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Abstract: Web service composition is a new paradigm to develop distributed and reactive software-intensive systems. Owing to
the autonomous nature of basic services, the validation of composite service must be extended from design-time to run-time.
Here, the authors describe a novel tool chain called web services property sequence chart monitor to monitor temporal, timing
and probabilistic properties in composite service based on scenario-based property specifications called property sequence
chart, timed property sequence chart and probabilistic timed property sequence chart, respectively. The tool chain provides a
completely graphical front-end that eliminates the need to deal with any particular textual and logical formalism. Furthermore,
the framework and implementation detail of the tool chain are also presented. Finally, the feasibility and usability of the tool
have been validated by the case studies and performance measurement.

1 Introduction

In recent years, the idea of software as a service has added a
new paradigm to the service-oriented architecture (SOA). In
SOA, basic services are seen as autonomous agents acting
according to certain contracts. For example, through
workflow languages such as BPEL [1], service requestors
may compose existing basic services to provide more
powerful composite services. For such systems, verification
is particularly challenging as the overall behaviour depends
heavily on the participating agents, which renders the
analysis of such systems prior to execution almost
impossible [2]. Consequently, run-time analysis techniques,
such as run-time monitoring that detects the behaviours of
system against the desired properties [3], are being pursued
as a lightweight verification technique complementing
traditional verification techniques at design-time, such as
model checking and testing.
The specifications for monitored properties focus mostly on

logic-based or scenario-based specification formalisms [4].
Logic-based formalisms are often more expressive than
scenario-based formalisms. However, the logic-based
formalisms have the following limitations:

† Lack of intuitiveness: Properties that are simply captured
and described in intuitive way by the natural languages are
not easily specified in logic-based specifications.

† State-based: The atomic propositions of a logic-based
specification can only be state propositions, where messages
(events) cannot be easily expressed. Consequently, it is not
straightforward to use these logic-based specifications to
specify the properties of event-based web service
compositions.
† Trace error interpretation: In conventional logic-based
run-time monitoring, even if an error trace is detected, it is
difficult for the developers to debug the trace and pinpoint
the problem due to the internal complexity of logic-based
specifications.

The first and third limitations have also been emphasised
by Holzmann [5], who recognised that the ‘most
underestimated problem in applications of automated tools
to software verification is the problem of accurately
capturing the correctness requirements that have to be
verified’, and Dwyer et al. [6] who recognised the difficulty
in writing properties correctly.
The second limitation implies great challenge in the

characterisation of event synchronisation or causal relation.
For example, an informal requirement can be described as:
‘if service A sends message m1 to service B, and service B
sends m2 to service C (in any order), then C must send m3

to service A within three time units’. Using traditional
logic-based specification to specify these event-based
interactions is very hard.
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Scenario-based formalisms, such as message sequence
chart (MSC) [7] and UML 2.0 sequence diagram (UML 2.0
SD) [8], provide a graphical modelling formalism that is
widely accepted in industrial practice. Furthermore, all
these formalisms provide event-based notations and,
consequently, are suitable to specify event-based web
service composition properties easily, intuitively and
simply. However, the expressiveness of such kinds of
graphical specifications is rather weak due to their
ambiguous semantics.
To deal with these problems, Damm and Harel [9] propose

live sequence chart (LSC) as a visual formalism for
scenario-based requirement specification. LSC makes
essential extensions to MSC by adding modalities. The
existential and universal modalities represent the provisional
and mandatory requirements, respectively. The power of
LSC lies in that a universal LSC chart can optionally
contain a pre-chart, which specifies the scenario which, if
successfully executed (or matched), forces the system to
satisfy the scenario given in the actual chart body (i.e. the
main chart). Furthermore, the LSC language is
unambiguous because its semantics is strictly defined [9].
However, the LSC formalism still has the following
limitations:

† Complexity: Compared with traditional MSC and UML 2.0
SD, LSC is still more difficult to use due to complex concepts
such as ‘cut’ and ‘location’. The problem is that we need to
devise a new property specification formalism that can
overcome the limitations of MSC and SD, and is as close to
them as possible.
† Lack of ability to specify chain properties: Another main
disadvantage of LSC is that it cannot clearly support
specifying chain constraints. In fact a chain constraint
allows the specification of what can be performed before
and after exchanging a message. Chains are very important
to specify causes, effects, precedence and response relations.
† Lack of timed and probabilistic extensions: Currently,
there is only one time version of LSC, called time-enriched
LSC. However, the semantics of time-enriched LSC is not
clearly defined. Furthermore, to the best of our knowledge,
there is no probabilistic version of LSC to specify
probabilistic properties, which are also very important for
certain software systems.

Consequently, to deal with these limitations, this paper
focuses on monitoring BPEL-based web service
composition based on newly proposed scenario-based
specification formalisms called property sequence chart
(PSC) [10], timed property sequence chart (TPSC) [11] and
probabilistic time property sequence chart (PTPSC) [12].
We envisage PSC/TPSC/PTPSC as a nice complement to
the existing property specification languages for monitoring
web service composition, with the following desirable
features:

† Intuitiveness: PSC/TPSC/PTPSC specifications have the
necessary language constructs to describe a variety of
causality and chain properties. Furthermore, as extensions
of a subset of UML 2.0 SD, they are as close to UML 2.0
SDs as possible and are more intuitive in capturing
scenario-based user requirements than the logic-based
specifications. Finally, PSC/TPSC/PTPSC can provide a
completely graphical front-end that eliminates the need to
deal with any particular textual formalism.

† Expressiveness: PSC/TPSC/PTPSC can be used to specify
temporal, timing and probabilistic properties of BPEL-based
web service composition, respectively. Furthermore, the
expressiveness of PSC/TPSC/PTPSC has already been
validated by property specification patterns (PSPs) [6],
real-time specification patterns [13] and probabilistic
specification patterns [14].
† Trace error display: PSC/TPSC/PTPSC can overcome the
trace error interpretation problems by providing the
possibility of tracing the error back to the scenario-based
requirement specifications. Thus, it is easy for the
developers to debug and find the trace errors related to both
the system models and the requirements.

In summary, this paper makes the following major
contributions: We capture a web service composition
scenario to be monitored using PSC/TPSC/PTPSC
specifications. For PSC specifications, we first obtain a
behaviour-equivalent finite automaton (FA) from this chart
according to the formal semantics, then we check whether
the run-time traces are the accepting language of the
generated FA. For TPSC specifications, we first obtain a
behaviour-equivalent timed automaton (TA) from this chart
according to the formal semantics, then we check whether
the run-time traces are the accepting language of the
generated TA. For PTPSC specifications, a probabilistic
monitor combining TA and a sequential probability ratio
test (SPRT) procedure is automatically generated to check
whether the run-time traces satisfy the probabilistic
properties. A corresponding tool chain called WS-PSC
monitor is developed. To demonstrate the generality of our
proposed approach and measure its performance, some
evaluations of WS-PSC monitor are performed.
The rest of the paper is organised as follows: Section 2

presents a running example to be used in the paper. This
example illustrates temporal, timing and probabilistic
properties in web service composition. Section 3 introduces
the basic concepts of PSC, TPSC and PTPSC
specifications. Section 4 details the framework and
implementation of WS-PSC tool. The case studies and
performance evaluations of the tool are presented in Section
5. Section 6 compares our approach to related work.
Section 7 concludes the paper and gives a list of future work.

2 Running example

We use an online medical assistant (OMA) composite service
as a running example in this paper. OMA is a system
proposed by IBM China [http://www-31.ibm.com/smb/cn/
industries/healthcare/] and is becoming popular in China. It
provides patients, doctors and managers in medical
institutes with useful medical services. OMA includes seven
services:

† Medical service agent (MSA) is a medium between
patients and medical institutes, which makes an
appointment and referral to specialty hospitals.
† Primary care hospital (PCH) is a hospital that offers
primary care services to patients, including routine
vaccinations and basic consultation.
† Medical insurance centre (MIC) can verify the patient’s
medicard that provides patient financing for medical
treatments.
† High health sector (HHS) can provide advanced care to
patients who cannot be treated in a primary care facility alone.
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† Medical management institute (MMI) can store simple
registration information of all the medical institutes.
† Electronic medical record (EMR) is a computerised
medical record created in an organisation that delivers care,
such as a hospital and doctor’s office. EMR tends to be a
part of a local stand-alone health information system that
allows storage, retrieval and modification of records.
† Drug logistics company (DLC) can receive a drug list for
the patient from MSA, then delivers the medicine to the
patient.

Fig. 1 describes the typical scenarios between the MSA and
its partners using the BPEL designer. A patient, who wants to
see a doctor, sends query (SubmitQuery) to MSA. The MSA
sends patient condition (SendPatientCondition) to the MMI,
and returns several medical institutes that meet the patient’s
requirements. Then, the patient chooses a hospital
(ChoosePrimaryHospital) and makes an appointment
(MakeAppointment) with a PCH through the MSA, and
then goes to this hospital. The doctor in PCH has the
patient’s basic health records and personal information
queried from EMR. The doctor can directly diagnose the
patient and return the results (DiagnosisResult). Any
authorised doctor in PCH can browse the patient’s previous
treatment records through EMR, so that the patient can get
the same care anywhere. Then, the diagnostic records will
be uploaded to EMR system (UpdateEMR) by the doctor,
and diagnosis is finished (FinishDiagnosis). The detailed
cost (SendDetailCost) and corresponding medicine
(DeliveryLogisticsCompany) are then sent to the patient.
The PCH also needs to record the patient’s diagnosis results
(DetailDiagonsisResult) for future visits. If the doctor in
PCH cannot diagnose the disease, then the MSA calls the
high-level health sectors (HHS) (CallHighHealthSectors).
The doctors in PCH and specialists in HHS can conduct
remote consultations (RemoteVideoConsultations) to
establish the diagnostic and treatment regimen via video
conferences. In this process, the patient waits for the further
diagnosis result (FurtherDiagnosisResult). According to the
result, if the doctor in PCH can do the treatment, the
process will be finished like the normal case. If a change of
hospital is needed (ChangeHospital), the patient is
transferred into the HHS (HighHealthSector) and the
process is closed. If medical researchers or specialists are
interested in some special medical cases, they can also
query (Query) EMR to obtain the detailed records (SendPC)
for pathological and statistical analysis.
Three temporal properties of the process can be specified as

follows:

† Prop1: After the patient submits a request to the MSA,
MSA asks MMI to query a medical institute that meets the
patient’s requirements. Then MSA sends a hospital list
returned by MMI to the patient who selects one hospital to
make an appointment.
† Prop2: If diagnosis is finished, PCH will ask MSA to
record the diagnostic report into the EMR and transmit the
result to the DLC. Furthermore, this information is also
transmitted to MIC for promoting reimbursement process.
The PCH will also receive the patient’s diagnosis.
† Prop3: A personal health record in EMR cannot be
released without the patient’s permission.

These temporal properties should be monitored at run-time.
Time plays an important role for time-critical composite

services. Thus, some timing properties need to be

monitored at run-time. If these properties are not satisfied,
some serious consequences may happen. In our example, if
a patient’s request cannot be replied within the desired time,
the patient’s diagnosis will be delayed, which may have
serious consequences. Two timing constraints can be
specified as follows:

† Prop4: After the patient submits a request to the MSA,
within 30 s, MSA will send the hospital list returned by
MMI to the patient.
† Prop5: After completing the diagnosis, within 30 min,
PCH will ask MSA to record the diagnostic report into the
EMR, and transmit the result to the essential DLC, MIC
and the PCH.

Sometimes, it is very difficult to assure the strict
correctness of timing properties.
Recently, there is an increasing research on monitoring

probabilistic properties in composite service, since they can
be used to formulate reliability, availability, safety and
performance requirements. Consequently, two probabilistic
properties of the process can be specified as follows:

† Prop6: After the patient submits a request to the MSA,
within 30 s and with 90% probability, MSA will send the
hospital list returned by MMI to the patient.
† Prop7: After completing the diagnosis, there is 95%
probability that within 30 min PCH will ask MSA to record
the diagnostic report into the EMR, transmit the result to
the essential DLC, MIC and the PCH.

3 Formal operational semantics of PSC/
TPSC/PTPSC

This section will give formal operational semantics of PSC,
TPSC and PTPSC for run-time monitoring purpose
according to [10–12].

3.1 Property sequence chart

3.1.1 Introduction: PSC is an extended graphical notation
of a subset of UML 2.0 SD proposed in [10]. Its design
rationale is balancing ‘expressive power’ and ‘simplicity of
use’. Fig. 2 shows the PSC graphical elements. A PSC
specification has sets of component instances, messages,
constraints and operators. Two basic message types are
available: arrowMSGs and intraMSGs. The arrowMSGs
have three subtypes: Regular, Required and Fail. Regular
messages (labelled with e:msg) are used to define the
precondition for a desired (or an undesired) interaction.
Required messages (labelled with r:msg) must be
exchanged by the system and are used to express mandatory
interactions. Fail messages (labelled with f:msg) should
never be exchanged and are used to express undesired
interactions. IntraMSGs are used to describe constraints that
restrict the exchange of messages (arrowMSGs). Constraints
are classified into two categories: unwanted message
constraints and chain constraints. An unwanted message
constraint is specified for a set of intraMSGs that the
system must not exchange. In other words, an unwanted
message constraint describes the event(s) or interactions that
are disallowed between two component instances. Chain
constraints are defined as a sequence of dependent
intraMSGs, and are further classified as wanted and
unwanted. Wanted chain constraints are satisfied if the
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Fig. 1 Main BPEL structure for OMA example
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messages are exchanged following the sequence imposed by
the chain specifications. Unwanted chain constraints require
that the messages do not occur in the sequence specified in
the chain specification.
Constraints are also classified into past constraints and

future constraints. Past constraints specify message
exchanges, wanted or unwanted, before a specific message
exchange event takes place, and future constraints specify
the constraints afterwards. Graphically, past constraints are
located near the arrow source and future constraints are
located near the arrow target of an arrowMSG.
PSC has five operators: loose, strict, parallel, loop and alt,

which define how arrowMSGs can be composed. The loose
operator is the default operator that defines the order of
messages. However, any other messages can occur between
these messages. The strict operator explicitly specifies a
sequential ordering between a pair of messages, and no
other message is allowed between them. The parallel, loop
and alt operators specify parallel merging (i.e. interleaving),
iteration and alternative behaviour, respectively.

3.1.2 Semantics: The original operational semantics of
PSC is given by Büchi automata [10]. The algorithm
Psc2Ba defined in [10] translates PSCs into corresponding
Büchi automata. However, Büchi automata can only accept
infinite traces and is not suitable for monitoring purpose
since run-time traces are finite. Consequently, this paper
will use another semantics domain called finite automata
(FA) which can accept finite traces. We make use of basic
translation rules and compositional rules to translate PSCs
into FAs. The basic translation rules are used for directly
deriving a FA corresponding to a single arrowMSG
(Regular, Required or Fail messages). Then, compositional
rules are applied to PSC operators: Par, Loop and Alt.
Furthermore, we give a trace-based denotational semantics
of PSC in Section 8.1. The correctness of operational
semantics can be proved by demonstrating the consistency
between the two semantics.
The formal definition of FA for basic rules is defined first.

Definition 1 (FA for basic rules): A FA generated from a basic
rule is a six-tuple FA_b = 〈S, Σ, s0, T, G, A〉, where

† S is the finite set of states;
† Σ is the message alphabet exchanged among different
services;
† s0∈ S is the initial state;
† T⊆S × Σ × S is the finite transition set. t = (s, σ, s′)∈ T is a
transition, where σ∈ Σ, s∈ S and s′∈ S;
† G⊆S is the set of glue states. Glue state means the current
trace satisfies current PSC message and the system has a valid

continuation. Glue state is used to merge the initial state of the
next FA_b to form a more complex FA_b.
† A⊆S is the set of accepting states. The FA_b describes
the complementary behaviours of each basic message.
Consequently, accepting state means the current finite trace
violates the PSC specification.

In the generated FA_bs, other states are called intermediate
state set. Intermediate states mean undecided result and need
more traces to draw a conclusion.

Basic semantics for PSC: The Regular messages represent the
construction of a pre-condition. If a Regular message does not
happen, then the monitor does not detect failures (i.e. the
property is still undecided or valid). But if a Regular
message (or a set of messages) happens then a
pre-condition has been satisfied and the continuation of the
PSC must be explored. Therefore the generated FA_bs do
not contain any accepting states but they contain glue states
that are reached when the Regular messages are exchanged.
Fig. 3 shows the basic rules for Regular messages. The e
loose rule (ER1_PSC) represents the rule for Regular
message in which if a happens then it causes a transition to
a glue state. The self-transition labelled !a (!a is an
abbreviation of message label C1.!a.C2, we will use this
kind of abbreviation in the rest of the rule definition) in the
state s0 means that other messages can be exchanged before
a. The rule e strict (ER2_PSC) is for the strict operator.
Different from the e loose rule, after having reached the
state s0, we have a valid continuation to be explored if and
only if the next exchanged message is exactly a. ER3_PSC
(e past unwanted message) is the combination of the
message a with the unwanted messages constraint b, where
b = {m1, m2, …, mn} is the unwanted message set. The idea
is that we have a valid continuation if a happens and during
its past no message m∈ b has been exchanged, that is, the
construction of the valid continuation loses if in the past
one message m∈ b has been exchanged. This is obtained
by means of the self-loop labelled b & !a at state s0.
ER4_PSC (e future unwanted message) is the case for the
future constraint. In this case, we want to have one message
m∈ b after having reached the valid continuation on s1. The
valid continuation is no longer valid if one message m∈ b
is exchanged. ER5_PSC (e strict future unwanted message)
is exactly the intuitive combination of e strict with e future.
ER6_PSC (e past unwanted chain) is a combination of
unwanted chain g and message a, where g = (m1, m2, …,
mn) is the message chain. If g does not happen completely
and a is exchanged, the monitor will reach a valid
continuation. ER7_PSC (e past wanted chain) is the wanted
case. Consequently, if g happens completely and a is

Fig. 2 PSC graphical notations
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exchanged, the monitor will reach a valid continuation.
ER8_PSC and ER9_PSC are the future cases of unwanted
and wanted chains.
The semantics rules for Required message are shown in

Fig. 4. A Required message is a message that must be
exchanged within finite traces (in practice, we can judge
whether the number of traces reaches a particular large
number). In the case of RR1_PSC (r loose), if the message

does not happen within finite traces, then the monitor will
go to the accepting state and the property violation is
detected. A valid continuation can be reached if a happens
within finite traces. RR2_PSC (r strict) shows that if any
other message but a (i.e. !a in the figure) happens while in
state s0, then the monitor goes to the accepting state
immediately and there is no chance for satisfying the
property. RR3_PSC (r past unwanted message) raises an

Fig. 3 Operational semantics of Regular messages of PSC

Fig. 4 Operational semantics of Required messages of PSC
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error if the messages in b happens or within finite traces a
does not happen. As both message a and all messages in b
are not exchanged, the monitor has a valid continuation.
RR4_PSC (r future unwanted message) shows that if a
happens and within finite traces the messages in b does not
happen, the system goes to the glue state s1. Otherwise, if a
does not happen within finite traces or even in s1 the
messages in b happen, the property violation will be
detected. RR5_PSC is the strict case. Consequently, there
is no other message allowed before a. RR6_PSC describes
the r past unwanted chain g, where g = (m1, m2, …, mn).
When the message chain g happens completely, the
property violation is detected. When the message does not
happen completely and a happens within finite traces, the
monitor will go to the glue state. RR7_PSC is the wanted
case. When the chain g happens completely and a
exchanged, the monitor will go to the glue state,
otherwise, a property violation will be detected. Similarly,
RR8_PSC and RR9_PSC are the future unwanted and
wanted cases.
A Fail message is a message that should never occur within

finite traces in the system (see Fig. 5). FR1_PSC shows that if
the message a does not happen within finite traces, then FA_b
first has a finite cycle and then go to state s1 (the valid
continuation) and the property is not violated; exactly when
the first message a happens, the FA_b reaches an accepting
sink node. Considering rule FR2_PSC ( f strict) there is an
error only if a happens as the first message. FR3_PSC is
the rule for Fail message with past unwanted message
constraint. In particular, in this case the past constraints
represent restrictions that should hold in the past in order to
have a failure with the fail message. For the past constraint,
if b is false before a happens then the ‘precondition’ for the
failure is falsified. Then we do not have an undesired
behaviour but we can reach the valid continuation on s1.
FR4_PSC and FR5_PSC represent the cases for past
unwanted chain and wanted chain. In FR4_PSC, the
monitor will have a valid continuation if and only if the
chain happens completely and a does not happen. In
FR5_PSC, the monitor will detect a failure if and only if
the chain happens completely and a happens. Note that Fail
message does not have future failures since the system will
have no future after failures.
Compositional semantics for PSC: The compositional

semantics for PSC are classified into two types. The first
type includes two basic operators Merge and Alternative.
Merge is used for sequential composition of two FA_bs.
Alternative is used for alternative composition of two
FA_bs. The second type includes Alt, Par and Loop. These

operators can be defined based on basic operators Merge
and Alternative.

Definition 2 (Merge for two FA_bs): Given two FA_bs
generated by basic rules, FA = 〈S, Σ, s0, T, G, A〉 is the
merge composition of FA1 and FA2, denoted as FA =
FA1·FA2, where

† FA·S = FA1·S ∪ FA2·S
† FA·Σ = FA1·Σ ∪ FA2·Σ
† FA·s0 = FA1·s0
† FA·T = FA1·T ∪ FA2·T ∪ Tglue, where Tglue = {t|t·s∈
FA1·G∧t.s′ = FA2·s0∧t·σ = ε}, Tglue adds an empty(ε)
transition from each glue state of FA1 to the initial state of FA2

† FA·G = FA2·G
† FA·A = FA1·A ∪ FA2·A

Definition 3 (Alternative for two FA_bs): Given two FA_bs
generated by basic rules, FA = 〈S, Σ, s0, T, G, A〉 is the
alternative composition of FA1 and FA2, denoted as FA =
FA1⊗ FA2, where

† FA·S = FA1·S ∪ FA2·S ∪ {s0}
† FA·Σ = FA1·Σ ∪ FA2·Σ
† FA·s0 = s0
† FA·T = FA1·T ∪ FA2·T ∪ {(s0, ε, FA1·s0)} ∪ {(s0, ε, FA2·s0)}
† FA·G = FA1·G ∪ FA2·G
† FA·A = FA1·A ∪ FA2·A

The Merge and Alternative operators will generate new
FAs with ε− transitions. However, an equivalent FA
without ε− transitions can be obtained through standard
automata operations [15]. Furthermore, they can be
extended to a finite number of FA_bs.

Definition 4 (Merge for n FA_bs): Given n FA_bs generated
by basic rules, FA = 〈S, Σ, s0, T, G, A〉 is the merge
composition of n basic FA_bs.

† FA1·FA2·FA3·…·FAn = (((FA1·FA2)·FA3) …·FAn)

Definition 5 (Alternative for n FA_bs): Given n FA_bs
generated by basic rules, FA = 〈S, Σ, s0, T, G, A〉 is the
alternative composition of n basic FA_bs.

Fig. 5 Operational semantics of Fail messages of PSC
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† FA1⊗FA2⊗FA3⊗···⊗FAn= FA1⊗FA2

( )⊗FA3

( )···⊗(
FAn)
Based on operators Merge and Alternative, the operators of
Alt, Par and Loop can be defined as follows:

Definition 6 (Alt operator of PSC): Alt vi1,j1 , vi2,j2 , . . . ,
(

vir ,jr , r) has r parts of selections.

Definition 7 (Par operator of PSC): Par vi1,j1 , vi2,j2 , . . . ,
(

vir ,jr , r) has r parts of selections. Owing to combinatorics,
the number of message sequences generated by parallel
composition is num(Par) = ((n!)/(k1!k2! … kr!)), where k1,
k2, …, kr are the numbers of these r parts of messages.

† Par vi1,j1 , vi2,j2 , . . . , vir ,jr , r
( ) = vi1,j1 ⊗ vi2,j2 ⊗ · · ·⊗

v
inum(Par),jnum(Par) , where vik ,jk = msgik ·msgik+1

· . . . ·msg jk
(1 ≤ k ≤ num(Par))

Definition 8 (Loop operator of PSC): Loop(ωi, j, m, n), the
upper bound of loop is n and lower bound of loop is m.

† Loop vi,j,m, n
( )=vi,j⊗2vi,j⊗···⊗ (m−n+1)vi,j, where

vi,j =msgi ·msgi+1 · . . . ·msgj and kvi,j = vi,j ·vi,j · . . . ·vi,j/
(

(k times)) (1≤ k≤m − n + 1)

Definition 9 (FA for whole PSC): A FA generated from the
whole PSC is a six-tuple FA_w = 〈S, Σ, s0, T, F, A〉, with
the different from FA_b being that the glue state set G is
replaced by the final state set F.

3.1.3 Expressiveness: PSC can describe temporal
properties of systems, that is, specifying required message
to represent liveness properties, or using fail message to
represent safety properties. In order to use PSC efficiently,
the expressiveness of PSC has been evaluated by PSPs
proposed by Dwyer et al. [6].
PSPs are used to easily represent system requirements.

PSPs are divided into occurrence patterns and order
patterns. Occurrence patterns specify that a given event
occurs during the execution of system, which contain
Absence, Existence, Bounded Existence and Universality.
Order patterns specify several events to occur in sequence
during system execution, which contain Precedence,
Precedence Chain, Response and Response Chain. Each
pattern is associated with five scopes that represent the
execution regions of system when the pattern must hold.
The five basic scopes are globally, before, after, between
and, and after until, respectively. Autili et al. have already

used PSCs to represent all the PSPs, which can be found in
the website http://www.di.univaq.it/psc2ba/patternsMapping.
php.

3.2 Timed property sequence chart

3.2.1 Introduction: In UML SD, time stamps can be
attached to messages. Thus, constraints on a lower and an
upper time bound between two continuous messages can be
formulated. Similar to the messages in UML SD, each
message in PSC can also be annotated with time
constraints, or time constructs for short.
As shown in Fig. 6a, a regular message e: a is extended as

e: a; x < t, y: = 0, which means that e: a is expected to happen
before t, and then a clock y is reset. Since it is a regular
message, the system will not raise an error if e: a does not
happen within the desired time constraint. However, when
e: a is replaced by r: a, it means a required message r: a
must be exchanged before time t. If it does not happen, the
system will raise an error. When e: a is replaced by f : a, it
means that the system will go to an error state when f : a is
exchanged before t.

3.2.2 Semantics: In [11], we have defined the formal
translational semantics that maps a TPSC specification into
a corresponding timed Büchi automaton (TBA). TBA can
only accept infinite traces. Similar to PSC, we also use
another formalism called TA as the corresponding
semantics domain. We can also define the time trace-based
denotational semantics of TPSC. The correctness of the
translating rules can be proved by ensuring the consistency
between the two semantics.

Definition 10 (Clock constraints): For a set of clocks X, a
clock constraint δ from the set of clock constraints Φ(X )
can be defined as follows [16, 17]

d := x , c|x ≤ c|x . c|x ≥ c|¬d|d1 ^ d2

where x∈ X is a clock variable, and c [ N is a constant.

Definition 11 (Evaluation functions): Several evaluation
functions have been defined. The function o evaluates each
value v(x) of a clock x and checks if the value fulfils the
constraint δ. The function [d]val = {v(x)|v(x)od} denotes all
the values of a clock x which satisfy δ. We assume that a
clock constraint δ is homogenous, meaning that the clock
constraint is fulfilled only for a single connected set of
clock values. Two additional functions are also defined:
[pre(δ)] = {v(x)|v(x) < min([δ(x)])} and [succ(δ)] = {v(x)|v(x) >
max([δ(x)])}, which respectively describe all clock values

Fig. 6 Extending PSC with time constructs
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that do not fulfil the clock constraint and happen before and
after the clock constraint.
For example, if δ(x) = x ≥ 2∧x≤ 4, [pre(δ)] = {v(x)|v(x) <

2}, and [succ(δ(x))] = {v(x)|v(x) > 4}.

Definition 12 (Clock reset): A clock reset for a clock x is
defined as v(x): = 0. Normally, we denote ψ as a set of
clock reset.
The formal definition of TA is defined first.

Definition 13 (TA for basic rules): A TA generated from a
basic rule of TPSC is a seven-tuple TA = 〈Σ, S, s0, F, G,
Clock, T〉, where

† Σ ∪ 1 is a finite set of simple message labels exchanged in
the system, where ‘1’ means that any messages can happen.
† S is a finite set of states;
† s0∈ S is the initial state;
† F⊆S is the finite set of accepting states. Note that TA also
represents the complementary behaviours of TPSC, so the
accepting state represents a failure of the system;
† G⊆S is the set of glue states. They connect the initial state
of another TA to form a new TA;
† Clock is a finite set of clocks, as defined in Definition 10;
† T:S × S × Σ ×Φ(Clock) × 2Clock is a set of transitions.
Φ(Clock) is a finite set of clock constraints. A transition t∈
T is denoted as t = 〈s, s′, a, δ, ψ〉, which defines state
transition from s to s′ with message a∈ Σ ∪ 1, the clock
constraint δ∈Φ(Clock), and the set of clock reset ψ⊆Clock.

In the following, we will define the formal translational
semantics that maps a TPSC specification into a
corresponding TA. The rules are categorised into basic and
compositional rules. Basic rules identify how to translate a
single message in a TPSC specification into a TA, whereas
compositional rules show how to compose these basic
automata according to structured operators, such as par,
loop and alt.

Basic rules for TPSC: Fig. 7 shows the corresponding
rules for generating basic TAs for Regular messages. The
translation rules are similar to the rules of PSC, with each
translation denoted by clock constraint or clock reset. The
symbols δ, δ′ and δ″ are used to represent clock constraints
for messages, past constraints and future constraints,
respectively, as defined in Definition 10. ψ, ψ′ and ψ″
represent the sets of reset clocks for messages, past
constraints and future constraints, respectively, as defined in
Definition 12. ER1_TPSC(e loose) rule shows if a is not
exchanged and other messages happen, the TA stays at s0.
When a happens within δ, the TA will go to the glue state
sglue with clock reset ψ. ER2_TPSC rule is the strict case.
In ER3_TPSC rule, when the messages in b do not happen
within δ′ and a does not happen within δ, the TA stays at
s0. Otherwise, the TA will go to the glue state if a happens
in line with δ. ER4_TPSC is the future case, if a happens
under δ the TA will go to the glue state that requires the
messages in b do not happen under δ″. ER5_TPSC is the
strict case of future unwanted message. In ER6_TPSC,
when the chain g does not happen completely under δ′ and
a happens under δ, the TA will go to the glue state. In
ER7_TPSC, if g happens completely satisfying δ′ and a
happens satisfying δ, the TA will go to the glue state. In
ER8_TPSC, when some messages in g happens under pre
(δ″) or g has not happened completely until succ(δ″), the
TA will go to the glue state. In ER9_TPSC, if a happens
satisfying δ and g happens completely, the TA will go to
the glue state.
Fig. 8 shows the rules for Required messages of TPSC.

RR1_TPSC corresponds to a Required message a with a
clock constraint δ. The difference from ER1_TPSC is that
when a happens before pre(δ) or a has not happened until
succ(δ), the TA will go to the accepting state. RR2_TPSC
is the strict case. Consequently, the difference is that no
other messages are allowed before a within δ. RR3_TPSC
is the case with past unwanted message, when the messages
in b happen and fulfil δ′, the TA will go to the accepting
state. When the messages in b do not happen according to
δ′, and a happens and fulfils δ, TA will have a valid

Fig. 7 TAs for Regular messages of TPSC
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continuation. In RR4_TPSC, when a happens within δ, the
TA will go to the glue state. Then the TA also requires that
the messages in b have not happened under δ″ at the glue
state. RR5_TPSC is the strict case, with the difference from
RR4_TPSC being that no other messages are allowed
before a within δ. RR6_TPSC is the case with past
unwanted chain. If g does not happen completely under δ′,
and a is exchanged under δ, TA will go to the glue state.
Otherwise when g happens completely under δ′, or g does
not happen completely but a does not happen under δ, the
TA will go to the accepting state and an error is raised. In
RR7_TPSC, if g happens completely and a happens under
δ, the TA will go to the glue state. In all other cases, the
TA will raise an error. RR8_TPSC, when a happens under
δ and g has happened completely under δ″, the TA will go
to the accepting state. Otherwise TA will go to the glue
state. The only difference between Rule RR9_TPSC and
RR8_TPSC is that g is expected to happen completely
under δ″.
The rules for fail messages of TPSC can be defined in a

similar way. As there are only two differences for rules of
Fail message with respect to the Required rules, we skip the
detailed presentation of these rules. First, the semantics of a
Fail message is inverse to the semantics of a Required
messages, in that glue states and accepting states are
interchanged. Secondly, since other messages cannot follow
a fail message, there is no clock reset in final transitions of
the generated TAs.
Compositional rules for TPSC: Using these basic rules,

basic messages in a TPSC specification can be translated
into the corresponding simple TAs. However, the real-time
property represented by a TPSC specification is usually
composed of many basic messages with structured
operators, such as alt, par and loop. Therefore,

compositional rules are also need to be defined to compose
simple TAs according to the structure of complex TPSCs.
There are two kinds of compositional rules. One is to
merge TAs in a sequential and alternative way, that is,
Merge and Alternative. The other includes alt, par and loop
structured operators. These operators can be defined in a
similar way as PSC.

3.2.3 Expressiveness: The expressiveness of the TPSC
specification language has been tested with the real-time
specification patterns proposed by Konrad and Cheng [13].
These real-time specification patterns, which are a timed
extension of the un-timed specification patterns [6], are
proposed to support quantitative reasoning about time. The
patterns are classified into duration (minimum duration,
maximum duration), periodic (bounded recurrence) and
real-time order (bounded response, bounded invariance).
Each real-time specification pattern can be further
associated with five scopes (globally, before, after, between
and, and after until) as defined in [6]. In our previous
work, we have already used TPSC to represent all these
patterns [11].

3.3 Probabilistic timed property sequence chart
(PTPSC)

3.3.1 Introduction: According to the same design
rationale of PSC and TPSC, we later designed a new
probabilistic scenario-based specification called PTPSC
[12]. Each message or operator can be annotated with a
probability. Furthermore, according to the idea of LSCs [9],
we add the pre-chart to PTPSC to describe a trigger
condition for starting a monitoring run. The messages in the
pre-chart are restricted to the regular type. Following the

Fig. 8 TAs for Required messages of TPSC
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pre-chart in PTPSC, a main chart is enriched with a
probability operator. PTPSC only supports one probability
construct. However, if a probabilistic property has more
than one probability, it can be modelled by a joint
probability of multiple messages.

3.3.2 Semantics: One challenge of defining the formal
semantics of PTPSC specifications is that there is no clear
accepting or rejecting condition like that of traditional
temporal or timing specifications. To overcome this
problem, we propose to use sequential statistical hypothesis
testing based on a null hypothesis (H0 the system fulfils the
probabilistic property) and an alternative hypothesis (H1 the
system does not fulfil the probabilistic property).
The specific statistical hypothesis test we use is the SPRT
[18] that bounds the probabilities of false accepting or
rejecting the null hypothesis to two test parameters a and β,
respectively. Consequently, the operational semantics of
PTPSC is defined by two parts:
† Based on the defined syntax, we can translate a PTPSC

property into a TA using a syntax directed translator (SDT)
[19]. The translation rules of SDT are also categorised into
basic and compositional rules [11].
† We design an algorithm to do sequential hypothesis

testing. The inputs of this algorithm are the timed automata
(TA) for PTPSC, two hypothesis H0 and H1 that are defined
based on the probability p specified in the PTPSC and other
hypothesis parameters such as α and β. The outcome of the
hypothesis test is that H0 is accepted, or H1 is accepted, or
undecided, implying more samples are needed. In practise,
as shown in Fig. 9 the test procedure compares the number
of correct samples dm of m experiments with two functions
c0(m) and c1(m). If dm > c0(m), then H0 is accepted. If
dm < c1(m), then H1 is accepted. Otherwise, when c0(m) >

dm > c1(m), it cannot be decided and more samples are
needed.

3.3.3 Expressiveness: PTPSC is designed to represent
probabilistic properties. In order to measure the
expressiveness of the PTPSC specification language, we test
it with respect to the PSP system ProProST (Probabilistic
Property Specification Templates) of common probabilistic
properties proposed by Grunske [14]. The specification
pattern system contains eight generic patterns. PTPSC can
represent seven patterns including the Transient State
Probability pattern, the Probabilistic Invariance pattern, the
Probabilistic Existence pattern, the Probabilistic Precedence
pattern, the Probabilistic Response pattern, the Probabilistic
Constrained Response pattern, and Steady State Probability
[4]. Note that the PSP Steady State Probability requires
long running behavioural analysis of the system and cannot
be used for monitoring. Consequently, this pattern cannot
be expressed with PTPSC.

3.4 Example

The informal requirements of the running example can be
represented by PSC, TPSC and PTPSC specifications,
corresponding to temporal, timing and probabilistic
properties, respectively.
For Prop1 to Prop3, PSC specifications can be used to

represent them. As an example, Fig. 10 shows the PSC
specification of Prop1. It is composed of four messages: a
Regular message, a Required message with future unwanted
chain constraint and two Required messages. Using the
translating rules in basic rules (ER1_PSC, RR4_PSC,
RR1_PSC and RR1_PSC) and compositional rules
(Merge), the generated FA for Prop1 is shown in Fig. 11.
Within finite traces, the monitor can stay on S0 to S4 and

Fig. 9 Graphical interpretation of the SPRT

Fig. 10 PSC specification for Prop1

Fig. 11 Generated FA for Prop1
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eventually goes to final state S5 when the desired messages
happen. However, if a3, a5, a7 and a9 do not happen
within finite traces, the system will raise failures.
For Prop4 and Prop5, TPSC specifications are used to

represent them. Fig. 12 shows the TPSC specifications of
Prop4 as an example. The structure of this property is
similar to Prop1 except adding some timing information.
Fig. 13 shows the PTPSC specifications of Prop7 as an

example. It is composed of a total of six messages: first, a
Regular message and a Required message with past chain
constraint. Then there are two parallel parts, each with a
Regular message and a Required message. After adding the
time reset clock and time constraints to each message, the
first message is a trigger message, and all the messages in
the main chart may happen with a probability of 95%.

4 WS-PSC tool

This section first shows the framework of WS-PSC monitor
and then shows how to monitor temporal, timing and
probabilistic properties in WS-BPEL process with our
running example.

4.1 Framework overview

The framework of the prototype tool WS-PSC monitor is
illustrated in Fig. 14, consisting of four main components
Interceptor, Observer, Translator and Analyzer, respectively.

† Interceptor: Aspect-oriented programming (AOP)-based
approach [20] is used to extend the existing BPEL
execution. We consider business processes as core concerns
and the monitored messages as cross-cutting concerns. The
messages that describe the complex interaction between

Fig. 12 TPSC specification for Prop4

Fig. 13 PTPSC specification for Prop7

Fig. 14 Framework of tool chain WS-PSC monitor
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several service components are related to these service
components in the composite service. The same monitoring
codes need to be repeatedly added into BPEL business
processes for the corresponding service components. It
results in lowering the maintainability and reusability of
codes because the monitoring codes intertwined with
business processes. Monitoring aspects of a composite
service can be implemented with AspectJ, which is a
seamless extension of Java language. It has its own
constructs, such as aspects, join point, point cut and advice,
etc. A joint point refers to a well-defined point during
program execution. The set of joint points are called
pointcut. Similar to methods, advices attached to pointcut
define the extra behaviour of pointcut. Aspects are the
implementation of modularity unit of cross-cutting, which
include point cut, advice and type declaration. According to
the identified joint points, the aspects and goal application
are weaving together. The weaving process may be static (at
compilation) or dynamic (at run-time). We defined a set of
joint points of certain monitoring aspects, namely, the
combined points between monitoring aspects and business
logic are defined. A pointcut similar to Boolean operator in
programming language selects a certain joint point to
execute monitoring aspects. The combination of several
pointcuts can observe some kinds of different joint points,
which supports monitoring several service states when the
business processes concurrently execute.

According to user’s requirements, PSC, TPSC and PTPSC
specifications are used to represent the monitored properties.
Then the monitoring aspects are defined to intercept the
interaction messages between basic services such as
‘invoke’, ‘receive’ and ‘reply’. Finally, the defined aspects
and original services are weaved together to intercept the
run-time messages of composite services and add
corresponding time stamps to each message.

† Observer: Observer collects the run-time messages
intercepted by Interceptor. Usually, we can only observe
SOAP messages that are related to activities. Message
occurrence means activity occurrence. Global observer or
local observer is used to observe message exchange or
activity occurrence. Global observer can observe activities

and messages at process level, concerning several services.
Local observer can only observe activities or messages
relative to one individual service. We focus on locally
observing messages sent or received by individual service.
Two observers are designed to intercept messages in PSC
and TPSC, respectively. Observer1 can only collect the
messages and record them in order to further check whether
these messages satisfy PSC properties. Observer2 can not
only collect the messages but also record the corresponding
time stamps to further check these messages against TPSC
and PTPSC properties.
† Translator: Translator is used to translate PSC, TPSC and
PTPSC specifications into formats that can be accepted by
Analyzer. We designed three translators for these
specifications. Translator1 can translate PSC specifications
into semantics domain FA. Translator2 can translate TPSC
specifications into the semantics domain TA. Translator3
can translate PTPSC specification into semantics domain
TA and a SPRT process.
† Analyzer: On receiving the messages from the Observer,
the Analyzer has the ability to verify at run-time whether a
property has been satisfied or not. We designed three
different analysers for PSC, TPSC and PTPSC,
respectively. The inputs of these algorithms are intercepted
messages and the corresponding semantics domain, FA, TA
and TA with SPRT process. Similar to the approach in [21,
22], we use the three-valued semantics for the monitoring
outputs: ‘true, false or undecided’. Note that in the
generated FA or TA, there are three kinds of states:
accepting state, final state and internal state. Since FA or
TA describes complementary behaviours of PSC or TPSC
properties, accepting state means property violation, final
state means property satisfied while intermediate state
means undecided.

Analyzer1 improves FA-based analysing algorithm
proposed in [23]. In [23] we obtain the monitoring result
according to a message set. In this paper, we obtain the
monitoring result based on each intercepted message since
we need to draw conclusion immediately. The main logic of
Analyzer1 is shown in Fig. 15a. For each intercepted
message m, Lines 1–2 show that Analyzer1 will go to next
state if m matches the corresponding transitions in FA.

Fig. 15 Three analysing algorithms
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Lines 3–11 shows four cases during continuous monitoring: if
FA goes to an accepting state, an error trace will be detected;
if FA goes to the final state and the property scope is global, it
will restart at the initial state again; if FA goes to the final state
and the property scope is not global, it will return true; if FA
goes to an intermediate state, it will return undecided.

Analyzer2 improves TA-based trace analysing algorithm
proposed in [24]. The main idea of Analyzer2 is shown in
Fig. 15b. The main difference between Analyzer1 and
Analyzer2 is that Analyzer2 considers timing information.
Consequently, it can not only analyse the message but also
check that the timing stamps satisfy the transitions in TA.

Analyzer3 implements a monitor combining TA and SPRT
process proposed in [4]. The main logic of Analyzer3 is
shown in Fig. 15c. According to the result of Analyer2, if
nextState goes to an accepting state, a ‘0’ is recorded into
Result; if nextState goes to the final state, a ‘1’ is recorded
into Result. Then, Result is used as input to the SPRT
process according to the semantics of PTPSC. Finally, the
checking results are returned based on lines 7–13.

The flow of the WS-PSC monitor framework is also shown
in Fig. 14 and divided into the following steps:

1. AOP-based approach [20] is used to extend ActiveBPEL
engine with Interceptor. Interceptor that is the core
component in our framework allows for defining
monitor-related pointcuts and advices in AspectJ. Our
approach can define pointcuts for the following events of
the engine: Engine starts or stops, BPEL process
construction or destruction and key activities of BPEL
process such as invoke, receive and reply. For example, in
order to monitor the whole activities exchanged by the
composite service and the corresponding timing

information, we can define the following aspect in AspectJ
to record the activities:

In lines 2 and 3 method receive () of an arbitrary class (*)
found in the receive package of the ActiveBPEL engine
implementation is intercepted. Since the invoke activity
only has input parameters, we need to record and add the
time stamps for the parameters. Lines 4–9 record the input
parameters and add the corresponding timing stamps by the
use of ‘before’ method. For activities that just have two
parameters such as invoke activity, we have to use before()
and after() method to intercept the input and output
parameters. Note that if only PSC specifications need to be
monitored, we just need to intercept the parameters of the
activities without adding timing stamps. Finally, AspectJ
class files are generated from monitoring aspects by the
compiler. AspectJ class files and original services in
ActiveBPEL engine are weaving together. During the
execution of business logic, monitoring aspects are
dynamically inserted into business process for run-time
monitoring.

2. According to property types, the ‘Observer’ can classify the
intercepted messages. If the property type is temporal,
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the Observer can only record all the interaction messages; if
the property type is timing or probabilistic, the Observer
needs also to record the time stamps for each interaction
message. These execution messages are translated into a
format that can be accepted by Analyzer. The translated
execution message has the following format:

time stamp [Monitor LOG]{Entering/
Exiting}:[receive]/[invoke]/[reply]
messageOperation(parameter)

where Entering means input message, whereas Exiting
means output message. An execution message sequence of
OMA interacting with a patient and the corresponding time
stamps are shown as follows.

3. The informal requirements are represented by PSC, TPSC
and PTPSC specifications, corresponding to temporal, timing

and probabilistic properties, respectively. Example property
representations have been shown earlier in Section 3.4.
4. We can use the three translators of the WS-PSC monitor to
translate PSC, TPSC and PTPSC into FA and TA, and a
combination of TA and SPRT process, respectively. From
Prop1 to Prop3, by using translator1, they can be translated
into the corresponding FA. For example, the generated
automata for Prop1 is shown in Fig. 11. For Prop4 and
Prop5, by using translator2, they can be translated into the
corresponding TA. For Prop6 and Prop7, the generated TA
are the same as those of Prop4 and Prop5. However, we also
need to use the SPRT process to calculate the probabilities.
5. Analyzers first receive the intercepted messages and the
properties represented by PSC, TPSC and PTPSC, then
check whether the run-time information satisfies the desired
properties. If the property type is temporal, Analyzer1 is
used. If the property type is timing, Analyzer2 is used. If
the property type is probabilistic, Analyzer3 is used.

Fig. 16 m/dm curves for the probabilistic properties Prop6 and Prop7

Table 1 Informal descriptions and the corresponding patterns of the monitored temporal properties

Id Informal descriptions Patterns Results

TA
(Prop8)

after sending a patient’s medical parameters to the Lab and TA receives a
‘high’ result, TA will immediately notify the assistants nearest to the
patient

2 stimulus-2 response; scope
global

yes

TA
(Prop9)

after sending a patients data to the Lab and the TA receives a
‘needDiagnosis’ result, the doctor will diagnose the patient and before that
he must receive a notification from TA

precedence; scope after yes

TA
(Prop10)

if for a certain patient the number of ‘high’ results is more than three
times, the TA also needs to notify the doctors to diagnose the patient

3 stimulus-2 response; scope
global

no

TA
(Prop11)

if the number of notifications to help a certain patient is less than five
times before the end of a process, the TA should also notify doctors to
diagnose the patient to see whether the patient is fine

5 stimulus-2 response; scope
global

yes

OJA
(Prop12)

if the user’s credit account is invalid, he (or she) cannot get a video response; scope absence no

OJA
(Prop13)

if the credit account of the user is detected to be valid, and he cannot get
the video, there must be a message showing there is not enough money in
the account

precedence; scope after yes

OJA
(Prop14)

if there is no satisfied video in KB, VA will send query request to other
providers, then some providers respond to the request. After VA provides a
user with a video list (with respect to textual description of related service
information) that is composed of all periodically collected responses, the
user reads the video list and selects one of the providers for getting and
watching the video

1 stimulus-2 response and 1
stimulus-2 response; scope global

yes

OJA
(Prop15)

when getting a video, the user can either watch the video, or she can
either watch the make request to choose another video, but for the second
case she have to choose the reason (e.g. the poor quality of the current
video) and cancel the video

response; global or precedence
chain; scope after

yes

TM
(Prop16)

if the user invokes the travel service (i.e. he/she sends the travel
requirements to the TM service), TM service will respond to the user with
the result of three service invocationsfindDuration, calculateTime and
checkSchedule

existence; scope between and yes

TM
(Prop17)

after the user orders the desired travel, the travel schedule will be sent to
the user eventually. However, between these two messages, TA must
successfully book the Hotel, Traffic and arrange a meeting with Database

existence; scope between and yes
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The analysis results are then shown to designers. They can
further analyse and correct the possible errors in the system.
In our example Prop1, Prop2 and Prop4 are validated as
correct, whereas Prop3 and Prop5 are false. From the error
trace of Prop3, we find that the users can obtain patient’s
diagnostic records from EMR without patient’s permission.
After adding a new activity [invoke]GetPermission to the
corresponding patient whose medical data is used in the
BPEL process, Prop3 holds. From the error trace of Prop5,
we find that it is possible that within 30 seconds, the
activity [invoke]DeliveryLogisticsCompanies
(detailMedicine) does not happen. Consequently, the
TA for Prop5 goes to the accepting state and a violation
against Prop5 is observed.
In order to check probabilistic property, we systematically

inject the correct implementations with a predefined failure
rate(fr). To simulate a failure, a correct event such as
‘confirmOK’ is replaced by a ‘confirmFail’ or a
‘confirmTimeout’ message. In each experiment, we set
statistical test parameters α = 0.1, β = 0.1 and indifferent
region as H0 − H1 = 0.04. We injected a failure that is 2%
below or above the indifferent region. The validated results
for properties Prop6 and Prop7 are shown in Fig. 16. For
Prop6, we injected 9% (in the indifference region), 7% (2
above H0) and 15% (2 below H1). For Prop7, we injected
7% (in the indifference region), 3% (2 above H0) and 11%
(2 below H1). From the curves, we can see that the test
correctly accepts or rejects H0 for these samples. However,
the number of samples are different due to the different
probabilities. For Prop6, 100 samples are enough. But for

Prop7 100 samples are not enough to draw the conclusion.
For example, it needs 125 samples to accept H0. When the
probability is set at more than 98%, the tool cannot draw
any conclusion within 200 samples. Furthermore, when the
probabilities are in the indifferent region, it is very hard to
draw any conclusion with our monitor.

5 Experimental validation

In previous sections, we have already shown how to use
WS-PSC monitor to monitor temporal, timing and
probabilistic properties in composite service with PSC/
TPSC/PTPSC specifications. To demonstrate the generality
of WS-PSC monitor, this section will first apply it to three
other case studies and then conduct some experiments to
analyse its performance. The tool has been developed on
the Eclipse Rich Client Platform (RCP). It has 122 Java
classes and about 20000 lines of codes [25].

5.1 Case studies

In this subsection, we will describe three case studies: TA
(TelecommunicationAssistant), OJA (OntheJobAssistant)
and TM (TravelManagement). These three case studies
come from real industrial requirements and have already
been widely used in web service research.
TelecommunicationAssistance [26, 27] composite service

(TA) is a software- and telecommunication-based service
that is designed to help patients who need daily assistance
in remote areas. TA service interacts with four partner

Table 2 Informal descriptions and the corresponding patterns of the monitored timing properties

Id Informal descriptions Patterns Results

TA
(Prop18)

after sending a patients medical parameters to the Lab, and the TA
receives a ‘high’ result within 1 hour, the TA will immediately notify
the assistants nearest to the patient and must receive a response
within 1 hour

bounded 1 cause 2 response; scope
after

yes

TA
(Prop19)

after sending the patient’s medical parameters to the Lab, TA receives
a ‘high’ result within 1 hour. TA will immediately notify the assistants
nearest to the patient and must receive a response from them within
1 hour

bounded 1 cause 2 response; scope
after

yes

TA
(Prop20)

if for a certain patient the number of ‘high’ results is more than three
times during a week, the TA also needs to notify the doctors to
diagnose the patient within one day

bounded 3 cause 2 response; scope
global

no

TA
(Prop21)

if the number of notifications to help a certain patient is less than five
times during a month, the TA should also notify doctors to diagnose
the patient to see whether the patient is fine

bounded 5 cause 2 response; scope
global

yes

OJA
(Prop22)

if the credit of a user is verified to be valid, the user can eventually
obtain a video within 2 minutes

bounded response; scope global no

OJA
(Prop23)

if the user orders the email from VA, VA will periodically (every week)
send a new video list to the user according to the user’s watching
habit

periodic recurrence; scope after yes

OJA
(Prop24)

if there is no satisfied video in KB, VA will send the query request to
other providers, then some providers respond to the request within 10
seconds. After VA provides a user with a video list (with respect to
textual description of related service information) that is composed of
all periodically collected responses, the user will read the video list and
selects one of the providers for getting and watching the video within
20 seconds

bounded 2 cause 1 response and
bounded 1 cause 2 response ; scope
global

yes

OJA
(Prop25)

when watching a video, a user does not satisfy with the poor quality of
the current video, she cannot watch the video for more than half a
minute

maximum duration; scope global no

TM
(Prop26)

if the user invokes the travel service (i.e. he/she sends the travel
requirements to the TM service), the probability that the TM service
responds to the user with the result of three service
invocationsfindDuration, calculateTime and checkSchedule within
3.2 seconds

bounded 1 cause 3 response; scope
global

yes

TM
(Prop27)

after the user orders the desired travel, the travel schedule will be sent
to the user within 10 seconds

bounded 1 cause 4 response; scope
global

yes
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services, including Patient, Medical Laboratory (Lab),
Assistant and Doctor. Patient needs basic medical support
in order to control their health. Medical Laboratory (Lab)
can analyse the medical parameters of patients and replies
to TA by sending the results. Assistant may be a patient’s
relative who will take over the role of a medical assistant.
Doctor is in charge of medical decisions, such as changes
of treatments or diagnosis.
OntheJobAssistant(OJA) [28] is a composite service to

provide specialists with a variety of video help, consisting
of four services: Knowledge Base (KB), Virtual Assistant
(VA), Bank and Other Providers. KB can store various
video information. VA is a medium between a user and
KB, and submits a user’s search request to KB. Bank is
responsible for verifying whether the user’s credit is valid.
Other Providers: whenever video information required by
the user is unavailable in KB, VA submits the user’s search
request to other providers.
Travel Management (TM) [29] is a composite service used

to help users book a travel package online that suit their
requirements. The system interacts with the following
participants and services: User, DataBase (DB), Hotel
Service (HS) and Traffic Service (TS). The DataBase stores
various information about travel. The Hotel Service and
Traffic Service provide the corresponding hotel and traffic
service.
WS-PSC monitor is used to analyse 10 temporal properties,

10 timing properties and 6 probabilities properties selected
from the three case studies.
Table 1 (Prop8 to Prop17) shows the informal descriptions,

the corresponding specification patterns and the monitoring

results of the temporal properties of the three case studies.
To show the usability of our scenario-based specification
most properties belong to chain patterns which are not
easily represented by traditional temporal logic-based
specifications. As a simple example, Prop11 is a 5
Stimulus-2 Response pattern which is very hard to be
represented by temporal logic formula.
The results indicate that Prop10 and Prop12 are false. To

identify the cause of the violations, we review the
interactions between all the BPEL processes. According to
the violation trace for Prop10, we find that after the message
[invoke]alarm(high) happens more than three times,
the message [invoke]changeDiagnosis has not been
sent to the doctors. Consequently, the Analyzer will go to
the accepting state and a violation against Prop10 is observed.
After analysing the original BPEL codes, we notice that the
original TA process does not have a counter to record the
number of message [invoke]alarm(high). After we
add a counter in the process, the problem is solved.
According to the violation trace for Prop12, we see that the
credit check of a user is ok, but the money in his bank
account is less than the price of the video. Consequently, the
user still cannot get the video. This property is true
occasionally, as the balance of the user’s bank account is
generated randomly. In order to solve this problem, we let
the process generate at least $200 for user’s bank account
since the prices of all the video is less than $200.
Table 2 (Prop18 to Prop27) shows the informal descriptions,

the corresponding specification patterns and the monitoring

Table 3 Informal descriptions and the corresponding patterns of the monitored probabilistic properties

Id Informal descriptions Patterns

TA
(Prop28)

after sending a patient’s medical parameters to the Lab, TA receives a ‘high’ result
within one hour. TA will immediately notify the assistants nearest to the patient and
must receive a response from them within one hour with 95% probability

probabilistic 2 cause 2 response

TA
(Prop29)

if for a certain patient the number of results with a ‘high’ criticality is more than
three times during a week, the probability for TA to notify the doctors to diagnose
the patient within one day is 90%

probabilistic 3 cause 2 response

OJA
(Prop30)

if the credit of a user is verified to be valid, the probability that the user can
eventually obtain a video within 2 minutes is 90%

probabilistic response

OJA
(Prop31)

when watching a video, the probability that a user will cancel the video within half a
min because she does not satisfy with the poor quality of the current video is 45%

maximum duration; scope
probabilistic precedence

TM
(Prop32)

if the user invokes the travel service (i.e. he/she sends the travel requirements to the
TM service), the probability that the TM service responds to the user with the result
of three services invocationsfindDuration, calculateTime and checkSchedule within
3.2 seconds is 89%

probabilistic 1 cause 3 response

TM
(Prop33)

after the user orders the desired travel, the probability that the travel schedule will be
sent to the user within 20 seconds is 85%

probabilistic constrained
response

Fig. 17 Performance characteristics of AOP-based interceptor of
WS-PSC monitor

Fig. 18 Monitored properties and the sizes of their generated
automata
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results of the timing properties of the three case studies.
According to the results, Prop20, Prop22 and Prop25 are
false. Prop20 and Prop22 fail for the same reasons as those
of Prop10 and Prop12, respectively. Compared with the
temporal property, there is a new property violation. From
the error trace, we find the problem is that some users want
to cancel the video more than half a minute after they
watch the video. These behaviours satisfy the temporal
property Prop15 but does not satisfy the timing property
Prop25.
Table 3 (Prop28 to Prop33) shows the informal descriptions

and the corresponding specification patterns of the
probabilistic properties of the three case studies. Normally,
the SPRT process can correctly accept or reject H0 for these
properties. For the probability below 95%, 200 samples are
enough to draw the conclusion. When the probability is
more than 98%, 200 samples are not enough.

5.2 Performance analysis

In this subsection, we will do a critical performance analysis
of the WS-PSC monitor tool. Two key factors that affect the
performance of the tool are the AOP-based interceptor and
the analyser engine. AOP-based interceptor will affect the
execution time of the whole service since it will
synchronise the execution of the service. As the analysers
and the web service run concurrently, the execution time of
the whole service should not be affected. As a platform for
our experiments, we used a Windows-based PC equipped
with a 1.83 GHz dual-core processor and 2 GB of main
memory. The WS-BPEL engine (in the experiment we use
Eclipse 3.4 with BPEL Designer plug in) ran on Tomcat
6.0 and Apache ODE.

Intercepting messages using AOP-based technology does
not affect too much the performance of the system. We do
some experiments to study the time overhead for using
AOP-based intercepting. We first run the original four
composite services with different instances and then run the
four composite services with AOP and different instances.
The results are shown in Fig. 17. From the figure, we can
see that this overhead increases linearly with the number of
instances. It take around 5% (4.6, 4.9, 5.2, 4.0%) overhead
when the instances is 10. It will increase to around 10%
(10.2, 10.4, 10.4, 10.6%) when the instances is 50. This is
also in line with the results from other researchers; the
overload for interceptor is within 5% [30] when the
instances is small and it will increase to about 10% when
the instances increase to about 50.
In the following, we will focus on investigating the

performance of the Analyzers. There are two factors that
affect their performance. One is the scale of the generated
FA or TA, and the other is the number of service instances
running in the engine. For the first factor, the detailed
statistics for the monitored properties are illustrated in
Fig. 18, where ‘#Part.’ denotes the number of partners
involved in the composite services; ‘#Mess.’ is the number
of messages exchanged between partners; ‘#Cons.’ is the
number of unwanted or wanted constraints in the PSC
specifications. ‘#State’ is the number of states in the
generated automata and ‘#Tran.’ is the number of
transitions in the generated automata. For Prop28 to Prop33,
they generate the same statistics as those in the experiment
for timing properties, and are not shown in Fig. 18. Note
that all of the constructed automata have fewer than 73
transitions. For the second factor, we run the service with
different service instances.

Fig. 19 Validation and performance characteristics of WS-PSC monitor
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For the Analyzers of temporal and timing properties, the
composite service generates a large number of messages.
However, our monitors receive just those within the PSC
specifications. Furthermore, the intercepted events are never
stored. Thus, we hope that the monitor does not produce a
significant performance overhead. For the Analyzer of
probabilistic properties, we have to record the run-time
information to support SPRT process. Since there are 33
properties, we choose some properties as examples to
analyse the performance, whereas the other properties can
be analysed in a similar way and are omitted. In the
experiments, we use Jconsole [http://java.sun.com/
developer/technicalArticles/J2SE/jconsole.html] as a tool to
record the heap memory usage, the number of Java classes,
the number of collected threads and the CPU usage for the
WS-PSC monitor.
The results are collected in Fig. 19. We do the experiments

10 times and record the average value. For the horizontal axis
in each figure, numbers 1 to 7 mean the properties Prop1 to
Prop7 whereas 8 and 9 mean the improved implementation
of Prop6 and Prop7 called Prop′6 and Prop′7. Each figure
shows the results for five sets of service instances of (10,
20, 30, 40, 50).
When the number of service instances is 10, the consumed

memory is about 10.1 to 18.8 M for Prop1 to Prop5; the
collected threads and Java classes are almost the same. The
consumed CPU usage is from 0.35 to 1.2%. Consequently,
the first factor has minimal effect on the performance since
the transitions for Prop1 is 12 and for Prop5 is 73 according
to Fig. 18. Furthermore, the additional checking of timing
information also has minimal effect on the performance.
However, when the number of service instances is increased
to 50, the consumed memory is 32.6 M for Prop1 and
87.8 M for Prop5; the collected threads and Java classes are
also almost the same; the consumed CPU usage is from
2.34 to 15.86%. From the results we can see that the
consumed memory, threads, classes and CPU will increase
when the number of service instance increases.
For probabilistic properties, the results are shown under

number 6 and 7. We can see that the threads and classes are
slightly increased due to the running of SPRT process. We
first collect all the generated run-time messages, then we do
the SPRT process for every 5000 messages. Consequently,
the consumed memory and CPU (55.6 M and 20.4% for
Prop7) are dramatically increased due to storing a great
number of messages. When the number of service instances
is 40, the memory and CPU increase to 240.5 M and
89.8%, respectively, for Prop6 and ran out of CPU for
Prop7. When the number of service instances is 50, we
cannot monitor Prop6 and Prop7 neither.
To resolve this problem, we just store the TA-based

checking results. From the results in number 8 and 9, we
can see that the tool can monitor Prop6 and Prop7 since the
consumed memory and CPU (93.6 MB and 19% for Prop7′)
have been dramatically reduced.

5.3 Discussions

The four case studies clearly demonstrate the intuitiveness
and expressiveness of our graphical specification PSC,
TPSC and PTPSC (i.e. we can use PSC/TPSC/PTPSC to
represent 33 properties). Furthermore, WS-PSC monitor can
monitor all 33 properties at run-time with reasonable
overhead. For temporal and timing properties, the tool has a
reasonable overhead when the number of service instances
increases from 10 to 50. For probabilistic properties the tool

requires more processing and memories, since it needs to
record previous results. With an improved implementation,
the tool can still monitor these probabilistic properties when
the number of service instances is within 50. However, the
proposed tool suffers from the following limitations.

5.3.1 Full automation: Although PSC, TPSC and PTPSC
have graphical interfaces, they are still somewhat difficult to
write and prone to mistakes when the number of messages
grows. Consequently, to reduce this limitation, it is
important to develop an approach to help designers
automatically derive PSC, TPSC and PTPSC specifications
from textual requirements in the future.

5.3.2 Scalability: Although the four case studies are from
real industrial requirements, they are devised and invented in
academic setting. Furthermore, they are small and not
complex. Consequently, the scalability of the approach
needs to be tested with larger case studies. As already
shown in our experiments, the memory, CPU usage, and
the time consumed for the monitoring process will increase
with the number of properties and the number of the
monitored messages; especially for probabilistic monitors
since this kind of monitors need to record some historical
information. On the one hand, new and efficient monitoring
algorithms can be developed to reduce this limitation. On
the other hand, the use of multi-core platforms [31, 32] can
also reduce this limitation because it can make the
monitoring cost acceptable.

5.3.3 Precision: For probabilistic properties, if the
monitored probability is inside the indifference region
between H0 and H1 the monitoring result is not accurate.
Another specific limitation is the ability to monitor
probabilistic properties with extreme probabilities (e.g.
when the probability is close to 1 or 0). The number of
required monitoring samples runs increase dramatically in
order to draw a conclusion. New approaches are needed to
solve these problems.

6 Related work

In recent years, a large number of approaches have been
proposed for monitoring web service compositions. This
section will provide a survey of existing tool support for
monitoring of behaviour of composite services against
various properties.
Baresi et al. [26] propose a framework called dynamo-AOP

for monitoring functional and non-functional properties that a
service provider should fulfil. Its architecture is based on the
dynamic aspectisation of the BPEL engine executing the
monitored service compositions, achieved by using AspectJ
as an AOP language. They consider an existing monitoring
approach based on ALBERT, which is a temporal logic
language suitable for asserting both functional and
non-functional properties, and show how to obtain the
efficient run-time verification of ALBERT formulae.
Manageable and adaptive service composition (MASC) is a

policy-based middleware for monitoring and control of
composite web services execution [33]. WS-Policy4MASC
language extends WS-Policy by defining new types of
monitoring and control policy assertions. It is used to
specify monitoring properties related to business exceptions
and run-time failures. The approach provides synchronous
and asynchronous monitoring at both the SOAP messaging
layer and the process orchestration layer, greater diversity of
monitoring and control constructs, as well as the
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externalisation of monitoring and adaptation actions from
definitions of business processes. A prototype is
implemented and evaluated on monitoring and adaptation
scenarios from a stock trading case study. The performance
studies indicate that MASC’s overhead and scalability are
acceptable.
Mahbub and Spanoudakis [34] proposed a framework for

the run-time verification of requirements of service-based
software systems. System events are collected at run time
and stored in an event database. The properties are checked
by means of an algorithm based on integrity constraint
checking in temporal deductive databases. A prototype tool
has been developed to demonstrate and evaluate the
framework. The approach has been applied in the car rental
system service composition. However, no performance
measures have been reported.
Raimondi et al. [35] show how timeliness constraints, such

as latency, throughput, availability and reliability, in formal
service-level agreements can be translated into TA. They
attach time stamps to SOAP messages and consider these
messages as timed letters. They are then able to reduce the
problem of detecting SLA violations to acceptance of timed
words by the TA that have been derived from the SLAs.
Simmonds et al. [36] proposed to use run-time monitoring

of conversations between partners as a means of checking
behavioural correctness of web services. They identified a
subset of UML 2.0 SD as a property specification language
and showed that it is sufficiently expressive for capturing
safety and liveness properties. By transforming these
diagrams to automata, this approach can check finite
execution traces against the specification. They showed how
the language can be used to specify the specification
property system. They described an implementation of the
approach as part of an industrial system. Finally, they
discussed the experience of specifying and monitoring a
number of properties from three existing applications.
Wang et al. [30] proposed an online monitoring approach

for web service requirements. It includes a pattern-based
specification of service constraints that correspond to
service requirements. The monitoring framework uses
different probes and agents to collect events and data that
are sensitive to requirements. The framework analyses the
collected information against the pre-specified constraints,
so as to evaluate the behaviour and use of web services.
The prototype implementation and the corresponding
experiments with a case study show that the approach is
effective and flexible, and the monitoring cost is reasonable.
In [37], the authors present an algorithm for the monitoring

of run-time message contracts with data. Their properties are
expressed in LTL-FO+, an extension of linear temporal logic
that allows first-order quantification over the data inside a
trace of XML messages. An implementation of this
algorithm can transparently enforce an LTL-FO+
specification using Java applet. Violations of the
specification are reported on-the-fly and it can prevent
erroneous or out-of-sequence XML messages from being
exchanged. Experiments on commercial case study indicate
that LTL-FO+ is an appropriate language for expressing
their message contracts, and that its processing overhead on
sample traces is acceptable both for client-side and
server-side enforcement architectures.
Pesic et al. [38] propose DECLARE, a prototype of a

workflow management system that uses a constraint-based
process modelling language for the development of
declarative models describing loosely-structured processes.
They show how DECLARE can support loosely-structured

processes without sacrificing important WFMSs features
like user support, model verification, analysis of past
executions using process mining techniques and changing
models at run-time.
Cremona [39] is a tool from IBM devised to help clients

and providers in the negotiation and life-cycle management
of WS-agreements. It provides ‘Status Monitor’ component,
which helps in deciding whether a negotiation proposal
should be accepted or refused, on the basis of system
available resources and the terms of an agreement. Once an
agreement has been accepted by the client and the provider,
its validity is checked at run-time by a ‘Compliance
Monitor’, which can detect violations, predict violations to
be occurred and take corrective actions.
Colombo [40] provide a lightweight middleware for

service-oriented architectures that support BPEL. It can
support declarative service descriptions, such as WS-policy.
It can intercept messages before they leave the system or
before they are processed, and can use a pipe of dedicated
policy-specific verifiers to validate messages with respect to
a certain policy.
Comparison of existing run-time monitoring approaches is

illustrated in Table 4 according to different parameters. These
comparison parameters follow the taxonomy in [3] with some
modifications or extensions. ‘Collaboration type’ denotes the
composition type of services. Our tool follows most of the
common approaches and chooses BPEL-based web service
composition. ‘Property specification’ indicates the type of
property specification used to specify properties. Our tool
uses scenario-based notations to represent desired properties
in event-based web service composition and provides users
with a completely graphical front-end. ‘Property type’
indicates the kind of properties specified by the language
(temporal, timing or probabilistic). Our tool can monitor
three kinds of properties. ‘Validation technique’ shows the
adopted technique used for validation at run-time. Our tool
also follows most common approaches and uses automata
and time automata-based validation technique. ‘Timeliness’
indicates that the monitoring activity is performed
(post-mortem, synchronous or asynchronous). In order to
detect errors as early as possible and reduce the
performance overhead, our tool chooses asynchronous style.
‘Tool type’ means the approach is supported by a tool
(industrial or internal (available) prototype). ‘Performance
measurement’ means whether the performance of the tool is
measured or not. To demonstrate the generality of our
proposed approach, the performance of our tool has been
studied based on four case studies.

7 Conclusions and future work

This paper demonstrates the use of WS-PSC tool chain to
monitor temporal, timing and probabilistic properties in
BPEL-based composite services using existing graphical
specification formalisms. Compared to other approaches,
our approach provides a completely graphical front-end for
software designers so that they do not have to deal with any
particular textual and logical formalisms. Furthermore, the
four case studies show that our tool can monitor three kinds
of properties with reasonable performance. Finally, the
comparative performance of different properties and service
instances show some important results: (i) The interceptor
does not affect too much the performance of the system; (ii)
the scale of the generated monitor of analyser has minimal
effect on the performance since the number of transitions
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for normal properties is within 100; (iii) the checking of
temporal and timing properties gives almost the same
performance, whereas checking of probabilistic properties
requires more CPU and memories since it needs to record
previous results; (iv) the consumed memory and CPU will
increase with the number of service instances.
Several directions for future work are possible. First,

to automate the elicitation of properties represented by
PSC/TPSC/PTPSC specifications could be an interesting
future research task. Initial work has already been done by
Autili and Pelliccione [41] to automatically derive PSC
specifications from textual requirements. Further work is to
derive TPSC and PTPSC specifications from textual
requirements using the similar idea. Secondly, our
monitoring approach detects errors too late, after the failure
arises. In the future we plan to define advanced monitors
with the ability to predict and prevent the potential errors.
The proposed new approach can ‘look ahead’ in the near
execution future, and predict potential sources of failures.
Thirdly, our statistical approach is not accurate if the
monitored probability is inside the indifference region
between H0 and H1. In order to deal with this problem, we
plan to use Bayesian sequential hypothesis testing technique
[42] since it has already shown faster verification ability
than state-of-the-art techniques in statistical model checking.
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9 Appendix: The formal semantics of PSC

9.1 Formal denotational semantics of PSC

Before giving the detailed semantics, we first give some
explanation of basic concepts and notations used in the
semantics. The denotational semantics of an arrowMsg of
PSC with constraint can be defined as: [[( < t, a, C, C′, p, f >,
op)]]trace, where t∈ {e:, r:, f :} is the type of message. a is
the message exchanged by sending service C and receiving
service C′. l =C.a.C′ is the message label. p, f∈ {λ, †b, =
> g, ≠ > g}, p means past constraint, f means future
constraint, λ means empty constraint, †b means unwanted
message constraint, ⇒ g means wanted chain constraint
and ≠ > g means unwanted chain constraint. b = {m1, m2,
…, mn} is the unwanted message set and g = (m1, m2, …,
mn) is the wanted or unwanted message sequence. op∈
{nop, strict}, where nop means loose order whereas strict
means strict order. trace∈ {VC, UDC, IVT}, where VC
means the set of validated continuations, UDC the set of
undecided continuations and IVT the set of invalidated
traces, since there is no continuation any more. L means the
message set exchanged by different services, and α∈ L, α*
means finite traces whereas α∞ means infinite traces. Since
we cannot monitor infinite traces, in practice, when the
bound of a trace reach a particular large number, we view it
as infinite trace. α*|∞ means the trace can be finite and
infinite. In the following, we define the denotational
semantics of PSC.

9.1.1 Basic semantics: A.1.1–A.1.9 relate to the
denotational semantics of Regular messages. Note that
regular message does not have invalidated trace set since it
does not need to happen.
A.1.1 Regular message without constraint:

[[(,e:, a, C, C′, l, l. , nop)]]VC = a · l|a [ (L\{l})∗{ }

[[(,e:, a, C, C′, l, l. , nop)]]UDC = a|a [ (L\{l})∗|1{ }

A.1.2 Regular message with strict operator:

[[(,e:, a, C, C′, l, l. , strict)]]VC = {l}

[[(,e:, a, C, C′, l, l. , strict)]]UDC = a|a [ (L\{l})∗|1{ }

A.1.3 Regular message with past unwanted constraint:

[[(,e:, a, C, C′, †b, l. , nop)]]VC = a · l|a [ (L\b)∗{ }

[[(,e:, a, C, C′, †b, l. , nop)]]UDC

= a|a [ ((L\b)
⋂

(L\l))∗|1
{ }

A.1.4 Regular message with future unwanted constraint:

[[(,e:, a, C, C′, l, †b. , nop)]]VC

= a · l · b|a [ (L\{l})∗ ^ b [ (L\b)∗{ }

[[(,e:, a, C, C′, l, †b. , nop)]]UDC = {a}
⋃

{b · l · g}
where a [ (L\{l})1( ) ^ b [ (L\{l})∗( ) ^ g [ b∗|1

( )

The set of traces is an abbreviation of the set of traces
a|a[ (L\{l})1{ }⋃

b · l · g|b[ (L\{l})∗ ^ g[ b∗|1
{ }

. We
will use this kind of abbreviation in the rest of the Appendix.
A.1.5 Regular message with strict operator and future

unwanted message constraint:

[[(,e:, a, C, C′, l, b. , strict)]]VC = l · b|b [ (L\b)∗{ }

[[(,e:, a, C, C′, l, b. , strict)]]UDC = {a}
⋃

{l · g}
where a [ (L\{l})∗|1( ) ^ g [ b∗|1

( )

A.1.6 Regular message with past unwanted chain constraint:
(see equation at the bottom of the page)

[[(,e:, a,C,C′, =., l., nop)]]UDC =
{b1}

⋃
b′
1 ·m1 ·b2

{ }⋃ · · ·
⋃

b′
1 ·m1 ·b′

2 · . . . ·b′
n ·mn ·g

{ }

where b′
i [ L\{mi}

( )∗^bi [ L\{mi}
( )∗|1^1≤ i≤ n

( )
^

g[ (L\{a}∗|1)( )

A.1.7 Regular message with past wanted chain constraint:

[[(,e:, a,C,C′, =., l., nop)]]VC

= b1 ·m1 ·b2 ·m2 · · · · ·bn ·mn ·g · l
{ |bi

[ L\{mi}
( )∗^1≤ i≤ n ^ g[ L\{a}∗( )

[[(,e:, a,C,C′, =., l., nop)]]UDC

= {b1}
⋃

b′
1 ·m1 ·b2

{ }⋃ · · ·
⋃

b′
1 ·m1 ·b′

2 · · · · ·bn

{ }
⋃

b′
1 ·m1 ·b′

2 · · · · ·b′
n ·mn ·g

{ }

where b′
i [ L\{mi}

( )∗^bi [ L\{mi}
( )∗|1^1≤ i≤ n

( )
^

g[ L\{a}∗|1(( )

A.1.8 Regular message with future unwanted chain

[[(,e:, a, C, C′, =. , l. , nop)]]VC

= b1 · l
{ }⋃

b1 · m1 · b2 · l
{ }⋃ · · ·

⋃
b1 · m1 · b2 · m2 · . . . · bn−1 · mn−1 · g · l{ }

where bi [ (L\{mi}
( )∗^1 ≤ i ≤ n− 1) ^ g [ (L\{l}∗)( )
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constraint:

[[(,e:, a,C,C′, l, =.. , nop)]]VC

= {a · l}
⋃

a · l ·b1 ·m1

{ }⋃
a ·m1 ·b2 ·L2
{ }

⋃
· · ·

⋃
a · l ·b1 ·m1 ·b2 ·m2 · · · · ·bn−1 ·mn−1

{ }

where a[ L\{l})∗( )^ (bi [ L\{mi}
( )∗^1≤ i≤ n

( )

[[(,e:, a,C,C′,l, =.., nop)]]UDC

= {a}
⋃

a′ ·b1 ·b2 · · · · ·bn ·mn · l ·g
{ }

where a[ (L\{l})∗|1( )^ a′ [ (L\{l})∗( )^
bi [ L\{mi}

( )∗^1≤ i≤ n
( )^ g[ L∗|1

( )

A.1.9 Regular message with future wanted chain constraint:

[[(,e:, a,C,C′,l, =.., nop)]]VC=
a · l ·b1 ·m1 ·b1 ·m2 · · · · ·bn ·mn|a[ (L\{l})∗{

^bi[ (L\{mi})
∗^1≤ i≤ n

[[,e:, a,C,C′,l, =.. , nop)]]UDC= {a}
⋃

a′ · l ·b1

{ }
⋃

a′ · l ·b1′ ·m1 ·b2

{ }⋃ · · ·
⋃

a′ · l ·b1′ ·m1 ·b2′ · · · · ·bn−2

{ }
⋃

a′ · l ·b1′ ·m1 ·b2′ · · · · ·bn−1 ·mn−1

{ }

where a[ (L\{l})∗|1( )^ a′[ (L\{l})∗( )^
bi[ (L\{mi})

∗|1^b′
i[ (L\{mi})

∗^1≤ i≤ n−1
( )

A.1.10–A.1.18 relate to the denotational semantics of
Required messages.
A.1.10 Required message without constraint:

[[(,r:, a, C, C′, l, l. , nop)]]VC = a · l|a [ (L\{l})∗{ }

[[(,r:, a, C, C′, l, l. , nop)]]UDC = a|a [ (L\{l})∗{ }

[[(,r:, a, C, C′, l, l. , nop)]]IVT = a|a [ (L\{l})1{ }

A.1.11 Required message with strict operator:

[[(,r:, a, C, C′, l, l. , strict)]]VC = {l}

[[(,r:, a, C, C′, l, l. , strict)]]UDC = {1}

[[(,r:, a, C, C′, l, l. , strict)]]IVT = a|a [ (L\{l})∗{ }

A.1.12 Required message with past unwanted constraint:

[[(,r:, a, C, C′, †b, l. , nop)]]VC = a · l|a [ (L\b)∗{ }

[[(,r:, a, C, C′, †b, l. , nop)]]UDC

= a|a [ ((L\b)
⋂

(L\a))∗
{ }

[[(,r:, a, C, C′, †b, l. , nop)]]IVT = {b}
⋃

{a · g} where

(b[ b1)^ a[ (L\b)∗ ^ g[ (L\a)1( )

A.1.13 Required message with future unwanted constraint:

[[(,r:, a, C, C′, l, †b. , nop)]]VC

= a · l ·b|a[ (L\{l})∗ ^b[ (L\b)∗{ }

[[(,r:, a, C, C′, l, †b. , nop)]]UDC = a|a[ (L\b)∗{ }

[[(,r:, a, C, C′, l, †b. , nop)]]IVT

= a · l ·b|a[ (L\{l})∗ ^b[ b∗
{ }

A.1.14 Required message with strict operator and future
unwanted message constraint:

[[(,r:, a, C, C′, l, †b. , strict)]]VC = l ·b|a[ (L\b)∗{ }

[[(,r:, a, C, C′, l, †b. , strict)]]UDC = {a}

[[(,r:, a, C, C′, l, †b. , strict)]]IVT

= {a}
⋃

{l ·b}, where a[ (L\{l})∗( )^ b[ b∗
( )

A.1.15 Required message with past unwanted chain
constraint: (see equation at the bottom of the page)

A.1.16 Required message with past wanted chain constraint:

[[( < r:, a, C, C′, = > g, λ > , nop)]]VC = {β1 · m1 · β2 · m2 ·
… · βn · mn · γ · l|βi∈ (L/{mi})* ∧ 1≤ i≤ n ∧ γ∈ (L/{l})*}
[[(,r:, a, C, C′, =.g, l. , nop)]]UDC = {b1}

⋃
{ b1 ·

m1 · b2}
⋃

···
⋃

{ b1 · m1 · b2 · . . . · bn−1 · mn−1 · g}, where
(βi∈ (L/{mi})* ∧ (1≤ i≤ n))∧(γ∈ (L/{a})*)
[[(,r:, a, C, C′, =.g, l. , nop)]]IVT = {b1}

⋃
{b1′ ·

m1 · b2}
⋃

···
⋃

{ b1′ · m1· b2′ · . . . · bn′ · mn · g}, where (βi∈
(L/{mi})

∞ ∧ βi′∈ (L/{mi})* ∧ (1 ≤ i≤ n)) ∧ (γ∈ (L/{l})∞).

A.1.17 Required message with future unwanted chain

[[(,r:, a, C, C′, =.g, l. , nop)]]VC = b1 · l
{ }⋃

b1 · m1 · b2 · l
{ }⋃

b1 · m1 · b2 · m2 · · · · · bn−1 · mn−1 · g · l{ }

where bi [ (L\{mi}
( )∗ ^ 1 ≤ i ≤ n− 1) ^ g [ (L\{l})∗( )

[[(,r:, a, C, C′, =.g, l. , nop)]]UDC = b1

{ }⋃
b1 · m1 · b2

{ }⋃ · · ·
⋃

b1 · m1 · b2 · · · · · bn−1 · mn−1 · g
{ }

where bi [ L\{mi}
( )∗( ^ (1 ≤ i ≤ n)

( ) ^ g [ (L\{a})∗( )

[[(,r:, a, C, C′, =.g, l. , nop)]]IVT = b1 · g
{ }⋃

b1 · m1 · b2 · g
{ }⋃

···
⋃

b1 · m1 · b2 · · · · · bn · mn

{ }
⋃

b1 · m1 · b2 · · · · · bn · mn · g
{ }

where bi [ L\{mi}
( )∗( ^ (1 ≤ i ≤ n)

( ) ^ g [ (L\{l})1( )

www.ietdl.org

IET Softw., 2013, Vol. 7, Iss. 4, pp. 222–248 245
doi: 10.1049/iet-sen.2012.0047 & The Institution of Engineering and Technology 2013

For Research Only



constraint:

[[(,r:, a, C, C′, =.g, l. , nop)]]VC

= {a · l}
⋃

a · l · b1 · m1

{ }⋃
a · l · b1 · m1 · b2 · m2

{ }
⋃

a · l · b1 · m1 · b2 · m2 · · · · · bn−1 · mn−1

{ }

where a [ (L\{l})∗ ^ bi [ (L\{mi})
∗ ^ (1 ≤ i ≤ n)

( )

[[(,r:, a, C, C′, =.g, l. , nop)]]UDC

= {a}
⋃

a · l · b1

{ }⋃
a · l · b1 · m1 · b2

{ }⋃

...
⋃

a · l · b1 · m1 · b2 · m2 · · · · · bn−1 · mn−1

{ }

where a [ (L\{l})∗ ^ bi [ (L\{mi})
∗ ^ 1 ≤ i ≤ n

( )

[[(,r:, a, C, C′, =.g, l. , nop)]]IVT

= {a}
⋃

a′ · l · b1 · m1 · b2 · m2 · · · · · bn · mn

{ }

A.1.18 Required message with future wanted chain
constraint:

[[(,r:, a, C, C′, l, =.g. , nop)]]VC

= {a · l · b1 · m1 · b2 · m2 · · · · · bn · mn|a [ (L\{l})∗
^ bi [ (L\{mi})

∗ ^ 1 ≤ i ≤ n− 1

[[(,r:, a, C, C′, l, =.g. , nop)]]UDC

= {a}
⋃

a · l · b1

{ }⋃
a · l · b1 · m1 · b2

{ }⋃

· · ·
⋃

a · l · b1 · m1 · b2 · · · · · bn−1 · mn−1

{ }

where (a [ (L\{l})∗) ^ (bi [ (L\{mi})
∗ ^ 1 ≤ i ≤ n− 1)

[[(,r:, a, C, C′, l, =.g. , nop)]]IVT

= {a}
⋃

a′ · l · b1

{ }⋃
a′ · l · b1′ · m1 · b2

{ }⋃

· · ·
⋃

a′ · l · b1′ · m1 · b2′ · · · · · bn−1 · mn−1

{ }

where a [ (L\{l})1 ^ a′ [ (L\{l})∗ ^ bi [ (L\{mi})
1

^ bi′ [ (L\{mi})
∗ ^ 1 ≤ i ≤ n

( )

A.1.19–A.1.23 relate to the denotational semantics of Fail
messages.

A.1.19 Fail message without constraint:

[[(, f :, a, C, C′, l, l.), nop)]]VC = a|a [ (L\{l})1{ }

[[(, f :, a, C, C′, l, l.), nop)]]UDC = a|a [ (L\{l})∗{ }

[[(, f :, a, C, C′, l, l.), nop)]]IVT = a · l|a [ (L\{l})∗{ }

A.1.20 Fail message with strict operator:

[[(, f :, a, C, C′, l, l.), strict)]]VC = a|a [ (L\{l})∗{ }

[[(, f :, a, C, C′, l, l.), strict)]]UDC = {1}

[[(, f :, a, C, C′, l, l.), strict)]]IVT = {l}

A.1.21 Fail message with past unwanted constraint:

[[(,f :, a,C,C′, †b, l. , nop)]]VC = {b}
⋃

{a ·g}, where

b[ b1 ^a[ (L\b)∗^g[ (L\l)1

[[(,f :, a,C,C′, †b, l. , nop)]]UDC

= a|a[ ((L\b)
⋂

(L\l))∗
{ }

[[(,f :, a,C,C′, †b, l., nop)]]IVT = a · l|a[ (L\b)∗{ }

A.1.22 Fail message with past unwanted chain constraint:
(see equation at the bottom of the page)

[[(, f :, a, C, C′, =.g, l. , nop)]]VC

= b1 · g
{ }⋃

b1 · m1 · b2 · g
{ }⋃ · · ·

⋃
b1 · m1 · b2 · · · · · bn · mn

{ }⋃
b1 · m1 · b2 · · · · · bn · mn · g
{ }

where (bi [ (L\{mi})
∗ ^ (1 ≤ i ≤ n− 1)) ^ (g [ (L\{l})1)

[[(, f :, a, C, C′, =.g, l. , nop)]]UDC

= {b1}
⋃

b1 · m1 · b2

{ }⋃ · · ·
⋃

b1 · m1 · b2 · · · · · bn−1 · mn−1 · g
{ }

where bi [ (L\{mi}
( )∗ ^ (1 ≤ i ≤ n− 1)) ^ g [ (L\{l})∗( )
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A.1.23 Fail message with past wanted chain constraint:

[[(,f :, a,C,C′, =.g, l. , nop)]]VC

= b1

{ }⋃
b1′ ·m1 ·b2

{ }⋃ · · ·
⋃

b1′ ·m1 ·b2′ · · · · ·bn′ ·mn ·g
{ }

,

where bi [ (L\{mi})
1( )^ bi′ [ (L\{mi}

( )∗^(1≤ i≤ n))^
g[ (L\{l})1( )

[[(,f :, a,C,C′, =.g, l. , nop)]]UDC

= b1

{ }⋃
b1 ·m1 ·b2

{ }⋃ · · ·
⋃

b1 ·m1 ·b2 · · · · ·bn−1 ·mn−1 ·g
{ }

where bi [ (L\{mi}
( )∗^ (1≤ i≤ n)) ^ g[ (L\{l})∗( )

[[(,f :, a,C,C′, =.g, l. , nop)]]IVT

= b1 ·m1 ·b2 ·m2 · · · · ·bn ·mn ·g · l|bi [ (L\{mi})
∗{

^ 1≤ i≤ n^g[ (L\{l})∗

9.1.2 Compositional semantics: A.2.1 ‘Merge’
operator is used to compose the denotational semantics of
two continuous messages. The semantics can be defined as
follows: (see equation at the bottom of the page)

[[msg1 ·msg2]]
UDC = [[msg1]]

UDC
⋃

[[msg2]]
UDC

[[msg1 ·msg2]]
IVT = [[msg1]]

IVT
⋃

[[msg2]]
IVT

A.2.2 ‘Alternative’ operator is used to compose the
denotational semantics of two alternative messages. The
semantics can be defined as follows:

[[msg1 ⊗msg2]]
VC = [[msg1]]

VC
⋃

[[msg2]]
VC

[[msg1 ⊗msg2]]
UDC = [[msg1]]

UDC
⋃

[[msg2]]
UDC

[[msg1 ⊗msg2]]
IVT = [[msg1]]

IVT
⋃

[[msg2]]
IVT

Based on Merge and Alternative, the operators Alt, Par and
Loop can be defined as follows:

A.2.3 Alt operator: Alt vi1,j1 , vi2,j2 , . . . , vir ,jr , r
( )

, where
vi1,j1 , vi2,j2 , . . . , vir ,jr means r part alternatives. The
definition of Alt operator can be composed by Merge and
Alternative composition.

Alt vi1,j1 , vi2,j2 , . . . , vir ,jr , r
( )[ ][ ]trace= [vi1,j1 ]trace⊗[[[

[vi2,j2 ]
[ ]⊗ · · · ⊗ [vir ,jr ]

[ ]
.trace]]trace, where

[vik ,jk ]
[ ]trace = [msgik ]

[ ]trace
⊗ [msgik+1

]
[ ]trace

⊗ · · ·

⊗ [msg jk
]

[ ]trace
(1 ≤ k ≤ r)

A.2.4 Par operator: Par vi1,j1 , vi2,j2 , . . . , vir ,jr , r
( )

, where

vi1,j1 , vi2,j2 , . . . , vir ,jr means r parts to parallel. The

definition of Par operator can also be composed by Merge

and Alternative composition.

[[Par vi1,j1 , vi2,j2 , . . . , vir ,jr , r
( )

]]trace = [[
[vi1,j1 ]
[ ]trace

⊗ [vi2,j2 ]
[ ]⊗ · · · ⊗ [vinum(Par),jnum(Par)]

[ ]trace]]trace
, where

[vik ,jk ]
[ ]trace= [msgik ]

[ ]trace
⊗ [msgik+1

]
[ ]trace

⊗ · · ·

⊗ [msg jk
]

[ ]trace
(1 ≤ k ≤ num(Par))

A.2.5 Loop operator: Loop(ω, m, n), ω is the loop body and m
and n are the lower and upper bound of loop, respectively.
The definition of Loop operator can also be composed by
Merge and Alternative composition. [[Loop(ωi, j, m, n)]]trace =
[[[[ωi, j]]trace⊗ 2[[ωi, j]]trace⊗ ···⊗ (m − n + 1)[[ωi, j]]trace]]trace,
where

[[vi,j]]trace = [[msgi]]
trace · [[msgi+1]]

trace · · · · ·
[[msgj]]

trace(1 ≤ k ≤ m− n+ 1)

k [vi,j]
[ ]trace= [vi,j]

[ ]trace· [vi,j]
[ ]trace· · · · · [vi,j]

[ ]trace
k times

Table 5 Correspondence between denotational semantics and operational semantics of PSC

denotational semantics A.1.1 A.1.2 A.1.3 A.1.4 A.1.5 A.1.6 A.1.7 A.1.8 A.1.9
operational semantics ER1 ER2 ER3 ER4 ER5 ER6 ER7 ER8 ER9
denotational semantics A.1.10 A.1.11 A.1.12 A.1.13 A.1.14 A.1.15 A.1.16 A.1.17 A.1.18
operational semantics RR1 RR2 RR3 RR4 RR5 RR6 RR7 RR8 RR9
denotational semantics A.1.19 A.1.20 A.1.21 A.1.22 A.1.23 A.2.1 A.2.2 A.2.3 A.2.4
operational semantics FR1 FR2 FR3 FR4 FR5 Def 4 Def 5 Def 6 Def 7
denotational semantics A.2.5
operational semantics Def 8

[[(, f :, a, C, C′, =.g, l. , nop)]]IVT

= b1 · l
[ ]⋃

b1 · m1 · b2 · l
{ }⋃

b1 · m1 · b2 · m2 · · · bn−1 · mn−1 · g · l{ }

where bi [ (L\{mi}
( )∗ ^ (1 ≤ i ≤ n)) ^ g [ (L\{l})∗( )

[[msg1 ·msg2]]
VC = a1 · a2|a1 [ [[msg1]]

VC ^ a2 [ [[msg2]]
VC{ }
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9.2 Consistency between denotational and
operational semantics of PSC

Theorem 1: Given a PSC composed by basic rules and
operational rules, the denotational semantics and operational
semantics are consistent. In detail, it means that:

† The traces accepted by the glue states of FAs of operational
semantics equal the validated continuations defined by
denotational semantics.
† The traces accepted by the intermediate states of FAs of
operational semantics equal the undecided continuations
defined by denotational semantics.
† The traces accepted by the accepting states of FAs of
operational semantics equal the invalidated traces defined
by denotational semantics.

Proof: The proof is composed of the following three steps:

† In the first step, we prove the consistency between
operational semantics and denotational semantics of basic
arrowMsg (with strict operators or other constraints). This
can be proved by the corresponding basic operational
semantics to basic denotational semantics. Table 5 shows
the corresponding relations between operational semantics
and denotational semantics of basic messages. We use
A.1.1 and ER1 as an example.

A.1.1 ⇔ ER1

According to the FA generated by ER1, the finite traces
accepted by the glue state can be described by the
following regular expression: (!l )* · l = (L/{l})* · l, which
equals [[a.1]]VC = {α·l|α∈ (L/{l})*}. That is to say, the
traces accepted by the glue states of FAs of operational
semantics equal the validated continuations defined by
denotational semantics.
According to the FA generated by ER1, the finite traces

accepted by the intermediate state can be described by the
following regular expression: (!l )∞ = (L/{l})∞, which equals
[[a.1]]UDC = {α|α∈ (L/{l})∞}. That is to say, the traces
accepted by the intermediate states of FAs of operational
semantics equal the undecided continuations defined by
denotational semantics.

Other rules can be proved in a similar way.

† The second step is to prove the consistency of Merge and
Alternative composition. According to the definition of
operational semantics, Merge composition keeps the
accepting traces of other states and deletes the glue state of
the previous state. Consequently, the accepting traces of the
glue states of the newly generated FA is the connection of
those in the two FAs. The accepting traces of other states of
the new generated FA are the union of those in the two
FAs. This is the same as the definition of denotational
semantics of Merge. According to the definition of
operational semantics, Alternative composition alternatively
selects the accepting traces of those in the two states.
Consequently, the accepting traces of the states of the new
generated FA is the alternative selection of those in the two
FAs. This is also the same as the definition of denotational
semantics of Alternative.
† The third step is to prove the consistency of operators Alt,
Par and Loop. According to the operational semantics, Alt
operator first uses Merge composition to generate k
alternatives, then repeatedly uses Alternative composition to
generate the final FA. Consequently, the validated traces,
undecided traces and invalidated traces are alternative
selection of these r parts, which is the same definition of
denotational semantics. According to the operational
semantics, Par operator first uses Merge composition to
generate num(Par) alternatives, then repeatedly uses
Alternative composition to generate the final FA.
Consequently, the validated traces, undecided trace and
invalidated trace are alternative selection of these num(Par)
parts, which is the same definition of denotational
semantics. According to the operational semantics, Loop
operator first uses Merge composition to generate one
sequence, then repeatedly uses Alternative composition to
generate the final FA. Consequently, the validated traces,
undecided trace and invalidated trace are alternative
selection of these n−m + 1 parts, which is the same
definition of denotational semantics.

After these three steps, we can prove that the PSC
specifications composed by basic rules and operational rules
have consistent operational and denotational semantics.
Consequently, Theorem 1 is proved.
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