage systems. Kuo
et al [1] proposed a real-time garbage collection mechanism.
The mechanism needs to get the real-time task information
from file system and allocate garbage collection tasks to each
real-time task for replenishing required free pages. In order
to determine the reclaimed free pages after each garbage
collection operations, the mechanism limits the logical address
space be smaller than physical space. As the over-provisioning
strategy, therefore, RTGC can guarantee each real-time task has
enough free pages to execute. However, it does not consider
about the average performance. Moreover, it needs extra real-
time task information from the file system which may cause
significant modifications to current file system so it is not a
general scheme for NAND flash memory storage systems.

Partial garbage collection is proposed in GFTL [2] and
block-level mapping scheme is used. In GFTL, there is a
central garbage collection queue to record the block number
needed to execute garbage collection and a write buffer to
handle the coming request when the corresponding data block
is full. Once the block is full, the block number will be
added into the garbage collection queue and wait to run
garbage collection. Before the corresponding block is erased,
the coming write request will be written to the buffer. GFTL
can guarantee the buffer length has an acceptable upper bound.
However, there are many unnecessary garbage collections with
a lot of valid page copies. Many hot data block may be
erased frequently while other block may stay free for a long
time. To solve the problem, Qin et al proposed a distributed
partial garbage collection scheme called RFTL [3]. In RFTL,
each logical block owns three physical blocks and the partial

22

For Research Only



garbage collection process is distributed to the corresponding
logical block. RFTL can improve the average system perfor-
mance compared to GFTL but it cannot solve performance
degradation from unnecessary garbage collections. Moreover,
the low space utilization that costs more than 60% physical
space is another problem in RFTL.

Lee et al [28] proposed a preemptible garbage collection
(PGC) for Solid State Drives. In their scheme, PGC can
identify preemption points that can minimize the preemption
overhead. Furthermore, PGC can merge incoming I/O requests
to enhance the performance of SSDs. However, it requires
many techniques supported by SSDs. The target of PGC is
to improve the system performance instead of providing deter-
ministic garbage collection. Therefore, PGC cannot optimize
the worst case system latency.

VII. CONCLUSION

In this paper, we have proposed a worst-case and average-
case joint optimization scheme for garbage collection in
NAND flash. By making use of partial garbage collection
technique and over-provisioning strategy, our scheme can give
an optimizing deterministic system latency in the worst case
and further optimize the average system performance. We have
evaluated our scheme using a set of benchmarks and compared
with representative works. The experimental results show that
our scheme can improve both the average and the worst system
performance with very low extra flash space requirements.

ACKNOWLEDGMENTS

This work is supported by the National Key Basic Research
Program of China(2014CB340703) and the National Natural
Science Foundation of China (No.91318301, No.61321491,
No.61272103, No.61373049), the grants from the Research
Grants Council of the Hong Kong Special Administrative
Region, China (GRF 152138/14E), the Germany/Hong Kong
Joint Research Scheme sponsored by the Research Grants
Council of Hong Kong and the Germany Academic Exchange
Service of Germany (Reference No.G HK021/12), National
863 Program (2013AA013202), and the Hong Kong Polytech-
nic University (4-ZZD7,G-YK24, G-YM10 and G-YN36).

REFERENCES

[1] Li-Pin Chang, Tei-Wei Kuo, and Shi-Wu Lo, “Real-Time Garbage
Collection for Flash-Memory Storage Systems of Real-Time Embedded
Systems,” ACM Transactions on Embedded Computing Systems (TECS),
vol. 3, no. 4, pp. 837–863, 11 2004.

[2] Siddharth Choudhuri and Tony Givargis, “Deterministic service guaran-
tees for NAND flash using partial block cleaning,” in CODES+ISSS’08,
2008, pp. 19–24.

[3] Zhiwei Qin, Yi Wang, Duo Liu, and Zili Shao, “Real-Time Flash
Translation Layer for NAND Flash Memory Storage Systems,” in
RTAS’12, 2012.

[4] Yiran Chen, Weng-Fai Wong, Hai Li, and Cheng-Kok Koh, “Processor
caches built using multi-level spin-transfer torque ram cells,” in
ISLPED’11, Aug 2011, pp. 73–78.

[5] Yaojun Zhang, Xiaobin Wang, and Yiran Chen, “Stt-ram cell design
optimization for persistent and non-persistent error rate reduction: A
statistical design view,” in ICCAD ’11, Piscataway, NJ, USA, 2011,
ICCAD ’11, pp. 471–477, IEEE Press.

[6] Hong-Phuc Trinh, Weisheng Zhao, J.-O. Klein, Yue Zhang, D. Ravel-
sona, and C. Chappert, “Magnetic adder based on racetrack memory,”
Circuits and Systems I: Regular Papers, IEEE Transactions on, vol. 60,
no. 6, pp. 1469–1477, June 2013.

[7] Yiqun Wang, Yongpan Liu, Yumeng Liu, Daming Zhang, Shuangchen
Li, Baiko Sai, Mei-Fang Chiang, and Huazhong Yang, “A compression-
based area-efficient recovery architecture for nonvolatile processors,” in
DATE’12, March 2012, pp. 1519–1524.

[8] Boxun Li, Yu Wang, Yiran Chen, H.H. Li, and Huazhong Yang, “Ice:
Inline calibration for memristor crossbar-based computing engine,” in
DATE’14, March 2014, pp. 1–4.

[9] Weisheng Zhao, S. Chaudhuri, C. Accoto, J.-O. Klein, C. Chappert, and
P. Mazoyer, “Cross-point architecture for spin-transfer torque magnetic
random access memory,” Nanotechnology, IEEE Transactions on, vol.
11, no. 5, pp. 907–917, Sept 2012.

[10] Jingtong Hu, Chun Jason Xue, Qingfeng Zhuge, Wei-Che Tseng, and
Edwin H.-M. Sha, “Write activity reduction on non-volatile main
memories for embedded chip multiprocessors,” ACM Trans. Embed.
Comput. Syst., vol. 12, no. 3, pp. 77:1–77:27, Apr. 2013.

[11] Jingtong Hu, C.J. Xue, Qingfeng Zhuge, Wei-Che Tseng, and E.H. Sha,
“Data allocation optimization for hybrid scratch pad memory with sram
and nonvolatile memory,” Very Large Scale Integration (VLSI) Systems,
IEEE Transactions on, vol. 21, no. 6, pp. 1094–1102, June 2013.

[12] Liang Shi, C.J. Xue, and Xuehai Zhou, “Cooperating write buffer cache
and virtual memory management for flash memory based systems,” in
RTAS’11, April 2011, pp. 147–156.

[13] Zhiwei Qin, Yi Wang, Duo Liu, Zili Shao, and Yong Guan, “MNFTL:
an efficient flash translation layer for MLC NAND flash memory storage
systems,” in DAC’11, 2011, pp. 17–22.

[14] Tianzheng Wang, Duo Liu, Zili Shao, and Chengmo Yang, “Write-
activity-aware page table management for pcm-based embedded sys-
tems,” in ASP-DAC’12, Jan 2012, pp. 317–322.

[15] Chin-Hsien Wu, Tei-Wei Kuo, and Li Ping Chang, “An efficient b-
tree layer implementation for flash-memory storage systems,” ACM
Transcations on Embedded Computing Systems, vol. 6, no. 3, July 2007.

[16] Sang-Won Lee, Dong-Joo Park, Tae-Sun Chung, Dong-Ho Lee, Sang-
won Park, and Ha-Joo Song, “A log buffer-based flash translation
layer using fully-associative sector translation,” ACM Transcations on
Embedded Computing Systems, vol. 6, no. 3, July 2007.

[17] Duo Liu, Yi Wang, Zhiwei Qin, Zili Shao, and Yong Guan, “A space
reuse strategy for flash translation layers in slc nand flash memory
storage systems,” IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, vol. 20, no. 6, pp. 1094–1107, 2012.

[18] Qi Zhang, Xuandong Li, Linzhang Wang, Tian Zhang, Yi Wang, and
Zili Shao, “Optimizing translation information management in nand
flash memory storage systems,” in Proceedings of 18th Asia and South
Pacific Design Automation Conference, 2013, ASP-DAC ’13, pp. 326–
331.

[19] Zhiwei Qin, Yi Wang, Duo Liu, and Zili Shao, “Demand-based block-
level address mapping in large-scale NAND flash storage systems,” in
CODES+ISSS’10, 2010, pp. 173–182.

[20] Aayush Gupta, Youngjae Kim, and Bhuvan Urgaonkar, “DFTL: a flash
translation layer employing demand-based selective caching of page-
level address mappings,” in ASPLOS’09, 2009, pp. 229–240.

[21] Zhiwei Qin, Yi Wang, Duo Liu, and Zili Shao, “A Two-Level Caching
Mechanism for Demand-Based Page-Level Address Mapping in NAND
Flash Memory Storage Systems,” in RTAS’11, 2011, pp. 157–166.

[22] Amir Ban, “Flash file system,” US patent 5,404,485, 1995.
[23] “Samsung electronics.samsung K9K8G08U0B(v0.1)-8Gb SLC NAND

Flash data sheet,” July 2008.
[24] “NFS,” http://nfs.sourceforge.net/nfs-howto/, 2013.
[25] B. Tim, “Bonnie,” http://www.garloff.de/kurt/linux/bonnie/, 2013.
[26] J. Katcher, “Postmark: A new file system benchmark[r],” Technical

Report TR3022, Network Appliance, 1997.
[27] M. Kuoppala, “Tiobench-threaded I/O bench for linux[j],” 2002.
[28] Lee Junghee, Kim Youngjae, M. Shipman Galen, Oral Sarp, and

Kim Jongman, “Preemptible i/o scheduling of garbage collection for
solid state drives,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 32, no. 2, pp. 247–260, 2013.

23

For Research Only


