Software Engineering Group

Department of Computer Science
Nanjing University
http:/ﬁ,eg.nju.edu.cn

NJU Software
Engineering Group

Technical Report No. NJU-SEG-2013-1J-004

2013-1J-004

WS-PSC Monitor: A tool chain for monitoring BPEL-based web

service composition with scenario-based specifications

Pengcheng Zhang, Hareton Leung, Wenrui Li, Xuandong Li

Runtime Verification Volume 6418 2010

Most of the papers available from this document appear in print, and the corresponding copyright is held by the

publisher. While the papers can be used for personal use, redistribution or reprinting for commercial purposes is
prohibited.

http://seg.nju.edu.cn/

www.ietdl.org

Published in IET Software
Received on 1st June 2011
Revised on 19th December 2012
Accepted on 27th February 2013
doi: 10.1049/iet-sen.2012.0047

ISSN 1751-8806

Web s es property sequence chart monitor: a tool
chai monitoring BPEL-based web service
composi@ with scenario-based specifications

Pengcheng Zh ﬁton Leung® Wenrui Li#, Xuandong Li’
"State Key Laboratory offllovel Softwag@Technology, Nanjing University, Nanjing 210093, People’s Republic of China

2College of Computer and Informatig dineering, Hohai University, Nanjing 210098, People’s Republic of China
3Department of Computing, Hong
4School of Mathematics and Infé

People’s Republic of China
E-mail: pchzhang @seg.nju.edu.cn; Lx

the autonomous nature of basic services, the vali
Here, the authors describe a novel tool chain calle
and probabilistic properties in composite service b
chart, timed property sequence chart and probabilistic ti

omposite service must be extended from design-time to run-time.
iges property sequence chart monitor to monitor temporal, timing

ario-based property specifications called property sequence
erty sequence chart, respectively. The tool chain provides a

1 Introduction

In recent years, the idea of software as a service has added a
new paradigm to the service-oriented architecture (SOA). In
SOA, basic services are seen as autonomous agents acting
according to certain contracts. For example, through
workflow languages such as BPEL [1], service requestors
may compose existing basic services to provide more
powerful composite services. For such systems, verification
is particularly challenging as the overall behaviour depends
heavily on the participating agents, which renders the
analysis of such systems prior to execution almost
impossible [2]. Consequently, run-time analysis techniques,
such as run-time monitoring that detects the behaviours of
system against the desired properties [3], are being pursued
as a lightweight verification technique complementing
traditional verification techniques at design-time, such as
model checking and testing.

The specifications for monitored properties focus mostly on
logic-based or scenario-based specification formalisms [4].
Logic-based formalisms are often more expressive than
scenario-based formalisms. However, the logic-based
formalisms have the following limitations:

o Lack of intuitiveness: Properties that are simply captured
and described in intuitive way by the natural languages are
not easily specified in logic-based specifications.

222
© The Institution of Engineering and Technology 2013

straightforward to
specify the properties
compositions.

based web service

ventional logic-based
t is detected, it is
and pinpoint
ic-based

difficult for the developers to debuggtlie tr
the problem due to the internal cdfmplexit§’ of,
specifications.

The first and third limitations have als
by Holzmann [5], who recognised
underestimated problem in applications of automated tools
to software verification is the problem of accurately
capturing the correctness requirements that have to be
verified’, and Dwyer et al. [6] who recognised the difficulty
in writing properties correctly.

The second limitation implies great challenge in the
characterisation of event synchronisation or causal relation.
For example, an informal requirement can be described as:
‘if service 4 sends message m; to service B, and service B
sends m, to service C (in any order), then C must send m3
to service A within three time units’. Using traditional
logic-based specification to specify these event-based
interactions is very hard.

IET Softw., 2013, Vol. 7, Iss. 4, pp. 222-248
doi: 10.1049/iet-sen.2012.0047

Scenario-based formalisms, such as message sequence
chart (MSC) [7] and UML 2.0 sequence diagram (UML 2.0
SD) [8], provide a graphical modelling formalism that is
widely accepted in industrial practice. Furthermore, all
these formalisms provide event-based notations and,
consequently, are suitable to specify event-based web
service composition properties easily, intuitively and
simply. However, the expressiveness of such kinds of
graphical specifications is rather weak due to their
ambiguous semantics.

To deal with these problems, Damm and Harel [9] propose
live sequence c (LSC) as a visual formalism for
ent specification. LSC makes
SC by adding modalities. The
al modalities represent the provisional

and mandatory requi fits, respectively. The power of
LSC lies in that g @ al LSC chart can optionally

contain a pre-chart, Whichfspedifies the scenario which, if
successfully executed (0), forces the system to
satisfy the scenario givendf the actual chart body (i.e. the

main chart). Furthermore, the language is
unambiguous because its semantics
However, the LSC formalism
limitations:

e Complexity: Compared with traditional MSC ai L 2.0
SD, LSC is still more difficult to use due to co X C
such as ‘cut’ and ‘location’. The problem is that we n8gd

devise a new property specification formalism SghatSca;
overcome the limitations of MSC and SD, and is as clos
them as possible.

e Lack of ability to specify chain properties: Another ma
disadvantage of LSC is that it cannot clearly support
specifying chain constraints. In fact a chain constraint
allows the specification of what can be performed before
and after exchanging a message. Chains are very important
to specify causes, effects, precedence and response relations.
o Lack of timed and probabilistic extensions: Currently,
there is only one time version of LSC, called time-enriched
LSC. However, the semantics of time-enriched LSC is not
clearly defined. Furthermore, to the best of our knowledge,
there is no probabilistic version of LSC to specify
probabilistic properties, which are also very important for
certain software systems.

Consequently, to deal with these limitations, this paper
focuses on monitoring BPEL-based web service
composition based on newly proposed scenario-based
specification formalisms called property sequence chart
(PSC) [10], timed property sequence chart (TPSC) [11] and
probabilistic time property sequence chart (PTPSC) [12].
We envisage PSC/TPSC/PTPSC as a nice complement to
the existing property specification languages for monitoring
web service composition, with the following desirable
features:

o Intuitiveness: PSC/TPSC/PTPSC specifications have the
necessary language constructs to describe a variety of
causality and chain properties. Furthermore, as extensions
of a subset of UML 2.0 SD, they are as close to UML 2.0
SDs as possible and are more intuitive in capturing
scenario-based user requirements than the logic-based
specifications. Finally, PSC/TPSC/PTPSC can provide a
completely graphical front-end that eliminates the need to
deal with any particular textual formalism.

IET Softw., 2013, Vol. 7, Iss. 4, pp. 222-248
doi: 10.1049/iet-sen.2012.0047

www.ietdl.org

o Expressiveness: PSC/TPSC/PTPSC can be used to specify
temporal, timing and probabilistic properties of BPEL-based
web service composition, respectively. Furthermore, the
expressiveness of PSC/TPSC/PTPSC has already been
validated by property specification patterns (PSPs) [6],
real-time specification patterns [13] and probabilistic
specification patterns [14].

e Trace error display: PSC/TPSC/PTPSC can overcome the
trace error interpretation problems by providing the
possibility of tracing the error back to the scenario-based
requirement specifications. Thus, it is easy for the
developers to debug and find the trace errors related to both
the system models and the requirements.

In summary, this paper makes the following major
contributions: We capture a web service composition
scenario to be monitored using PSC/TPSC/PTPSC
specifications. For PSC specifications, we first obtain a
behaviour-equivalent finite automaton (FA) from this chart
according to the formal semantics, then we check whether
the run-time traces are the accepting language of the
generated FA. For TPSC specifications, we first obtain a
behaviour-equivalent timed automaton (TA) from this chart
according to the formal semantics, then we check whether
the run-time traces are the accepting language of the
generated TA. For PTPSC specifications, a probabilistic
monitor combining TA and a sequential probability ratio
test (SPRT) procedure is automatically generated to check
whether the run-time traces satisfy the probabilistic
roperties. A corresponding tool chain called WS-PSC
onitor is developed. To demonstrate the generality of our

p ed approach and measure its performance, some
uations of WS-PSC monitor are performed.
of the paper is organised as follows: Section 2
presen
ex

re
ning example to be used in the paper. This
e i es temporal, timing and probabilistic

propertiesdn we composition. Section 3 introduces

the bas conce of PSC, TPSC and PTPSC
specificati 4 details the framework and
implementatio

2 Running example

We use an online medical assistant (OM

as a running example in this paper. i
proposed by IBM China [http:/www-31@bm.
industries/healthcare/] and is becoming popula
provides patients, doctors and man medical
institutes with useful medical services. OMA includes seven
services:

e Medical service agent (MSA) is a medium between
patients and medical institutes, which makes an
appointment and referral to specialty hospitals.

e Primary care hospital (PCH) is a hospital that offers
primary care services to patients, including routine
vaccinations and basic consultation.

e Medical insurance centre (MIC) can verify the patient’s
medicard that provides patient financing for medical
treatments.

e High health sector (HHS) can provide advanced care to
patients who cannot be treated in a primary care facility alone.

223
© The Institution of Engineering and Technology 2013

www.ietdl.org

e Medical management institute (MMI) can store simple
registration information of all the medical institutes.

e Electronic medical record (EMR) is a computerised
medical record created in an organisation that delivers care,
such as a hospital and doctor’s office. EMR tends to be a
part of a local stand-alone health information system that
allows storage, retrieval and modification of records.

e Drug logistics company (DLC) can receive a drug list for
the patient from MSA, then delivers the medicine to the
patient.

SubmitQuery) to MSA. The MSA
n (SendPatientCondition) to the MMI,

edicalyinstitutes that meet the patient’s
requirements. Thex @ patient chooses a hospital
(ChoosePrimaryHosf andgp makes an appointment
(MakeAppointment) ﬁ through the MSA, and
then goes to this hospitdl The doctorgin PCH has the
patient’s basic health records and ofial information
queried from EMR. The doctor cg % diagnose the
patient and return the results€(Diaghe

authorised doctor in PCH can browse t
treatment records through EMR, so tha

and returns several

be uploaded to EMR system (UpdateEMR
and diagnosis is finished (FinishDiagnosis).
cost (SendDetailCost) and corresponding
(DeliveryLogisticsCompany) are then sent to the
The PCH also needs to record the patient’s diagnosis resglts
(DetailDiagonsisResult) for future visits. If the doctor
PCH cannot diagnose the disease, then the MSA calls the
high-level health sectors (HHS) (CallHighHealthSectors).
The doctors in PCH and specialists in HHS can conduct
remote consultations (RemoteVideoConsultations) to
establish the diagnostic and treatment regimen via video
conferences. In this process, the patient waits for the further
diagnosis result (FurtherDiagnosisResult). According to the
result, if the doctor in PCH can do the treatment, the
process will be finished like the normal case. If a change of
hospital is needed (ChangeHospital), the patient is
transferred into the HHS (HighHealthSector) and the
process is closed. If medical researchers or specialists are
interested in some special medical cases, they can also
query (Query) EMR to obtain the detailed records (SendPC)
for pathological and statistical analysis.

Three temporal properties of the process can be specified as
follows:

e Propl: After the patient submits a request to the MSA,
MSA asks MMI to query a medical institute that meets the
patient’s requirements. Then MSA sends a hospital list
returned by MMI to the patient who selects one hospital to
make an appointment.

e Prop2: If diagnosis is finished, PCH will ask MSA to
record the diagnostic report into the EMR and transmit the
result to the DLC. Furthermore, this information is also
transmitted to MIC for promoting reimbursement process.
The PCH will also receive the patient’s diagnosis.

e Prop3: A personal health record in EMR cannot be
released without the patient’s permission.

These temporal properties should be monitored at run-time.
Time plays an important role for time-critical composite
services. Thus, some timing properties need to be

224
© The Institution of Engineering and Technology 2013

monitored at run-time. If these properties are not satisfied,
some serious consequences may happen. In our example, if
a patient’s request cannot be replied within the desired time,
the patient’s diagnosis will be delayed, which may have
serious consequences. Two timing constraints can be
specified as follows:

e Prop4: After the patient submits a request to the MSA,
within 30 s, MSA will send the hospital list returned by
MMI to the patient.

e Prop5: After completing the diagnosis, within 30 min,
PCH will ask MSA to record the diagnostic report into the
EMR, and transmit the result to the essential DLC, MIC
and the PCH.

Sometimes, it is very difficult to assure the strict
correctness of timing properties.

Recently, there is an increasing research on monitoring
probabilistic properties in composite service, since they can
be used to formulate reliability, availability, safety and
performance requirements. Consequently, two probabilistic
properties of the process can be specified as follows:

e Prop6: After the patient submits a request to the MSA,
within 30 s and with 90% probability, MSA will send the
hospital list returned by MMI to the patient.

e Prop7: After completing the diagnosis, there is 95%
probability that within 30 min PCH will ask MSA to record
the diagnostic report into the EMR, transmit the result to
he essential DLC, MIC and the PCH.

rmal operational semantics of PSC/
PTPSC

d in [10]. Its design
and ‘simplicity of

specification has sets of compe
constraints and operators. Two b

Required messages (labelled with
exchanged by the system and are used to express mandatory
interactions. Fail messages (labelled with f:msg) should
never be exchanged and are used to express undesired
interactions. IntraMSGs are used to describe constraints that
restrict the exchange of messages (arrowMSGs). Constraints
are classified into two categories: unwanted message
constraints and chain constraints. An unwanted message
constraint is specified for a set of intraMSGs that the
system must not exchange. In other words, an unwanted
message constraint describes the event(s) or interactions that
are disallowed between two component instances. Chain
constraints are defined as a sequence of dependent
intraMSGs, and are further classified as wanted and
unwanted. Wanted chain constraints are satisfied if the

IET Softw., 2013, Vol. 7, Iss. 4, pp. 222-248
doi: 10.1049/iet-sen.2012.0047

www.ietdl.org

[)
*

| Z Sequence }-
4] FinishDi agnosis

3

& SendDetaillost

| @ DeliveryLogisticsConpany

1
A J

1 48] DetailliagnosisResult J
.

§ Sequence |E g Sequence
& query ‘ W Exit
E]S:mm: I ; :
i | Exiu |
4
= =
DiagnosisResult |
Z Sequence]-

[@,Culitigheal thSectors

RemoteVideoConsultations]

|2 a J
R
& UpdateENR i

3 =

& SendDetailCost

| & DeliveryLogisticsConpanyl |

| & senderinarytosptian |

$
[5] DetailDiagnosisResult]

¥
1=

oew

Fig. 1 Main BPEL structure for OMA example

IET Softw., 2013, Vol. 7, Iss. 4, pp. 222-248
doi: 10.1049/iet-sen.2012.0047

@ oo

225

© The Institution of Engineering and Technology 2013

www.ietdl.org

: Loo
lc"{“poneC“; Regular Required Fail loop P
Ralis message message message
c1:C1 ea . ra . f:a

Strict Unwanted Mes.sabge Constraint Qlltternative

i ordering b={Ci.m;.C;,***,C¢.m,.C} [
Wanted Chain Constraint Unwanted Chain Constraint Parallel

g s=b O par

g=(C.m1.C;+ Comy Cy)

messages are excha
the chain specificatig
that the messages d
the chain specificatio

Constraints are also cl ed into past constraints and

future constraints. Past’ constraintsgdPSpecify message
exchanges, wanted or unwanted, be % ific message
exchange event takes place, and diture aints specify
the constraints afterwards. Graphically, past*Constraints are
located near the arrow source and Ire ints are
located near the arrow target of an arrowMS@.

PSC has five operators: loose, strict, parallgl, 106p”anéypalt,
which define how arrowMSGs can be composé@ Théllo
operator is the default operator that defines thefor
messages. However, any other messages can occu
these messages. The strict operator explicitly specifiega
sequential ordering between a pair of messages, and
other message is allowed between them. The parallel, loo

and alt operators specify parallel merging (i.e. interleaving),
iteration and alternative behaviour, respectively.

anted chain constraints require
the sequence specified in

=

g=(Ci.m;.Cj,**+,Ci.m,.Cy)

continuation. Glue state is used to merge the initial state of the
next FA_b to form a more complex FA_b.

e ACS is the set of accepting states. The FA_b describes
the complementary behaviours of each basic message.
Consequently, accepting state means the current finite trace
violates the PSC specification.

In the generated FA_bs, other states are called intermediate
state set. Intermediate states mean undecided result and need
more traces to draw a conclusion.

Basic semantics for PSC: The Regular messages represent the
construction of a pre-condition. If a Regular message does not
happen, then the monitor does not detect failures (i.e. the
roperty is still undecided or valid). But if a Regular
essage (or a set of messages) happens then a
andition has been satisfied and the continuation of the
st be explored. Therefore the generated FA_bs do
taim any accepting states but they contain glue states
d when the Regular messages are exchanged.

Fig sho basic rules for Regular messages. The e

3.1.2 Semantics: The original operational semantics of loose rulg?”(ERIAPSG) represents the rule for Regular
PSC is given by Biichi automata [10]. The algorithm message i which'i appens then it causes a transition to
Psc2Ba defined in [10] translates PSCs into corresponding a glue st transition labelled !a (la is an
Biichi automata. However, Biichi automata can only accept abbreviation label C;.'la.C,, we will use this

infinite traces and is not suitable for monitoring purpose
since run-time traces are finite. Consequently, this paper
will use another semantics domain called finite automata
(FA) which can accept finite traces. We make use of basic
translation rules and compositional rules to translate PSCs
into FAs. The basic translation rules are used for directly
deriving a FA corresponding to a single arrowMSG
(Regular, Required or Fail messages). Then, compositional
rules are applied to PSC operators: Par, Loop and Alt.
Furthermore, we give a trace-based denotational semantics
of PSC in Section 8.1. The correctness of operational
semantics can be proved by demonstrating the consistency
between the two semantics.

The formal definition of FA for basic rules is defined first.

Definition 1 (FA for basic rules): A FA generated from a basic
rule is a six-tuple FA_b={(S, X, s¢, T, G, A), where

e S is the finite set of states;

e ¥ is the message alphabet exchanged among different
services;

o 50 €S is the initial state;

o TCSxZX xS is the finite transition set. = (s, o, s’) € Tis a
transition, where c€ X, s € S and s’ € §;

e GCS is the set of glue states. Glue state means the current
trace satisfies current PSC message and the system has a valid

226
© The Institution of Engineering and Technology 2013

be exchanged before
the strict operator.
having reached the
o, be explored if and

a. The rule e strict (ER2
Different from the e loos

only if the next exchanged mcssa
(e past unwanted message) is t
message a with the unwanted messages
b={my, my, ..., m,} is the unwanted
is that we have a valid continuation if a h
its past no message m € b has been exchange
construction of the valid continuation I
one message m € b has been exchanged. This is obtained
by means of the self-loop labelled b & l!a at state s.
ER4_PSC (e future unwanted message) is the case for the
future constraint. In this case, we want to have one message
m € b after having reached the valid continuation on s;. The
valid continuation is no longer valid if one message m € b
is exchanged. ER5_PSC (e strict future unwanted message)
is exactly the intuitive combination of e strict with e future.
ER6_PSC (e past unwanted chain) is a combination of
unwanted chain g and message a, where g=(m;, m,, ...,
m,,) is the message chain. If g does not happen completely
and a is exchanged, the monitor will reach a wvalid
continuation. ER7_PSC (e past wanted chain) is the wanted
case. Consequently, if g happens completely and a is

IET Softw., 2013, Vol. 7, Iss. 4, pp. 222-248
doi: 10.1049/iet-sen.2012.0047

www.ietdl.org

la

c1 c2 ' . C1 . c2
ea - @ ° l ok -

ER1_PSC:e loose
c1 c2 a

_ (.
e.a.b__ @&@ b @

ER4_PSC: e future unwanted message

exchanged, the monitor will reach a valid contin

ER8_PSC and ER9_PSC are the future cases of Wnwante

and wanted chains.
The semantics rules for Required message are sho

Fig. 4. A Required message is a message that must

exchanged within finite traces (in practice, we can judge
whether the number of traces reaches a particular large
number). In the case of RR1_PSC (r loose), if the message

ER2_PSC:e strict

b&!'a

ER3_PSC: e past unwanted message

C1 c2

'b

)@

C1 C_2
| e:a.b'_
ERS_PSC: e strict future unwanted message

C_1 C_2

-

In Im:
E.:ﬂ m

Ima la

ER7_PSC: e past wanted chain

la my Ime 'm,
O ORI

ER9_PSC: e future wanted chain

accepting state

does not happen within finite traces, then the monitor will
go to the accepting state and the property violation is
etected. A valid continuation can be reached if a happens
ithin finite traces. RR2_PSC (r strict) shows that if any

ot essage but a (i.e. la in the figure) happens while in
, then the monitor goes to the accepting state
1a and there is no chance for satisfying the
pipe _PSC (r past unwanted message) raises an

RR4_PSC: r future unwanted message

Iy Im: Ima

.(‘71 {)_2.

c1] [c2]

RR8_PSC: r future unwanted chain

RR9_PSC: r future wanted chain

Fig. 4 Operational semantics of Required messages of PSC

IET Softw., 2013, Vol. 7, Iss. 4, pp. 222-248
doi: 10.1049/iet-sen.2012.0047

227
© The Institution of Engineering and Technology 2013

www.ietdl.org

FR1_PSC: f loose

Im fme mn

C1 c2| {)

| Im:
Wy

< fa
R4_PSC: f past unwanted chain

-

Fig. 5 Operationa

error if the messag ppéns or within finite traces a
does not happen. As age a and all messages in b
are not exchanged, the itor has a palid continuation.

RR4_PSC (r future unwanted messag
happens and within finite traces the
happen, the system goes to the gly
does not happen within finite traces
messages in b happen, the prope
detected. RR5_PSC is the strict case.
is no other message allowed before a. RR
the r past unwanted chain g, where g = (m,,
When the message chain g happens compl
property violation is detected. When the message
happen completely and a happens within finite traces, {he
monitor will go to the glue state. RR7_PSC is the wan
case. When the chain g happens completely and «
exchanged, the monitor will go to the glue state,
otherwise, a property violation will be detected. Similarly,
RR&8 PSC and RR9_PSC are the future unwanted and
wanted cases.

A Fail message is a message that should never occur within
finite traces in the system (see Fig. 5). FR1_PSC shows that if
the message a does not happen within finite traces, then F4_b
first has a finite cycle and then go to state s; (the valid
continuation) and the property is not violated; exactly when
the first message a happens, the FA_b reaches an accepting
sink node. Considering rule FR2_PSC (f stricf) there is an
error only if a happens as the first message. FR3_PSC is
the rule for Fail message with past unwanted message
constraint. In particular, in this case the past constraints
represent restrictions that should hold in the past in order to
have a failure with the fail message. For the past constraint,
if b is false before a happens then the ‘precondition’ for the
failure is falsified. Then we do not have an undesired
behaviour but we can reach the valid continuation on s;.
FR4_PSC and FR5_PSC represent the cases for past
unwanted chain and wanted chain. In FR4_PSC, the
monitor will have a valid continuation if and only if the
chain happens completely and a does not happen. In
FR5_PSC, the monitor will detect a failure if and only if
the chain happens completely and « happens. Note that Fail
message does not have future failures since the system will
have no future after failures.

Compositional semantics for PSC: The compositional
semantics for PSC are classified into two types. The first
type includes two basic operators Merge and Alternative.
Merge is used for sequential composition of two FA_bs.
Alternative is used for alternative composition of two
FA_bs. The second type includes Alt, Par and Loop. These

antics of Fail messages of PSC

erwise, if a

228
© The Institution of Engineering and Technology 2013

&
v

FR2_PSC: f strict

1
PER A p 9 Ct c2) s o4) O)
’_"\ mi ™ m \;‘ﬂ i 4 SN M m: Met S M ; a
fa = —w\;_ : S_./,—b ||D_/H\-/I fa | — s,,j—p—,‘ /?—b —H .‘a:/.-—l-_'&h:j—!-
- : 3

12

~

5
=4]
A

@

FR3_PSC: f past unwanted message

mi Im: ms i

'

e e

1
ame
_—Ta

@

FR5_PSC: f past wanted chain

operators can be defined based on basic operators Merge
and Alternative.

Definition 2 (Merge for two FA_bs): Given two FA_bs
generated by basic rules, FA=(S, X, so, T, G, A) is the
merge composition of FA; and FA,, denoted as FA=
FA-FA,, where

FA-S=FA,-SUFA,-S
FAX=FA,-XUFA, X
FA Nk FA 150
FAT=FA;TUFA, TU Ty, where Toe={fits €
A1"GALs' =FAysohto=g}, Tgye adds an empty(e)
apsition from each glue state of /4, to the initial state of F'4,
= FAzG
= FA]A U FAzA

Definitionfs (Altébnati
generated{by basic
alternative

FAl ® FAz, W.

for two FA_bs): Given two FA_bs
es, FA=(S, X, so, T, G, A) is the
f FA, and FA,, denoted as FA=

FAS:FAISU A2SU {S

FA'SO =380

FA-T=FA,-TUFA,TU { s
FA-G=FA,-GUFA,G
FA-A=FA,-AU FA,-A

U {(SO’ g, FA2'S0)}

The Merge and Alternative operator g
FAs with e— transitions. However, an e
without £— transitions can be obtainedthr
automata operations [15]. Furthermore;
extended to a finite number of F4_bs.

Definition 4 (Merge for n FA_bs): Given n FA_bs generated
by basic rules, FA=(S, X, so, T, G, A) is the merge
composition of #n basic FA_bs.

L4 FA]FAZFA:; . FA,, = (((FA]FAz)FAg,) .. FA,,)

Definition 5 (Alternative for n FA_bs): Given n FA_bs
generated by basic rules, FA=(S, X, so, T, G, A) is the
alternative composition of n basic FA_bs.

IET Softw., 2013, Vol. 7, Iss. 4, pp. 222-248
doi: 10.1049/iet-sen.2012.0047

o FA\®@FA,®FA;®- - @FA,=(((FA, ® F4,) ® FA3) - ®
FA,)

Based on operators Merge and Alternative, the operators of
Alt, Par and Loop can be defined as follows:

Definition 6 (Alt operator of PSC): Alt(wil’/‘, W
", r) has r parts of selections.

Definition 7 (Par operator of PSC): Par(«'', 02, ...,
"', ¥) has r parts of selections. Owing to combinatorics,
the number of age sequences generated by parallel
composition is)=((m)/(k k! ... k1)), where K,
ko, ..., k. are of these r parts of messages.

: r):wi1J1®winz®,,,®

y y
° 'Pargwlafl’ wz:]z’ .
=msg; -msg, ... -msg;

wlnum(Par J, Wh

(1 < k < num(Par))

num(Par)
s

Definition 8 (Loop operator of PSC): 160
upper bound of loop is » and lower bOu

e Loop(w”,m,n)= 0" ®207®---®(
o” =msg;-msg;,;-...-msg; and kw"”
(ktimes)) (1 <k<m — n+1)

Definition 9 (FA for whole PSC): A FA generatedifrom th
whole PSC is a six-tuple FA_w={(S, X, so, T, F, i
the different from FA_b being that the glue state set s
replaced by the final state set F.

3.1.3 Expressiveness: PSC can describe temporal
properties of systems, that is, specifying required message
to represent liveness properties, or using fail message to
represent safety properties. In order to use PSC efficiently,
the expressiveness of PSC has been evaluated by PSPs
proposed by Dwyer et al. [6].

PSPs are used to easily represent system requirements.
PSPs are divided into occurrence patterns and order
patterns. Occurrence patterns specify that a given event
occurs during the execution of system, which contain
Absence, Existence, Bounded Existence and Universality.
Order patterns specify several events to occur in sequence
during system execution, which contain Precedence,
Precedence Chain, Response and Response Chain. Each
pattern is associated with five scopes that represent the
execution regions of system when the pattern must hold.
The five basic scopes are globally, before, after, between
and, and after until, respectively. Autili ef al. have already

www.ietdl.org

used PSCs to represent all the PSPs, which can be found in
the website http:/www.di.univaq.it/psc2ba/patternsMapping.

php.
3.2 Timed property sequence chart

3.2.1 Introduction: In UML SD, time stamps can be
attached to messages. Thus, constraints on a lower and an
upper time bound between two continuous messages can be
formulated. Similar to the messages in UML SD, each
message in PSC can also be annotated with time
constraints, or time constructs for short.

As shown in Fig. 6a, a regular message e: a is extended as
e: a; x<t,y:=0, which means that e: a is expected to happen
before 7, and then a clock y is reset. Since it is a regular
message, the system will not raise an error if e: a does not
happen within the desired time constraint. However, when
e: a is replaced by r: g, it means a required message r: a
must be exchanged before time ¢. If it does not happen, the
system will raise an error. When e: a is replaced by f: a, it
means that the system will go to an error state when f: a is
exchanged before .

3.2.2 Semantics: In [11], we have defined the formal
translational semantics that maps a TPSC specification into
a corresponding timed Biichi automaton (TBA). TBA can
only accept infinite traces. Similar to PSC, we also use
another formalism called TA as the corresponding
emantics domain. We can also define the time trace-based
enotational semantics of TPSC. The correctness of the
tral ing rules can be proved by ensuring the consistency
the two semantics.

W (Clock constraints): For a set of clocks X, a
clock’cons from the set of clock constraints ®(X)

can be defined asffoll [16, 17]

clx > clx > c|—8|6; A b,

and ¢ € N is a constant.

Several evaluation
¢fion = evaluates each
value fulfils the
0} denotes all
as e that a
the clock
d set of
defined:

value v(x) of a clock x and
constraint 8. The function [8]"
the values of a clock x which sati

constraint is fulfilled only for a sin
clock values. Two additional functions €@re
[pre(6)] = {v(x)[v(x) <min([6(x)])} and [succ()
max([6(x)])}, which respectively describ

&) [&] ,[a] [@)[a] (2] ,[a] [=
_ ea 5 ‘> | e x<t, y:=0 | : ea ' |_> | earx<t |
o .: :] i b 1 i :b;X<t
(o] [=] [a] [2lla] [= a] [=]
ra i _ i riax<t, y:=0 i f:a i N i f:a; y<d
TS 5 ™ =
g i g; y<di g i 'g; x<t, y:=0

c

Fig. 6 Extending PSC with time constructs

IET Softw., 2013, Vol. 7, Iss. 4, pp. 222-248
doi: 10.1049/iet-sen.2012.0047

d

229
© The Institution of Engineering and Technology 2013

www.ietdl.org

that do not fulfil the clock constraint and happen before and
after the clock constraint.

For example, if 6(x) =x>2Ax <4, [pre(d)] = {v(x)|v(x) <
2}, and [succ(d(x))] = {v(x)[v(x) > 4}.

Definition 12 (Clock reset): A clock reset for a clock x is
defined as v(x):=0. Normally, we denote w as a set of
clock reset.

The formal definition of TA is defined first.

Definition 13 (TA for basic rules): A TA generated from a
i is a seven-tuple 74 = (%, S, so, F, G,

e FCS is the finite set of agé€pting states. Note that TA also
represents the complementary behavio 0

accepting state represents a failure of
e GCS is the set of glue states. Thg
of another TA to form a new TA;

e Clock is a finite set of clocks, as de ition 10;
o T:Sx8x X x®(Clock) x 2% js aSset sitions.
®(Clock) is a finite set of clock constraints.\# tr: o0t €
T is denoted as t={(s, s', a, 8, y), whic fine§\’s

transition from s to s’ with message a € XU 1, fthe \@lo
constraint § € ®(Clock), and the set of clock reset WCCloc

In the following, we will define the formal translational
semantics that maps a TPSC specification into a
corresponding TA. The rules are categorised into basic and
compositional rules. Basic rules identify how to translate a
single message in a TPSC specification into a TA, whereas
compositional rules show how to compose these basic
automata according to structured operators, such as par,
loop and alt.

la, &

C1 c2 C1 c2

a, 8, S
¢ o] e:a; o, u;a'_

ER1_TPSC:e loose

ea; 0 g,

ER2_TPSC:e strict

la, &
c1 c2 b, 5", "
e:a; o, P o a, o o
b; 8", "

ER4_TPSC: e future unwanted message

tm &'

ER8_TPSC: e future unwanted chain

Fig. 7 TAs for Regular messages of TPSC

230
© The Institution of Engineering and Technology 2013

Basic rules for TPSC: Fig. 7 shows the corresponding
rules for generating basic TAs for Regular messages. The
translation rules are similar to the rules of PSC, with each
translation denoted by clock constraint or clock reset. The
symbols &, 6’ and §” are used to represent clock constraints
for messages, past constraints and future constraints,
respectively, as defined in Definition 10. w, y' and y”
represent the sets of reset clocks for messages, past
constraints and future constraints, respectively, as defined in
Definition 12. ER1_TPSC(e loose) rule shows if a is not
exchanged and other messages happen, the TA stays at sy,.
When a happens within &, the TA will go to the glue state
Sgie With clock reset w. ER2_TPSC rule is the strict case.
In ER3_TPSC rule, when the messages in b do not happen
within 6’ and a does not happen within 6, the TA stays at
so. Otherwise, the TA will go to the glue state if @ happens
in line with 6. ER4_TPSC is the future case, if a happens
under 6 the TA will go to the glue state that requires the
messages in b do not happen under 6”. ERS_TPSC is the
strict case of future unwanted message. In ER6_TPSC,
when the chain g does not happen completely under 6’ and
a happens under &, the TA will go to the glue state. In
ER7_TPSC, if g happens completely satisfying 6’ and «
happens satisfying &, the TA will go to the glue state. In
ER8_TPSC, when some messages in g happens under pre
(8") or g has not happened completely until succ(d”), the
TA will go to the glue state. In ER9_TPSC, if a happens
satisfying 6 and g happens completely, the TA will go to
the glue state.

Fig. 8 shows the rules for Required messages of TPSC.

1_TPSC corresponds to a Required message a with a

cl onstraint 6. The difference from ER1_TPSC is that
n J@ happens before pre(d) or a has not happened until
, the TA will go to the accepting state. RR2_TPSC
1s¢the
ot

ase. Consequently, the difference is that no
e allowed before a within 6. RR3_TPSC
anted message, when the messages
o', the TA will go to the accepting
in b do not happen according to
fulfils 6, TA will have a valid

is the cas

Cc

1 c2
5:2:: 3, o,
b; &', '

ER3_TPSC: e past unwan,

c1 c2 b, 8", ¢

Londre (@)@
-
b; b’ "
ERS5_TPSC: e strict future unwanted message

Im, 8" m,, &'

T, 08" a8
Ll g ()

ER7_TPSC: e past wanted chain

Cc1 c2
e a, %
28,y

c1 c2 " !i' o, 8" !xf-
e:a; o, 4 ‘ a8 ‘ m,é" 8 m, ,,h‘
8" "

ER9_TPSC: e future wanted chain

IET Softw., 2013, Vol. 7, Iss. 4, pp. 222-248
doi: 10.1049/iet-sen.2012.0047

la, &

C1 cz2

ra; o @

a, pre(8) || 1, suce(&)

RR1_TPSC:r loose
ta, & b

RRB8_TPSC: r past unwanted chain

Fig. 8 TAs for Required messages of TPSC

continuation. In RR4_TPSC, when a happens within &, the
TA will go to the glue state. Then the TA also requires that
the messages in b have not happened under 6” at the glue
state. RR5_TPSC is the strict case, with the difference from
RR4_TPSC being that no other messages are allowed
before a within 6. RR6_TPSC is the case with past
unwanted chain. If g does not happen completely under &',
and a is exchanged under 8, TA will go to the glue state.
Otherwise when g happens completely under ¢’, or g does
not happen completely but @ does not happen under &, the
TA will go to the accepting state and an error is raised. In
RR7_TPSC, if g happens completely and a happens under
6, the TA will go to the glue state. In all other cases, the
TA will raise an error. RR8_TPSC, when a happens under
6 and g has happened completely under 8", the TA will go
to the accepting state. Otherwise TA will go to the glue
state. The only difference between Rule RR9_TPSC and
RR8_TPSC is that g is expected to happen completely
under §".

The rules for fail messages of TPSC can be defined in a
similar way. As there are only two differences for rules of
Fail message with respect to the Required rules, we skip the
detailed presentation of these rules. First, the semantics of a
Fail message is inverse to the semantics of a Required
messages, in that glue states and accepting states are
interchanged. Secondly, since other messages cannot follow
a fail message, there is no clock reset in final transitions of
the generated TAs.

Compositional rules for TPSC: Using these basic rules,
basic messages in a TPSC specification can be translated
into the corresponding simple TAs. However, the real-time
property represented by a TPSC specification is usually
composed of many basic messages with structured
operators, such as alt, par and loop. Therefore,

IET Softw., 2013, Vol. 7, Iss. 4, pp. 222-248
doi: 10.1049/iet-sen.2012.0047

c1 c2 Se e c1 cz
ra; J, a4
I e > la, & || a, pre(d)]| 1, suce(&) b‘)._ o QO..,
HE

RR2_TPSC:r strict

www.ietdl.org

b &&la &

RR3_TPSC: r past unwanted message
b, & "

C1 c2
| ria; (aqo__
b; &% 0"

apre(dl||ta, 8|1, succ(d)

RR5_TPSC: r strict future unwanted message

Y &5] 5 v
Yo, & im,, & n &

RR7_TPSC: r past wanted chain

a8 m, 8" m,_ 8" \m,, 8"

c1| c2 _ o
) LA LY
r:a; 4, S0 = g - - @
S
T prel }’\Q:Ml'[d"]
o F0 ., pref g
o :
& ¢ a, pre{8)|| 1, suee{ 5)

s, pre| 7Y || 1, s ()

RR9_TPSC: r future wanted chain

itional rules are also need to be defined to compose
TAs according to the structure of complex TPSCs.
e o kinds of compositional rules. One is to
As 4 sequential and alternative way, that is,
he other includes alt, par and loop
ese operators can be defined in a

proposed to support quantitative
patterns are classified into durati

real-time order (bounded response,
Each real-time specification pattern
associated with five scopes (globally, before,
and, and after until) as defined in [6]
work, we have already used TPSC to represent all these
patterns [11].

3.3 Probabilistic timed property sequence chart
(PTPSC)

3.3.1 Introduction: According to the same design
rationale of PSC and TPSC, we later designed a new
probabilistic scenario-based specification called PTPSC
[12]. Each message or operator can be annotated with a
probability. Furthermore, according to the idea of LSCs [9],
we add the pre-chart to PTPSC to describe a trigger
condition for starting a monitoring run. The messages in the
pre-chart are restricted to the regular type. Following the

231
© The Institution of Engineering and Technology 2013

www.ietdl.org

?: 'nE Accept Ho*--.____* Ce
16

14 Continue Cy
i Sampling

10

8

6

4

2

i m

0 2 20
Fig. 9 Gra

pre-chart in PTPS(
probability operator.
construct. However, if a

upports one probability
obabilistic property has more

than one probability, it can be by a joint
probability of multiple messages.

3.3.2 Semantics: One challenge of [definj formal
semantics of PTPSC specifications is that o clear
accepting or rejecting condition like tha€) of aditienal
temporal or timing specifications. To oVetcome t

problem, we propose to use sequential statistical
testing based on a null hypothesis (H, the system
probabilistic property) and an alternative hypothesis (H;
system does not fulfil the probabilistic propert§).
The specific statistical hypothesis test we use is the SPR
[18] that bounds the probabilities of false accepting or
rejecting the null hypothesis to two test parameters « and £,
respectively. Consequently, the operational semantics of
PTPSC is defined by two parts:

e Based on the defined syntax, we can translate a PTPSC
property into a TA using a syntax directed translator (SDT)
[19]. The translation rules of SDT are also categorised into
basic and compositional rules [11].

e We design an algorithm to do sequential hypothesis
testing. The inputs of this algorithm are the timed automata
(TA) for PTPSC, two hypothesis Hy and H; that are defined
based on the probability p specified in the PTPSC and other
hypothesis parameters such as o and 3. The outcome of the
hypothesis test is that H, is accepted, or H; is accepted, or
undecided, implying more samples are needed. In practise,
as shown in Fig. 9 the test procedure compares the number
of correct samples d,, of m experiments with two functions
co(m) and ci(m). If d,,>co(m), then Hy is accepted. If

pothes

f=

d,,>ci(m), it cannot be decided and more samples are
needed.

3.3.3 Expressiveness: PTPSC is designed to represent
probabilistic properties. In order to measure the
expressiveness of the PTPSC specification language, we test
it with respect to the PSP system ProProST (Probabilistic
Property Specification Templates) of common probabilistic
properties proposed by Grunske [14]. The specification
pattern system contains eight generic patterns. PTPSC can
represent seven patterns including the Transient State
Probability pattern, the Probabilistic Invariance pattern, the
Probabilistic Existence pattern, the Probabilistic Precedence
pattern, the Probabilistic Response pattern, the Probabilistic
Constrained Response pattern, and Steady State Probability
[4]. Note that the PSP Steady State Probability requires
long running behavioural analysis of the system and cannot
be used for monitoring. Consequently, this pattern cannot
be expressed with PTPSC.

3.4 Example

The informal requirements of the running example can be
represented by PSC, TPSC and PTPSC specifications,
corresponding to temporal, timing and probabilistic
properties, respectively.

For Prop; to Props;, PSC specifications can be used to
represent them. As an example, Fig. 10 shows the PSC
specification of Prop;. It is composed of four messages: a
egular message, a Required message with future unwanted
hain constraint and two Required messages. Using the
ting rules in basic rules (ER1_PSC, RR4_PSC,
and RRI_PSC) and compositional rules
, the generated FA for Prop; is shown in Fig. 11.
traces, the monitor can stay on S, to S; and

all=Patient.![receive]SubmitRequesy patient
al=Patient.[receive] SubmitRequest{patient]d)
al=MSA.![invoke]SendPatientCondition(patient(IMI
a3=MSA.[invoke]SendPatientCondition(patientCondition), M¥

ad=MML![imvoke]SendPatientCondition{unhospitalList). M3
aS=MML [invoke]SendPatientCondition{unhospitalList). M
ati=Patient.![invoke]ChoosePrimaryHospital{ chooseParameters). MS
a7=Patient.[invoke]ChoosePrimary Hospitall chooseParameters). M
a8=MSA.![invoke]ChoosePrimaryHospital prim aryHospital). Patie
a¥=MSA.[invoke]ChoosePrimaryHospitall primaryHeos pital). Patient

d,, <ci(m), then H; is accepted. Otherwise, when cq(m)> Fig. 11 Generated FA for Prop;
Patient MSA MMI
1 | :
1 I
: e: [receive]SubmitRequest(patientld) .._: !
] | !
: | - [invoke]SendPatientCondition(patientCondition) i
i : —
\r: [invoke]ChoosePrimaryHospital(chooseParameters) c1
-
I

L
1
| 1 [invoke]ChoosePrimaryHospital(primaryHospital)
-

C1={MMI.![invoke]SendPatientCondition(unhospitalList). MSA}

Fig. 10 PSC specification for Prop;

232
© The Institution of Engineering and Technology 2013

IET Softw., 2013, Vol. 7, Iss. 4, pp. 222-248
doi: 10.1049/iet-sen.2012.0047

Patient

g

e: [receive]SubmitRequest(patientld); x:=0

.. L

r: [invoke]SendPatientCondition(patientCondition); x<30

www.ietdl.org

Ml

]
I
I
L
I
I
|
I
I
|
L

r: [invoke]ChoosePrimaryHospital(chooseParameters); x<30 C1x<30
»
| |
r tinvake]ChoosePrimaryHospital(primar)rHcspitaI); x<3b
|
I I
C1={MMI.[invoke]SendPatientCondition(unhospitalList). MSA}
PCH MI DLC
I 1 1
I 1 1
DiagnosisResult(diagnosisResult); x:50 [:
1 i 1 1
P20.95|r: [reply]Finis! : : :
i > 1 1
]] 1 1
]] 1 1
1] 1 1
Par I i 1
| 1 1
1 ailCost(detailCost); x<30 1 |
: : > :
:4 ailCostRedeipt); x<30 ! !
]] 1 1
—F——F-—————- - - - - — d—————————— F————————— e
]] 1 1
| e: [invoke]Delive nj/(detailMedicine); k<30 .
; L} : r;
! r: [invoke]DeliveryLogistics® MedicineReceipt); x<30)
[[[
L LI

Fig. 13 PTPSC specification for Prop;

eventually goes to final state S5 when the desired messages
happen. However, if a3, a5, a7 and a9 do not happen
within finite traces, the system will raise failures.

For Props and Props, TPSC specifications are used to
represent them. Fig. 12 shows the TPSC specifications of
Props as an example. The structure of this property is
similar to Prop; except adding some timing information.

Fig. 13 shows the PTPSC specifications of Prop; as an
example. It is composed of a total of six messages: first, a
Regular message and a Required message with past chain
constraint. Then there are two parallel parts, each with a
Regular message and a Required message. After adding the
time reset clock and time constraints to each message, the
first message is a trigger message, and all the messages in
the main chart may happen with a probability of 95%.

4 WS-PSC tool

This section first shows the framework of WS-PSC monitor
and then shows how to monitor temporal, timing and
probabilistic properties in WS-BPEL process with our
running example.

4.1 Framework overview

The framework of the prototype tool WS-PSC monitor is
illustrated in Fig. 14, consisting of four main components
Interceptor, Observer, Translator and Analyzer, respectively.

IET Softw., 2013, Vol. 7, Iss. 4, pp. 222-248
doi: 10.1049/iet-sen.2012.0047

JUpdateEMR (updateOK). MSA)

iented programming (AOP)-based
to extend the existing BPEL

execution. We considft” business processes as core concerns

and the monitored

Exe

(Observer1)
. “S——
(Observer2

&
[

L
documents
) True, false or undecided

BPEL

Engine

essages 3 ss-cutting concerns. The
' interaction between

r b -w
._\Translatoﬂ 4 :TranslatorZ/.-: Translator3

B

+) Timed *Automata
Finite Timed +
Automata Automata ' pypothesis Testing

r B

| Analyzer3 | ®)
- : o b y
) applications £

Fig. 14 Framework of tool chain WS-PSC monitor

233
© The Institution of Engineering and Technology 2013

www.ietdl.org

several service components are related to these service
components in the composite service. The same monitoring
codes need to be repeatedly added into BPEL business
processes for the corresponding service components. It
results in lowering the maintainability and reusability of
codes because the monitoring codes intertwined with
business processes. Monitoring aspects of a composite
service can be implemented with Aspect], which is a
seamless extension of Java language. It has its own
constructs, such as aspects, join point, point cut and advice,
etc. A joint point refers to a well-defined point during
program executiogyThe set of joint points are called
pointcut. Simil hods, advices attached to pointcut
define the ehavidur of pointcut. Aspects are the
implementatton of@odularity unit of cross-cutting, which

include point cut, advj EII d type declaration. According to

the identified joint e aspects and goal application
are weaving togethe process may be static (at
compilation) or dynai e). We defined a set of
joint points of certain nitoring aspects, namely, the

D

programming language selects
execute monitoring aspects. The com]
pointcuts can observe some kinds of d
which supports monitoring several service
business processes concurrently execute.

According to user’s requirements, PSC, TPSC an
specifications are used to represent the monitored properti€s.
Then the monitoring aspects are defined to intercept
interaction messages between basic services such as
‘invoke’, ‘receive’ and ‘reply’. Finally, the defined aspects
and original services are weaved together to intercept the
run-time messages of composite services and add
corresponding time stamps to each message.

e Observer: Observer collects the run-time messages
intercepted by Interceptor. Usually, we can only observe
SOAP messages that are related to activities. Message
occurrence means activity occurrence. Global observer or
local observer is used to observe message exchange or
activity occurrence. Global observer can observe activities

and messages at process level, concerning several services.
Local observer can only observe activities or messages
relative to one individual service. We focus on locally
observing messages sent or received by individual service.
Two observers are designed to intercept messages in PSC
and TPSC, respectively. Observerl can only collect the
messages and record them in order to further check whether
these messages satisfy PSC properties. Observer2 can not
only collect the messages but also record the corresponding
time stamps to further check these messages against TPSC
and PTPSC properties.
o Translator: Translator is used to translate PSC, TPSC and
PTPSC specifications into formats that can be accepted by
Analyzer. We designed three translators for these
specifications. Translator]l can translate PSC specifications
into semantics domain FA. Translator2 can translate TPSC
specifications into the semantics domain TA. Translator3
can translate PTPSC specification into semantics domain
TA and a SPRT process.
e Analyzer: On receiving the messages from the Observer,
the Analyzer has the ability to verify at run-time whether a
property has been satisfied or not. We designed three
different analysers for PSC, TPSC and PTPSC,
respectively. The inputs of these algorithms are intercepted
messages and the corresponding semantics domain, FA, TA
and TA with SPRT process. Similar to the approach in [21,
22], we use the three-valued semantics for the monitoring
outputs: ‘true, false or undecided’. Note that in the
generated FA or TA, there are three kinds of states:
ccepting state, final state and internal state. Since FA or
A describes complementary behaviours of PSC or TPSC
ities, accepting state means property violation, final
ieans property satisfied while intermediate state
undecided.

Analy inaprov;
proposed {in [23].
according

FA-based analysing algorithm
3] we obtain the monitoring result
set. In this paper, we obtain the
n each intercepted message since

Analyzerl is sho
message m, Lines 1-2 sho
state if m matches the

zerl will go to next
transitions in FA.

Algorithm Analyzer1() Algorithm Analyzer2() Algorithm Analyzer3()
Input: current intercepted message m and a Input: A monitored message set [with timing Input: A monitored
property PSC represented by a Finite Automaton FA4 | information and a property T4 represented by a information and a property T4
Output: True, false or undecided Timed Automaton Timed Automaton with a pr
1: If m matches transitions in FA from Output: True, false or undecided Output: True, false or undecide;
curreniState Then 1: If m and time matches transitions in 74 from | 13 According to the result of Analyer2

2: FA goto nextState currentState Then 2: If nextState goto acceptingggtate hen
3 Switch nextState in FA do 2 T4 goto nexiState 3 | Record(0 in Resulr)
4: Case nextState in accepting state 3 Switch nextState in TA do 4: If nextState goto final state in TA Then
5: Return(false with error trace) 4 Case nextState in accepting state 5 | Record(1 in Resulr)
6: Case nextState in final state and scope | 5: | Return(false with error trace) 6: Use Result as the input for SPRT process

is global 6: Case nextState in final state and scope |7 Switch dm do
72 goto initial state is global 8: Case dm>cy(m)
8: Case nextState in final state and scope goto initial state 9: Return(Hy is accept)

is not global 8: Case nextState in final state and scope | 10: Case dm<c(m)
9: Return(true) is not global 11: Return(H, is accept)
10: Case nextState in internal state 9: Return(true) 12: Case c;(m)<dm=cyim)
11 | Return(undecided) 10: Case nextState in internal state 13: Return(undecided)

11: | Return(undecided) c

a

Fig. 15 Three analysing algorithms

234
© The Institution of Engineering and Technology 2013

IET Softw., 2013, Vol. 7, Iss. 4, pp. 222-248
doi: 10.1049/iet-sen.2012.0047

Lines 3—11 shows four cases during continuous monitoring: if
FA goes to an accepting state, an error trace will be detected;
if FA goes to the final state and the property scope is global, it
will restart at the initial state again; if 4 goes to the final state
and the property scope is not global, it will return true; if F4
goes to an intermediate state, it will return undecided.
Analyzer2 improves TA-based trace analysing algorithm
proposed in [24]. The main idea of Analyzer2 is shown in
Fig. 15b. The main difference between Analyzerl and
Analyzer2 is that Analyzer2 considers timing information.
Consequently, it can not only analyse the message but also
check that the timjd@, stamps satisfy the transitions in TA.

ccording to the result of Analyer2, if

ing state, a ‘0’ is recorded into

e final state, a ‘1’ is recorded

d as input to the SPRT

ti0S of PTPSC. Finally, the
based on lings 7-13.

nextState goes to an
Result; if nextState
into Result. Then,
process according to
checking results are retu

also shown

1. AOP-based approach [20] is used to eBPEL
engine with Interceptor. Interceptor that 1 core
component in our framework allows d

monitor-related pointcuts and advices in Aspgct]\O
approach can define pointcuts for the following @yent§ o
the engine: Engine starts or stops, BPEL C
construction or destruction and key activities of BPEL
process such as invoke, receive and reply. For example,
order to monitor the whole activities exchanged by the
composite service and the corresponding timing

2011-04-10 09:51 [Monitor LOG]Entering: [receive]SubmitRequest
2011-04-10 09:51 [Moniter LOG]Entering: [invoke]CheckMedicard(
2011-04-10 09:51 [Monitor LOG]Exiting: [invoke]CheckMedicard(
2011-04-10 09:52 [Moniter LOG]Entering: [invoke]SendPatientCondl
2011-04-10 09:52 [Monitor LOG]Exiting: [invoke]SendPatientCondition(
2011-04-10 09:53 [Monitor LOGlEntering: [invoke]ChoosePrimaryHospita
2011-04-10 09:53 [Monitor LOG]Exiting:[invoke]ChoosePrimaryHospital (pri
2011-04-10 09:55 [Moniter LOG]Entering: [invoke]MakeAppointment (detailDa

www.ietdl.org

information, we can define the following aspect in Aspect]
to record the activities:

1 public aspect InterceptReceive_Log{
2 pointcut log_Receive():
3 execution(* receive.* ->receive(..));
4 before ():log_Receive (){
5 Date date=new Date();
] SimpleDateFormatdf=new
T SimpleDateFormat ("yyyy-MM-dd hh:mm");
8 Signature 8s=thisJoinPoint.getSignature();
9 MLogFile.println(df.format(date)+
"[Monitor LOG] Entering[receive]: "+s.toString(}); }

In lines 2 and 3 method receive () of an arbitrary class (*)
found in the receive package of the ActiveBPEL engine
implementation is intercepted. Since the invoke activity
only has input parameters, we need to record and add the
time stamps for the parameters. Lines 4-9 record the input
parameters and add the corresponding timing stamps by the
use of ‘before’ method. For activities that just have two
parameters such as invoke activity, we have to use before()
and after() method to intercept the input and output
parameters. Note that if only PSC specifications need to be
monitored, we just need to intercept the parameters of the
activities without adding timing stamps. Finally, Aspect]
class files are generated from monitoring aspects by the
compiler. Aspect] class files and original services in
ActiveBPEL engine are weaving together. During the
execution of business logic, monitoring aspects are

ynamically inserted into business process for run-time
onitoring.

coording to property types, the ‘Observer’ can classify the
ptedr messages. If the property type is temporal,

2011-04-10 09:55 [Monitor LOG]Exiting: [invoke]MakeAppointment(recieption)

2011-04-10 11:22 [Monitor LOG]Entering: [receive]lDiagnosisResult(DiagnosisResult)
2011-04-10 11:22 [Moniter LOG]Entering: [invoke]UpdateEMR(DiagnosisInfo)

2011-04-10 11:24 [Monitor LOG]Exiting:[invoke]UpdateEMR(recieption)

2011-04-10 11:28 [Monitor LOG]Entering: [reply]FinishDiagnosis(DiagnosisResult)

2011-04-10 11:30 [Monitor LOG]Entering: [invoke]DeliveryLogisticsCompanies(detailMedi
2011-04-10 11:50 [Monitor LOG]Exiting:[invoke]DeliveryLogisticsCompanies(detailMedicineRecie
2011-04-10 11:30 [Monitor LOG]Entering: [invoke]SendMedicinelnsurance(detailCost)
2011-04-10 11:30 [Monitor LOG]Entering: [invoke]SendMedicineInsurance(detailCostReciept)
2011-04-10 11:55 [Monitor LOG]Entering: [replylDetailDiagnosisResult(detialDiagnosisResult)
2011-04-20 08:51 [Monitor LOG]Entering: [receivelSubmitRequest(Id67980)

2011-04-20 08:52 [Moniter LOG]Entering: [invoke]CheckMedicard (Id67980)

2011-04-20 08:52 [Moniter LOG]Exiting:[invoke]CheckMedicard(CheckResult)

2011-04-20 08:55 [Monitor LOG]Entering: [invoke]SendPatientCondition(patientCondition)
2011-04-20 08:55 [Monitor LOG]Exiting:[invoke]SendPatientCondition(hospitalList)
2011-04-20 10:22 [Monitor LOG]Entering: [invoke]ChoosePrimaryHospital(hospitalList)
2011-04-20 10:22 [Monitor LOG]Exiting: [invoke]ChoosePrimaryHospital(primaryHospital)
2011-04-20 10:24 [Monitor LOG]Entering: [invoke]MakeAppointment(detailDate)

2011-04-20 10:28 [Monitor LOG]Exiting: [invoke]MakeAppointment(recieption)

2011-04-20 10:30 [Monitor LOG]Entering:[receivelDiagnosisResult(DiagnosisResult)
2011-04-20 10:50 [Monitor LOG]Entering: [invoke]CallHighHealthSectors(DiagnosisResult)
2011-04-20 10:55 [Monitor LOG]Entering: [invoke]CallHighHealthSectors(analyzeResult)
2011-04-20 11:22 [Monitor LOG]Entering: [receive]RemoteVideoConsultations(DiagnosisResult)
2011-04-20 11:25 [Monitor LOG]Entering: [receivel FurtherDiagnosisResult(furtherDiagnosisResult)
2011-04-20 11:30 [Monitor LOG]Entering: [invoke]UpdateEMR(DiagnosisInfo)

2011-04-20 11:33 [Monitor LOG]Exiting: [invoke]UpdateEMR(recieption)

2011-04-20 11:35 [Monitor LOG]Entering: [reply]FinishDiagnosis(DiagnosisResult)

2011-04-20 11:40 [Monitor LOG]Entering: [invoke]DeliveryLogisticsCompanies(detailMedicine)
2011-04-20 11:43 [Monitor LOG]Exiting: [invokelDeliveryLogisticsCompanies(recieption)
2011-04-20 11:45 [Monitor LOG]Entering: [invoke]SendMedicallnsurance(detailCost)

2011-04-20 11:48 [Monitor LOG]Exiting: [invoke]SendMedicallnsurance(recieption)

2011-04-10 11:53 [Monitor LOG]Entering: [invoke]SendPrimaryHospital(DiagnosisResult)
2011-04-10 11:55 [Monitor LOG]Exiting: [invoke]SendPrimaryHospital(DiagnosisResultReciept)
2011-04-20 11:50 [Monitor LOG]Entering: [replylDetailDiagnosisResult(detialDiagnosisResult)

IET Softw., 2013, Vol. 7, Iss. 4, pp. 222-248
doi: 10.1049/iet-sen.2012.0047

235
© The Institution of Engineering and Technology 2013

www.ietdl.org

100
E
%0 o Props: dys{fr=0.15) |
80
Propé: d_.,(fr=0.1)
70
60
50
«“ Prop: d,4(ir=0.2)
30
20
10
m
0
16 2 31 3 41 46 51 56 61 66 71 76 81 86 91 96 101
Fig. 16 m/d,, e probabilistic properties Props and Prop;

or probabilistic, the Observer

mps for each interaction
ssages are translated into a
format that can be accepfed by Analyzeér. The translated
execution message has the following fg

time stamp [Monito
Exiting}: [receivel]/ [invoke]
messageOperation (parameter

where Entering means input message, a
means output message. An execution message seguchige
OMA interacting with a patient and the corresponding {time

stamps are shown as follows.

3. The informal requirements are represented by PSC, TP
and PTPSC specifications, corresponding to temporal, timing

wdm

181 Prop7: d_(fr=0.03)

Prop7: d,(fr=0.07)

Prop7: d(fr=0.11)

and probabilistic properties, respectively. Example property
representations have been shown earlier in Section 3.4.
4. We can use the three translators of the WS-PSC monitor to
translate PSC, TPSC and PTPSC into FA and TA, and a
combination of TA and SPRT process, respectively. From
Prop, to Props, by using translatorl, they can be translated
into the corresponding FA. For example, the generated
automata for Prop; is shown in Fig. 11. For Prop, and
Props, by using translator2, they can be translated into the
corresponding TA. For Propg and Prop-, the generated TA
are the same as those of Prop, and Props. However, we also
need to use the SPRT process to calculate the probabilities.
5. Analyzers first receive the intercepted messages and the
properties represented by PSC, TPSC and PTPSC, then
heck whether the run-time information satisfies the desired
roperties. If the property type is temporal, Analyzerl is
u f the property type is timing, Analyzer2 is used. If
rgperty type is probabilistic, Analyzer3 is used.

Table 1 Informal descriptions and the corresponding patterns of the m ed te al properties
Id Informal descriptions Patterns Results
TA after sending a patient’s medical parameters to the Lab and TA receive stimUllus-2 response; scope yes
(Props) ‘high’ result, TA will immediately notify the assistants nearest to the glob

patient
TA after sending a patients data to the Lab and the TA receives a cedence; after yes
(Propg) ‘needDiagnosis’ result, the doctor will diagnose the patient and before that

he must receive a notification from TA
TA if for a certain patient the number of ‘high’ results is more than three 3 stimulus scope no
(Prop1o) times, the TA also needs to notify the doctors to diagnose the patient global
TA if the number of notifications to help a certain patient is less than five 5 stimulus- e yes
(Prop11) times before the end of a process, the TA should also notify doctors to global

diagnose the patient to see whether the patient is fine
OJA if the user’s credit account is invalid, he (or she) cannot get a video response; scope absenc no
(Propq2)
OJA if the credit account of the user is detected to be valid, and he cannot get precedence; scope after yes
(Prop43) the video, there must be a message showing there is not enough money in

the account
OJA if there is no satisfied video in KB, VA will send query request to other 1 stimulus-2 response an yes
(Prop14) providers, then some providers respond to the request. After VA provides a stimulus-2 response; scope global

user with a video list (with respect to textual description of related service

information) that is composed of all periodically collected responses, the

user reads the video list and selects one of the providers for getting and

watching the video
OJA when getting a video, the user can either watch the video, or she can response; global or precedence yes
(Prop1s) either watch the make request to choose another video, but for the second chain; scope after

case she have to choose the reason (e.g. the poor quality of the current

video) and cancel the video
™ if the user invokes the travel service (i.e. he/she sends the travel existence; scope between and yes
(Prop1e) requirements to the TM service), TM service will respond to the user with

the result of three service invocationsfindDuration, calculateTime and

checkSchedule
™ after the user orders the desired travel, the travel schedule will be sent to existence; scope between and yes
(Prop17) the user eventually. However, between these two messages, TA must

successfully book the Hotel, Traffic and arrange a meeting with Database
236 IET Softw., 2013, Vol. 7, Iss. 4, pp. 222-248

© The Institution of Engineering and Technology 2013

doi: 10.1049/iet-sen.2012.0047

www.ietdl.org

Table 2 Informal descriptions and the corresponding patterns of the monitored timing properties
Id Informal descriptions Patterns Results
TA after sending a patients medical parameters to the Lab, and the TA bounded 1 cause 2 response; scope yes
(Prop1g) receives a ‘high’ result within 1 hour, the TA will immediately notify after

the assistants nearest to the patient and must receive a response

within 1 hour
TA after sending the patient’s medical parameters to the Lab, TA receives bounded 1 cause 2 response; scope yes
(Prop1g) a ‘high’ result within 1 hour. TA will immediately notify the assistants after

nearest to the patient and must receive a response from them within

1 hour
TA if for a certain patient the number of ‘high’ results is more than three bounded 3 cause 2 response; scope no
(Propao) times ing a week, the TA also needs to notify the doctors to global

diag patient within one day
TA if f notifications to help a certain patient is less than five bounded 5 cause 2 response; scope yes
(Propa,q) i ring @ month, the TA should also notify doctors to diagnose global

to see whether the patient is fine

OJA ser is verified to be valid, the user can eventually bounded response; scope global no
(Prop2,) in 2 minutes
OJA if the usé e email from VA, VA will periodically (every week) periodic recurrence; scope after yes
(Prop2a) send a né he user according to the user’s watching

habit
0OJA if there isno s B, VA will send the query request to bounded 2 cause 1 response and yes
(Prop.a) deéxrs respond to the request within 10 bounded 1 cause 2 response ; scope

seconds. After VA provide U a video list (with respect to global

textual description of relafed formation) that is composed of

all periodically collected*espo e user will read the video list and

selects one of the providers foggetting and watching the video within

20 seconds
OJA when watching a video, a userdoe 5fy with the poor quality of maximum duration; scope global no
(Propas) the current video, she cannot watchi the 3 r more than half a

minute
™ if the user invokes the travel service (i.e. s the travel bounded 1 cause 3 response; scope yes
(Propoe) requirements to the TM service), the pro TM service global

responds to the user with the result of thre

invocationsfindDuration, calculateTime and checkSc within

3.2 seconds
™ after the user orders the desired travel, the travel ule wi sent bounded 1 cause 4 response; scope yes
(Prop,7) to the user within 10 seconds global

The analysis results are then shown to designers. They can
further analyse and correct the possible errors in the system.
In our example Prop,, Prop, and Prop, are validated as
correct, whereas Prop; and Props are false. From the error
trace of Prop;, we find that the users can obtain patient’s
diagnostic records from EMR without patient’s permission.
After adding a new activity [invoke]GetPermission to the
corresponding patient whose medical data is used in the
BPEL process, Prop; holds. From the error trace of Props,
we find that it is possible that within 30 seconds, the
activity [invoke]DeliveryLogisticsCompanies
(detailMedicine) does not happen. Consequently, the
TA for Props goes to the accepting state and a violation
against Props is observed.

In order to check probabilistic property, we systematically
inject the correct implementations with a predefined failure
rate(fr). To simulate a failure, a correct event such as
‘confirmOK’ is replaced by a ‘confirmFail’ or a
‘confirmTimeout’ message. In each experiment, we set
statistical test parameters a=0.1, f=0.1 and indifferent
region as Hy — H;=0.04. We injected a failure that is 2%
below or above the indifferent region. The validated results
for properties Props and Prop; are shown in Fig. 16. For
Props, we injected 9% (in the indifference region), 7% (2
above Hy) and 15% (2 below H;). For Prop,;, we injected
7% (in the indifference region), 3% (2 above H,) and 11%
(2 below H;). From the curves, we can see that the test
correctly accepts or rejects H, for these samples. However,
the number of samples are different due to the different
probabilities. For Props, 100 samples are enough. But for

IET Softw., 2013, Vol. 7, Iss. 4, pp. 222-248
doi: 10.1049/iet-sen.2012.0047

ot enough to draw the conclusion.
25 samples to accept Hy. When the
than 98%, the tool cannot draw
0 samples. Furthermore, when the

In previous sections, we havt
WS-PSC monitor to monitor
probabilistic properties in compoSite
TPSC/PTPSC specifications. To demo:
of WS-PSC monitor, this section will fir
other case studies and then conduct some e
analyse its performance. The tool has
the Eclipse Rich Client Platform (RCP). It has 122 Java
classes and about 20000 lines of codes [25].

5.1 Case studies

In this subsection, we will describe three case studies: TA
(TelecommunicationAssistant), OJA (OntheJobAssistant)
and TM (TravelManagement). These three case studies
come from real industrial requirements and have already
been widely used in web service research.
TelecommunicationAssistance [26, 27] composite service
(TA) is a software- and telecommunication-based service
that is designed to help patients who need daily assistance
in remote areas. TA service interacts with four partner

237
© The Institution of Engineering and Technology 2013

www.ietdl.org

Table 3 Informal descriptions and the corresponding patterns of the monitored probabilistic properties

Id Informal descriptions Patterns
TA after sending a patient’s medical parameters to the Lab, TA receives a ‘high’ result probabilistic 2 cause 2 response
(Propag) within one hour. TA will immediately notify the assistants nearest to the patient and

must receive a response from them within one hour with 95% probability
TA if for a certain patient the number of results with a ‘high’ criticality is more than probabilistic 3 cause 2 response
(Propag) three times during a week, the probability for TA to notify the doctors to diagnose

the patient within one day is 90%
OJA if the credit of a user is verified to be valid, the probability that the user can probabilistic response
(Propsop) eventually obtain a video within 2 minutes is 90%
OJA when watching a video, the probability that a user will cancel the video within halfa maximum duration; scope
(Propsq) min begause she does not satisfy with the poor quality of the current video is 45% probabilistic precedence
T if th invokes the travel service (i.e. he/she sends the travel requirements to the probabilistic 1 cause 3 response
(Props,) T e probability that the TM service responds to the user with the result

services invocationsfindDuration, calculateTime and checkSchedule within
ds is 89%

3 ers the desired travel, the probability that the travel schedule will be probabilistic constrained
ithin 20 seconds is 85% response

™ a%ter the
(Propas) sentto t

orad

boratory (Lab), results of the temporal properties of the three case studies.
gdical support To show the usability of our scenario-based specification
boratory (Lab) most properties belong to chain patterns which are not

services, including Patiént, Medical
Assistant and Doctor. Patient needs
in order to control their health.

can analyse the medical parameters of § s and replies easily represented by traditional temporal logic-based
to TA by sending the results. Assistan atient’s specifications. As a simple example, Prop;; is a 5
relative who will take over the role of sistant. Stimulus-2 Response pattern which is very hard to be

Doctor is in charge of medical decisions, Stich hanges
of treatments or diagnosis.

OntheJobAssistant(OJA) [28] is a composite

represented by temporal logic formula.

The results indicate that Prop;o and Prop;, are false. To
identify the cause of the violations, we review the
provide specialists with a variety of video help, interactions between all the BPEL processes. According to
of four services: Knowledge Base (KB), Virtual A e violation trace for Prop;o, we find that after the message
(VA), Bank and Other Providers. KB can store variQus [invokelalarm(high) happens more than three times,
video information. VA is a medium between a user a message [invoke]changeDiagnosis has not been
KB, and submits a user’s search request to KB. Bank is the doctors. Consequently, the Analyzer will go to

responsible for verifying whether the user’s credit is valid. ce state and a violation against Prop, is observed.
Other Providers: whenever video information required by the original BPEL codes, we notice that the
the user is unavailable in KB, VA submits the user’s search origiial T ss does not have a counter to record the
request to other providers. number vokelalarm(high). After we
Travel Management (TM) [29] is a composite service used add a ¢ process, the problem is solved.
to help users book a travel package online that suit their According trace for Prop;,, we see that the
requirements. The system interacts with the following credit check of"a usgfis ok, but the money in his bank
participants and services: User, DataBase (DB), Hotel account is less thai price of the video. Consequently, the
Service (HS) and Traffic Service (TS). The DataBase stores user still cannot get the Lhis property is true
various information about travel. The Hotel Service and occasionally, as the balang er’s bank account is
Traffic Service provide the corresponding hotel and traffic generated randomly. In ord@€r to solvgythis problem, we let
service. the process generate at leastq$ r’s bank account
WS-PSC monitor is used to analyse 10 temporal properties, since the prices of all the video 1
10 timing properties and 6 probabilities properties selected Table 2 (Prop;g to Prop,7) shows @€ i riptions,
from the three case studies. the corresponding specification patterns onitoring
Table 1 (Propg to Prop;7) shows the informal descriptions,
the corresponding specification patterns and the monitoring 80 z ofPart. MiMess. & #cons x ke o
X X
11 70 %
2
g 60
10 E *
;[50
3 40 -
7 30 X X .
X
6 g 20 X X ¥ * X o
B x XX x xxX XXX X X ©
3 10 x X X i w X 3
5 9 X o M
3 IO T T T A T I I LI
4 L - —— s — Sk
10 20 30 40 50 0 5 10 15 20 25 30
Fig. 17 Performance characteristics of AOP-based interceptor of Fig. 18 Monitored properties and the sizes of their generated
WS-PSC monitor automata
238 IET Softw., 2013, Vol. 7, Iss. 4, pp. 222-248

© The Institution of Engineering and Technology 2013 doi: 10.1049/iet-sen.2012.0047

www.ietdl.org

300 010 ©20 ©30 w40 m50 70 3
= 3 010 20 W30 W40 m50
250 |3 60 |&
= 2
= so |2
200
40
150
30
100 r
20
) i [{ { (’V
0 O 0 L g |
6 7 8 9 1 2 3 4 5 6 7 8 9
10000 /& 30 m40 ms0 100 ' 10 20 w30 W40 W50
a 0 <
W
200 80 |2
g 2
3
8000 = 0 (3
60
7000 50
40
6000 30
5000 Gk
10 '
4000 0 - R d
1 2 3 4 s 6 7 8 9
Fig. 19 Validation and performance characteristics of C.

results of the timing properties of the three case studies.
According to the results, Prop,o, Prop,, and Prop,s are
false. Prop,o and Prop,, fail for the same reasons as those
of Prop;o and Prop;,, respectively. Compared with the
temporal property, there is a new property violation. From
the error trace, we find the problem is that some users want
to cancel the video more than half a minute after they
watch the video. These behaviours satisfy the temporal
property Prop;s but does not satisfy the timing property
Prop,s.

Table 3 (Prop,g to Propsz) shows the informal descriptions
and the corresponding specification patterns of the
probabilistic properties of the three case studies. Normally,
the SPRT process can correctly accept or reject H for these
properties. For the probability below 95%, 200 samples are
enough to draw the conclusion. When the probability is
more than 98%, 200 samples are not enough.

5.2 Performance analysis

In this subsection, we will do a critical performance analysis
of the WS-PSC monitor tool. Two key factors that affect the
performance of the tool are the AOP-based interceptor and
the analyser engine. AOP-based interceptor will affect the
execution time of the whole service since it will
synchronise the execution of the service. As the analysers
and the web service run concurrently, the execution time of
the whole service should not be affected. As a platform for
our experiments, we used a Windows-based PC equipped
with a 1.83 GHz dual-core processor and 2 GB of main
memory. The WS-BPEL engine (in the experiment we use
Eclipse 3.4 with BPEL Designer plug in) ran on Tomcat
6.0 and Apache ODE.

IET Softw., 2013, Vol. 7, Iss. 4, pp. 222-248
doi: 10.1049/iet-sen.2012.0047

much the performance of the system. We do
s to study the time overhead for using
ing. We first run the original four
different instances and then run the
with AOP and different instances.

when the instances is 10.
(10.2, 10.4, 10.4, 10.6%)
also in line with the resulgs
overload for interceptor is
instances is small and it will incre
the instances increase to about 50.

In the following, we will focus
performance of the Analyzers. There ar
affect their performance. One is the scale of
FA or TA, and the other is the number ¢ instances
running in the engine. For the first factor, the detailed
statistics for the monitored properties are illustrated in
Fig. 18, where ‘#Part’ denotes the number of partners
involved in the composite services; ‘#Mess.” is the number
of messages exchanged between partners; ‘#Cons.’ is the
number of unwanted or wanted constraints in the PSC
specifications. ‘#State’ is the number of states in the
generated automata and ‘#Tran.” is the number of
transitions in the generated automata. For Prop,g to Propss,
they generate the same statistics as those in the experiment
for timing properties, and are not shown in Fig. 18. Note
that all of the constructed automata have fewer than 73
transitions. For the second factor, we run the service with
different service instances.

239
© The Institution of Engineering and Technology 2013

www.ietdl.org

For the Analyzers of temporal and timing properties, the
composite service generates a large number of messages.
However, our monitors receive just those within the PSC
specifications. Furthermore, the intercepted events are never
stored. Thus, we hope that the monitor does not produce a
significant performance overhead. For the Analyzer of
probabilistic properties, we have to record the run-time
information to support SPRT process. Since there are 33
properties, we choose some properties as examples to
analyse the performance, whereas the other properties can
be analysed in a similar way and are omitted. In the
experiments, use Jconsole [http:/java.sun.com/
developer/techni es/J2SE/jconsole.html] as a tool to
record the h sage, the number of Java classes,
the number*ot collegted threads and the CPU usage for the
WS-PSC monitor.

The results are co

mFig. 19. We do the experiments
10 times and record the e. For the horizontal axis
t

in each figure, numbe n the properties Prop; to
Prop; whereas 8 and 9 the impro
of Propg and Prop; called Prop’q ang
shows the results for five sets of
20, 30, 40, 50).

implementation
2. Each figure
ces of (10,

When the number of service instances consumed
memory is about 10.1 to 18.8 M for P 5; the
collected threads and Java classes are almos$t't e. The

consumed CPU usage is from 0.35 to 1.29 nseq)
the first factor has minimal effect on the performanc
the transitions for Prop; is 12 and for Props is 73
to Fig. 18. Furthermore, the additional checking o
information also has minimal effect on the performari€e.
However, when the number of service instances is increa:
to 50, the consumed memory is 32.6 M for Prop; and
87.8 M for Props; the collected threads and Java classes are
also almost the same; the consumed CPU usage is from
2.34 to 15.86%. From the results we can see that the
consumed memory, threads, classes and CPU will increase
when the number of service instance increases.

For probabilistic properties, the results are shown under
number 6 and 7. We can see that the threads and classes are
slightly increased due to the running of SPRT process. We
first collect all the generated run-time messages, then we do
the SPRT process for every 5000 messages. Consequently,
the consumed memory and CPU (55.6 M and 20.4% for
Prop;) are dramatically increased due to storing a great
number of messages. When the number of service instances
is 40, the memory and CPU increase to 240.5M and
89.8%, respectively, for Props and ran out of CPU for
Prop;. When the number of service instances is 50, we
cannot monitor Props and Prop; neither.

To resolve this problem, we just store the TA-based
checking results. From the results in number 8 and 9, we
can see that the tool can monitor Props and Prop; since the
consumed memory and CPU (93.6 MB and 19% for Prop;’)
have been dramatically reduced.

5.3 Discussions

The four case studies clearly demonstrate the intuitiveness
and expressiveness of our graphical specification PSC,
TPSC and PTPSC (i.e. we can use PSC/TPSC/PTPSC to
represent 33 properties). Furthermore, WS-PSC monitor can
monitor all 33 properties at run-time with reasonable
overhead. For temporal and timing properties, the tool has a
reasonable overhead when the number of service instances
increases from 10 to 50. For probabilistic properties the tool

240
© The Institution of Engineering and Technology 2013

requires more processing and memories, since it needs to
record previous results. With an improved implementation,
the tool can still monitor these probabilistic properties when
the number of service instances is within 50. However, the
proposed tool suffers from the following limitations.

5.3.1 Full automation: Although PSC, TPSC and PTPSC
have graphical interfaces, they are still somewhat difficult to
write and prone to mistakes when the number of messages
grows. Consequently, to reduce this limitation, it is
important to develop an approach to help designers
automatically derive PSC, TPSC and PTPSC specifications
from textual requirements in the future.

5.3.2 Scalability: Although the four case studies are from
real industrial requirements, they are devised and invented in
academic setting. Furthermore, they are small and not
complex. Consequently, the scalability of the approach
needs to be tested with larger case studies. As already
shown in our experiments, the memory, CPU usage, and
the time consumed for the monitoring process will increase
with the number of properties and the number of the
monitored messages; especially for probabilistic monitors
since this kind of monitors need to record some historical
information. On the one hand, new and efficient monitoring
algorithms can be developed to reduce this limitation. On
the other hand, the use of multi-core platforms [31, 32] can
also reduce this limitation because it can make the
monitoring cost acceptable.

.3.3 Precision: For probabilistic properties, if the
onitored probability is inside the indifference region
eWwecn H, and H, the monitoring result is not accurate.
speaﬁc limitation is the ability to monitor
i propertles with extreme probabilities (e.g.
bab111ty is close to 1 or 0). The number of
ing samples runs increase dramatically in

proposed for monitoring
section will provide a su
monitoring of behaviour
various properties.

Baresi et al. [26] propose a frame
for monitoring functional and non-
service provider should fulfil. Its archit
dynamic aspectisation of the BPEL engi
monitored service compositions, achieved by
as an AOP language. They consider an
approach based on ALBERT, which is a temporal logic
language suitable for asserting both functional and
non-functional properties, and show how to obtain the
efficient run-time verification of ALBERT formulae.

Manageable and adaptive service composition (MASC) is a
policy-based middleware for monitoring and control of
composite web services execution [33]. WS-Policy4AMASC
language extends WS-Policy by defining new types of
monitoring and control policy assertions. It is used to
specify monitoring properties related to business exceptions
and run-time failures. The approach provides synchronous
and asynchronous monitoring at both the SOAP messaging
layer and the process orchestration layer, greater diversity of
monitoring and control constructs, as well as the

compositions. This
isfing tool support for
itg services against

IET Softw., 2013, Vol. 7, Iss. 4, pp. 222-248
doi: 10.1049/iet-sen.2012.0047

tdl.org

WwWWw.ie

Bunsal
Joyuow sisayjodAy pue BuisAjeue soaluadoud onstjiqeqoad
soA JSd-SANVIeulalUl paseq-y] pue ejewolne snouo.ayouAse pue Buiwi ‘jelodway 9Sd1d/2Sd1/9Sd 73d9-SM Jonuow HSd-SAA
swalsAs Juswabeuew
soA a|ge|ieAe Buruiw sses0.d SNOUOJYOUAs 34v1D03a MO|PJIOM [8€] Je 18 d1sad
Japinoid ayi pue uald [£€] datewB|IA
soA |eusaul wyiuobie Ajj-ayz-uo SNOUO0JYOJUAs +04-117 B udamiaq uolioeiaul pue 9||eH
oquwio|o) swayuow-1sod
ou /leuisnpui Ajlenuew 10 snouoJyduAse Aorjod-gpan/paseq-1INX SMP13dg [o¥] oqwo|0)
euowal) sanbiuyoal fiouny-uou Japinoid 8y pue ualo
ou /leusnpul oi198ds uonejuswa|dwi SNOUOJYoUAs pue [euoijouny VISM/Paseq-TAX B usamiag uoljoelaul [6€] BUOWBIY
Japinoud
Bupoayo SNOUOIYIJUAS |euonounj-uou ay} pue sjual|o
saA |eulaul paseg-ejewolne ajeis auuly pue snouoJyouAs |Euonouny ‘uolluasse 71Aa2SAM/Paseq-TINX UdaM1aQ UOIJoBISIUL [0€] je 18 Buepp
ai1aydsgapn NGl BuisAjeue salpadoud ssauaAll sweabeiq 8ouanbag 0z [9€ ‘621
ou ul |00} B/[euJalul 99e4] paseq-elewolne snou e papunog pue Alajes JNN/Paseq-oLIeuads 1349-SM ‘e 18 spuowwiS
uo\Buy1S anbiuyoa} Japiaoad ayj pue juald
saA /a|gejieae paseg-ejewolne pawi} uol saiadoud [euojouny-uou Buy]g/paseg-JANX B Udamiaq uoiloelalul [gg] uoNBuyS
sninojed [¥€] spjepnoueds
ou |eusalu| 92IAI8S UOI1EN|BAS UOIIPUOD uojfouhse saiuadoud sop Juans/paseq-ssadoud SMP13dg pue gnqyej|
21eM3|PPIN sn ouAse saipadoud [euolouny-uou JSVIN
saA JSVIA/Ieulaiul Bunjoayd Aaljo UB,SNOUOIYIUAS pue [euonnouny yAdI10d-SM/PaSE]-TINX 73d9-SM [g€] e 19 1pen]
B saipadoud
dovoweuAq 99el] pase snouoJyouAse Buiwin pue |ejodwal JO0DSM pPawi]
soA /a|qejieae pawil pue Bupy pue snouoJyduAs ‘uoilpuod 3sod ‘-aid pue J0)SAN/POSeq-2160| 73d49-SM [92] oweuAQg
juswainseaw
2ouewlopad adA} |00 anbluyasy uonepl ssauljpwil| adA) Auadouyg uonesyyoads Auadoad adA} uonesoqge||0) aweN

Hoddns [001 yum uonisodw oo 891AI8s gam 10} sayoeoldde Bunojuow swil-uni Bunisixe jo uosiiedwo) ¢ ajqe

241

© The Institution of Engineering and Technology 2013

IET Softw., 2013, Vol. 7, Iss. 4, pp. 222-248
doi: 10.1049/iet-sen.2012.0047

www.ietdl.org

externalisation of monitoring and adaptation actions from
definitions of business processes. A prototype is
implemented and evaluated on monitoring and adaptation
scenarios from a stock trading case study. The performance
studies indicate that MASC’s overhead and scalability are
acceptable.

Mahbub and Spanoudakis [34] proposed a framework for
the run-time verification of requirements of service-based
software systems. System events are collected at run time
and stored in an event database. The properties are checked
by means of an algorithm based on integrity constraint
checking in temp deductive databases. A prototype tool
0 demonstrate and evaluate the
has been applied in the car rental
posmon However, no performance

ow timeliness constraints, such
and reliability, in formal
service-level agreeme anslated into TA. They
attach time stamps to S messages amd consider these
messages as timed letters. They are thg g to reduce the
problem of detecting SLA violationg
words by the TA that have been dé

Simmonds et al. [36] proposed to use
of conversations between partners as a

and showed that it is sufficiently expressive for ca
safety and liveness properties. By transform ese
diagrams to automata, this approach can chec
execution traces against the specification. They showed

the language can be used to specify the specificati
property system. They described an implementation of the
approach as part of an industrial system. Finally, they
discussed the experience of specifying and monitoring a
number of properties from three existing applications.

Wang et al. [30] proposed an online monitoring approach
for web service requirements. It includes a pattern-based
specification of service constraints that correspond to
service requirements. The monitoring framework uses
different probes and agents to collect events and data that
are sensitive to requirements. The framework analyses the
collected information against the pre-specified constraints,
so as to evaluate the behaviour and use of web services.
The prototype implementation and the corresponding
experiments with a case study show that the approach is
effective and flexible, and the monitoring cost is reasonable.

In [37], the authors present an algorithm for the monitoring
of run-time message contracts with data. Their properties are
expressed in LTL-FO+, an extension of linear temporal logic
that allows first-order quantification over the data inside a
trace of XML messages. An implementation of this
algorithm can transparently enforce an LTL-FO+
specification using Java applet. Violations of the
specification are reported on-the-fly and it can prevent
erroneous or out-of-sequence XML messages from being
exchanged. Experiments on commercial case study indicate
that LTL-FO+ is an appropriate language for expressing
their message contracts, and that its processing overhead on
sample traces is acceptable both for client-side and
server-side enforcement architectures.

Pesic et al. [38] propose DECLARE, a prototype of a
workflow management system that uses a constraint-based
process modelling language for the development of
declarative models describing loosely-structured processes.
They show how DECLARE can support loosely-structured

242
© The Institution of Engineering and Technology 2013

processes without sacrificing important WFMSs features
like user support, model verification, analysis of past
executions using process mining techniques and changing
models at run-time.

Cremona [39] is a tool from IBM devised to help clients
and providers in the negotiation and life-cycle management
of WS-agreements. It provides ‘Status Monitor’ component,
which helps in deciding whether a negotiation proposal
should be accepted or refused, on the basis of system
available resources and the terms of an agreement. Once an
agreement has been accepted by the client and the provider,
its validity is checked at run-time by a ‘Compliance
Monitor’, which can detect violations, predict violations to
be occurred and take corrective actions.

Colombo [40] provide a lightweight middleware for
service-oriented architectures that support BPEL. It can
support declarative service descriptions, such as WS-policy.
It can intercept messages before they leave the system or
before they are processed, and can use a pipe of dedicated
policy-specific verifiers to validate messages with respect to
a certain policy.

Comparison of existing run-time monitoring approaches is
illustrated in Table 4 according to different parameters. These
comparison parameters follow the taxonomy in [3] with some
modifications or extensions. ‘Collaboration type’ denotes the
composition type of services. Our tool follows most of the
common approaches and chooses BPEL-based web service
composition. ‘Property specification’ indicates the type of
property specification used to specify properties. Our tool

ses scenario-based notations to represent desired properties

_event- based web service composition and provides users
completely graph1cal front- end ‘Property type’

properties. ‘Validation technique’ shows the
used for validation at run-time. Our tool
also folloy€ most commnon approaches and uses automata
and time \@utomata-
indicates
(post-mortem,
detect errors as

nitoring activity is performed
us or asynchronous). In order to
y as possible and reduce the

ance of the tool is
measured or not. To demo erality of our
proposed approach, the performan f oum) toolghas been
studied based on four case studies.

7 Conclusions and future work

This paper demonstrates the use of WS-PSC tool chain to
monitor temporal, timing and probabilistic properties in
BPEL-based composite services using existing graphical
specification formalisms. Compared to other approaches,
our approach provides a completely graphical front-end for
software designers so that they do not have to deal with any
particular textual and logical formalisms. Furthermore, the
four case studies show that our tool can monitor three kinds
of properties with reasonable performance. Finally, the
comparative performance of different properties and service
instances show some important results: (i) The interceptor
does not affect too much the performance of the system; (ii)
the scale of the generated monitor of analyser has minimal
effect on the performance since the number of transitions

IET Softw., 2013, Vol. 7, Iss. 4, pp. 222-248
doi: 10.1049/iet-sen.2012.0047

for normal properties is within 100; (iii) the checking of
temporal and timing properties gives almost the same
performance, whereas checking of probabilistic properties
requires more CPU and memories since it needs to record
previous results; (iv) the consumed memory and CPU will
increase with the number of service instances.

Several directions for future work are possible. First,
to automate the elicitation of properties represented by
PSC/TPSC/PTPSC specifications could be an interesting
future research task. Initial work has already been done by
Autili and Pelliccione [41] to automatically derive PSC
specifications fro tual requirements. Further work is to
derive TPSC PSC specifications from textual
requirements t similar idea. Secondly, our
monitoring ‘@pproacly detects errors too late, after the failure
arises. In the future to define advanced monitors
with the ability to pie d prevent the potential errors.
The proposed new ‘look ahead’ in the near
execution future, and otential sources of failures.
Thirdly, our statistical roach is not accurate if the
monitored probability is inside th i
between H, and H,. In order to deg
plan to use Bayesian sequential hyjp
[42] since it has already shown faster
than state-of-the-art techniques in statisti

8 Acknowledgements

This work is supported by the National Natural§Sc
Foundation of China (No. 91118007, No. 61021062,
61202097, No. 61202136) and by the National 863 Hi
Tech Program of China (No. 2011AA010103,
2012AA011205), China Postdoctoral Science Foundatlon
(Grant No. 2012T50489 and No. 2011M500897), and
Specialized Research Fund for the Doctoral Program of
Higher Education (No. 20120094120009).

C

9 References

1 WS-BPEL: ‘Web services business process execution language version
2.0, committee specification” (OASIS, 2007)
2 Leucker, M., Schallhart, C.: ‘A brief account of runtime verification’,
J. Log. Algebr. Program., 2009, 78, (5), pp. 293-303
3 Delgado, N., Gates, A.Q., Roach, S.: ‘A taxonomy and catalog of
runtime software-fault monitoring tools’, /[EEE Trans. Softw. Eng,
2004, 30, (12), pp. 859-872
4 Zhang, P., Li, W., Wan, D., Grunske, L.: ‘Monitoring of probabilistic
timed property sequence charts’, Sofiw.: Pract. Experience, 2011, 41,
(7), pp- 841-866
5 Holzmann, G.J.: ‘The logic of bugs’. Proc. Tenth ACM SIGSOFT
Symp. on the Foundations of Software Engineering (FSE-02), Vol.
27, 6 of Software Engineering Notes, New York, 2002, pp. 81-88
6 Dwyer, M.B., Avrunin, G.S., Corbett, J.C.: ‘Property specification
patterns for finite-state verification’. Proc. 21st Int. Conf. Software
Engineering (ICSE99), 1999, pp. 411-420
7 ITU: ‘Message Sequence Chart (MSC): International Telecomm’
(Union, 1999)
8 OMG: ‘UML 2.1.1 superstructure’ (Object Management Group (OMG),
2006)
9 Damm, W., Harel, D.: ‘LSCs: breathing life into message sequence
charts’, Formal Meth. Syst. Des., 2001, 19, (1), pp. 45-80
10 Autili, M., Inverardi, P., Pelliccione, P.: ‘Graphical scenarios for
specifying temporal properties: an automated approach’, Autom. Softw.
Eng., 2007, 14, (3), pp. 293-340
11 Zhang, P, Li, B., Grunske, L.: ‘“Timed property sequence chart’, J. Syst.
Sofiw., 2010, 83, (3), pp. 371-390
12 Zhang, P., Grunske, L., Tang, A., Li, B.: ‘A formal syntax for
probabilistic timed property sequence charts’. Proc. ASE, 2009,
pp- 500-504
13 Konrad, S., Cheng, B.H.C.: ‘Real-time specification patterns’. 27th Int.
Conf. Software Engineering (ICSE 05), 2005, pp. 372-381

IET Softw., 2013, Vol. 7, Iss. 4, pp. 222-248
doi: 10.1049/iet-sen.2012.0047

20

21

22

23

24

25

26

27

31

32

33

34

35

36

37

38

39

40

41

42

www.ietdl.org

Grunske, L.: ‘Specification patterns for probabilistic quality properties’.
30th Int. Conf. Software Engineering (ICSE 2008), Leipzig, Germany,
10-18 May 2008, pp. 31-40
Gerth, R., Peled, D., Vardi, M.Y., Wolper, P.: ‘Simple on-the-fly
automatic verification of linear temporal logic’. PSTV, 1995, pp. 3-18
Alur, R., Courcoubetis, C., Dill, D.: ‘Model-checking in dense
real-time’, Inf. Comput., 1993, 104, (1), pp. 2-34
Alur, R., Dill, D.L.: ‘A theory of timed automata’, Theor. Comput. Sci.,
1994, 126, (2), pp. 183-235
Wald, A.: ‘Sequential tests of statistical hypotheses’, Ann Math. Stat.,
1945, 16, (2), pp. 117-186
Aho, A., Sethi, R., Ullman, J.:
tools” (Addison-Wesley, 1986)
Kiczales, G., Lamping, J., Mendhekar, A., et al.:
programming’. ECOOP, 1997, pp. 220-242
Bauer, A., Leucker, M., Schallhart, C.: ‘Monitoring of real-time
properties’. FSTTCS 2006: 26th Int. Conf. Foundations of Software
Technology and Theoretical Computer Science, 2006, pp. 260-272
Bauer, A., Leucker, M., Schallhart, C.: ‘Runtime verification for LTL
and TLTL’, ACM Trans. Softw. Eng. Methodol., 2011, 20, (4), p. 14
Zhang, P., Li, B., Muccini, H., Sun, M.: ‘An approach to monitor
scenario-based temporal properties in web service compositions’.
DeWeb08 in conjunction with APWeb08, Volume 4977 of LNCS,
2008, pp. 144-154
Zhang, P., Li, B., Sun, M.: ‘Extending PSC for monitoring the timed
properties in composite services’. Proc. APSEC, 2008, pp. 335-342
Zhang, P., Su, Z., Zhu, Y., Li, W., Li, B.: “‘WS-PSC monitor: a tool chain
for monitoring temporal and timing properties in composite service
based on property sequence chart’. First Int. Conf. Runtime
Verification (RV 2010), LNCS, 2010, pp. 485-489
Baresi, L., Bianculli, D., Ghezzi, C., Guinea, S., Spoletini, P.: ‘A timed
extension of WSCoL’. IEEE Int. Conf. Web Services, 2007,
pp. 663-670
Calinescu, R., Grunske, L., Kwiatkowska, M.Z., Mirandola, R.,
Tamburrelli, G.: ‘Dynamic QoS management and optimization in
service-based systems’, /EEE Trans. Softw. Eng., 2011, 37, (3),
pp. 387-409
i, W., Wang, Z.: ‘Monitoring composite services with universal modal
ence diagrams’. APSEC, 2009, pp. 69-76

onds, J., Gan, Y., Chechik, M., et al.: ‘Runtime monitoring of web
1 onversations’, [EEE Trans. Serv. Comput., 2009, 2, (3),

‘Complilers: principles, techniques and

‘Aspect-oriented

.. ‘Runtime monitoring on multicores via oases’,
(2), pp. 15-24

Wang, L., Zhao, J., Li, X.: ‘McC++ /Java:

99-108
S-agreements: an event
0, E.D. (Eds.): ‘Test and

Raimondi, F., Skene, J., Emmerich, W.:
web-service SLAS’. SIGSOFT FSE, 20
Simmonds, J., Chechik, M., Nejati,
‘Property patterns for runtime
conversations’. Runtime Verification RV’08,
2008, pp. 137-157

Hallé, S., Villemaire, R.: ‘Runtime enforcement of we
contracts with data’, [EEE Trans. Serv. C
pp. 192-206

Pesic, M., Schonenberg, H., van der Aalst, W.M.P.: ‘DECLARE: full
support for loosely-structured processes’. 11th IEEE Int. Enterprise
Distributed Object Computing Conf. (EDOC 2007), 15-19 October
2007, Annapolis, Maryland, USA, 2007, pp. 287-300

Ludwig, H., Dan, A., Kearney, R.: ‘Cremona: an architecture and library
for creation and monitoring of WS-Agreements’. ICSOC, 2004,
pp. 65-74

Curbera, F., Duftler, M.J., Khalaf, R., Nagy, W., Mukhi, N.,
Weerawarana, S.: ‘Colombo: Lightweight middleware for
service-oriented computing’, /BM Syst. J., 2005, 44, (4), pp. 799-820
Autili, M., Pelliccione, P.: “Towards a graphical tool for refining user to
system requirements’, Electr. Notes Theor. Comput. Sci., 2008, 211,
pp. 147-157

Jha, S.K., Clarke, E.M., Langmead, C.J., Legay, A., Platzer, A., Zuliani,
P.: ‘A Bayesian approach to model checking biological systems’.
CMSB, 2009, pp. 218-234

E. Farrell, B.:
b service
of LNCS,

243
© The Institution of Engineering and Technology 2013

www.ietdl.org

9 Appendix: The formal semantics of PSC
9.1 Formal denotational semantics of PSC

Before giving the detailed semantics, we first give some
explanation of basic concepts and notations used in the
semantics. The denotational semantics of an arrowMsg of
PSC with constraint can be defined as: [[(<¢, a, C, C', p, f >,
op)]]"¢, where ¢ € {e:, r, fi} is the type of message. a is
the message exchanged by sending service C and receiving
service C'. [=C.a.C’ is the message label. p, f€ {4, eb,=

>g, #>g}, p ns past constraint, f means future
constraint, A m ty constraint, eb means unwanted

.., my,} is the unw
m,) is the wanted
{nop, strict}, where

pessage set and g=(my, my, ...,
ted message sequence. op €
ang), loose order whereas strict
means strict order. {raee "SUDC, IVT}, where VC
means the set of validat ontinuationgs, UDC the set of
undecided continuations and IVT thg
traces, since there is no continuatio
message set exchanged by differe

means finite traces whereas o™ means igfinite traces. Since
we cannot monitor infinite traces, in en the
bound of a trace reach a particular large nhu view it
as infinite trace. /® means the trace cafi be Wi d

infinite. In the following, we define the™denotatio
semantics of PSC.

9.1.1 Basic semantics: A.1.1-A.1.9 relate to th
denotational semantics of Regular messages. Note that
regular message does not have invalidated trace set since it
does not need to happen.

A.1.1 Regular message without constraint:

[[(<esa, C, C, A A>,nop)]]'C = {a-lla € (L\{1})*]
[[(<e,a, C, C, A A>,n0p)]]"C = |ala € (L\{1})"")
A.1.2 Regular message with strict operator:
[(<e:,a, C,C', A, A>, strict)]]VC = {1}
[[(<e:a, C, C', A A>, strict)]]"°C = {ala € (L\{1})"}
A.1.3 Regular message with past unwanted constraint:
[[(<e,a, C,C, ob,A>,n0p)]]"C = {a-lla € (L\b)'}

[[(<e:,a, C,C, ob, \>, nop)]]""°

_ {a|a € (L\»)[) <L\l>>*'°°}

A.1.4 Regular message with future unwanted constraint:

[[(<e:, a, C,C', A, «b>, nop)]]¥¢
={a-1-Bla € (L\{I})* A B E (L\b)"}

[[(<e:a, C,C, A ob>,nop)]]"’¢ = {a} U {B-1-v}
where (a € (L\{1})*) A (B € L\1})*) A (v € b71%)

The set of traces is an abbreviation of the set of traces
{ala € CNIDTFULB-1- YIB € L\{I)* Ay E 7™} We
will use this kind of abbreviation in the rest of the Appendix.

A.1.5 Regular message with strict operator and future
unwanted message constraint:

[[(<e:a, C, C, A b>,strict)]VC = {I- BIB € (L\b)*}

[(<e.a C, C, A b>,stric)]]"PC = {a} | J {17}
where (a € (L\{1})"'™) A (v € b1%)

A.1.6 Regular message with past unwanted chain constraint:
(see equation at the bottom of the page)

[(<e:a,C,C', #>,1>,nop)]]""" =
OB m- B U8 By By my v
e (L\{m;})" AB; € (L\{mi})*‘m/\l §i§n)A

(vl (@)

A.1.7 Regular ith past wanted chain constraint:

(<ena C,C, == 0)]]1v¢
Z{Bl'ml'ﬁz'm ~y-1B;
€ (L\{m;})* Al L\{a}")

[[(<e:,a,C,C', =>, x>, nop)]]'""°

=B ULB-mi-B - UIB -mi®Bs -
U{B/l'ml'BIZ B,-m,- v
where (B; € (L\{m})" AB, € (L\{m;})"™ Al 51’5;1) A

(ye (L\{a}*'™)

A.1.8 Regular message with future unwanted chain

[[(<e:a C,C, #>, 1>, nop)]]"C

:{Bl'l}U{Bl'ml'IBZ'Z}U"'U{BI'ml'BZ‘mZ""'Bn—l'mn—l'y'l}
where (B, € (L\{m;})'Al <i<n—1A(yeE @L\{}")

244
© The Institution of Engineering and Technology 2013

IET Softw., 2013, Vol. 7, Iss. 4, pp. 222-248
doi: 10.1049/iet-sen.2012.0047

constraint:

[(<e:sa,C,C' A, #>>,nop)]]"¢

- {a'l}U{a'l'Bl .ml}U{a.ml B, 'Lz}

U"'U{Q'Z‘Bl‘ml'ﬁz'mz By -m,_,}
where (a € (L\{})") A(B; € (L\{m;}) Al <i<n)

[(<e:,a,C,C', A, #>> nop)]]V"¢

BBy Bn'mn'l'Y}
YA (o € W\ A
(B;€(L\{ <i<n)A(yEL™)
A.1.9 Regular messz@ wanted chain constraint:
[[(<eya,C,C' A =>> p;ﬁ

{a‘l'Bl'ml‘Bl""z B, -m,|a
ABEUN{m) Al <i<n

[[<€ a,C, C A, =>> nop)]]UDC_{
U{alﬁl/ml,BZU Ual,@l,. ;

where (a € (L\{I})"°) A (d € (L\{1})Y)
(B € L\{m)™ ABE AL\{m;}) Al<i<n—1)

A.1.10-A.1.18 relate to the denotational semantics of

Required messages.
A.1.10 Required message without constraint:

[(<ra, C,C,AA>, n0p)]]VC = {a-l|a € (L\{1})"}
[[(<r,a, C, C, A x>, n0p)]]"°C = {ala € (L\{1})*}
[(<ria, C,C A A>,nop)]]V" = {ala € (L\{1})"}
A.1.11 Required message with strict operator:
[[(<r,a, C, C, A A>, strict)]]VC = {1}
[[(<r, a, C, C, A, A>, strict)]]VP¢ = {&}

[(<r:a C,C, A A>, strict)]]VT = {ala € (L\{1})"}

www.ietdl.org

A.1.12 Required message with past unwanted constraint:
[(<ria, C, C,ebA>,n0p)]]'" = {a-l|a € (L\D)"}
[[(<r:,a, C,C', eb, A>, nop)]]">°

= {ala e @\
[[(<r:a,C,C, ob, x>, nop)]V" = {8} J{a v} where
(BED*)A(a €EUL\D) Ay E (L\2)7)

A.1.13 Required message with future unwanted constraint:

[[(<ria,C,C,A eb>, nop)]]'¢
={a-1-Bla € L\{1})" ABE (L\D)}
[(<r:a,C,C, A, ob>,n0p)]]""C = {ala € (L\b)*}

[[(<r:a, C,C, A, ob>,nop)]"'"
={a-1-BlaE@\{1})* ABE D'

A.1.14 Required message with strict operator and future
unwanted message constraint:

[(<r.a,C,C,A ob>,strict)]]VC = {I- Bla € (L\b)*}
[[(<ri,a,C, C,A ob>, strict)]]"PC = {a}

[[(<r:,a,C,C, A, ob>, strict)]]"VT

AN} {18y, where (a € I\{1})) A (BE DY)

zred message with past unwanted chain
(se equation at the bottom of the page)

A.1.16 Réquired Bessdge with past wanted chain constraint:

[([(<r, a, C, GF= A>, nop)|]VC={By my By my-
o Bmy W e m})*/\l<l<n/\yE(L/{l})*}
[[(<r,a CC g A>_di =1{B} UBi-

my - By} U U Bi-my -
(ﬁ,e(L/{m})*/\(1<t<n
[(<rya, C, C, _>g,

mp - Bz}U U

| -m,_; - v}, where
b

={B U{B
y -y}, where (B; €

[(<r,a, C,C, #>g, A>,nop)]]'C =

{,81 Z}U{.Bl'ml'Bz'l}U{Bl'ml'Bz'mz'“" n—

where (B; € (L\{m,-}) Al<i<n—1)A(yE @)

[(<ra,C,C, #>g, A>,nop)]]""" =
where ((8; € (L\{m;})" A(1 <i<n))A

{BI}U{Bl -m, "BZ}U"'
(v € L\{a}))

U{Bl By Buoy - m,_y 7}

(<r,a C, C, #>g, 2>, nop)]"" =
U{Bl‘ml‘ﬁzBn'mn‘Y}
where ((8; € (L\{m;})" A(1 <i<n)) A

IET Softw., 2013, Vol. 7, Iss. 4, pp. 222-248
doi: 10.1049/iet-sen.2012.0047

{B V}U By-my-By-y

(v € @\{I)”)

245
© The Institution of Engineering and Technology 2013

www.ietdl.org

constraint:
[(<r,a C, C, #>g A>,nop)]]'C A.1.19 Fail message without constraint:
= ta-fJa-1-pr-m} a1 Brom - Bymy)
Ul By oy By ey By oy) [[(<f a. €. € A A>), nop)]]* = {ala € (L\(1)))

where @ € (L\{I}) A (B, € (L\{m})* A(1 =i < n)

([(<r,a C, C, #>g A>,nop)|]">C (<20 € €A A=), mop)I T = el € LAY)
= {a} | J{ He-1-80-m - B2}

~Ufe. oy By Boy-myy) [[(<f:a C, C,AA>),nop)]V" = {a-lla € (L\{1})}
where o € (L

\ ; € (L\{m;})" Al <i<n)
A.1.20 Fail message with strict operator:
[[(<r.acC, fnop)]]“

={a | {1 - B®m, - B, -m @ - B, m,}

[(<f:a, C, C, A A>), striet)]]VC = {ala € (L\{1})*}

A.1.18 Required message Wi nted chain
constraint:

[[(<f: a, C, C', A A>), strict)]]"P¢ = {&}
[(<rya, CC A =>g>, nop)]1"
={a-1-By-m-By-my--- B, -mla &

AB EI\{m}) Al <i<n—1 L(<f:a, C,C, A A>), strict)]]VT = {1}

6 : Fail message with past unwanted constraint:
[[(<ra,C, C, A =>g>,nop)]"™ se WP

= {a}(Jla-1-B [Na-1-8-mi -8} /, Y
ob, A> nop)]]" " ={B}H J{ +, where
"'U{a'l'Bl'm1'Bz By My} y a-y
e
where (a € (L\{I}))A(B; €E L\{m})" Al <i<n-—1) P

[(<r:a, C,C, A =>g>,nop)]""

={a}| {1 Bl 1By B}
"U{a/'l'Bl"ml’BZ"""Bn—l “m,)
where o € (L\{l})°° Ad E (L\{l})* AB; E (L\{mi})°°

[[(<f:a,C, C,eb A>, nop)l" \b)*
(By €E L\{m;})" A1 <i<n)
A.1.19-A.1.23 relate to the denotational semantics of Fail wmt

A.1.22 Fail message with past unwante
messages. (see equation at the bottom of the page)

[[(<f:a,C,C, #>g, A>,nop)]]'"

={B B m BB By B, mJ{Br-m By B,-m,- v}
where (B, € (L\{m;})* A(1 <i<n—1)A(yE L\I))

[[(<f:a C,C, #>g, \>,nop)]]"*

=B rUB m- U UBm By But-m, v}
where (B, € (L\{m;})* A (1 <i<n—D)A(yE L\ID)

246

IET Softw., 2013, Vol. 7, Iss. 4, pp. 222-248
© The Institution of Engineering and Technology 2013

doi: 10.1049/iet-sen.2012.0047

www.ietdl.org

Table 5 Correspondence between denotational semantics and operational semantics of PSC

denotational semantics A.1.1 A.1.2 A.1.3 A.1.4 A.1.5 A.1.6 A1.7 A.1.8 A.1.9
operational semantics ER1 ER2 ER3 ER4 ER5 ER6 ER7 ER8 ER9

denotational semantics A.1.10 A1.11 A.1.12 A.1.13 A.1.14 A.1.15 A.1.16 A.1.17 A.1.18
operational semantics RR1 RR2 RR3 RR4 RR5 RR6 RR7 RR8 RR9

denotational semantics A.1.19 A.1.20 A.1.21 A.1.22 A.1.23 A.2.1 A.2.2 A.2.3 A2.4
operational semantics FR1 FR2 FR3 FR4 FR5 Def 4 Def 5 Def 6 Def 7
denotational semantics A.25

operational semantics Def 8

A.2.3 Alt operator: Alt(P ARAN LT) r), where
o', W22 . @™ means r part alternatives. The
deﬁnltlon of Alt operator can be composed by Merge and
Alternative composition.

[[Alt(wiu/l’ wizaf2’ o wi,,j,,’ r)]]trace [[[[wzl,jl]trace®
[[wizzfz]] R ® [[wi,,j,]].trace]]trace’ where

where (B, € (L\{m;})") o, € (L\{m) AL < i< m) A \ trace
(ve (Lg{z})“’)) [/ 1] = [[msgik]] ®[[msgik+l]] Q...
[[(<f:a C,C, =>g A>,no0 ® [[msgjk]]tmce(l <k<r)

Z{IBI}U{BI'ml'BZ}U"'
U{Bl My By B, -m, .7}
where (B8, € (L\{m;})" A(1 <i<n) A(yE (I

A2.4 Par operator: Par(o"’', w2, ..., ", r), where
o, @22 o means r parts to parallel. The
definition of Par operator can also be composed by Merge
([(<f:a,C C,=>g, A>,nop)]"" nd Alternative composition.

={B,-m-By-my--- B,-m,-y-11B; € (L\{m;})"

Al<i<nAy€ (L\{]})* (wih/l , winz’ o wi"j’, r)]]trace _ [[[[wilJl]]trace

@lb 72 . ®[[wi"um(PaI)’j”um(Par)]]trace]]mce, where

[[Sg,'k]]tmce®[[msgik+l]]trace@) o

9.1.2 Compositional semantics: A2.1 ‘Merge’
operator is used to compose the denotational semantics of
two continuous messages. The semantics can be defined as
follows: (see equation at the bottom of the page)

[[msg, - msg,]]"¢ = [[msg,1]""° (] [[msg,1]""°

[[msg, - msg,]]""" = [[msg,]]"V" U [[msg, 1" A.2.5 Loop operator: Loop(w, is the loop body and m

and n are the lower and upfer boun of loop, respectively.

A.2.2 ‘Alternative’ operator is used to compose the The definition of Loop opgrato iSO bel jcomposen(_lacl)y

denotational semantics of two alternative messages. The Mergie; a&geAltemafl}’etggm 3 ogp(e"’, l’;l n’;)‘:]e] aes

semantics can be defined as follows: [[El[w’ M @ 2[e™]]™ ® - (™11,
where

VvC _ vC vC
[[msg; ® msg,]]V" = [[msg, 1]V [[[msg,]] L™ = (ms ™ - (imse@L

[[msg; ® msg,] = [[msg 117> (] [Imsg, 11" ([msg ™1 <k <m—n+ 1)

[[msg, ® msg,]]""" = [[msg,]]""] [[msg,]"""

e o L N 01 MY | |
Based on Merge and Alternative, the operators Alt, Par and k times
Loop can be defined as follows:

[[(<f:a C, C, #>g A>,nop)]""
= [31 'I]U{Bl smy '32'1}U{51 cmy By emy - B,y 'mn—1'7'l}
where (8, € (L\{m;})" A (1 <i<n)A(yE L\

[[msg, ‘mng]]VC = {0‘1 capla) € [[mSgl]]VC ANa, € [[mng]]VC}

IET Softw., 2013, Vol. 7, Iss. 4, pp. 222-248 247
doi: 10.1049/iet-sen.2012.0047 © The Institution of Engineering and Technology 2013

www.ietdl.org

9.2 Consistency between denotational and
operational semantics of PSC

Theorem 1: Given a PSC composed by basic rules and
operational rules, the denotational semantics and operational
semantics are consistent. In detail, it means that:

o The traces accepted by the glue states of FAs of operational
semantics equal the validated continuations defined by
denotational semantics.

e The traces accepted by the intermediate states of FAs of

d by the accepting states of FAs of

operational semantics the invalidated traces defined

by denotational sem @

acy between
ics of basic
constraints). This
basi rational

semantics to basic denotational semantics. shows
the corresponding relations between operatignal ics
and denotational semantics of basic messages. u

A.1.1 and ER1 as an example.

A.1.1 & ER1

According to the FA generated by ERI1, the finite traces
accepted by the glue state can be described by the
following regular expression: (1) -I=(L/{I}) -1, which
equals [[a.11]VC = {arlla € (L/{I})"}. That is to say, the
traces accepted by the glue states of FAs of operational
semantics equal the validated continuations defined by
denotational semantics.

According to the FA generated by ER1, the finite traces
accepted by the intermediate state can be described by the
following regular expression: (!/)* = (L/{/})*°, which equals
[[a.17]"P¢ = {aa € (L/{I})®}. That is to say, the traces
accepted by the intermediate states of FAs of operational
semantics equal the undecided continuations defined by
denotational semantics.

248
© The Institution of Engineering and Technology 2013

Other rules can be proved in a similar way.

e The second step is to prove the consistency of Merge and
Alternative composition. According to the definition of
operational semantics, Merge composition keeps the
accepting traces of other states and deletes the glue state of
the previous state. Consequently, the accepting traces of the
glue states of the newly generated FA is the connection of
those in the two FAs. The accepting traces of other states of
the new generated FA are the union of those in the two
FAs. This is the same as the definition of denotational
semantics of Merge. According to the definition of
operational semantics, Alternative composition alternatively
selects the accepting traces of those in the two states.
Consequently, the accepting traces of the states of the new
generated FA is the alternative selection of those in the two
FAs. This is also the same as the definition of denotational
semantics of Alternative.
e The third step is to prove the consistency of operators Alt,
Par and Loop. According to the operational semantics, Alt
operator first uses Merge composition to generate k
alternatives, then repeatedly uses Alternative composition to
generate the final FA. Consequently, the validated traces,
undecided traces and invalidated traces are alternative
selection of these r parts, which is the same definition of
denotational semantics. According to the operational
semantics, Par operator first uses Merge composition to
generate num(Par) alternatives, then repeatedly uses
lternative composition to generate the final FA.
onsequently, the validated traces, undecided trace and
inv@lidated trace are alternative selection of these num(Par)
is the same definition of denotational

uses Merge composition to generate one

peatedly uses Alternative composition to
F onsequently, the validated traces,
invalidated trace are alternative
+1 parts, which is the same
semantics.

generate fin
undecided! trace
selection
definition of d

prove that the PSC
ssand operational rules
ofational semantics.
Consequently, Theorem 1 is pré

IET Softw., 2013, Vol. 7, Iss. 4, pp. 222-248
doi: 10.1049/iet-sen.2012.0047

