

Software Engineering Group
Department of Computer Science
Nanjing University
http://seg.nju.edu.cn

Technical Report No. NJU-SEG-2013-IJ-005

2013-IJ-005

Scope Logic: An Extension to Hoare Logic for Pointers and

Recursive Data Structures

 Jianhua Zhao, Xuandong Li

Theoretical Aspects of Computing–ICTAC 2013

Most of the papers available from this document appear in print, and the corresponding copyright is held by the

publisher. While the papers can be used for personal use, redistribution or reprinting for commercial purposes is

prohibited.

http://seg.nju.edu.cn/

Scope Logic: An Extension to Hoare Logic

for Pointers and Recursive Data Structures �

Zhao Jianhua and Li Xuandong

State Key Laboratory of Novel Software Technology
Dept. of Computer Sci. and Tech. Nanjing University

Nanjing, Jiangsu, P.R. China 210093
{zhaojh,lxd}@nju.edu.cn

Abstract. This paper presents an extension to Hoare Logic for pointer
program verification. The main observation leading to this logic is that
the value of an expression e depends only on the contents stored in
a finite set of memory units. This set can be specified using another
expression (called the memory scope of e) constructed syntactically from
e. A set of construction rules are given in this paper for expressions
which may contain recursive functions (predicates). It is also observed
that the memory scope of e is a super set of the memory scope of the
memory scope of e. Based on this, local reasoning can be supported using
assertion variables which represent arbitrary assertions. Program-point-
specific expressions are used to specify the relations between different
program points. Another feature of this logic is that for formulas with
no user-defined functions, the weakest-preconditions can be calculated
w.r.t. assignments.

1 Introduction

Hoare Logic[1] can not deal with pointer programs because of pointer alias, i.e.
many pointers may refer to one memory location. Some extensions to Hoare
Logic have been made to deal with pointers or shared mutable data structures
[2][3][4]. Among them, Separation Logic is the most successful one. In that logic,
the separation-conjunction connective ∗ is introduced to specify that two asser-
tions hold on disjoint subheaps respectively. Based on this, heap-manipulation
programs can be specified and verified. An important advantage of Separation
Logic is that it supports local reasoning. However, Separation Logic is counter-
intuitive to some extent. This may cause some difficulties to software engineers.
For example, a programmer may use isList(p)∧isList(q) to specify that both
p and q point to lists. However, in Separation Logic, it also means that isList(p)
and isList(q) hold for the exact same heap, which implies that p and q point
to the same list. It is also difficult to use many existing logic tools designed for
conventional first order logic because of the new logical connective and the new
semantic of conventional connectives.

� This paper is supported by the Chinese National 863 Project, NO.2011AA010103

Z. Liu, J. Woodcock, and H. Zhu (Eds.): ICTAC 2013, LNCS 8049, pp. 409–426, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

For Research Only

410 J. Zhao and X. Li

Weakest precondition calculation is useful for code verification. Using the
weakest precondition calculation, a program specification {p} s {q} can be re-
duced into a logical formula p ⇒ WP(q, s), where WP(q, s) means the weakest
precondition of s for q. However, the weakest precondition calculation in Sepa-
ration Logic is hard to deal with using conventional logic tools, because of the
separating implication −∗ and the quantifications in the preconditions.

This paper presents another extension to Hoare Logic for verification of pointer
programs with recursive data structures. This logic use conventional logical con-
nectives only. Program states are specified by FOL formulas augmented with
user-defined recursive functions.

The main observation leading to this logic is that the value of an expression
(or a formula) e, which may contain recursively defined functions, depends only
on the contents stored in a finite set of memory units. We present a set of rules
to syntactically construct an expression (called the memory scope of e, denoted
M(e)) to express this set. The value of e keeps unchanged if no memory unit in
this set is modified by program statements. Another important property of the
memory scopes is that a memory scope expression is the super-set of its memory
scope. Based on this, our logic supports local reasoning using assertion variables.

Besides establishing that some properties hold at a given program state, peo-
ple are also interested in how the values of variables and recursive data structures
are changed by the program. Using program-point-specific expressions, we can
specify and verify relations between different program points (states). Weakest
precondition calculation is also supported in our logic for a large set of formulas
w.r.t. assignment statements, using program-point-specific expressions.

This paper is organized as follows. We first describe the syntax of programs
and specifications in Section 2. A set of axioms are introduced in Section 3 to
model memory access and layout in pointer programs. In Section 4, we intro-
duce the concept of memory scopes. The rules to syntactically construct memory
scopes are given in this section. Two important properties about memory scopes
are also discussed. The axioms and proof rules about program statements are
given in Section 5. In Section 6, the weakest precondition calculation of assign-
ments are discussed. Section 7 discusses how to support local reasoning using
assertion variables. A brief description of our supporting tool is given in Sec-
tion 8. Section 9 concludes this paper.

2 The Syntax of Programs and Specifications

2.1 The Type Systems and Expressions

The small program language used in this paper is strongly typed. Each expres-
sion has a static type. The following types and their operators can be used in
programs. Their meanings are similar to those in the C language.

1. The integer type (int) and the boolean type (bool). Operators of these basic
types can be used in programs.

For Research Only

Scope Logic: An Extension to Hoare Logic 411

2. Array types. Let t be a type and c be a positive integer constant, ARR(t, c)
is an array type. Given an expression e with type ARR(t, c) and an integer-
typed expression ei, e[ei] is an expression with type t. It means the ethi
elements of e if 0 ≤ ei < c.

3. Record types. Let t1, . . . , tk be types, and n1, n2, . . . , nk be k different names,
REC((n1, t1), . . . , (nk, tk)) is a record-types. Let e be an expression of this
record type, e.ni is an expression with type ti. It means the field ni of e.

4. Pointer types. Let t be a type, P(t) is a pointer type. Ptr is the super type
of all pointer types. The symbol nil is used to represent the null pointer. Let
e be an expression with type P(t).
– The type of ∗e is t.
– If t is a record type REC((n1, t1), . . . , (nk, tk)), e → ni and (∗e).ni are

expressions with type ti. These two expressions are equivalent.
– If t is an array type ARR(t, c), (∗e)[ei] is an expression with type t if ei

is an expression with type int.

We can also define user-defined types using the form name := type. In such a
definition, P(name) can appear in the right-hand to define recursive data types.

Example 1. The following is the definition of the node type for binary trees.

Node = REC((l,P(Node)), (r,P(Node)), (K, int))

Let v be a program variable with type Node, the expression v.l→K represents
the field K of the left-child of v. �

2.2 The Syntax of Program Statements

The small program language has three kinds of primitive statements (skip, as-
signment, and memory allocation) and three kinds of control-flow statements
(sequence, selection, and repetition). The syntax of statements is as follows.

st ::= skip | e1 := e2 | e := alloc(t) | st; st | if (e) st else st | while (e) st

The statement skip does nothing. The statement e := alloc(t) allocates a new
t-typed memory block, and stores the reference to this block into the memory
unit referred by L-value of e. The statement e1 := e2 stores the value of e2
into the memory unit referred by L-value of e1. The semantic of control-flow
statements are same as those in C. For an assignment e1 := e2, the type of
e1 and e2 must be the same and must be int, bool, or a pointer type. For a
memory allocation statement e := alloc(t), the type of e must be P(t). For
while-statements and if -statements, the type of e must be bool.

Example 2. A program is depicted in Fig. 1. The first two lines declare program
variables k, root and pt respectively with type int and P(Node), where Node is
the type defined in Example 1. This program searches a binary search tree for
a node of which the field K equals k. The program variable pt is nil if no such
node is found, otherwise it points to the node in the tree. �

For Research Only

412 J. Zhao and X. Li

int k;
P(Node) root, pt;
pt:=root;
while (pt �= nil ∧ pt→K �= k)

if (k < pt → K)
pt := pt → l

else
pt := pt → r;

Fig. 1. A program

2.3 The Syntax of Formulas and Specifications

The Syntax of Formulas. All program expressions with type bool can be
used as formulas. For example, p → K ≥ 0 is a formula. Besides, formulas
can also use the operators associated with some abstract types, like finite sets
(SetOf(t)) and finite lists (ListOf(t)). User-defined recursive functions can also
be used in formulas. There are also some new kinds of expressions (formulas) as
follow.

1. A free variable x. It is used in expressions of the form λx.e1[e2] or ∀x ∈ e1.e2
and the right-hand of function definitions.

2. The reference operator &. Given an expression e, &e gives the L-value (ad-
dress) of e. Here, e must be a program variable, ∗e1, e1.n, e1 → n, or e1[e2]
for some expressions e1 and e2.

3. Conditional expressions e0?e1 : e2. Here e0 is called the guard of this expres-
sion. The type of e0 must be bool, and e1 and e2 must have the same type.
The type of this expression is the type of e1(or e2). If e0 evaluates to true,
the value of e0?e1 : e2 is that of e1; otherwise, the value is that of e2.

4. Universal quantifier over a set ∀x ∈ e1.e2. The type of x, e1, e2 must be t,
SetOf(t) and bool respectively for some t. The variable x can only appear
in e2. The expression ∀x ∈ e1.e2 means that for all elements x in e1, e2 holds.

5. Set-image expressions λx.e1[e2]. The type of e2 must be SetOf(t) for some
t. The t-typed free variable x can only appear in e1. Let t

′ be the type of e1,
the type of λx.e1[e2] is SetOf(t′). This expression means the set {e1|x ∈ e2}.

6. Union expression
⋃
e. The type of e must be SetOf(SetOf(t)) for some t.

The type of
⋃
e is SetOf(t).

⋃
e means the set {x|∃s.(x ∈ s ∧ s ∈ e)}.

7. Program-point-specific expressions e@i. It is required that e contains no free
variables. Such expressions are treated as special constant symbols in our
logic. The next sub-subsection will give more details.

Example 3. Three recursive functions are defined in Fig. 2. NodeSet(x) yields the
node set of the binary tree with root node x. The function isHBST(x) asserts
that x is the root of a binary search tree. KeySet(x) yields the set of keys stored
in the binary search tree.

For Research Only

Scope Logic: An Extension to Hoare Logic 413

The formula ∀x ∈ NodeSet(root → l).(x → K < root → K) says that all
the keys in the left-subtree is less than the key in the root node. The formula
&pt→K ∈ (λx.(&x→K)[NodeSet(root)]) says that the address of pt→K is
in the set of addresses of the field K of the nodes in the tree. From the axiom
REC-2 presented later, this formula is equivalent to pt ∈ NodeSet(root). �

NodeSet(x : P(Node)) : SetOf(P(Node))

� (x = nil)? ∅ : ({x} ∪ NodeSet(x → l) ∪ NodeSet(x → r))
isHBST(x : P(Node)) : bool

� (x = nil)?true : isHBST(x → l) ∧ isHBST(x → r)∧
∀y ∈ NodeSet(x → l).(y → K < x → K)∧
∀y ∈ NodeSet(x → r).(y → K > x → K)

KeySet(x : P(Node)) : SetOf(int) � λx.(x → K)[NodeSet(x)]

Fig. 2. A set of recursive functions

The Syntax of Specifications. In our logic, specifications and verifications are
written in the proof-in-code form. Formulas are written at program points, which
are places before and after program statements. For a sequential statement s1; s2,
the point after s1 is just the point before s2. All the program points are uniquely
numbered. A program goes through program points during its execution. A
formula at a program point means that each time when the program goes to this
point, the formula is evaluated to true.

When we concern only one statement s of the program under verification, the
specification can be written as the following Hoare-triple.

{i : P} s {j : Q}

Here, i and j are respectively the program point numbers before and after s. We
can write the specification as {P} s {Q} if the point numbers are irrelevant.

A program point j is said to dominates a point i if the program must go
through the point j before it goes to the point i. For the language used in this
paper, j dominates i if one of the following conditions holds. (I) j = i or there is
a point k such that j dominates k and k dominates i; (II) j is before a statement
s and i is a point in s or the point after s.

Given two program points i and j such that j dominates i, we can write e@j
at the program point i. It represents the value of e evaluated at the point j when
the program was at the point j the last time.

At any program point i, a program-point-specific expression e@i equals to
e if e is meaningful at this point. Because each program point is either before
or after a statement, the following axiom PST specifies this property. In this
axiom, e and e′ represent two arbitrary expressions. It is required that e and e′

are meaningful respectively at the point i and j.

(PST) {i : e = e@i} s {j : e′ = e′@j}

For Research Only

414 J. Zhao and X. Li

Program-point-specific expressions should be viewed as a naming convention for
constant symbols. At a point i other than j, a program-point-specific expression
e@j is treated as a constant symbol. We should not infer properties from the
structure of e@j.

Example 4. The program points, together with some formulas, of the program in
Fig. 1 are depicted in Fig. 3. The entrance program point and the exit point are
respectively 1 and 10. The formula isHBST(root) at point 1 is the precondition
of this program, while the formula at point 10 is the postcondition.

The formula at point 8 says that k is in the key set of the right sub-tree of p
evaluated at point 7 if and only if k is in the key set of the initial binary tree.

At point 6, the property pt = (pt → l)@5 holds because of the assignment
pt := pt → l. However, it does not imply pt = pt@5 → l. To prove this property,
we should prove that (pt → l)@5 = pt@5 → l holds at point 5 using the axiom
PST. This formula is not affected by the assignment, so it also holds at point 6.
Now pt = (pt → l)@5 and (pt → l)@5 = pt@5 → l imply pt = pt@5 → l at 6.

Because point 5 does not dominate point 8, the formula k ∈ KeySet(root)@5
can not appear at point 8. �

{1: isHBST(root)}
pt:=root;
{2: (k ∈ KeySet(pt)) = (k ∈ KeySet(root)@1)}
while (pt→K �= k)

{4: pt→K �= k ∧ (k ∈ KeySet(pt)) = (k ∈ KeySet(root)@1) }
if (k < pt → K)

{5: pt = pt@5 ∧ pt → l = (pt → l)@5 ∧ (pt → l)@5 = pt@5 → l}
pt := pt → l
{6: pt = (pt → l)@5 ∧ (pt → l)@5 = pt@5 → l ∧ pt = pt@5 → l}

else
{7: k > pt → K ∧ (k ∈ KeySet(pt → r)) = (k ∈ KeySet(root)@1)}
pt := pt → r;
{8: (k ∈ KeySet(pt → r)@7) = (k ∈ KeySet(root)@1)}

{9:(k ∈ KeySet(pt)) = (k ∈ KeySet(root)@1) }
{10:pt = nil?k �∈ KeySet(root)@1 : (k ∈ KeySet(root)@1 ∧ pt → K = k)}

Fig. 3. A proof-in-code specification

3 The Memory Model and the Axioms about Memory
Access Operators

In this section, we describe the memory model on which the programs execute.
The memory consists of a set of addressed memory units. Each memory unit
has a unique address and stores an integer, a boolean value, or a pointer. So the
memory can be viewed as a map from addresses to int, bool, or Ptr.

For Research Only

Scope Logic: An Extension to Hoare Logic 415

Composite type data (either arrays or records) are stored in memory blocks.
Each memory block is composed of sub-blocks and/or memory units for its
component data. Each memory block has also a unique address. However, the
memory model does not directly map block addresses to values. Instead, the
block addresses are used to derive the addresses of its sub-blocks or units. Given
the address r of a memory block, the address of its components can be derived
using expressions &r → n (if r refers to a record block and n is a field name) or
&(∗r)[i] (if r refers to an array block and i is an integer). The values of &r → n
and &(∗r)[i] depend only on the values of r and i. They are irrelevant to the
contents stored in the memory block.

Example 5. Suppose that a memory block with address p stores a Node-typed
data. This block is composed of three memory units for the fields l, r, and K.
The addresses of these units are respectively &p → l, &p → r and &p → K. �

(DEREF-REF) ∗&e = e (REF-DEREF) e �= nil ⇒ & ∗ e = e

(PVAR-1) &v �= nil (PVAR-2) &v1 �= &v2
(PVAR-3) &v �= &r → n (PVAR-4) &v �= &a[i]

(REC-1) r �= nil ⇒ &r → n �= nil
(REC-2) (r1 → n = r2 → n) ⇔ (r1 = r2) (REC-3) r1 → n1 �= r2 → n2

(ARR-1) a �= nil ∧ (0 ≤ i < c) ⇒ &((∗a)[i]) �= nil
(ARR-2) (&((∗a1)[i1]) = &((∗a2)[i2])) ⇔ (a1 = a2 ∧ i1 = i2 ∧ 0 ≤ i1, i2 < c)

(ARR-REC) &a[i] �= &r → n

In these axioms, the type of r, r1, r2 are pointers to some record type and n, n1 and n2

are field names such that n1 and n2 are different. The type of a, a1, a2 are ARR(t, c)
for some t and c. i, i1, i2 are integers. The expression e in DEREF-REF must be of
the form v, ∗e1, e1.n, e1 → n or e1[e2].

Fig. 4. The axioms for memory layout and memory access

The axioms depicted in Fig. 4 are used to specify the addressing operator &, the
memory access operator ∗, and the memory layouts for composite types.

The operators & and ∗ are inverse to each other. This is described by the
axioms DEREF-REF and REF-DEREF.

Each program variable is assigned a unique memory block (or memory unit).
Furthermore, the memory block (unit) is not a component of any other blocks.
So we have the axioms PVAR-1, PVAR-2, PVAR-3 and PVAR-4.

Given a non-nil reference to a composite block, all the references to its sub-
blocks or units are non-nil. So we have the axioms REC-1 and ARR-1. The
axioms REC-2 and ARR-2 say that different components of a composite block

For Research Only

416 J. Zhao and X. Li

has different addresses. The axioms REC-3 and ARR-REC say that a component
block/unit uniquely belongs to at most one enclosing memory block.

These axioms can be used to simplify expressions containing the addressing
operator &. For example, the formula &pt→K ∈ (λx.(&x→K)[NodeSet(root)])
can be simplified to an equivalent formula pt ∈ NodeSet(root).

4 Memory Scopes of Expressions and Functions

4.1 Memory Scopes of Expressions

An expression emay have different values before/after the execution of a program
statement. However, the value of e depends only on the contents stored in a
finite set of memory units. This set can be expressed using another expression,
called the memory scope of e, denoted as M(e). We now show that M(e) can be
constructed syntactically.

If e is of the form f(e1, . . . , en), where f is a function/operator other than
∗,&, [], .,→, the memory scope M(e) is M(e1)∪ . . .∪M(en)∪M(f)(e1, . . . , en),
where M(f) is the function to compute the memory scopes of applications of f .

1. If f is an algebraic operator (e.g. +,-,. . .), a boolean operator, or other
abstract operators, M(f) is a constant function which always yields ∅.

2. If f is a user-defined function (predicate), the definition of M(f) can be
derived syntactically from the definition of f , see next subsection.

The memory-scope-construction rules for other kinds of expressions are given in
Fig. 5. The third column is used in the proof of an important property about
memory scopes presented in Subsection 4.3.

Note that the memory scope of e@i is ∅. The reason is that e@i is viewed as
a constant symbol of which the value is irrelevant to the current program state.

Example 6. Given a type ARR(ARR(REC((int, f1), (int, f2))), 100), 100)
and a program variable a of this type. The memory scope of a[i][j].f1 is con-
structed as follow.

M(a[i][j].f1) = M(&a[i][j]) ∪ {&a[i][j].f1} = M(&a[i]) ∪ {&j} ∪ {&a[i][j].f1}
= M(&a) ∪ {&i} ∪ {&j} ∪ {&a[i][j].f1} = {&i} ∪ {&j} ∪ {&a[i][j].f1}
This means that the value of a[i][j].f1 keeps unchanged if the contents stored in
the memory units &i, &j, and &a[i][j].f1 are not modified. �

4.2 Memory Scope of User-Defined Functions

Given a user-defined function f , we abuse the notation M and use M(f) to
denote the name of the memory scope function of f . The formal parameters
of M(f) is the same as those of f . The return type of M(f) is SetOf(Ptr).
Intuitively speaking, M(f)(x1, . . . , xn) yields the set of memory units accessed
during the evaluation of f(x1, . . . , xn). Let f(x1, . . . , xn) � e be the definition
of f , the definition of M(f) is as follow.

M(f)(x1, . . . , xn) � M(e)

For Research Only

Scope Logic: An Extension to Hoare Logic 417

Expressions Memory Scopes Memory Scopes of Memory Scopes

a constant c ∅ ∅
free variable x ∅ ∅

e@i ∅ ∅
&v ∅ ∅
& ∗ e M(e) M2(e)

&e1[e2] M(&e1) ∪M(e2) M2(&e1) ∪M2(e2)

&e.n M(&e) M2(&e)

&e → n M(e) M2(e)

v {&v} ∅
∗e {e} ∪M(e) M(e) ∪M2(e)

e1.n {&e1.n} ∪M(&e1) M(&e1) ∪M2(&e1)

e1 → n {&e1 → n} ∪M(e1) M(e1) ∪M2(e1)

e1[e2] {&e1[e2]} ∪M(&e1) ∪M(e2) M(&e1) ∪M(e2) ∪M2(&e1) ∪M2(e2)

e0?e1 : e2 M(e0) ∪ (e0?M(e1) : M(e2)) M2(e0) ∪M(e0) ∪ (e0?M
2(e1) : M

2(e2))

e1 ∧ e2 M(e1) ∪ (e1?M(e2) : ∅) M2(e1) ∪M(e1) ∪ (e1?M
2(e2) : ∅)

e1 ∨ e2 M(e1) ∪ (e1?∅ : M(e2)) M2(e1) ∪M(e1) ∪ (e1?∅ : M2(e2))

λx.e1[e2] M(e2) ∪
⋃
(λx.M(e1)[e2]) M2(e2) ∪M(e2) ∪

⋃
(λx.M2(e1)[e2])

∀x ∈ e2.e1 M(e2) ∪⋃
(λx.M(e1)[e2]) M2(e2) ∪M(e2) ∪⋃

(λx.M2(e1)[e2])

NOTE: M2(e) is an abbreviation for M(M(e))

Fig. 5. The memory scope for different forms of expressions

Example 7. Let M(NodeSet) be MNS. According to the definition of NodeSet in
Fig. 2, the definition of MNS is as follow.

MNS(x) � (x = nil)?∅ : {&x → l,&x → r} ∪MNS(x → l) ∪MNS(x → r)

The above definition is equivalent to the following one.

MNS(x) � (λy.(&y → l)[NodeSet(x)]) ∪ (λy.(&y → r)[NodeSet(x)])

KeySet and isHBST have the same memory scope function M defined as

M(x) � (λy.(&y → K)[NodeSet(x)]) ∪ (λy.(&y → l)[NodeSet(x)])
∪(λy.(&y → r)[NodeSet(x)])

From the above, the memory scope of the formula pt ∈ NodeSet(root) is

{&pt,&root} ∪ (λy.(&y → l)[NodeSet(root)]) ∪ (λy.(&y → r)[NodeSet(root)])

It means that the formula keeps unchanged if the values of pt, root, and the
fields l and r of the tree nodes keep unchanged. �

4.3 Two Properties of Memory Scopes

This section presents two important properties about memory scopes.

For Research Only

418 J. Zhao and X. Li

Theorem 1. Let e be an arbitrary expression and x1, . . . , xn are free variables
in e. Given an assignment to these free variables and two program states s1, s2
such that s1 and s2 agree on all the memory units in M(e). The expression e is
evaluated to the same value at s1 and s2.

Because of the space limitation, we just give a brief proof.

1. If there is no user-defined function in e, the above conclusion can be proved
by an induction on the length of e.

2. If there are user-defined functions in e but none of these functions are recur-
sive, we can expand the function applications with their definitions to get an
equivalent expression e′. There is no user-defined function in e′, and M(e)
is a superset of M(e′). From 1, the conclusion is proved.

3. If there are recursively user-defined functions in e. Let f be such a function
defined as f(. . .) � EXP(f), where EXP(f) is an expression containing f .
Suppose that f recursively called itself n times during the evaluation of e at
the state s1, we can define n functions, f0, f1, . . . , fn as f0 �⊥, f1 � EXP(f0),
. . . , fi � EXP(fi−1), . . . , fn � EXP(fn−1), and replace f in e with fn. The
derived expression e′ equals to e at the state s1, and M(e′) is a subset of
M(e) at the state s1. From 2, e′ has the same value at the states s1 and s2.
It also can be proved that e′ and e evaluates to the same value on s2. So e
evaluates to the same value at the states s1 and s2.

Theorem 2. Let e be an arbitrary expression e such that e is meaningful at a
state s for an assignment to the free variables in e, M(M(e)) ⊆ M(e) is evaluated
to true at s.

The brief proof is as follow. Here, we use M2(e) as an abbreviation for M(M(e)).

1. If e contains no user-defined function symbols, from the table in Fig. 5, we
can prove this theorem by an induction on the length of e.

2. Let f be a user-defined function defined as f(x1, . . . , xn) � e′ and e′ con-
tains no user-defined functions. M(f(e1, . . . , en)) is M(e1) ∪ . . . ∪ M(en) ∪
M(f)(e1, e2, . . . , en);M

2(f(e1, . . . , en)) isM
2(e1)∪. . .∪M2(en)∪M(e1)∪. . .∪

M(en)∪M2(f)(e1, e2, . . . , en). Note thatM(f) andM(f) are respectively de-
fined as M(f)(x1, . . . , xn) � M(e′) and M2(f)(x1, . . . , xn) � M2(e′). From
1, we can prove M2(f(e1, . . . , en)) ⊆ M(f(e1, . . . , en)). So the theorem holds
if the functions in e are not defined with other user-defined functions.

3. We can prove by an induction that M2(f(e1, . . . , en)) ⊆ M(f(e1, . . . , en))
holds for a user-defined non-recursive function f based on 2. So the theorem
holds for expressions containing non-recursive functions.

4. Now we prove the case of recursive functions. From the definition of M,
we have the following fact: let f be a user-defined function symbol in an
expression e, the functions f , M(f) and M2(f) are applied to same real
parameters in e, M(e) and M2(e). Furthermore, in M(e) and M2(e), the
counterparts of the conditional sub-expressions in e have the same guard. So
during the evaluation of e, M(e) and M2(e), f recursively call itself if and
only if M(f) and M2(f) call themselves.

For Research Only

Scope Logic: An Extension to Hoare Logic 419

Let f , M(f) and M2(f) be functions respectively defined as f(x1, . . . , xn)
� e′, M(f)(x1, . . . , xn) � M(e′) and M2(f)(x1, . . . , xn) � M2(e′). Sup-
pose that f recursively calls itself for n times during the evaluation of e
on a state s, the fact above means that M(f) and M2(f) also recursively
call themselves for n times during the evaluation of M(e) and M2(e). So
we can introduce n new functions f0, f1, . . . , fn defined as f0 �⊥, f1 �
EXP(f0), . . . , fi � EXP(fi−1), . . . , fn � EXP(fn−1), where EXP(fi) means
the expression derived by replacing f with fi in e′. It can be proved that
f(e1, . . . , en) = fn(e1, . . . , en), M(f)(e1, . . . , en) = M(fn)(e1, . . . , en), and
M2(f)(e1, . . . , en) = M2(fn)(e1, . . . , en) on the state s. Because fis are not
recursive, we prove that M2(f(e1, . . . , en)) ⊆ M(f(e1, . . . , en)). So the the-
orem holds for expressions containing recursive functions.

In our logic, we use the following axiom to describe this property.

(SCOPE-SHRINK) M(M(e)) ⊆ M(e) Note: e must be meaningful

This axiom is important for local reasoning. We will discuss this in Section 7.

5 The Axioms and Proof Rules of Program Statements

In this section, we present the axioms and proof rules to specify the effects of
program statements. There are three axioms for primitive statements and three
proof rules for control flow statements. They are all presented in Fig. 6.

For an assignment e1 := e2, let i, j respectively be the program points be-
fore/after this statement. It is required that &e1 evaluates to a non-nil pointer
at i. At the program point j, the memory unit referred by &e1 stores the value
of e2 evaluated at i. Furthermore, if a formula holds at the point i, and &e1 is
not in the memory scope of this formula, the formula still holds at the point j.
This is specified by the axiom ASSIGN.

Example 8. Considering the assignment pt := pt → l in Fig. 3. Let Prop be
the formula pt@5 �= nil ∧ (pt → l)@5 = pt@5 → l ∧ &pt = (&pt)@5. M(Prop)
is {&(pt@5) → l}. Substituting ρ with Prop in the axiom ASSIGN, we have

{5 : Prop ∧ (&pt �∈ {&(pt@5) → l}) ∧ (&pt �= nil)} pt := pt → l
{6 : Prop ∧ ∗((&pt)@5) = (pt → l)@5}

From the axioms PVAR-1, PVAR-3, PST, and the proof rules CONSEQ and
CONJ, we have {5 : pt �= nil} pt := pt → l {6 : pt = pt@5 → l}. �

For an allocation statement e1 := alloc(t), let i, j respectively be the program
points before/after this statement. It is required that &e1 evaluates to a non-nil
pointer at the point i. After the execution, the memory unit referred by (&e1)@i
stores a reference to a newly allocated memory block. This memory block is
unreachable at the point i. So ∗((&e1)@i) �∈ e2@i holds at the point j for any
expressions e2 if e2 is meaningful at i. This allocation statement modifies only
the memory unit referred by (&e1)@i and the memory block newly allocated
(this block is unreachable at the point i). If an assertion ρ holds at the point i

For Research Only

420 J. Zhao and X. Li

and (&e1)@i is not in the memory scope of ρ, ρ still holds at the point j. This
is specified by the axiom ALLOC. In this axiom, Init(x) is an abbreviation for
the assertion that all the pointers stored in the block referred by x are set to nil.
For example, if the type of x is P(Node), Init(x) is x → l = nil ∧ x → r = nil.

Example 9. Considering the statement t := alloc(Node). From the axiom AL-
LOC, substituting ρ and e2 respectively with isHBST(rt) ∧ (&t = (&t)@i) and
NodeSet(rt), we have

{i : isHBST(rt) ∧ (&t = (&t)@i) ∧&t �∈ M(isHBST(rt)) ∧&t �= nil}
t := alloc(Node);

{j : isHBST(rt) ∧ (&t = (&t)@i) ∧ ((∗((&t)@i) �∈ NodeSet(rt)@i)
∧ (∗((&t)@i) �= nil) ∧ (∗((&t)@i) → l = nil) ∧ (∗((&t)@i) → r = nil)}

From the axioms DEREF-REF, PVAR-1, PVAR-3, PST, and the proof rules
CONSEQ and CONJ, this specification can be simplified to

{i : isHBST(rt)} t := alloc(Node);
{j : isHBST(rt) ∧ (t �∈ NodeSet(rt)@i) ∧ (t �= nil) ∧ (t→ l = nil) ∧ (t→r = nil)}

�

The axiom for the skip statement, the proof rules for control-flow statements,
the consequence rule, and the conjunction rule are depicted in Fig. 6. They are
same as the ones in Hoare Logic.

(SKIP) {q} skip {q} (ASSIGN)
{i : ρ ∧ (&e1 �∈ M(ρ)) ∧ (&e1 �= nil)}

e1 := e2
{j : ρ ∧ (∗((&e1)@i) = e2@i)}

(ALLOC)
{i : ρ ∧ (&e1 �∈ M(ρ)) ∧ (&e1 �= nil)}

e1 := alloc(t)
{j : ρ ∧ (∗((&e1)@i) �= nil) ∧ (∗((&e1)@i) �∈ e2@i) ∧ Init(∗((&e1)@i))}

IF
{p ∧ e}s1{q} {p ∧ ¬e}s2{q}
{p} if (e) s1 else s2 {q} WHILE

{p ∧ e} s {p ∧ (e ∨ ¬e)}
{p} while (e) s {¬e ∧ p}

SEQ
{p}s1{q} {q}s2{r}

{p} s1; s2 {r}

CONSEQ
{p}s{q} p′ ⇒ p q ⇒ q′

{p′} s {q′} CONJ
{p} s {q} {p′} s {q′}
{p ∧ p′} s {q ∧ q′}

Fig. 6. The axioms and proof rules for program statements

For Research Only

Scope Logic: An Extension to Hoare Logic 421

6 The Weakest-Preconditions of Assignments

In this section, we will show how to compute the weakest precondition of an
assignment for a postcondition that contains no user-defined function.

e WP(e), the expression equivalent to e before e1 = e2

a const or a quantified variable e

e@k for some point k (k �= j) e@k

&v &v

∗e′ (WP(e′) �= (&e1)@i)?(∗WP(e′)) : (e2@i)

v (WP(&v) �= (&e1)@i)?(∗WP(&v)) : (e2@i)

e′.n (WP(&e′.n) �= (&e1)@i)?(∗WP(&e′.n)) : (e2@i)

e′ → n (WP(&e′ → n) �= (&e1)@i)?(∗WP(&e′ → n)) : (e2@i)

e′[e′′] (WP(&e′[e′′]) �= (&e1)@i)?(∗WP(&e′[e′′])) : (e2@i)

e′ op e′′ WP(e′) op WP(e′′)
op e′ (op is not ∗) op WP(e′)

e0?e
′ : e′′ WP(e0)?WP(e′) : WP(e′′)

&(e′.n) &(WP(&e′) → n)

&(e′ → n) &(WP(e′) → n)

&(e′[e′′]) &((∗WP(&e′))[WP(e′′)])
λx.e′[e′′] λx.WP(e′)[WP(e′′)]
∀x ∈ e′.e′′ ∀x ∈ WP(e′).WP(e′′)

Fig. 7. The rules to construct WP(e)

Given an assignment e1 := e2, and i, j be the program points before/after
this assignment respectively. The program state at i is different only with the
state at j on the memory unit (&e1)@i. For any address x of a memory unit,
the value of ((x �= (&e1)@i)? ∗ x : e2@i) at the point i equals to the value of ∗x
at the point j.

For an arbitrary formula e, we can construct the weakest precondition of the
assignment e1 := e2 for e according to rules depicted in Fig. 7. The basic idea
of these rules is that for each expression e with an L-value, we first construct an
expression WP(&e), the value of which at i equals to the value of &e at j; then
WP(e) is constructed as ((WP(&e) �= (&e1)@i)? ∗ WP(&e) : e2@i). From the
discussion above, the value of WP(e) at i equals to the value of ∗&e (equivalent
to e by the axiom DEREF-REF) at j.

By an induction on the length of the expression e, we can prove that the value
of e at j equals to the value of WP(e) at i. So a formula e holds at the point j
if and only if WP(e) holds at i. Theorem 3 says that WP(e) is a precondition of
e1 := e2 for e in Scope Logic.

Theorem 3. Given an assignment e1 := e2, and i, j be respectively the program
points before/after this assignment. Let e be a formula containing no user-defined
functions and no program-point-specific sub-expression of the form e@j, the fol-
lowing specification can be proved in Scope Logic.

{WP(e) ∧&e1 �= nil} e1 := e2 {e}

For Research Only

422 J. Zhao and X. Li

Proof. From the axiom ASSIGN, we have

{WP(e)∧&e1 �∈ M(WP(e)) ∧&e1 �= nil} e1 := e2{WP(e)∧ ∗((&e1)@i) = e2@i}
By a mathematical induction on the length of e, we can show that &e1 �∈
M(WP(e)) holds at the point i for any e. So we have

{WP(e) ∧&e1 �= nil} e1 := e2 {WP(e) ∧ ∗((&e1)@i) = e2@i}
Because (∗((&e1)@i) = e2@i) implies ∀x.(((x = (&e1)@i)?e2@i : ∗(x)) = ∗x),
we can prove that WP(e)∧ (∗((&e1)@i) = e2@i) ⇒ e holds at the point j. From
the proof rule CONSEQ, we have {WP(e) ∧&e1 �= nil} e1 := e2 {e}. QED.

Usually there are many conditional expressions and operators &, @i in WP(e).
We can remove @i in WP(e) using the axiom PST. Most of the operator & in
WP(e) can be eliminated using the axioms in Section 3. For the conditional sub-
expressions (e′ �= (&e1)@i)? ∗ e′ : e2@i in WP(e), we can automatically simplify
them when (e′ �= (&e1)@i) is either unsatisfiable or a tautology according to the
axioms in Section 3.

Example 10. Here are some examples of the weakest precondition calculation.

1. Let {i : } x := a+b {j : x > y} be an unfinished specification. Applying WP,
it yields ((&x �= (&x)@i)? ∗ (&x) : (a + b)@i) > (((&y �= (&x)@i)? ∗ (&y) :
(a+ b)@i). Simplifying it, we have {a+ b > y} x := a+ b {x > y}.

2. Let {i : } a[a[2]] := 3 {a[a[2]] = 3} be an unfinished specification, where
a is a program variable with type ARR(int, 100). Applying WP, it yields
the precondition ((&a[IND] �= (&a[a[2]])@i)? ∗ (&a[IND]) : 3@i) = 3, where
IND is the abbreviation for (&a[2] �= (&a[a[2]])@i)? ∗ (&a[2]) : 3@i. The
precondition can be automatically simplified to ((((2 �= a[2])?a[2] : 3) �=
a[2])?a[(2 �= a[2])?a[2] : 3] : 3) = 3. Using an SMT solver, it can be easily
proven that this formula is equivalent to a[2] �= 2 ∨ a[3] = 3. So we have
{a[2] �= 2 ∨ a[3] = 3} a[a[2]] := 3 {a[a[2]] = 3}.

3. Let {i : } a[n] := tmp {j : ∀x ∈ [0..n].a[x] >= 0} be an unfinished spec-
ification, [0..n] is the set of integers from 0 to n. Applying WP, we get
∀x ∈ [0..(&n �= (&a[n])@i? ∗ (&n) : tmp@i)].((&a[x] �= (&a[n])@i? ∗ (&a[x]) :
tmp@i) >= 0). Simplifying it, we have the following specification.
{i :∀x∈ [0..n].((x = n?tmp :a[x])>= 0)}a[n] := tmp{j :∀x∈ [0..n].a[x]>= 0}.

�

7 Supporting Local Reasoning

To support local reasoning, a specification should be in the following form.

{ρ ∧ (M(ρ) ∩ e = ∅) ∧ pre} s {ρ ∧ post}
where ρ is an assertion variable representing an arbitrary assertion, and e is (an
over-approximation of) the set of memory units modified by the statement s.

For Research Only

Scope Logic: An Extension to Hoare Logic 423

We say that such specifications are in the memory-modification-bounded form
because the expression e bounds the set of memory units modified by s. The
assertion variable ρ in the specification can be substituted with a formula e′.
Simultaneously, the memory scope of ρ, i.e. M(ρ), is substituted with M(e′).
For example, in the proof of Theorem 4, ρ and M(ρ) are respectively substituted
with e′ ∧ ρ ∧ (M(ρ) ∩ e@i = ∅) and M(e′) ∪M(ρ) ∪M(M(ρ)).

Theorem 4 shows that if we get a specification in the memory-modification-
bounded form, we can expand the specification with a formula e′, if M(e′) is
disjoint with the memory bound e.

Theorem 4. Let ρ be an assertion variable.

pre ∧ e′ ⇒ M(e′) ∩ e = ∅
{i : ρ ∧ (M(ρ) ∩ e = ∅) ∧ pre} s {j : ρ ∧ post}

{i : ρ ∧ (M(ρ) ∩ e = ∅) ∧ (e′ ∧ pre)} s {j : ρ ∧ (e′ ∧ post)}
Proof. First, we substitute ρ in the second premise with e′∧ρ∧(M(ρ)∩e@i = ∅).
The memory scope of this formula is M(e′)∪M(ρ)∪M(M(ρ)). From the axiom
SCOPE-SHRINK, it equals M(e′) ∪M(ρ). So we have

{(e′ ∧ ρ ∧ (M(ρ) ∩ e@i = ∅)) ∧ ((M(e′) ∪M(ρ)) ∩ e = ∅) ∧ pre}
s

{(e′ ∧ ρ ∧ (M(ρ) ∩ e@i = ∅)) ∧ post}
From the first premise and the proof rules CONSEQ, PST, we have

{ρ ∧ (M(ρ) ∩ e = ∅) ∧ (e′ ∧ pre)} s {ρ ∧ (e′ ∧ post)}
QED.

Example 11. Suppose a program REORDER reorders the nodes of a singly-
linked list p, and the derived list is pointed to by q. The programmodifies only the
field link of the nodes. LetMemBnd be ({&q}∪λx.(&x → link)[ListNodes(p)]).
The specification can be written as

{i : ρ ∧ (M(ρ) ∩MemBnd = ∅) ∧ isSList(p)} REORDER
{j : ρ ∧ isSList(q) ∧ ListNodes(q) = ListNodes(p)@i}

Let Prop be ∀x ∈ (ListNodes(p)@i).(x → D > 0). M(Prop) is λx.(&x →
D)[ListNodes(p)@i], which is disjoint with MemBnd. From Theorem 4, we have

{i : ρ ∧ (M(ρ) ∩MemBnd = ∅) ∧Prop ∧ isSList(p)} REORDER
{j : ρ ∧Prop ∧ isSList(q) ∧ ListNodes(q) = ListNodes(p)@i}

Using the proof rules PST and CONSEQ, we have

{i : ρ ∧ (M(ρ) ∩MemBnd = ∅) ∧Prop ∧ isSList(p)} REORDER
{j : ρ ∧ ∀x ∈ (ListNodes(q)).(x → D > 0) ∧ isSList(q)∧

ListNodes(q) = ListNodes(p)@i}
�

For Research Only

424 J. Zhao and X. Li

To apply the proof rules WHILE and SEQ, the post-conditions of sub-statements
must also be in the form ρ ∧ (M(ρ) ∩ e = ∅)∧ property. Theorem 5 can be used
to derive such post-conditions.

Theorem 5. Let ρ be an assertion variable.

{i : ρ ∧ (M(ρ) ∩ e = ∅) ∧ pre} s {j : ρ ∧ post}
{i : ρ ∧ (M(ρ) ∩ e = ∅) ∧ pre} s {j : ρ ∧ (M(ρ) ∩ e@i = ∅) ∧ post}

Proof. Note that the memory scope of ρ∧ (M(ρ)∩e@i = ∅) is M(ρ)∪M(M(ρ)),
which equals to M(ρ) from the axiom SCOPE-SHRINK. So ρ∧(M(ρ)∩e@i = ∅)
implies that its memory scope is disjoint with e@i. Substitute ρ in the premises
with ρ∧ (M(ρ)∩ e@i = ∅), and apply the proof rule PST, CONSEQ, we can get

{i : ρ ∧ (M(ρ) ∩ e = ∅) ∧ pre} s {j : ρ ∧ (M(ρ) ∩ e@i = ∅) ∧ post}
QED.

This theorem shows that M(ρ) is still disjoint with e@i on the post-state. We
may replace e@i with some other expressions e′ if post ⇒ e′ ⊆ e@i.

Example 12. Let ST be tmp := p → link; p → link = q; q := p; p = tmp;, which
is the loop-body of the program that reverses a singly-linked list. Let MSet be
{&p,&q,&tmp} ∪ λx.(&x → link)[ListNodes(first)@1], and Prop be

IsList(p) ∧ IsList(q) ∧ (ListNodes(p) ∩ ListNodes(q) = ∅)∧
(ListNodes(p) ∪ ListNodes(q) = ListNodes(first)@1).

The following specification can be proved.
{i : ρ ∧ (M(ρ) ∩MSet = ∅) ∧ Prop} ST {j : ρ ∧ Prop ∧MSet@i = MSet}

From Theorem 5 and the rule CONSEQ, we have
{i : ρ ∧ (M(ρ) ∩MSet = ∅) ∧ Prop} ST {j : ρ ∧ (M(ρ) ∩MSet = ∅) ∧ Prop}

Now, ρ ∧ (M(ρ) ∩MSet = ∅) ∧ Prop can be used as a loop invariant. �

8 The Tool

An interactive tool has been implemented to support code verification using
Scope Logic. Users can input formulas at program points and then prove them.
A formula holds at a point if (1) it is logically implied by other proved formulas
in the same program point; (2) or the formula holds at the predecessor point(s)
and it is not affected by program statement; (3) or it is a natural result of the
program execution, e.g. the condition expression of an if-statement holds at the
point before its then branch.

This tool also supports some automatic verification mechanisms like weakest
precondition calculation and data-flow analysis techniques. However, assertion
variables and local reasoning have not been supported yet.

Many examples, including the Schorre-Waite algorithm, several array-sorting
algorithms, singly-linked list manipulations, binary search tree manipulations,
and a topological sorting algorithm have been verified using this tool.

For more technical details of this tool, please visit the web page of this tool:
http://seg.nju.edu.cn/SCL.html.

For Research Only

Scope Logic: An Extension to Hoare Logic 425

9 Related Works and Conclusions

In this paper, we present an extension to Hoare Logic for programs with point-
ers and recursive data structures. Formulas augmented with recursively defined
functions (predicates) are used to deal with recursive data structures. The logic
can specify and verify relations between different program points using program-
point-specific expressions. Our logic also supports local reasoning, which is impor-
tant for verification of real programs. The weakest precondition of assignments for
postconditions containing no user-defined function is well supported.

In Separation Logic, a new logical connective ∗ (separation conjunction) is in-
troduced to specify that two assertions assert properties of two disjoint heaplets.
However, this new logical connective makes it difficult to use conventional logical
tools and techniques, like SMT solvers. To solve this problem, implicit dynamic
frame (IDF) [10] uses RAS to compute the footprint of an assertion (i.e. the loca-
tions required to be accessed). Though [9] presents a method to convert a certain
fragment of Separation Logic specifications into representations in IDF so that
they can be verified using conventional logic tools. However, recursive predicates
(which are important to specify recursive data structures and their properties)
are not supported yet. The memory scope symbol M in Scope Logic is similar
to RAS in IDF. The main difference is the way in which footprints (memory
scopes) of recursive predicates are dealt with. RAS in IDF uses some axioms
to specify the relation between the footprint functions and the corresponding
predicates. These axioms refer to the global heap directly. In Scope Logic, the
explicit definitions of memory scope functions can be syntactically constructed
based on the predicate (or function) definitions using M. Using explicit defini-
tions, people can do better on reasoning about memory scopes. For example, we
can find that several predicates (functions) share same memory scope functions.
Another benefit of using explicit definitions of memory scope functions is that
the global heap is not referred in code verifications using Scope Logic. Verifica-
tion conditions generated in [10] contain a global heap, many store operators on
the heap, and universal quantifiers over the addresses. From our experience, it
is difficult to verify such complicated formulas using SMT solvers.

In [8], memory unit sets relevant to assertions are specified using ‘region’s. For
a recursively defined predicate, people must define its region together with the
definition of the predicate. Ghost variables and fields are instrumented into pro-
grams such that assertions can refer regions explicitly. In Scope Logic, the mem-
ory scope of a recursive predicate (function) is treated as an intrinsic attribute of
the predicate (function). Memory scopes (similar to ‘region’s) of assertions, ex-
pressions, (recursive) predicates and functions are constructed syntactically. One
advantage of our method is that ghost variables and fields are avoided. Another
advantage is that it is simpler to first define a recursive predicate (function) and
then construct its memory scope function syntactically.

Our logic does not support memory-deallocation statements now. Another dis-
advantage is that we use the conventional FOL as the base logic, people must care-
fully avoidmeaningless (not-welldefined) expressions in code verifications. To solve
this problem, we will try to find a method to generate meaningful-conditions for

For Research Only

426 J. Zhao and X. Li

expressions.Wewill also try to extend our logic to dealwithmore sophisticatedpro-
gramstructures like procedure definitions/calls, classes/objects, functionpointers,
etc.

References

1. Hoare, C.A.R.: An axiomatic basis for computer programming. Communications
of the ACM 12(10), 576–580 (1969)

2. Burstall, R.M.: Some techniques for proving correctness of programs which alter
data structures. In: Machine Intelligence, vol. 7, pp. 23–50. Edinburgh University
Press, Edinburgh (1972)

3. Cook, S.A., Oppen, D.C.: An assertion language for data structures. In: Conference
Record of 2nd ACM Symposium on Priciples of Programming Languages, New
York, pp. 160–166 (1975)

4. Morris, J.M.: A general axiom of assignment; assignment and linked data struc-
tures; a proof of the Schorr-Waite algorithm. In: Theoretical Foundations of Pro-
gramming Methodology, pp. 25–51. D. Reidel, Dordrecht (1982)

5. Reynolds, J.C.: An overview of separation logic. In: Proceedings of Verified Soft-
ware: Theories, Tools, Experiments 2005, Zurich, Switzerland, October 10-13
(2005) Revised Selected Papers and Discussions

6. Yang, H.: An example of local reasoning in BI pointer logic: The Schorr-Waite
graph marking algorithm. In: Henglein, F., Hughes, J., Makholm, H., Niss, H.
(eds.) SPACE 2001: Informal Proceedings of Workshop on Semantics, Program
Analysis and Computing Environments for Memory Management, pp. 41–68. IT
University of Copenhagen (2001)

7. Jones, C.B., Middelburg, C.A.: A typed logic of partial functions reconstructed
classically. Acta Inform 31(5), 399–430 (1994)

8. Banerjee, A., Naumann, D.A., Rosenberg, S.: Regional logic for local reason-
ing about global invariants. In: Vitek, J. (ed.) ECOOP 2008. LNCS, vol. 5142,
pp. 387–411. Springer, Heidelberg (2008)

9. Parkinson, M.J., Summers, A.J.: The Relationship Between Separation Logic and
Implicit Dynamic Frames. Logical Methods in Computer Science 8(3) (2012)

10. Smans, J., Jacobs, B., Piessens, F.: Implicit dynamic frames. ACM Trans. on Pro-
gramgramming Language and Systems 34(1) (2012)

For Research Only

