Software Engineering Group
Department of Computer Science
Nanjing University
http:/ﬁ,eg.nju.edu.cn

NJU Software
Engineering Group

Technical Report No. NJU-SEG-2013-1J-005

2013-1J-005

Scope Logic: An Extension to Hoare Logic for Pointers and

Recursive Data Structures

Jianhua Zhao, Xuandong Li

Theoretical Aspects of Computing—ICTAC 2013

Most of the papers available from this document appear in print, and the corresponding copyright is held by the

publisher. While the papers can be used for personal use, redistribution or reprinting for commercial purposes is
prohibited.

http://seg.nju.edu.cn/

Scope Logic: An Extension to Hoare Logic
for Pointers and Recursive Data Structures *

Zhao Jianhua and Li Xuandong

State Key Laboratory of Novel Software Technology
Dept. of Computer Sci. and Tech. Nanjing University
Nanjing, Jiangsu, P.R. China 210093

ﬁ {zhaojh,1xd}@nju.edu.cn
L)

veri
the value of e
a finite set O

expression (calledithe
e. A set of const jon

er presents an extension to Hoare Logic for pointer
. The main observation leading to this logic is that
ion e depends only on the contents stored in
its. This set can be specified using another
ory scope of e) constructed syntactically from
re given in this paper for expressions
which may contain rec ctions (predicates). It is also observed
that the memory scope er set of the memory scope of the
memory scope of e. Based onl thig @ easoning can be supported using
assertion variables which repreé§ent @ubitrary assertions. Program-point-
specific expressions are used toWgpecify t lations between different
program points. Another feature of i¢/is that for formulas with

no user-defined functions, the weake ndj s can be calculated
w.r.t. assignments.

1 Introduction

Hoare Logic[I] can not deal with pointer programs because ofgtinter alias, i.e.
many pointers may refer to one memory location. Some é®tensions

tions hold on disjoint subheaps respectively. Based on this, heap-maniptfati
programs can be specified and verified. An important advantage of Separ
Logic is that it supports local reasoning. However, Separation Logic is counter-
intuitive to some extent. This may cause some difficulties to software engineers:
For example, a programmer may use isList(p) AisList(q) to specify that both
p and ¢ point to lists. However, in Separation Logic, it also means that isList(p)
and isList(g) hold for the exact same heap, which implies that p and ¢ point
to the same list. It is also difficult to use many existing logic tools designed for
conventional first order logic because of the new logical connective and the new
semantic of conventional connectives.

* This paper is supported by the Chinese National 863 Project, NO.2011AA010103

Z. Liu, J. Woodcock, and H. Zhu (Eds.): ICTAC 2013, LNCS 8049, pp. 409-{26] 2013.
(© Springer-Verlag Berlin Heidelberg 2013

410 J. Zhao and X. Li

Weakest precondition calculation is useful for code verification. Using the
weakest precondition calculation, a program specification {p} s {¢} can be re-
duced into a logical formula p = WP(q, s), where WP(g, s) means the weakest

econdition of s for q. However, the weakest precondition calculation in Sepa-
ration Logic is hard to deal with using conventional logic tools, because of the
separating implication —* and the quantifications in the preconditions.
his paper presents another extension to Hoare Logic for verification of pointer
with recursive data structures. This logic use conventional logical con-
. Program states are specified by FOL formulas augmented with
cursive functions.

ain observation leading to this logic is that the value of an expression
(or a formula) e ay contain recursively defined functions, depends only
on the content ma finite set of memory units. We present a set of rules
! an expression (called the memory scope of e, denoted
M(e)) to express this set. The value of e keeps unchanged if no memory unit in

this set is modifiediby n statements. Another important property of the
memory scopes is thatfa nie y scope expression is the super-set of its memory
scope. Based on this, ot ts local reasoning using assertion variables.

Besides establishing that perties hold at a given program state, peo-

afyvariables and recursive data structures
»&@ m-point-specific expressions, we can
difféFentgprogram points (states). Weakest
im outflogic for a large set of formulas
nt-specific expressions.

. the syntax of programs
and specifications in Section 2l A set of axidty i uced in Section Bl to
model memory access and layout in pointer progr
duce the concept of memory scopes. The rules to sy
scopes are given in this section. Two important prope
are also discussed. The axioms and proof rules about

ple are also interested in howGhe M@lue
are changed by the program. Usi

assertion variables. A brief description of our supporting tool is gi¥en in Se
tion Bl Section [concludes this paper.

2 The Syntax of Programs and Specifications

2.1 The Type Systems and Expressions

The small program language used in this paper is strongly typed. Each expres-
sion has a static type. The following types and their operators can be used in
programs. Their meanings are similar to those in the C language.

1. The integer type (int) and the boolean type (bool). Operators of these basic
types can be used in programs.

Scope Logic: An Extension to Hoare Logic 411

2. Array types. Let t be a type and ¢ be a positive integer constant, ARR(¢, ¢)
is an array type. Given an expression e with type ARR(t, ¢) and an integer-
typed expression e;, e[e;] is an expression with type t. It means the eﬁh
elements of e if 0 < ¢; < c.

ecord types. Let 1, ..., t; be types, and ni,na, ..., ng be k different names,
EC((n1,t1),. .., (nk, tr)) is a record-types. Let e be an expression of this
ecord type, e.n; is an expression with type t;. It means the field n; of e.

type REC((n1,t1),..., (ng, tr)), e = n,; and (xe).n; are
ype t;. These two expressions are equivalent.

We can also definé

types using the form name := type. In such a
definition, P(name) cah appéar |

the right-hand to define recursive data types.

Example 1. The following i ition of the node type for binary trees.
r, P(Node)), (K, int))

Let v be a program variable with type expression v.l — K represents
the field K of the left-child of v. O

2.2 The Syntax of Program Statements

The small program language has three kinds of prif@itive ghat
signment, and memory allocation) and three kindSjof con
(sequence, selection, and repetition). The syntax of state

nts (skip, as-
sflow statements

st = skip | eq :=ea | e := alloc(t) | st;st | if (e) st els

The statement skip does nothing. The statement e := alloc(t) allofdltes a n
t-typed memory block, and stores the reference to this block into
unit referred by L-value of e. The statement e; := e stores the ¥
into the memory unit referred by L-value of e;. The semantic of contl
statements are same as those in C. For an assignment e; := es, the ty
e1 and es; must be the same and must be int, bool, or a pointer type. For a
memory allocation statement e := alloc(t), the type of e must be P(t). For
while-statements and if-statements, the type of e must be bool.

Ezample 2. A program is depicted in Fig. [l The first two lines declare program
variables k, root and pt respectively with type int and P(Node), where Node is
the type defined in Example [Il This program searches a binary search tree for
a node of which the field K equals k. The program variable pt is nil if no such
node is found, otherwise it points to the node in the tree. O

412

The Syntax of
used as formulas.

J. Zhao and X. Li

int k;
P (Node) root, pt;
pt:=root;
while (pt # nil A pt—K # k)
if (k<pt— K)
pt:=pt—1
else
pt:=pt—r;

ﬁ Fig. 1. A program

rmulas and Specifications

. All program expressions with type bool can be
e, p > K > 0 is a formula. Besides, formulas

can also use the operator ciated with some abstract types, like finite sets
(SetOf(t)) and finite 1iStgg(L1s). User-defined recursive functions can also
be used in formulas. There gre algo Sbme new kinds of expressions (formulas) as
follow.

1.

. The reference operator &. Given an

. Conditional expressions eg?e; : ex. Here eg 18 ca th
0

. Universal quantifier over a set Vx € ej.es. The type of

. Set-image expressions Az.ej[ez]. The type of ez must be SetO

A free variable z. It is used in re of the form Az.eq[es] or Vo € eg.e5
and the right-hand of function i

pn ¢, &e gives the L-value (ad-
dress) of e. Here, e must be a progran , €1.n, e1 — n, or ej[es]
for some expressions e; and es.
uard,of this expres-

the same type.

sion. The type of eg must be bool, and e; and & must
The type of this expression is the type of ej(or ¢PIf
the value of eg?e; : es is that of eq; otherwise, the v.

in eo. The expression Vx € e;.eo means that for all elements = in

t. The t-typed free variable x can only appear in e1. Let ¢’ be the
the type of Az.eq[es] is SetOf(t’). This expression means the set {e1|z €

. Union expression | Je. The type of e must be SetOf(SetOf(t)) for sonte ¢.

The type of Je is SetOf(t). | J e means the set {x|ds.(x € s A s € e)}.

. Program-point-specific expressions e@j. It is required that e contains no free

variables. Such expressions are treated as special constant symbols in our
logic. The next sub-subsection will give more details.

Ezample 3. Three recursive functions are defined in Fig.[2l NodeSet(z) yields the
node set of the binary tree with root node x. The function isHBST(z) asserts
that x is the root of a binary search tree. KeySet(z) yields the set of keys stored
in the binary search tree.

Scope Logic: An Extension to Hoare Logic 413

The formula Vo € NodeSet(root — I).(x — K < root — K) says that all
the keys in the left-subtree is less than the key in the root node. The formula
&pt —» K € (Az.(&z — K)[NodeSet(root)]) says that the address of pt — K is

the set of addresses of the field K of the nodes in the tree. From the axiom

-2 presented later, this formula is equivalent to pt € NodeSet(root). O

NodeSet(x : P(Node)) : SetOf(P(Node))
2 (z =nil)? § : ({z} U NodeSet(z — 1) U NodeSet(z — 7))

iSBST (x : P(Node)) : bool
£ (z = nil)?true : isHBST(x — 1) AisHBST(z — r)A
Vy € NodeSet(z — 1).(y = K <z — K)A

Vy € NodeSet(z — r).(y - K >z — K)
)) : SetOf(int) 2 \z.(z — K)[NodeSet(x)]

. A set of recursive functions

The Syntax of Speci ionsi Imour logic, specifications and verifications are
written in the proof-in-code @rm@WFormulas are written at program points, which
are places before and after pro ents. For a sequential statement s1; s2,
the point after s; is just the point
numbered. A program goes through
formula at a program point means that hen the program goes to this

point, the formula is evaluated to true.
When we concern only one statement s of@ghe gram under verification, the
specification can be written as the following re-t, .

{i:P}s{j:Q}

Here, 7 and j are respectively the program point number§befor, d after s. We
can write the specification as {P} s {Q} if the point numbeg’are irrele

A program point j is said to dominates a point i if the prograg
through the point j before it goes to the point 4. For the language
paper, j dominates ¢ if one of the following conditions holds. (I) j =
a point k such that j dominates k and k dominates 4; (IT) j is before a St
s and 7 is a point in s or the point after s.

Given two program points 4 and j such that j dominates ¢, we can write €Qj
at the program point 7. It represents the value of e evaluated at the point j whe
the program was at the point j the last time.

At any program point i, a program-point-specific expression e@i equals to
e if e is meaningful at this point. Because each program point is either before
or after a statement, the following axiom PST specifies this property. In this
axiom, e and e’ represent two arbitrary expressions. It is required that e and ¢’
are meaningful respectively at the point ¢ and j.

(PST) {i:e=eQi} s {j: e =€Qj}

414 J. Zhao and X. Li

Program-point-specific expressions should be viewed as a naming convention for

constant symbols. At a point ¢ other than j, a program-point-specific expression

e@j is treated as a constant symbol. We should not infer properties from the
ructure of e@j.

Ezample 4. The program points, together with some formulas, of the program in
ig. M are depicted in Fig. Bl The entrance program point and the exit point are
ively 1 and 10. The formula isHBST (root) at point 1 is the precondition
ogram, while the formula at point 10 is the postcondition.
| a at point 8 says that k is in the key set of the right sub-tree of p
evaluatdd at point 7 if and only if k is in the key set of the initial binary tree.
AtPoint 6, the gfeperty pt = (pt — [)@5 holds because of the assignment
pt := pt — [. Hoiee does not imply pt = pt@5 — [. To prove this property,
we should prg¥€ tha 1)@5 = pt@5 — [holds at point 5 using the axiom
PST. This formula 8 affected by the assignment, so it also holds at point 6.
Now pt = (pt — 1)@5 & — [)@5 = pt@Q5 — [imply pt = pt@5 — [at 6.
Because point 5 do minate point 8, the formula k € KeySet(root)@5
can not appear at poing,8.]

{1: isHBST (root)}
pt:=root;
{2: (k € KeySet(pt)) = (k € KeySet(roo

while (pt—K # k)
{4: pt—=K # k A (k € KeySet(pt)) = (k yS,)al) }
if (k<pt— K)

{5: pt = pt@5 A pt = | = (pt = 1)@5 A (pt @5 B pt@Qa— [}

pt:=pt—1

{6: pt = (pt — 1)@5 A (pt — [)@5 = pt@5 — 1}
else

{7: k > pt = K A (k € KeySet(pt — 7)) = (k € KeySet)Q1)}

pt:=pt —r;

{8: (k € KeySet(pt — r)@Q7) = (k € KeySet(root)@1)}
{9:(k € KeySet(pt)) = (k € KeySet(root)Q1) }
{10:pt = nil?k ¢ KeySet(root)@1 : (k € KeySet(root)@1 A pt — K =

Fig. 3. A proof-in-code specification

3 The Memory Model and the Axioms about Memory
Access Operators

In this section, we describe the memory model on which the programs execute.
The memory consists of a set of addressed memory units. Each memory unit
has a unique address and stores an integer, a boolean value, or a pointer. So the
memory can be viewed as a map from addresses to int, bool, or Ptr.

Scope Logic: An Extension to Hoare Logic 415

Composite type data (either arrays or records) are stored in memory blocks.
Each memory block is composed of sub-blocks and/or memory units for its
component data. Each memory block has also a unique address. However, the

emory model does not directly map block addresses to values. Instead, the
b addresses are used to derive the addresses of its sub-blocks or units. Given
the ddress r of a memory block, the address of its components can be derived
o expressions &r — n (if r refers to a record block and n is a field name) or
(if r refers to an array block and 7 is an integer). The values of &r — n
;| depend only on the values of r and i. They are irrelevant to the

in the memory block.

~—

Ezaniple 5. Suppog at a memory block with address p stores a Node-typed
data. This blockdis posed of three memory units for the fields [, r, and K.
The addresseg e its are respectively &p — [, &p — r and &p — K. O

(DEREF-REF) #&ecl@ e (REF-DEREF) e#nil = &xe=e
(PVAR-1) &v # nil VAR-2) &uvi # &vs
(PVAR-3) &v # &r = 4) &v # &ali]

(REC-1) r # nil = &r —

(REC-2) (ri1 > n=r2 —n) (REC-3) r1 —ni #r2—no
(ARR-1) a#nilA(0<i<c)= j

(ARR—Q) (&((*al)[zl]) = &((*ag)[lg]) =a2Nt1 =12 A0 < 11,12 < C)

(ARR-REC) &ali] # &r —n

n, n1 and na
re ARR(t,c)
EF must be of

In these axioms, the type of r, 71, r2 are pointers to some récor
are field names such that n; and ng are different. The type
for some t and c. ,41,42 are integers. The expression e in DER,
the form v, xe1, e1.n,e1 — n or e1fes].

Fig. 4. The axioms for memory layout and memory access

The axioms depicted in Fig. @ are used to specify the addressing operator &®he
memory access operator x, and the memory layouts for composite types.

The operators & and * are inverse to each other. This is described by the
axioms DEREF-REF and REF-DEREF.

Each program variable is assigned a unique memory block (or memory unit).
Furthermore, the memory block (unit) is not a component of any other blocks.
So we have the axioms PVAR-1, PVAR-2, PVAR-3 and PVAR-4.

Given a non-nil reference to a composite block, all the references to its sub-
blocks or units are non-nil. So we have the axioms REC-1 and ARR-1. The
axioms REC-2 and ARR-2 say that different components of a composite block

416 J. Zhao and X. Li

has different addresses. The axioms REC-3 and ARR-REC say that a component
block/unit uniquely belongs to at most one enclosing memory block.
These axioms can be used to simplify expressions containing the addressing
erator &. For example, the formula &pt— K € (Az.(&z— K)[NodeSet(root)])
camybe simplified to an equivalent formula pt € NodeSet(root).

emory Scopes of Expressions and Functions

ory Scopes of Expressions

AT*XprésSior e may have different values before/after the execution of a program
state@ént. Howevesathe value of e depends only on the contents stored in a
finite set of me its. This set can be expressed using another expression,
called the meg of e, denoted as M(e). We now show that Mi(e) can be

constructed
If e is of the form ¢ .,ep), where f is a function/operator other than
*,&,[],.,—, the m 3 M(e) is M(er)U...UM(e,) UM(f)(e1,-..,en),

ute the memory scopes of applications of f.

1. If f is an algebraic opgra g. +,,...), a boolean operator, or other

ant function which always yields ().
2. If f is a user-defined fun ate), the definition of M(f) can be
derived syntactically from the \de of f, see next subsection.

nds of expressions are given in
amimportant property about

The memory-scope-construction rules 1o
Fig. Bl The third column is used in the
memory scopes presented in Subsection [4.3]

Note that the memory scope of eQj is (. eas hat e@i is viewed as
a constant symbol of which the value is irrelevant t e cliire rogram state.

Ezample 6. Given a type ARR(ARR(REC((intWNfds),))),100),100)
and a program variable a of this type. The memory sc [4]-f1 is con-
structed as follow.
Mafil[j)-f1) = M(&alil[5]) U {&ali][j]. f1} = M(&ali]) U {&;} U {4
= M(&a) U{&i} U {&;j} U {&ali][j]. 1} = {&i} U {&;} U {&ali][]]

This means that the value of a[i][j].f1 keeps unchanged if the content
the memory units &4, &7, and &ali][j].f1 are not modified.

4.2 Memory Scope of User-Defined Functions

Given a user-defined function f, we abuse the notation 9t and use IM(f) to
denote the name of the memory scope function of f. The formal parameters
of M(f) is the same as those of f. The return type of M(f) is SetOf(Ptr).
Intuitively speaking, 9(f)(z1,...,zy) yields the set of memory units accessed
during the evaluation of f(x1,...,,). Let f(x1,...,2,) = e be the definition
of f, the definition of M(f) is as follow.

M(f)(w1,...,7,) = M(e)

Scope Logic: An Extension to Hoare Logic 417

Expressions Memory Scopes Memory Scopes of Memory Scopes
a constant ¢ 1] 1]
free variable x 0 0
e@g 0 0
&v 0 0
&xe M(e) M2 (e)

e [62] im(&el) @] E)Jt(eg) 97(2(&@1) @] 97(2(@2)

& M(&e) M2 (&e)
> M(e) M2 (e)
{&v} 0
{e} UM(e) M(e) UM (e)
ern n} U M(&er) M(&e1) UM (&er)
e1—=n > n}UM(er) M(er) UM (e1)
e1es] g (&e1) UM(e2) M(&er) UM (ea) UM (&e1) UM (e2)
eo?er : ez Oeo?M(er) : M(e2)) M2(eo) UM(eo) U (eo?M3(e1) : M2 (e2))

e1 A e (e2) : 0) M (e1) UM(er) U (e1 79 (e2) :)
e1Ves : m(eg)) m2(61) @] Sm(el) @] (61?@ : Dﬁ2(62))

Az.e1]e2] M(e2)
Vx € ez.e1 M(e2) U

ez]) M2 (e2) U M(e2) U Uz (e1)[e2])
o) M (e2) UM(e2) U Uz M2 (e1)]ez])

NOTE: 92 (e) is an abbreviation for 9(

Fig. 5. The memory scope for @iff forms of expressions

Ezample 7. Let M(NodeSet) be MNS. Ac g definition of NodeSet in
Fig. 2l the definition of MNS is as follow.

MNS(z) £ (z = nil)?0 : {&z — [, &z — r} U MNS(z —¥) NS(z — 1)
The above definition is equivalent to the following one.

MNS(z) £ (\y.(&y — 1)[NodeSet(x)]) U (A\y.(&y — r){i¥odeSet(z

KeySet and isHBST have the same memory scope function M defing

M(x) = (\y.(&y — K)[NodeSet(x)]) U (\y.(&y — I)[NodeSe
U(A\y.(&y — r)[NodeSet(x)])

From the above, the memory scope of the formula pt € NodeSet(root) is
{&pt, &root} U (\y.(&y — 1)[NodeSet(root)]) U (Ay.(&y — r)[NodeSet(root)])
It means that the formula keeps unchanged if the values of pt, root, and the

fields I and r of the tree nodes keep unchanged. O

4.3 Two Properties of Memory Scopes

This section presents two important properties about memory scopes.

418 J. Zhao and X. Li

Theorem 1. Let e be an arbitrary expression and x1,...,T, are free variables

n e. Given an assignment to these free variables and two program states si, s2

such that s1 and sy agree on all the memory units in M(e). The expression e is
aluated to the same value at s1 and sa.

Because of the space limitation, we just give a brief proof.

there is no user-defined function in e, the above conclusion can be proved

induction on the length of e.

erg,are user-defined functions in e but none of these functions are recur-
n expand the function applications with their definitions to get an

e alent expregsion e’. There is no user-defined function in e, and Mi(e)

is a superset @ ¢’). From [T} the conclusion is proved.
3. If there are @
defined a§7f (

w user-defined functions in e. Let f be such a function
Suppose that firecursiyely called itself n times during the evaluation of e at

XP(f), where EXP(f) is an expression containing f.

the state s1, wéca functions, fo, f1,. .., fa as fo =L, fi 2 EXP(fo),

o [2 EXP(fi@), - N4 = EXP(f,,_1), and replace f in e with f,,. The
derived expression qua. at the state s1, and 9(e’) is a subset of
M(e) at the state sq. Fr e¢®has the same value at the states s; and ss.
It also can be proved th: ‘Fan luates to the same value on ss. So e
evaluates to the same value at s s1 and ss.

Theorem 2. Let e be an arbitrary re
state s for an assignment to the free variq
to true at s.

\ M(Mi(e)) C M(e) is evaluated

The brief proof is as follow. Here, we use 2t? (e)@s an iation for M(Mi(e)).

1. If e contains no user-defined function symbols, firom the
can prove this theorem by an induction on the le

2. Let f be a user-defined function defined as f(z1,..
tains no user-defined functions. M(f(e1,...,e,)) is W
M(f)(e1,e2,...,en); M2(fle1,. .., en))is M2 (er)U. . .UM
M(en)UM2(f)(e1, €2, ..., en). Note that MM(f) and IMN(f)
fined as M(f)(z1,...,2n) = M(e) and M2(f)(z1,...,2,) =
[we can prove M2(f(e1,...,en)) € M(f(e1,--.,en)). So the thed
if the functions in e are not defined with other user-defined functions.

3. We can prove by an induction that M2(f(eq,...,en)) € M(f(e1, ..., €0))
holds for a user-defined non-recursive function f based on[2l So the theore
holds for expressions containing non-recursive functions.

4. Now we prove the case of recursive functions. From the definition of 9,
we have the following fact: let f be a user-defined function symbol in an
expression e, the functions f, 9(f) and 9M?(f) are applied to same real
parameters in e, M(e) and M?(e). Furthermore, in M(e) and IM?(e), the
counterparts of the conditional sub-expressions in e have the same guard. So
during the evaluation of e, M(e) and M3 (e), f recursively call itself if and
only if M(f) and 9M?(f) call themselves.

Scope Logic: An Extension to Hoare Logic 419

Let f, 9(f) and MM2(f) be functions respectively defined as f(x1,...,2y)
2 e, M) (z1,. . zn) = M) and M2(f)(x1,...,2,) = M2(e’). Sup-
pose that f recursively calls itself for n times during the evaluation of e
on a state s, the fact above means that M(f) and M?(f) also recursively
all themselves for n times during the evaluation of M(e) and M?(e). So
e can introduce n new functions fo, fi,..., fn defined as fo £1, f; £
P(fo), .-, fi 2 EXP(fi—1), ..., fn = EXP(fn_1), where EXP(f;) means
xpression derived by replacing f with f; in €’. It can be proved that

L .esen) = foler, .. en), M(f)le,. .. en) = M(frn)(e1,...,ep), and
ven) = M2(fn)(e1,. .., e,) on the state s. Because fis are not

regfitsive, we prove that M2 (f(eq,...,en)) € M(f(e1,...,en)). So the the-

orem holds fop@XPressions containing recursive functions.
Q llowing axiom to describe this property.

(M(e)) CM(e) Note: e must be meaningful

In our logic,

cal reasoning. We will discuss this in Section [7

& @nll presented in Fig.

For an assignment e; := es, let 7,5 r@ e the program points be-
fore/after this statement. It is required tha valuates to a non-nil pointer
at 7. At the program point 7, the memory unit*refer ey gtores the value
of ey evaluated at ¢. Furthermore, if a formula hold§ at t t 4, and &eq is

not in the memory scope of this formula, the formu ill t the point j.
This is specified by the axiom ASSIGN.

Ezxample 8. Considering the assignment pt := pt — [in Fi@ Bl Let B

the formula pt@5 # nil A (pt — [)@5 = pt@5 — [A &pt = (&pt)Q549

is {&(pt@5) — 1}. Substituting p with Prop in the axiom ASSIGN
{5: Prop A (&pt & {&(pt@5) — I}) A (&pt # nil)} pt:=pt —
{6 : Prop A *((&pt)@5) = (pt — [)@5}

From the axioms PVAR-1, PVAR-3, PST, and the proof rules CONSEQ

CONJ, we have {5: pt #nil} pt:=pt—1 {6:pt=pt@5—I}. O

For an allocation statement e; := alloc(t), let i, respectively be the program
points before/after this statement. It is required that &e; evaluates to a non-nil
pointer at the point i. After the execution, the memory unit referred by (&e;)@i
stores a reference to a newly allocated memory block. This memory block is
unreachable at the point i. So *((&e;)@i) & e2@i holds at the point j for any
expressions es if es is meaningful at 7. This allocation statement modifies only
the memory unit referred by (&e;)@: and the memory block newly allocated
(this block is unreachable at the point 7). If an assertion p holds at the point 4

420 J. Zhao and X. Li

and (&e1)@i¢ is not in the memory scope of p, p still holds at the point j. This
is specified by the axiom ALLOC. In this axiom, Init(x) is an abbreviation for
the assertion that all the pointers stored in the block referred by x are set to nil.

r example, if the type of x is P(Node), Init(x) is — | = nilAz — r = nil.

Ezample 9. Considering the statement t := alloc(Node). From the axiom AL-
OC, substituting p and es respectively with isHBST(rt) A (&t = (&t)@i) and
rt), we have

(rt) A (&t = (&t)Qi) A &t & M(isHBST (rt)) A &t # nil}
alloc(Node);
{j MisHBST(rt)

t = (&t)Qi) A ((x((&t)@i) ¢ NodeSet(rt)@i)
A (x((&t i

A (x((&t)@Qi) — I = nil) A (%((&t)@i) — r = nil)}

~—

From the axioms -REF, PVAR-1, PVAR-3, PST, and the proof rules
CONSEQ and CONJ, t}ai cification can be simplified to

{¢:isHBST(rt)} t:®al ;
{j 1 isHBST(rt) A (t & Set A(t#nil) A (t—=1=nil) A (t—r =nil)}

same as the ones in Hoare Logic.

|
The axiom for the skip statementfythe Pro les for control-flow statements,
the consequence rule, and the conjunctio, e ake depicted in Fig.[6l They are

{i: pN&e1L & A (&e1 # nil)}
(SKIP) {q} skip {q} (ASSIGN) e1 1=
{71 p A (+((8607) Qi) Feo@i) }

{i:pA(&er & M(p) A (&er # nil)}

(ALLOC) e1 := alloc(t)
{5+ p A (+((&e1)@i) # nil) A (+((&e1)@i) & e2@i) A Tnit (x(
E ot Ay U L R A O
SEQ {p}"{sgqs}l;s{ﬂiz}i{r}
CONSEQ {p}s{q}{p’ilii }q ! coNJ {p%psA{z} } 8{*1{):1}/\8(1;[}(]/}

Fig. 6. The axioms and proof rules for program statements

Scope Logic: An Extension to Hoare Logic 421

6 The Weakest-Preconditions of Assignments

In this section, we will show how to compute the weakest precondition of an
ssignment for a postcondition that contains no user-defined function.

e WP(e), the expression equivalent to e before e; = ez
const or a quantified variable e
some point k (k # j) e@Qk
&v &v
¢ (WP(e') # (&e1)@0)? (WP (e')) : (e2@i)
v (WP (&) # (&e1)@i)?(*WP(&v)) : (e2@3)
(WP(&e'.n) # (&e1)Qi)?(x*WP(&e'.n)) : (e2@i)
e (WP (&e' — n) # (&e1)Qi)?(x*WP(&e' — n)) : (e2@i)
(WP(&e'[e"]) # (&e1)@i)?(xWP(&e'[e”])) : (e2@1)
e ope” WP(e') op WP(e')
ope’ (opis op WP(¢')
eo?e i e WP(eo)?WP(e') : WP(e")
&(e'.n) &(WP(&e') — n)
&(e' — n) &(WP(e') — n)
&('[e"]) &((xWP(&e))[WP(e")])
Az.€'[e”] Az WP(e")[WP(e")]
vV €e'.e’ Vo € WP(e').WP(e")
Fig. 7. The rules t ruet WP(e)
Given an assignment e; := ey, and ¢,) t ram points before/after
this assignment respectively. The program s at id erent only with the

state at j on the memory unit (&e;)@i. For any
the value of ((x # (&e1)@Q4)? x x : e2@7) at the poi
at the point j.

For an arbitrary formula e, we can construct the wea

memory unit,
the value of *x

expression WP (&e), the value of which at i equals to the value of &
WP(e) is constructed as ((WP(&e) # (&e1)@i)? x WP(&e) : e2@i
discussion above, the value of WP(e) at i equals to the value of x&e
to e by the axiom DEREF-REF) at j.

By an induction on the length of the expression e, we can prove that the value

of e at j equals to the value of WP(e) at i. So a formula e holds at the point
if and only if WP(e) holds at i. Theorem Bl says that WP(e) is a precondition of
e1 := es for e in Scope Logic.
Theorem 3. Given an assignment e1 := ea, and i,j be respectively the program
points before/after this assignment. Let e be a formula containing no user-defined
functions and no program-point-specific sub-expression of the form eQj, the fol-
lowing specification can be proved in Scope Logic.

{WP(e) A &ey # nil} e1 := e {e}

422 J. Zhao and X. Li

Proof. From the axiom ASSIGN, we have
{WP(e) A &ey & M(WP(e)) A &ey # nil} eg := ea{WP(e) A *((&e1)@Qi) = ex@Qi}

a mathematical induction on the length of e, we can show that &e; ¢
P(e)) holds at the point 4 for any e. So we have

{WP(e) A &eq # nil} e1 := ea {WP(e) A *((&e1)Qi) = ex@i}

(*((&e1)Qi) = e2@¢) implies Va.(((x = (&e1)@i)?e2@i : x(x)) = *x),
W hat WP(e) A (x((&e1)@i) = e2@i) = e holds at the point j. From
the prgéf rule CONSEQ, we have {WP(e) A &e; # nil} e; := e {e}. QED.

Usually there arg onditional expressions and operators &, @i in WP(e).
?(e) using the axiom PST. Most of the operator & in
ol using the axioms in Section Bl For the conditional sub-
e’ : eo@i in WP(e), we can automatically simplify

ther unsatisfiable or a tautology according to the

WP(e) can b
expressions (e #
them when (e’ #
axioms in Section

—
%
9]

—

Ezample 10. Here are somef@examples of the weakest precondition calculation.

1. Let {i: }x:=a+b{j:x finished specification. Applying WP,
it yields ((&x # (&x)@Q3)? « (&&) : b)@i) > (((&y # (&x)Q4)? x (&y) -
(a + b)@¢). Simplifying it, we hies{a v} z:=a+b{z >y}

2. Let {i : } a[a[2]] := 3 {a]a[2]] = 3 %g nfinished specification, where

a is a program variable with type ARRBg{int, . Applying WP, it yields
the precondition ((&a[IND] # (&a[a[2]]) @i)2 (&a[IND]) : 3@i) = 3, where
IND is the abbreviation for (&a[2] # (&&a[2] % (&af2]) : 3@i. The

precondition can be automatically simplified)?al2] : 3) #
al2])?a[(2 # a[2])7a]2] : 3] : 3) = 3. Using an it can be easily
proven that this formula is equivalent to a[2] # 2 . So we have
{a[2] #2 Vv a[3] = 3} alal2]] := 3 {a[a[2]] = 3}.
3. Let {i : } a[n] := tmp {j : Vz € [0..n].a[z] >= 0} be
ification, [0..n] is the set of integers from 0 to n. Applying

7 Supporting Local Reasoning

To support local reasoning, a specification should be in the following form.

{p A (M(p) Ne=0)Apre} s {pApost}

where p is an assertion variable representing an arbitrary assertion, and e is (an
over-approximation of) the set of memory units modified by the statement s.

Scope Logic: An Extension to Hoare Logic 423

We say that such specifications are in the memory-modification-bounded form
because the expression e bounds the set of memory units modified by s. The
assertion variable p in the specification can be substituted with a formula e’.
imultaneously, the memory scope of p, i.e. M(p), is substituted with M(e’).
xample, in the proof of Theorem [p and 9 (p) are respectively substituted
with"e’ A p A (IM(p) Ne@i = 0) and M(e") UM(p) U M(M(p)).
heorem M shows that if we get a specification in the memory-modification-
form, we can expand the specification with a formula €', if 9M(e’) is
ith the memory bound e.

=M)Ne=10
(p)Ne=0)Apre} s {j:pApost}

Proof. First, we suljstitaffc p W the second premise with e’ ApA (9(p)Ne@i = 0).
The memory scope of hisYgzmula is D(e’) UM (p) UM(M(p)). From the axiom
SCOPE-SHRINK, it edua M(p). So we have

{(e" Ap A (M(p) N Qi =W)) ALM(e’) UM(p)) Ne = D) Apre}

s
{(e Ap A (DM(p) Ne@i= @) A }
From the first premise and the proof rul Q, PST, we have

{oA Dp)Ne=0) A/ AP /« A post)}
QED.

Example 11. Suppose a program REORDER reotders th des of a singly-
linked list p, and the derived list is pointed to by q. The progfam ifies only the
field link of the nodes. Let MemBnd be ({&q}Ulz.(&x % linjflistNodes(p)]).
The specification can be written as

{i:pA(M(p) "MemBnd = () AisSList(p)} REORD
{j : p A isSList(q) A ListNodes(q) = ListNodes(p)@i }

Let Prop be Va € (ListNodes(p)@i).(x — D > 0). MM (Prop) is Az~
D)[ListNodes(p)@i], which is disjoint with MemBnd. From Theorem [l we a@ve

{i:pA(OM(p) " MemBnd = () A Prop AisSList(p)} REORDER
{j : p A Prop AisSList(q) A ListNodes(q) = ListNodes(p)@i}

Using the proof rules PST and CONSEQ), we have

{i:pA(OM(p) " MemBnd = () AProp AisSList(p)} REORDER
{j : pAVz € (ListNodes(q)).(x — D > 0) A isSList(q)A
ListNodes(q) = ListNodes(p)@i}

424 J. Zhao and X. Li

To apply the proof rules WHILE and SEQ), the post-conditions of sub-statements
must also be in the form p A (9(p) Ne = B) A property. Theorem [l can be used
to derive such post-conditions.

eorem 5. Let p be an assertion variable.

{i:pANMM(p)Ne=0)Apre} s {j:pApost}
i pAN(M(p)ne=0)Apre} s {j:pA(M(p) Ne@i=0)Apost}

otg that the memory scope of p A (M(p) Ne@i = 0) is M(p) UIM(M(p)),
, M(p) from the axiom SCOPE-SHRINK. So pA (M(p)Ne@i =)
impli at its mergory scope is disjoint with e@i. Substitute p in the premises
with p A (IM(p) Ng), and apply the proof rule PST, CONSEQ), we can get

{i:pN(Apre} s {j:p A (D(p) Ne@i=0) A post}
QED.
This theorem shows) is still disjoint with e@i on the post-state. We
may replace e@Qi with er expressions e’ if post = ¢’ C e@js.
Ezxample 12. Let ST be“tmp : link;p — link = q;q := p; p = tmp;, which

verses a singly-linked list. Let MSet be
s(first)@1], and Prop be
ListNodes(q) = 0)A

first)@1).

is the loop-body of the proggamtthat

{&p, &q, &tmp} U Az.(&z —
IsList(p) A IsList(q) A (List
(ListNodes(p) U ListNodes(q

The following specification can be prove

{i:p N (DM(p) " MSet = 0) A Prop} () op A MSet@i = MSet}
From Theorem [5l and the rule CONSEQ, wdgha;
{i:pA(DM(p) N MSet = 0) A Prop} ST {j 9 (MSet = ()) A Prop}

Now, p A (M(p) N MSet = 0) A Prop can be used asf@ loop4hvaffant. O

8 The Tool

An interactive tool has been implemented to support code verificg
Scope Logic. Users can input formulas at program points and then
A formula holds at a point if (1) it is logically implied by other pro

and it is not affected by program statement; (3) or it is a natural result of
program execution, e.g. the condition expression of an if-statement holds at*the
point before its then branch.

This tool also supports some automatic verification mechanisms like weakest
precondition calculation and data-flow analysis techniques. However, assertion
variables and local reasoning have not been supported yet.

Many examples, including the Schorre-Waite algorithm, several array-sorting
algorithms, singly-linked list manipulations, binary search tree manipulations,
and a topological sorting algorithm have been verified using this tool.

For more technical details of this tool, please visit the web page of this tool:
http://seg.nju.edu.cn/SCL.html.

Scope Logic: An Extension to Hoare Logic 425

9 Related Works and Conclusions

In this paper, we present an extension to Hoare Logic for programs with point-

s and recursive data structures. Formulas augmented with recursively defined

tions (predicates) are used to deal with recursive data structures. The logic
can Specify and verify relations between different program points using program-
int-specific expressions. Our logic also supports local reasoning, which is impor-
werification of real programs. The weakest precondition of assignments for
litions containing no user-defined function is well supported.
ion Logic, a new logical connective * (separation conjunction) is in-

trodugéd to specify that two assertions assert properties of two disjoint heaplets.
However, this new,
tools and techni SMT solvers. To solve this problem, implicit dynamic
frame (IDF) @] uS to compute the footprint of an assertion (i.e. the loca-
tions required to beccessed). Though [9] presents a method to convert a certain
fragment of Separafi @‘
they can be verified uding @unwentional logic tools. However, recursive predicates
(which are important pecif; rsive data structures and their properties)
are not supported yet. The gneforyyscope symbol 9t in Scope Logic is similar
to RAS in IDF. The main e jspthe way in which footprints (memory
scopes) of recursive predicates ar ith. RAS in IDF uses some axioms
to specify the relation between t int_functions and the corresponding
predicates. These axioms refer to t edp directly. In Scope Logic, the
explicit definitions of memory scope fu e syntactically constructed
based on the predicate (or function) defi . Using explicit defini-
tions, people can do better on reasoning abo mor, pes. For example, we
can find that several predicates (functions) share sa ope functions.
Another benefit of using explicit definitions of me nctions is that
the global heap is not referred in code verifications gic. Verifica-
tion conditions generated in [10] contain a global heap, operators on
the heap, and universal quantifiers over the addresses. Fro r experience, it
is difficult to verify such complicated formulas using SMT solvers.

In [8], memory unit sets relevant to assertions are specified using
a recursively defined predicate, people must define its region toget

grams such that assertions can refer regions explicitly. In Scope Logic, the m
ory scope of a recursive predicate (function) is treated as an intrinsic attribu$€ of
the predicate (function). Memory scopes (similar to ‘region’s) of assertions, e
pressions, (recursive) predicates and functions are constructed syntactically. One
advantage of our method is that ghost variables and fields are avoided. Another
advantage is that it is simpler to first define a recursive predicate (function) and
then construct its memory scope function syntactically.

Our logic does not support memory-deallocation statements now. Another dis-
advantage is that we use the conventional FOL as the base logic, people must care-
fully avoid meaningless (not-welldefined) expressions in code verifications. To solve
this problem, we will try to find a method to generate meaningful-conditions for

426 J. Zhao and X. Li

expressions. We will also try to extend our logic to deal with more sophisticated pro-
gram structures like procedure definitions/calls, classes/objects, function pointers,
etc.

Reéferences

25-51. D. Reidel, Dordrecht (1982)

5. Reynolds, J.C.: An € oV aration logic. In: Proceedings of Verified Soft-
ware: Theories, Tools, efiments 2005, Zurich, Switzerland, October 10-13
(2005) Revised Selected Papersfand Discussions

6. Yang, H.: An example of in BI pointer logic: The Schorr-Waite
graph marking algorithm. In: ., Hughes, J., Makholm, H., Niss, H.
(eds.) SPACE 2001: Informal Pr orkshop on Semantics, Program
Analysis and Computing Environments emory Management, pp. 41-68. IT
University of Copenhagen (2001)

7. Jones, C.B., Middelburg, C.A.: A type o) jal functions reconstructed
classically. Acta Inform 31(5), 399-430 (199

8. Banerjee, A., Naumann, D.A., Rosenberg, S.: Regiénal Yogic
ing about global invariants. In: Vitek, J. (ed.) EGOOP 200
pp. 387—-411. Springer, Heidelberg (2008)

9. Parkinson, M.J., Summers, A.J.: The Relationship Betw

gramming Methodo

r local reason-
NCS, vol. 5142,

ion Logic and

(3) (2012)

10. Smans, J., Jacobs, B., Piessens, F.: Implicit dynamic frames. ®¥CM Tra o-
gramgramming Language and Systems 34(1) (2012)

3

