

Software Engineering Group
Department of Computer Science
Nanjing University
http://seg.nju.edu.cn

Technical Report No. NJU-SEG-2017-IC-003

2017-IC-003

Automatic Detection and Validation of Race Conditions in

Interrupt-Driven Embedded Software
Yu Wang, Linzhang Wang, Tingting Yu, Jianhua Zhao, Xuandong Li

International Symposium on Software Testing and Analysis 2017

Most of the papers available from this document appear in print, and the corresponding copyright is held by the

publisher. While the papers can be used for personal use, redistribution or reprinting for commercial purposes is

prohibited.

http://seg.nju.edu.cn/

Automatic Detection and Validation of Race Conditions in
Interrupt-Driven Embedded Software

Yu Wang

Linzhang Wang

State Key Laboratory of Novel

Software Technology

Nanjing University

Nanjing 210023

yuwang@seg.nju.edu.cn
lzwang@nju.edu.cn

Tingting Yu

Department of Computer Science

University of Kentucky

Lexington, KY 40506

tyu@cs.uky.edu

Jianhua Zhao

Xuandong LI

State Key Laboratory of Novel

Software Technology

Nanjing University

Nanjing 210023

zhaojh@nju.edu.cn
lxd@nju.edu.cn

ABSTRACT
Interrupt-driven programs are widely deployed in safety-critical

embedded systems to perform hardware and resource dependent

data operation tasks. The frequent use of interrupts in these sys-

tems can cause race conditions to occur due to interactions between

application tasks and interrupt handlers. Numerous program anal-

ysis and testing techniques have been proposed to detect races in

multithreaded programs. Little work, however, has addressed race

condition problems related to hardware interrupts. In this paper,

we present SDRacer, an automated framework that can detect and

validate race conditions in interrupt-driven embedded software.

It uses a combination of static analysis and symbolic execution

to generate input data for exercising the potential races. It then

employs virtual platforms to dynamically validate these races by

forcing the interrupts to occur at the potential racing points. We

evaluate SDRacer on nine real-world embedded programs written

in C language. The results show that SDRacer can precisely detect

race conditions.

CCS CONCEPTS
• Software and its engineering → Software testing and de-
bugging;

KEYWORDS
Embedded Software, Interrupts, Race Condition, Software Testing

ACM Reference format:
Yu Wang, Linzhang Wang, Tingting Yu, Jianhua Zhao, and Xuandong LI.

2017. Automatic Detection and Validation of Race Conditions in Interrupt-

Driven Embedded Software. In Proceedings of 26th ACM SIGSOFT Interna-
tional Symposium on Software Testing and Analysis, Santa Barbara, CA, USA,
July 10-14, 2017 (ISSTA’17), 12 pages.
https://doi.org/10.1145/3092703.3092724

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

ISSTA’17, July 10-14, 2017, Santa Barbara, CA, USA
© 2017 Association for Computing Machinery.

ACM ISBN 978-1-4503-5076-1/17/07. . . $15.00

https://doi.org/10.1145/3092703.3092724

1 INTRODUCTION
Modern embedded systems are highly concurrent, memory, and sen-

sor intensive, and run in resource constrained environments. They

are often programmed using interrupts to provide concurrency and

allow communication with peripheral devices. Typically, a periph-

eral device initiates a communication by issuing an interrupt that

is then serviced by an interrupt service routine (ISR), which is a

procedure that is invoked when a particular type of interrupt is

issued. The frequent use of interrupts can cause concurrency faults

such as data races to occur due to interactions between application

tasks and ISRs. Such faults are often difficult to detect, isolate, and

correct because they are sensitive to execution interleavings.

As an example, occurrences of race conditions between interrupt

handlers and applications have been reported in a previous release

of uCLinux [29], a Linux OS designed for real-time embedded sys-

tems. In this particular case, the serial communication line can be

shared by an application through a device driver and an interrupt

handler. In common instances, the execution of both the driver and

the handler would be correct. However, in an exceptional operating

scenario, the driver would execute a rarely executed path. If an

interrupt occurs at that particular time, simultaneous transmissions

of data is possible (Section 2 provides further details).

Many techniques and algorithms have been proposed to address

concurrency faults, such as data races. These include static analy-

sis [20, 30, 40, 60, 63], dynamic monitoring [9, 17, 31, 38], schedule

exploration [10, 14, 39, 53, 54, 58], and test generation [41, 45].

These techniques, however, focus on thread-level races. Applying

these directly to interrupt-driven software is not straightforward.

First, interrupt-driven programs employ a different concurrency

model. The implicit dependencies between asynchronous concur-

rency events and their priorities complicate the happens-before

relations that are used for detecting races. Second, controlling in-

terrupts requires fine-grained execution control; that is, it must

be possible to control execution at the machine code level and not

at the program statement level, which is the granularity at which

many existing techniques operate. Third, occurrences of interrupts

are highly dependent on hardware states; that is, interrupts can oc-

cur only when hardware components are in certain states. Existing

techniques are often not cognizant of hardware states.

There are several techniques for testing embedded systems with

a particular focus on interrupt-level concurrency faults [22, 34, 48].

For example, Higashi et al. [22] improve random testing via a mech-

anism that causes interrupts to occur at all instruction points to

detect interrupt related data races. However, these techniques rely

113

For Research Only

https://doi.org/10.1145/3092703.3092724
https://doi.org/10.1145/3092703.3092724

ISSTA’17, July 10-14, 2017, Santa Barbara, CA, USA Yu Wang, Linzhang Wang, Tingting Yu, Jianhua Zhao, and Xuandong LI

on existing test inputs and could miss races that could otherwise

be detected by other inputs. In addition, these techniques do not

account for the implicit dependencies among tasks and interrupts

due to priorities.

This paper presents SDRacer (static and dynamic race detection),
an automated tool that combines static analysis, symbolic execu-

tion, and dynamic simulation to detect and validate race conditions

in interrupt-driven embedded systems. SDRacer first employs static

analysis to identify code locations for potential races. SDRacer then

uses symbolic execution to generate input data and interrupt inter-

leavings for exercising the potential racing points; a subset of false

positives can be eliminated at this step. Finally, SDRacer leverages

the virtual platform’s abilities to interrupt execution without affect-

ing the states of the virtualized system and to manipulate memory

and buses directly to force interrupts to occur.

To evaluate the effectiveness and efficiency of SDRacer, we apply

the approach to nine embedded system benchmarks with previ-

ously unknown race conditions. Our results show that SDRacer

precisely detected 190 race conditions. Furthermore, the time taken

by SDRacer to detect and validate races is typically a few minutes,

indicating that it is efficient enough for practical use.

In summary, this paper contributes the following:

• A fully automated framework that can detect and validate

race conditions for interrupt-driven embedded software sys-

tems.

• A practical tool for directly handling the C code of interrupt-

driven embedded software.

• Empirical evidence that the approach can effectively and

efficiently detect race conditions in real-world interrupt-

driven embedded systems.

The rest of this paper is organized as follows. In the next section

we present a motivating example and background.We then describe

SDRacer in Section 3. Our empirical study follows in Sections 4 –

5, followed by discussion in Section 6. We present related work in

Section 7, and end with conclusions in Section 8.

2 MOTIVATION AND BACKGROUND
In this section we provide background and use an example to il-

lustrate the challenges in addressing race conditions in interrupt-

driven embedded software.

2.1 Interrupt-driven Embedded Systems
In embedded systems, an interrupt alerts the processor to a high-

priority condition requiring the interruption of the current code the

processor is executing. The processor responds by suspending its

current activities, saving its state, and executing a function called an

interrupt handler (or an interrupt service routine, ISR) to deal with

the event. This interruption is temporary, and, after the interrupt

handler finishes, the processor resumes normal activities.

We denote an interrupt-driven program by P = Task ∥ ISR, where
Task is the main program that consists of one or more tasks (or

threads) and ISR = ISR1∥ISR2∥ . . . ∥ISRN indicates interrupt ser-

vice routines. The subscripts of ISRs indicate interrupt numbers,

with larger numbers denoting lower priorities. Typically, P receives

two types of incoming data: command inputs as entered by users

and sensor inputs such as data received through specific devices

(e.g., a UART port). An interrupt schedule specifies a sequence of

interrupts occurring at specified program locations. In this work,

we do not consider reentrant interrupts (interrupts that can pre-

empt themselves); these are uncommon and used only in special

situations [48].

2.2 Race Conditions in Interrupt-driven
Programs

A race condition occurs when two conditions are met: 1) the exe-

cution of a task or an interrupt handler T is preempted by another

interrupt handler H after a shared memory access m, and 2) H
manipulates the content ofm. More formally,

ei = MEM (αi, mi, ai, Ti, pi, si) ∧ ej = MEM (αj, mj, aj, Tj, pj, sj)
∧mi = mj ∧ (aj = WRITE ∨ ai = WRITE) ∧sj = sj .enabled ∧ pj > pi

MEM(α ,mi , ai , Ti , pi , si) denotes a task or an ISR Ti with priority

pi performs an access a ∈ {WRITE, READ} to memory location

m while in an hardware state si . The above condition states that

two events ei and ej are in race condition if they access the same

memory location and at least one access is a write. Here, ei is from
a task or an ISR and ej is from a different ISR, the interrupt of Hj is
enabled when ei happens, and the priority pj is greater than pi .

A race condition is broadly referred to data races, atomicity

violations, and order violations. In this work, we consider order

violations. Data races are not applicable between a task and an

ISR or between ISRs, because a memory cannot be simultaneously

accessed by the tasks or the ISRs. That said, a memory is always

accessed by a task (or a low-priority ISR) and then preempted by

an ISR. Interrupts have an asymmetric preemption relation with

the processor’s non-interrupt context: interrupts can preempt non-

interrupt activity (i.e., tasks) but the reverse is not true [48].

2.3 A Motivating Example
In prior releases of uCLinux version 2.4, there is a particular race

condition that occurs between the UART driver program uart start

and the UART ISR serial8250 interrupt [29]. We provide the code

snippets (slightly modified for ease of presentation) that illustrate

the error in Figure 1. The variables markedwith bold indicate shared

resources accessed by both tasks and ISRs.

Under normal operating conditions, the interrupt service rou-

tines (ISRs) are always responsible for transmitting data. There are

two ISRs: irq1_handler has a higher priority than irq2_handler.
However, several sources have shown that problems such as races

with other processors on the system or intermittent port problems

can cause the response from the ISRs to get lost or cause a fail-

ure to correctly install the ISRs, respectively. When that happens,

the port is registered as “buggy” (line 5) and workaround code

based on polling instead of using interrupts is used (line 12-16).

Unfortunately, the enabled irq1_handler is not disabled in the

workaround code region so by the time the workaround code is

executed, it is possible that irq1_handler preempts and modifies

the shared variable xmit->tail (line 14); this causes the serial port
to receive the wrong data (line 15).

The first challenge is that embedded systems use special op-

erations to control interrupts, some of which may not even be

recognized by existing static and dynamic analysis techniques. For

example, serial_out disables irq2_handler by directly flagging

an interrupt bit at the hardware level using the variable flags (line
9). Failing to identify such operations would report false positives.

For example, conservative analysis techniques would falsely report

114

For Research Only

Automatic Detection and Validation of Race Conditions in
Interrupt-Driven Embedded Software

ISSTA’17, July 10-14, 2017, Santa Barbara, CA, USA

1 int transmit(struct uart_port *port){
2 ...
3 if (iir & UART_IIR_NO_INT) {
4 if (!(port ->bugs & UART_BUG_TXEN)) {
5 port ->bugs |= UART_BUG_TXEN;
6 ...
7 }
8 }
9 serial_out(port , UART_IER , flags); /* disable irq2*/
10

11 ...
12 if (port ->bugs & UART_BUG_TXEN) { /* workaround */
13 ...
14 p = xmit->tail + 1;
15 serial_outp(port , UART_TX , p.x_char); /*

incorrect output */
16 }
17 }
18

19 static irqreturn_t irq1_handler (...){
20

21 if (thr == 0x1101) {
22 xmit->tail = a + 1;
23 }
24 b = xmit->tail;
25 ...
26 }
27

28 static irqreturn_t irq2_handler (...){
29

30 if (thr != 0x1101) {
31 xmit->tail = c + 1;
32 ...
33 }
34

35 }

Figure 1: Race condition in a UART device driver

that there is a race condition between line 14 and line 31 on the vari-

able xmit->tail even if the irq2_handler is disabled in the task.

Therefore, hardware states and operations must be known when

testing for race conditions in interrupt-driven embedded systems.

Second, task and interrupt priorities affect the order relations

between concurrency events. For example, the read of xmit->tail
at line 24 cannot be modified by the write of xmit->tail at line 31

due to the reason that the irq1_handler has a higher priority than
the irq2_handler. Therefore, existing techniques that neglect the

effect of priorities would lead to false positives.

Finally, exposing this race condition requires specific input data

from the hardware. For example, only when the IIR register is

cleared (i.e., iir & UART_IIR_NO_INT is true) and the port is set to
“buggy” will the true branch (line 4) be taken in the transmit func-
tion. Existing techniques on testing interrupt-driven programs that

rely on existing inputs are inadequate. While automated test case

generation techniques, such as symbolic execution can be leveraged,

adapting them to interrupt-driven software is not straightforward.

For example, IIR is a read-only register and thus cannot be directly

manipulated; the value of IIR is controlled by the interrupt enable

register (IER). Therefore, hardware properties must be considered

when generating input data.

2.4 Leveraging Virtual Platforms in Testing
Virtual platforms such as Simics provide observability and fine-

grained controllability features sufficient to allow test engineers to

detect faults that occur across the boundary between software and

hardware. SDRacer takes advantage of many features readily avail-

able in many virtual platforms to tackle the challenges of testing for

race conditions in interrupt-driven embedded software. Particularly,

we can achieve the level of observability and controllability needed

to test such systems by utilizing the virtual platform’s abilities to

interrupt execution without affecting the states of the virtualized

system, to monitor function calls, variable values and system states,

and to manipulate memory and buses directly to force events such

as interrupts and traps. As such, SDRacer is able to stop execution

at a point of interest and force a traditionally non-deterministic

event to occur. Our system then monitors the effects of the event

on the system and determines whether there are any anomalies.

2.5 Comparing to Thread-level Race Detection
Techniques

Although interrupts are superficially similar to threads (e.g., nonde-

terministic execution), the two abstractions have subtle semantic

differences [49]. As such, thread-level race detection techniques

[9, 17, 31, 38, 41, 45] cannot be adapted to address interrupt-level

race conditions.

First, threads can be suspended by the operating system (OS)

and thus the insertion of delays (e.g., sleep or yield instructions)

can be used to control the execution of threads. The status of each

thread is also visible at the application level. However, interrupts

cannot block – they run to completion unless preempted by other

higher-priority interrupts. The inability to block makes it impossi-

ble to use advanced OS services for controlling the occurrences of

interrupts in race detection. In addition, the internal states of in-

terrupts are invisible to tasks and other interrupt handlers because

of the non-blocking characteristics. As such, it is impossible to use

code instrumentation for checking the status of interrupts.

Second, threads typically employ symmetrical preemption rela-

tions – they can preempt each other. In contrast, tasks and interrupt

handlers (i.e., task vs. ISR and ISR vs. ISR) have asymmetrical pre-

emption relations. Specifically, interrupts cannot be preempted by

normal program routines; instead, they can be preempted only

by other interrupts with higher priority, and this can occur only

when the current interrupt handler is set to be preemptible. The

asymmetric relationship between interrupt handlers and tasks in-

validates the happens-before relations served as the standard test

for detecting thread-level races.

Third, the concurrency control mechanisms employed by inter-

rupts are different. A thread synchronization operation uses block-

ing to prevent a thread from passing a given program point until the

synchronization resource becomes available. However, concurrency

control in interrupts involves disabling an interrupt from executing

in the first place. This is done by either disabling all interrupts

or disabling specific interrupts that may interfere with another

interrupt or task. As such, thread-level techniques that rely on

binary/bytecode instrumentation [54, 64] to control memory access

ordering between threads cannot be used to control the occurrences

of hardware interrupts. In contrast, interrupt-level race detection

techniques must be able to control hardware states (e.g., registers)

to invoke interrupts at specific execution points [66]. In addition,

occurrences of interrupts are highly dependent on hardware states;

that is, interrupts can occur only when hardware components are

in certain states. Existing thread-level race detection techniques

are not cognizant of hardware states.

3 SDRACER APPROACH
We introduce SDRacer whose architecture is shown in Figure 2.

The rectangular boxes contain the major components. SDRacer

115

For Research Only

ISSTA’17, July 10-14, 2017, Santa Barbara, CA, USA Yu Wang, Linzhang Wang, Tingting Yu, Jianhua Zhao, and Xuandong LI

Source Code
Static Analysis

Warnings

(WN)

Potential Races

(PR WN)
Dynamic

Validation

Simics

Guided Symbolic

Execution

KLEE

SDRacer

Real Races

(R PR)

Figure 2: Overview of SDRacer framework.

first employs lightweight static analysis (SA) to identify potential

sources of race conditions. The output of this step is a list of static

race warnings, {<ei = (Ti , Li , Ai), ej= (Tj , Lj , Aj)>}. However,

the event pair < ei , ej > does not imply that the two events are

truly ordered. In the dynamic validation phase, SDRace attempts to

force ej to occur after ei . Here, T is a task or an ISR, L is the code

location, and A is the access type. In the example of Figure 1, the

output of this step is:WN1 = <(transmit, 14, R), (irq1_handler,
22, W)>,WN2 =<transmit, 14, R), (irq2_handler, 31, W)>,WN3

= <irq2_handler, 31, W), (irq1_handler, 22, R)>, andWN4 =

<irq2_handler, 31, W), (irq1_handler, 24, R)>.
Next, SDRacer invokes symbolic execution to generate input data

that can reach the code locations of the static race warnings. In Fig-

ure 1, the input data t1 = {IIR = 0x0111, THR = 0x0111, port->bugs
= 0} is generated to exerciseWN1, and t2 = {IIR = 0x0111, THR =
0x0110, port->bugs = 0} is generated to exerciseWN2 andWN4.

This step can also eliminate infeasible racing pairs. For example,

WN3 cannot be covered due to the conflict path conditions between

irq1_handler and irq2_handler. Therefore,WN3 is a false posi-

tive. The output of symbolic execution is a list of potential races

PR and their corresponding input data.

Last, SDRacer utilizes the virtual platforms to exercise the inputs

on the potential races generated from the symbolic execution and

force the interrupts to occur at the potential racing points. The out-

put of this step is a set of real races. In the example of Figure 2,WN1

andWN4 are real races because we can force the irq1_handler to

occur right after line 14 and the irq2_handler to occur right after

24. Therefore,WN1 andWN4 are real races, whereasWN2 is a false

positive; irq2_handler cannot be issued after line 14 because its

interrupt line is disabled.

3.1 Static Analysis
In the static analysis phase, SDRacer first identifies shared re-

sources and interrupt enable and disable operations. It then per-

forms context-sensitive analysis to compute a list of potential racing

pairs, i.e., static race warnings. The racing pairs are used for guiding

test input generation and dynamic race validation.

3.1.1 Identifying Shared Resources. Race conditions are gen-

erally caused by inappropriate synchronized access to shared re-

sources. So precisely detecting shared resources is key to race de-

tection. In addition to shared memory that is considered by thread-

level race detection techniques, SDRacer also accounts for hardware

components that are accessible by applications and device drivers,

including device ports and registers.

We use the Thread Safety Analysis tool [5] from the LLVM Clang

static analyzer [1] to identify resources accessed by at least: 1) two

ISRs, and 2) one task and one ISR. SDRacer automatically decom-

poses tasks based on the specific patterns of device drivers. For

example, the first parameter of kthread_create refers to the func-

tion name of a task. Another type of task is the function callback,

which is triggered by a specific device operation (e.g., device read).

Each detected shared resource SV is denoted by a 6-tuple: RSL(SV)

= {< T ,L,V ,AV ,R,A >}, where T denotes the name of the task or

ISR in which SV is accessed, L denotes the code location of the ac-

cess, V denotes the name of the SV , AL denotes whether the name

V is an alias (f alse) or a real name (true) (real name is the declared

name), R means the real name of this resource, and A denotes the

access type – read (denoted by R) or write (denoted by W).

In the example of Figure 1, the RSL for the xmit→tail is:

<transmit, 14, xmit→tail, true, xmit→tail, R>, <transmit,
22, xmit→tail, true, xmit→tail, W>, <irq_handler, 24,
xmit→tail, true, xmit→tail, R>, and <transmit, 31,
xmit→tail, true, xmit→tail, W>,

3.1.2 Identifying Interrupt Operations. To track interrupt status

(i.e., disabled or enabled) of a shared resource, SDRacer identifies

interrupt-related synchronization operations, which typically in-

volve interrupt disable and enable operations. In many embedded

systems, coding interrupt operations can be rather flexible. An in-

terrupt operation can be done by directly manipulating hardware

bits (e.g., line 9 of Figure 1). In addition, these operations vary across

different architectures and OS kernels.

SDRacer considers both explicit and implicit interrupt opera-

tions. For the explicit operations, SDRacer considers standard Linux

interrupt APIs, including disable_irq_all(), disable_irq(int
irq), disable_irq_nosync(int irq) and enable_irq(int irq),
where the irq parameter indicates the interrupt vector number (i.e.,

the unique ID of an interrupt). For the implicit operations, SDRacer

tracks operations that manipulate interrupt-related hardware com-

ponents, such as the interrupt enable registers (IERs). Since these
operations are often not recognized by static analysis, SDRacer

conservatively assumes they are equivalent to interrupt enabling

(e.g., enable_irq_all()); false positives can be eliminated in the

dynamic validation phase. In Figure 1, the hardware write operation

at line 9 is considered to be an interrupt enable operation.

To handle interrupts in different kernels or architectures. SDRacer

provides a configuration file that allows developers to specify the

names of interrupt APIs. The output of this step is a 4-tuple list:

ITRL = {<M,L, I ,T>}, where M denotes the function name, L de-

notes the code location where the interrupt operation is called, I
denotes the interrupt vector number and T denotes the type of

interrupt operation (i.e., enable or disable). In the example of Fig-

ure 1, the ITRL is: <transmit, 9, all , enable>, where all denotes
all interrupts are enabled.

116

For Research Only

Automatic Detection and Validation of Race Conditions in
Interrupt-Driven Embedded Software

ISSTA’17, July 10-14, 2017, Santa Barbara, CA, USA

Algorithm 1 Static race detection

Input: IICFGs of P
Output: potential racing pairs (PR)
1: for each < Gi , G j > in I ICFGs do
2: for each svi ∈ Gi do
3: for each svj ∈ G j do
4: if svi .V == svj .V and (svi .A ==W or svj .A ==W) and

Gi .pr i < G j .pr i and INTB.get(svi).contains(G j) then
5: PR = PR ∪ (svi , svj)
6: end if
7: end for
8: end for
9: end for

3.1.3 Identifying Static Race Warnings. In this step, we identify

shared resource pairs that may race with each other from all identi-

fied shared resources. These pairs are used as targets for guiding

symbolic execution to generate test input data.

To statically identify potential racing pairs, we first build a re-

duced inter-procedural control flow graph (IICFG) for the task and

each of the ISR that contains that contains at least one shared re-

source. IICFG prunes branches that do not contain shared resources

in the original inter-procedural control flow graph (ICFG) in order

to reduce the cost of analysis.

Algorithm 1 describes the computation of potential racing pairs

based on the IICFGs of the program. SDRacer traverses each IICFG

by a depth-first search to examine the interrupt status (i.e., enable

or disable) of every instruction. We use a bit vector INTB to record

the interrupt status. For example, INTB = <1, 0, 0> indicates that

the first interrupt is disabled and the second and the third interrupts

are enabled. INTB is updated when an instruction is visited. Note

that when visiting an instruction inside the ISR, the bit associated

with the ISR is always set to 1 because an ISR is non-reentrant.

For each shared resource svi at the location L of an IICFG Gi , if
there exists the same shared resource svj in an IICFGG j , at least one
shared resource is a write, the priority of G j is higher than that of

Gi , and the interrupt forG j is enabled at L, the pair (svi , svj) forms

a potential race condition. For example, in Figure 1, the bit vector at

line 14 is <0, 0>, indicating that both irq1 and irq2 are enabled. Also,
both irq1 and irq2 have higher priorities than transmit. The bit
vector at line 13 is <1, 0>, because irq1_handler is non-reentrant.
Therefore,WN1,WN2,WN3, andWN4 are reported as static race

warnings.

Note that our lightweight static analysis does not consider loops

or context-sensitivity, which may lead to inaccuracies. For example,

ignoring loops may cause false negatives because a new racing

pair may be discovered in subsequent iterations. However, such

cases were not found in the experiment. The context-insensitive

analysis may lead to false positives because it does not distinguish

between different calling contexts of a function. On the other hand,

precise static analysis is more expensive [62]. As future work, we

will evaluate cost-effectiveness by adopting precise static analysis

techniques.

3.2 Guided Symbolic Execution
We propose a new symbolic execution procedure to generate input

data for exercising static race warnings reported in static analysis

and eliminating a portion of false races. Unlike traditional guided

symbolic execution [19, 37], symbolic execution on interrupt-driven

programs needs to consider the asymmetrical preemption relations

among tasks and ISRs. The symbolic execution of SDRacer consists

of two steps: 1) identifying entry points that take symbolic inputs; 2)

generate inputs that exercise racing pairs reported by static analysis.

Internally, we leverage the KLEE symbolic virtual machine [11] to

implement the goal-directed exploration of the program to traverse

the program locations involving potential races.

3.2.1 Identifying Input Points. Execution paths in embedded

systems usually depend on various entry points that accept inputs

from external components, such as registers and data buffers [65].

One challenge for our approach involves dealing with multiple in-

put points in order to achieve high coverage of the targets. SDRacer

considers two kinds of input points: 1) hardware-related memo-

ries (e.g., registers, DMA), and 2) global data structures used to

pass across components (e.g., buffers for network packages, global

kernel variables that are accessible by other modules). SDRacer

can automatically identify these input points based on the specific

patterns of device drivers – this is a per-system manual process.

In the example of Figure 1, The input points include the UART

registers and the UART port. Specifically, the values in the registers

IIR (line 3) and THR (line 21 and line 30) determine the data and

control flow of the program execution. As such, we make these

register variables symbolic. We also make the data fields of the

UART port symbolic (e.g., port->bug at line 4) because they accept
inputs from users and external components.

3.2.2 Guided Symbolic Execution. For each static race warning

WN = <ei , ej>, SDRacer calls the guided symbolic execution to

generate a test input to exercise theWN or report that theWN
is a false positive. Since each call to the symbolic execution tar-

gets a pair of events in two different tasks or ISRs, we build a

inter-context control flow graph (ICCFG) by connecting the inter-

procedural control flow graphs (ICFGs) of the tasks and ISRs. For

each instruction that is equal to the first racing event ei in aWN ,

we add an edge that connects ei to the entry function of the ICFG

in which ej exists. In the example of Figure 1, to generate inputs

forWN1 = <(transmit, 14, R), (irq1_handler, 22, W)>, the entry
of irq1_handler is connected to the instruction right after the

xmit->tail read access.

SDRacer guides the symbolic execution toward the two ordered

events of each WN by exploring the ICCFG. Let e ∈ WN denote

the current event to be explored, and stateset denote the set of pro-
gram states that could reach e . stateset can be analyzed based on the
backward reachability analysis of IICFG. At each step of the sym-

bolic execution procedure, we select a promising state si ∈ stateset ,
which is likely to reach e . Internally, SDRacer estimates the distance

between each program state si and e before selecting the next state.
The distance is defined as the number of instructions to be executed

from si to e and is computed by statically traversing the ICCFG. If

multiple states have the same distance to e , SDRacer randomly se-

lects one. In this sense, the search strategy of SDRacer differs from

prior symbolic execution techniques such as state prioritization

(e.g., assertion-guided symbolic execution [21] and coverage-guided

symbolic execution [11, 33]), because they do not target the explo-

ration of potential racing points.

If no state in stateset can reach e , we check if e is in a loop. If e
is in a loop, we increase the number of loop iterations by a fixed

117

For Research Only

ISSTA’17, July 10-14, 2017, Santa Barbara, CA, USA Yu Wang, Linzhang Wang, Tingting Yu, Jianhua Zhao, and Xuandong LI

number of times given a timeout threshold and try again. This will

increase our chance of reaching the goal. The iteration number is

increased until reaching the loop bound Lmax (Lmax = 1000 in our

experiments).

Otherwise, we backtrack and search for another path to the

current event. If backtracking is repeated many times, eventually,

it may move back to the first event, indicating that the current

racing pair cannot be exercised. In such case, we move to the next

racing pair. After reaching the second event (i.e., ej), we traverse
the current program path to compute the path condition (PC). Then,

we compute the data input by solving the path condition using an

SMT solver.

The main problem in guided symbolic execution is to make the

procedure practical efficient by exploring the more “interesting”

program paths. Toward this end, we propose several optimization

techniques. Recall that we statically analyze the source code of

the program to prune away paths that do not lead to the shared

resources – they correspond to the irrelevant potential races. We

also skip computationally expensive constraint solver calls unless

the program path traverses some unexplored potential races. In

addition to these optimizations, we prioritize the path exploration

based on the number of potential races contained in each path to

increase the likelihood of reaching all static races sooner. Further-

more, we leverage concrete inputs (randomly generated) to avoid

generating a large number of invalid inputs.

In the example of Figure 1, the symbolic execution success-

fully generates input data for exercisingWN1 andWN2, andWN4.

ForWN3, the symbolic execution explores the two events at line

31 and line 21 in the ICCFG that connects irq1_handler and

irq2_handler. The path constraint thr == 0x1101∧ thr , 0x1101
is unsolvable, soWN3 is a false positive.

For each static warning, there are three types of output generated

by the symbolic execution. The first type of output is a potential

race together with its input data, which means that this race is

possible to be exercised at runtime. The second type of output

is an unreachable message (unsolvable path constraints), which

indicates that the static warning is a false positive. The third type

of output is a message related to timeout or crash. The reason could

be the execution time-out, the limitation of constraint solver or

the unknown external functions. In the next phase of dynamic

validation, we validate weather races reported in the second and

third types are real races or not.

3.3 Dynamic Validation of Race Conditions
We propose a hardware-aware dynamic analysis method to validate

the remaining race conditions from the symbolic execution. In this

phase, SDRacer first employs an execution observer to monitor

shared resource accesses and interrupt operations, and then uses

an execution controller to force each race condition to occur.

3.3.1 Executing Observer. The Observer records operations that
access shared memory and hardware components. The observer

also monitors interrupt bits (IER and IIR registers) to track inter-

rupt disabling and enabling operations. These bit-level operations

are then mapped into the instruction-level statement, because the

control of interrupts happens at the instruction level.

For each shared resource access, SDRacer can retrieve the current

interrupt status of all IRQ lines to check whether it is possible to

force a specific interrupt to occur.

Algorithm 2 Algorithm SDRacer: Execution controller

Input: PRaceSet , P , S
Output: RaceSet
1: for each σ = (ei , ej) ∈ PRaceSet do
2: if ei in T then
3: E = Execute(P, tσ)
4: end if
5: if ei in H then
6: E = Execute(P, ei .H, tσ)
7: end if
8: if E covers ei then
9: if ISR_enabled (ej.H) is true then
10: raise interrupt ej .H
11: else
12: find another possible location

13: end if
14: if ej .H accesses ej then
15: RaceSet = RaceSet ∪ σ /*race occurs*/

16: end if
17: if Output(P, S) , O then
18: print “Error: fault found”

19: end if
20: end if
21: end for

3.3.2 Execution Controller. Simics allows us to issue an interrupt

on a specific IRQ line from the simulator itself. As such, when the

Observer reaches an SV , an interrupt is invoked at a feasible location

after the access to this SV .

We now describe the algorithm of execution controller (Algo-

rithm 2). Given a potential racing pair σ = (ei , ej), The goal of this
algorithm is to force an ISR that contains ej to occur right after the

access to ei . The algorithm first executes the program under test P
(line 6). If the the first shared resource access ei occurs in a task,

the algorithm executes the input data (generated from the symbolic

execution) on P (line 3). If ei occurs in an ISR, it executes P together

with the interrupt issued at the arbitrary location of P (line 6). If

the execution covers ei , the algorithm forces the interrupt in which

ej exists to occur immediately after ei (line 9). If a race occurs, it is
added to RaceSet (line 15).

Note that our algorithm can also force the interrupt to trigger

immediately before ei . In fact, the effect of triggering an interrupt

immediately after the first event covers that of triggering an inter-

rupt before the first event because a failure is usually caused by

reading the incorrect value modified by the interrupt handler. It is

not critical to choose either case.

Because it may not be possible to raise an interrupt immediately

(e.g., if the interrupt is currently disabled), the algorithm checks

the current state of the interrupt associated with ej (line 9) before
raising an interrupt. The algorithm also checks outputs on termi-

nation of the events (lines 17-18) to determine whether a fault has

been identified. If the interrupt (S) cannot be raised immediately
after the shared resource access ej in P (lines 9-10), the algorithm

postpones ei .H (the ISR in which ej exists) until it can feasibly be

raised, or until the entry instruction of the operation in another

potential race pair is reached.

To illustrate the algorithm’s operation, using Figure 1 as an

example. ConsideringWN1, given the input t1, the transmit cov-
ers the read of xmit→tail at line 14. Thus, the algorithm forces

118

For Research Only

Automatic Detection and Validation of Race Conditions in
Interrupt-Driven Embedded Software

ISSTA’17, July 10-14, 2017, Santa Barbara, CA, USA

Algorithm 3Algorithm to determine whether it is possible to issue

an interrupt: ISR_enabled(int p)
Input: P

Output: enabled /*p is the pin number for a certain interrupt*/

1: if ef laдs[9] != 0 and ioapic.redirection[p] == 0 and

ioapic.pin_raised[p] == LOW then
2: return true

3: end if
4: return false

irq1_handler to be raised right after the read of xmit→tail at

line 14, In this scenario, xmit→tail is modified by the irq1_handler,
causing transmit to read the wrong value. As a result,WN1 is real

and harmful.

It is not always realistic to invoke an interrupt whenever we

want. For example, the interrupt enables register and possibly other

control registers have to be set to enable interrupts. In the example

of Figure 1, before invoking an interrupt, the interrupt enable reg-

ister IER of the UART must be set while the interrupt identification

register IIR must be cleared. Interrupts can be temporarily disabled

even if they are enabled. Algorithm 3 is the routine in the Controller

used to determine whether it is possible to issue an interrupt.

There are two general steps that our system takes prior to invok-

ing a controlled interrupt. First, the controller module checks the

status of the local and global interrupt bits to see if interrupts are

enabled. In an X86 architecture, the global interrupt bit is the ninth

bit of the eflags register (line 1 in Algorithm 3). When this bit is

set to 1 the global interrupt is disabled, otherwise it is enabled. For

local interrupts, Simics uses the Advanced Programmable Interrupt

Controller (APIC) as its interrupt controller. As such, our system

checks whether the bit controlling the UART device is masked or

not.

3.4 Implementation
The static analysis component of SDRacer was implemented using

the Clang Tool 3.4 [6]. Our alias analysis leveraged the algorithm

in [57] to handle the alias of shared resources. Our guided sym-

bolic execution was implemented based on KLEE 1.2 [2] with STP

solver [4] and KLEE-uClibc [3]. Since most kernel functions are

not supported by KLEE and KLEE-uClibc, we have extended KLEE-

uClibc to support kernel functions such as request_irq(). In order to

guide the symbolic execution toward specific targets (i.e., potential

racing points), we modified KLEE to only gather constraints related

to the paths that are generated by static analysis. We used Simics

virtual platforms to implement the dynamic validation phase. Sim-

ics provides APIs that can be accessed via Python scripts to monitor

concurrency events and to manipulate memory and buses directly

to force interrupts to occur.

4 EMPIRICAL STUDY
To evaluate SDRacer we consider two research questions:

RQ1: How effective is SDRacer at detecting interrupt-level race

conditions across the three phases?

RQ2: How efficiency is SDRacer at detecting interrupt-level race

conditions?

RQ1 allows us to evaluate the effectiveness of our approach in

terms of the number of races detected at different phases, and their

Table 1: Objects of Analysis

Program name LOC #INT # Func #SR #BB
keyboard_ driver 84 1 4 5 45

mpu401_ uart 630 1 16 2 316

i2c-pca-isa 225 1 11 9 111

mv643xx _eth.c 3256 1 29 7 1076

short 704 5 18 20 315

shortprint 531 1 11 22 266

short (EI) 707 5 18 20 317

shortprint (EI) 530 1 11 22 266

module1 168 1 3 1 55

module2 154 2 37 4 62

module3 99 2 8 1 40

abilities to reduce false positives. RQ2 lets us consider the efficiency

of our approach in terms of analysis/testing time and platform

overhead.

4.1 Objects of Analysis
As objects of analysis, we chose both open source projects and

industrial products. First, we selected 118 device driver programs

that can be compiled into LLVM bitcode from four versions of Linux

Kernel. We next eliminated from consideration those drivers that

could not execute in Simics environment; this process left us with

four drivers: keyboard, mpu401_uart, i2c-pca-isa, and mv643_eth.

The 114 drivers were not executable because their corresponding

device models were not available in Simics – they need to be pro-

vided by developers. As part of the future work, we will develop

new device models for Simics in order to study more device driver

programs.

We also selected two driver programs from LDD [15]: short

and shortprint. To create more subjects, we manually seeded a

concurrency fault to each of the two LDD programs. Specifically,

We injected a shared variable increment operation and a decrement

operation in their interrupt handlers. The fault injection did not

change the semantics of the original programs but induced new

races to these programs. The two programs are denoted as short

(EI) and shortprint (EI).

The other three subjects are real embedded software from China

Academy of Space Technology. Module1 is an UART device driver.

Module2 is a driver for the lower computer. Module3 is used to

control the power of engine. Table 1 lists all eleven programs, the

number of lines of non-comment code they contain, the number

of interrupts (with different priorities), the number of functions,

the number of shared resources, and the number of basic blocks.

The number of basic blocks indicates the complexity of symbolic

execution. The size of the benchmarks is consistent with a prior

study of concurrency bugs in device driver programs [59], which

ranges from less than a hundred line of code to thousands of lines

of code.

All our experiments were performed on a PC with 4-core Intel

Core CPU i5-2400 (3.10GHz) and 8GB RAM on Ubuntu Linux 12.04.

For the simulation, the Host OS was Ubuntu 12.04 and the guest OS

was 10.04. Simulation was based on real-time mode and conducted

without VMP (In order to run Intel Architecture (IA) targets quickly

on IA-based hosts.). The timeout for symbolic execution was set to

10 minutes.

119

For Research Only

ISSTA’17, July 10-14, 2017, Santa Barbara, CA, USA Yu Wang, Linzhang Wang, Tingting Yu, Jianhua Zhao, and Xuandong LI

4.2 Dependent Variables
We consider several measures (i.e., dependent variables) to answer

our research questions. Our first dependent variable measures tech-

nique effectiveness in terms of the number of races detected. We

measure the number of races detected in each of the three phases.

We also inspected all of the reported real races (from the dynamic

validation phase) that did not result in detectable failures to deter-

mine whether they were harmful or benign.

To assess the efficiency of techniques we rely on four dependent

variables, each of which measures one facet of efficiency. The first

dependent variable measures the analysis and testing time required

by SDRacer across the three phases. Although measuring time is

undesirable in cases in which there are nondeterministic shared

resource accesses among processes, this is not a problem in our

case because we use a VM that behaves in a deterministic manner.

Our second variable regarding efficiency measures the extra plat-
form overhead associated with SDRacer. This is important because

using virtual platforms such as Simics for testing can increase costs,

since virtualization times can be longer than execution times on real

systems. We calculate platform overhead by dividing the average

runtime per test run on Simics by the runtime per test on the real

machine. Note that judging whether races are harmful is not taken

into account when computing the overhead of SDRacer because it

is independent of techniques for locating harmful races.

4.3 Threats to Validity
The primary threat to external validity for this study involves the

representativeness of our programs and faults. Other programs

may exhibit different behaviors and cost-benefit tradeoffs, as may

other forms of test suites. However, the programs we investigate are

widely used and the races we consider are real (except the seeded

races on the two LDD programs).

The primary threat to internal validity for this study is possi-

ble faults in the implementation of our approach and in the tools

that we use to perform evaluation. We controlled for this threat

by extensively testing our tools and verifying their results against

smaller programs for which we can manually determine the correct

results. We also chose to use popular and established tools (e.g., Sim-

ics and KLEE) to implement the various modules in our approach.

As an additional threat to internal validity, race manifestation can

be influenced by the underlying hardware [43, 56]. For example,

microprocessors that provide virtualization support may be able to

prevent certain races from occurring due to fewer system calls. Our

work uses Simics, a full platform simulator to provide us with the

necessary controllability and observability to cause races. Simics

has been widely used to expose difficult-to-reproduce faults includ-

ing races [18]. The version of Simics that we used does not simulate

the later Intel processors with hardware virtualization support—a

feature that can affect our ability to produce races. Nonetheless, our

system was able to detect previously documented races existing in

our experimental subjects. Therefore, the execution patterns seen

using Simics should be comparable to those that would be observed

in the real systems.

Where construct validity is concerned, numbers of races detected

are just two variables of interest where effectiveness is concerned.

Other metrics such as the cost of manual analysis could be valuable.

5 RESULTS AND ANALYSIS
Table 2 reports the effectiveness and efficiency results observed in

our study; we use this table to address our research questions.

5.1 RQ1: Effectiveness of SDRacer
Columns 2-5 in Table 2 show the number of races reported by static

analysis, the number of races remained after symbolic execution,

the number of real races reported by the dynamic validation across

all 11 subjects, and the number of true races validated manually by

us. We reported the races detected in the three industrial programs

to developers and the races were confirmed. We also reported the

races detected in the four device driver programs and are waiting

for the confirmation.

As the results show, the symbolic execution reduced the number

of false positives contained in the sets of static race warnings by

55.6% overall, with reductions ranging from 27% to 100% across all

11 subjects. The dynamic validation reduced the number of races

reported by symbolic execution by 59.1% overall, with reductions

ranging from 0% to 100%. The manual examination revealed that

among all races reported by the dynamic validation, all races are

real and harmful. In total, SDRacer detected 190 races. Only on

shortprint did SDRacer not detect any races; no races were found
on this program by the manual inspection.

On two out the 11 subjects, symbolic execution reported equal

number races to the dynamic validation (keyboard_driver and

module1). In other words, symbolic execution did not report false

positives on the two programs. On the other nine programs, sym-

bolic execution did report false positives. By further examining the

programs, we found two reasons that led to the false positives. The

first reason is due to the unknown access type (read and write) in

external functions. For example, on mpu401_uart, the ISR calls an

external library (snd_mpu401_input_avail) taking an SV as the

argument. The symbolic execution treats this access as a write since

static analysis incorrectly identifies it as a write. The second reason

is due to the conflict path constraints between the main task and

ISRs, which resulted in time-out. In this case, the race reported by

the static analysis is directly sent to the dynamic validation phase.

The third reason is due to its incapable of recognizing the implicit

interrupt operations; This case happened to the program short .

5.2 RQ2: Efficiency of SDRacer
Columns 6-8 in Table 2 report the analysis time of static analysis,

symbolic execution, and dynamic validation. On two programs

(mpu401_uart and mv643xx_eth), the symbolic execution reached

the time limit (i.e., 10 minutes) on the two static warnings of each

program due to the unsolvable path constraints. Therefore, their

times of symbolic execution were much higher than the other pro-

grams. Overall, the total testing time spent by SDRacer ranged from

2 seconds to 23 minutes across all 11 subjects. Specifically, the time

for static analysis never exceeded 0.2 second, which accounted for

less than 0.01% of total testing time overall. The time spent on sym-

bolic execution was 235 seconds in arithmetic mean, accounting

for 88.1% of total testing time. The remaining (31 seconds) time

was spent on dynamic validation, which accounted for 11.8% of

total testing time. The time for symbolic execution and dynamic

validation varied with the number of detected static warnings.

SDRacer incurred platform overhead due to the use of VMs.

Column 9 of Table 2 lists the average platform overhead associated

120

For Research Only

Automatic Detection and Validation of Race Conditions in
Interrupt-Driven Embedded Software

ISSTA’17, July 10-14, 2017, Santa Barbara, CA, USA

Table 2: Experimental Results

Programs

Race Detected Execution Time (second) Simulation

Overhead

Controlled

Interrupts

Only

Static

Analysis

Symbolic

Execution

Dynamic

Validation

Manual

Checking

Static

Analysis

Symbolic

Execution

Dynamic

Validation

keyboard_driver 4 4 4 4 0.073 1.03 1.65 892x 4

mpu401_ uart 146 129 47 47 0.088 1251.83 75.2 245.3x 12

i2c-pca-isa 4 4 1 1 0.078 1.00 42.1 530.1x 1

mv643xx _eth 16 14 10 10 0.183 1207.97 102.2 64.4x 2

short 127 35 18 18 0.109 41.53 26.8 297x 14

shortprint 4 2 0 0 0.088 1.25 21.61 445.6x 0

short (EI) 149 41 24 24 0.106 48.28 24.13 285.6x 18

shortprint (EI) 14 8 6 6 0.091 4.44 49.3 425.8x 6

module1 4 4 4 4 0.076 0.91 1.54 669.2x 4

module2 93 65 64 64 0.075 21.48 1.25 590.1x 64

module3 15 15 12 12 0.073 3.39 1.06 426x 12

with SDRacer across all test runs. As the table shows, the average

platform overhead ranged from 64x to 669x. As we can see from the

result, the less complex a subject is, the more platform overhead it

incurred. This is because our execution observer was implemented

using the callback functions provided by the Simics VM; it took

time for the MV to trigger callback functions. However, considering

the benefits of virtual platforms and the difficulty of detecting

interrupt-level race conditions, such overhead is trivial.

6 DISCUSSION
In this section, we first summarize our experimental results and

then explore additional observations and limitations relevant to

our study.

6.1 Summary of Results
SDRacer’s static analysis component can detect potential race con-

ditions with a false positive rate 72.0%. Our static analysis is able to

handle nested interrupts with different priorities, as opposed to deal

with race conditions only between tasks and ISRs [13]. SDRacer’s

symbolic execution reduced the false positive rate to 49.8%. The

VM-based dynamic validation eliminated all false positives. Mean-

while, SDRacer detected all races with an average testing time of

4.5 minutes on each program.

If these results generalize to other real objects, then if engineers
wish to target race detection in interrupt-driven embedded system,
SDRacer is a cost-effective technique to utilize. In the case of non-

existing VMs, developers can still use static analysis and symbolic

execution to detect races.

6.2 Further Discussion
Influence of test input generation. As discussed in Section 7,

there have been techniques for detecting concurrency faults that

occur due to interactions between application and interrupt han-

dlers [23, 34, 48, 66]. However, these techniques neither handle

nested interrupts nor considers priority constraints among tasks

and ISRs. Also, they do not have the static analysis and symbolic

execution components, which could miss races that can only be

revealed by certain inputs. In addition, these techniques are not

applicable in the case of non-existing VMs or runtime environment.

To further investigate whether the use of static analysis and sym-

bolic execution can improve the race detection effectiveness, we

disabled the two components and did see missing races. Columns 10

in Table 2 reports the numbers of races detected when using only

the dynamic validation component. As the data shows, in total, it

detected only 137 races – 28.2% less effective than SDRacer.

Atomicity violations. SDRacer considers one type of definition
of race conditions – order violations. In practice, testers can adopt

different definitions because there is not a single general definition

for the class of race conditions that occur between an ISR and a

task/an ISR. SDRacer may miss faults due to atomicity violations.

For example, if a read-write shared variable pair in the main pro-

gram is supposed to be atomic, the ISR can read this shared variable

before it is updated in the main program. Since SDRacer does not

capture the read-read access pattern, this fault may be missed.

Inline functions. In the dynamic validation phase, we use mem-

ory breakpoints to detect when concurrency events are executed.

However, some simple functions are optimized as inline functions

by compilers. In this case, breakpoints for these functions cannot

be triggered. To handle this case, we need to disable optimization

for these functions.

Dynamic priority assignment.Many false positives in the static

analysis phase are caused by nested interrupts, because SDRacer

does not recognize priorities that are dynamic assigned. These false

positives can result in more validation time in symbolic execution

and dynamic simulation. As part of future work, we will consider

operations involving dynamic priority adjustment.

Scalability to the entire system. In our study, the analysis in-

volves a test program, the interrupt handler that interacts with the

device driver, and the device driver code. The key point here is that

the tester focuses on a specific component
1
and how it interacts

with the rest of the components. If the focus changes to a differ-

ent component, the same analysis can be applied to test the new

component. As such, the proposed approach is more suitable for

component testing instead of testing the entire system at once.

7 RELATEDWORK
There has been a great deal of work on analyzing, detecting, and

testing for thread-level data races [7, 12, 16, 25, 35, 36, 42, 44, 46, 52,

54, 67]. However, as discussed in Section 2.5, existing techniques

1
A component is a device driver program. The list of components can be identified by

popular Linux commands such as “modprobe"

121

For Research Only

ISSTA’17, July 10-14, 2017, Santa Barbara, CA, USA Yu Wang, Linzhang Wang, Tingting Yu, Jianhua Zhao, and Xuandong LI

on testing for thread-level concurrency faults have rarely been

adapted to work in scenarios in which concurrency faults occur

due to asynchronous interrupts.

There are several techniques for testing embedded systemswith a

particular focus on interrupt-level concurrency faults [23, 34, 48, 66].

For example, Regehr et al. [48] use random testing to test Tiny OS

applications. They propose a technique called restricted interrupt

discipline (RID) to improve naive random testing (i.e., firing inter-

rupts at random times) by eliminating aberrant interrupts. However,

this technique is not cognizant of hardware states and may lead

to erroneous interrupts. SimTester [66] leverages VM to address

this problem by firing interrupts conditionally instead of randomly.

Their evaluation shows that conditionally fired interrupts increase

the chances of reducing cost. However, all the foregoing techniques

do not consider interrupt-specific event constraints (e.g., priorities)

and may lead to imprecise results. In addition, they are incapable

of automatically generating test inputs race conditions. In contrast,

our approach can cover all feasible shared variables in the applica-

tion instead of using arbitrary inputs; this can help the program

execute code regions that are more race-prone.

There has been some work on using static analysis to verify

the correctness of interrupt-driven programs [13, 28, 32, 49]. For

example, Regehr et al. [49] propose a method to statically verify

interrupt-driven programs. Their work first outlines the signifi-

cant ways in which interrupts are different from threads from the

point of view of verifying the absence of race conditions. It then

develops a source-to-source transformation method to transform

an interrupt-driven program into a semantically equivalent thread-

based program so that a thread-level static race detection tool can

be used to find race conditions, which is the main benefit of their

approach. Comparing to [49], SDRacer has two advantages. First,

proof of the correctness of code transformation is often non-trivial;

[49] does not provide proofs showing the transformation is correct

or scalable. In contrast, SDRacer is transparent and does not re-

quire any source code transformation or instrumentation and can

be directly applied to the original source code. Second, SDRacer

uses dynamic analysis to validate warnings reported by static race

detectors. Our evaluation showed that SDRacer can eliminate a

large portion of false positives produced by static analysis, whereas

Regehr’s work [49] on seven Tiny OS applications does not evaluate

the precision of their technique.

Jonathan et al. [32] first statically translate interrupt-driven pro-

grams into sequential programs by bounding the number of inter-

rupts, and then use testing to measure execution time. While static

analysis is powerful, it can report false positives due to imprecise

local information and infeasible paths. In addition, as embedded

systems are highly dependent on hardware, it is difficult for static

analysis to annotate all operations on manipulated hardware bits;

moreover, hardware events such as interrupts usually rely on sev-

eral operations among different hardware bits. SDRacer leverages

the advantages of static analysis to guide precise race detection.

Techniques combined with static and dynamic method [61] could

also detect and verify races. However, due to the lack of test case

generation method, Manually efforts are required to inspect codes

and generate test cases to reach race points.

There has been some research on testing for concurrency faults

in event-driven programs, such as mobile applications [8, 26, 27, 35]

and web applications [24, 47]. Although the event execution mod-

els of event-driven and interrupt-driven have similarities, they are

different in several ways. First, unlike event-driven programs that

maintain an event queue as first-in, first-out (FIFO) basis, inter-

rupt handlers are often assigned to different priorities and can be

preempted. Second, interrupts and their priorities can be created

and changed dynamically and such dynamic behaviors can only be

observed at the hardware level. Third, the events in event-driven

programs are employed at a higher-level (e.g., code), whereas hard-

ware interrupts happen at a lower-level (e.g., CPU); interrupts can

occur only when hardware components are in certain states. The

unique characteristics of interrupts render inapplicable the existing

race detection techniques for event-driven programs.

There has been some research on combining static analysis and

symbolic execution to test and verify concurrent programs [19,

21, 50, 51, 55]. For example, Samak et. al. [51] combine static and

dynamic analysis to synthesize concurrent executions to expose

concurrency bugs. Their approach first employs static analysis to

identify the intermediate goals towards failing an assertion and

then uses symbolic constraints extracted from the execution trace to

generate new executions that satisfy pending goals. Guo et al. [21]

use static analysis to identify program paths that do not lead to any

failure and prune them away during symbolic execution. However,

these techniques focus on multi-threaded programs while ignoring

concurrency faults that occur at the interrupt level. As discussed

in Section 2.5, interrupts are different from threads in many ways.

On the other hand, we can guide SDRacer to systematically explore

interrupt interleavings or to target failing assertions.

8 CONCLUSION AND FURTHERWORK
This paper presents SDRacer, an automated tool to detect, validate

race conditions in interrupt-driven embedded software. SDRacer

first employs static analysis to compute static race warnings. It then

uses a guided symbolic execution to generate test inputs for exercis-

ing these warnings and eliminating a portion of false races. Finally,

SDRacer leverages the ability of virtual platforms and employs a

dynamic simulation approach to validate the remaining potential

races. We have evaluated SDRacer on nice real-world embedded

programs and showed that it precisely and efficiently detected both

known and unknown races. Therefore, it is a useful addition to

the developers’ toolbox for testing for race conditions in interrupt-

driven programs. In the future, we will further improve the accuracy

of static analysis. We also intend to extend our approach to handle

other types of concurrency faults.

ACKNOWLEDGMENTS
The paper was partially supported by the National Key Research

and Development Plan (No.2016YFB1000802), the National Natural

Science Foundation of China (No.61632015, 61472179, 61561146394,

61572249), and United States NSF grant CCF-1464032.

122

For Research Only

Automatic Detection and Validation of Race Conditions in
Interrupt-Driven Embedded Software

ISSTA’17, July 10-14, 2017, Santa Barbara, CA, USA

REFERENCES
[1] Clang Static Analyzer. https://clang-analyzer.llvm.org, 2016.
[2] KLEE LLVM Execution Engine. https://klee.github.io/, 2016.
[3] KLEE-uClibc. https://github.com/klee/klee-uclibc, 2016.

[4] STP constraint solver. http://stp.github.io/, 2016.
[5] Thread safety analysis, 2016.

http://clang.llvm.org/docs/ThreadSafetyAnalysis.html.

[6] Using Clang Tools - LLVM. http://clang.llvm.org/docs/ClangTools.html, 2016.

[7] D. Aspinall and J. Ševčík. Formalising javaâĂŹs data race free guarantee. In

Theorem Proving in Higher Order Logics, pages 22–37. Springer, 2007.
[8] P. Bielik, V. Raychev, and M. Vechev. Scalable race detection for android

applications. In ACM SIGPLAN Notices, volume 50, pages 332–348. ACM, 2015.

[9] M. D. Bond, K. E. Coons, and K. S. McKinley. PACER: proportional detection of

data races. In ACM SIGPLAN Symposium on Programming Language Design and
Implementation (PLDI), pages 255–268, 2010.

[10] S. Burckhardt, P. Kothari, M. Musuvathi, and S. Nagarakatte. A randomized

scheduler with probabilistic guarantees of finding bugs. In Architectural Support
for Programming Languages and Operating Systems (ASPLOS), pages 167–178,
2010.

[11] C. Cadar, D. Dunbar, and D. Engler. KLEE: Unassisted and Automatic Generation

of High-coverage Tests for Complex Systems Programs. In USENIX Symposium
on Operating Systems Design and Implementations (OSDI), pages 209–224, 2008.

[12] D. Callahan, K. Kennedy, and J. Subhlok. Analysis of event synchronization in a

parallel programming tool. In ACM SIGPLAN Notices, volume 25, pages 21–30,

1990.

[13] R. Chen, X. Guo, Y. Duan, B. Gu, and M. Yang. Static data race detection for

interrupt-driven embedded software. In Secure Software Integration & Reliability
Improvement Companion (SSIRI-C), 2011 5th International Conference on, pages
47–52, 2011.

[14] K. E. Coons, S. Burckhardt, and M. Musuvathi. GAMBIT: effective unit testing

for concurrency libraries. In Principles and Practice of Parallel Programming
(PPoPP), pages 15–24, 2010.

[15] J. Corbet, A. Rubini, and G. Kroah-Hartman. Linux device drivers. " O’Reilly
Media, Inc.", 2005.

[16] E. Duesterwald and M. L. Soffa. Concurrency analysis in the presence of

procedures using a data-flow framework. In symposium on Testing, analysis, and
verification, pages 36–48, 1991.

[17] L. Effinger-Dean, B. Lucia, L. Ceze, D. Grossman, and H.-J. Boehm. Ifrit:

Interference-free regions for dynamic data-race detection. In Conference on
Object-Oriented Programming Systems, Languages, and Applications (OOPSLA),
pages 467–484, 2012.

[18] J. Engblom. Systematically exposing os kernel races - an interview with ben

blum, 2012. http://blogs.windriver.com/tools/2012/09/systematically-exposing-

os-kernel-races-an-interview-with-ben-blum.html.

[19] A. Farzan, A. Holzer, N. Razavi, and H. Veith. Con2colic testing. In ACM
SIGSOFT International Symposium on Foundations of software engineering (FSE),
pages 37–47, 2013.

[20] C. Flanagan and S. Qadeer. A type and effect system for atomicity. In ACM
SIGPLAN Symposium on Programming Language Design and Implementation
(PLDI), pages 338–349, 2003.

[21] S. Guo, M. Kusano, C. Wang, Z. Yang, and A. Gupta. Assertion guided symbolic

execution of multithreaded programs. In ACM SIGSOFT International Symposium
on Foundations of software engineering (FSE), pages 854–865, 2015.

[22] M. Higashi, T. Yamamoto, Y. Hayase, T. Ishio, and K. Inoue. An effective method

to control interrupt handler for data race detection. In Workshop on Automation
of Software Test, pages 79–86, 2010.

[23] M. Higashi, T. Yamamoto, Y. Hayase, T. Ishio, and K. Inoue. An effective method

to control interrupt handler for data race detection. In Workshop on Automation
of Software Test (AST), pages 79–86, 2010.

[24] S. Hong, Y. Park, and M. Kim. Detecting concurrency errors in client-side java

script web applications. In Software Testing, Verification and Validation (ICST),
2014 IEEE Seventh International Conference on, pages 61–70, 2014.

[25] S. Hong, M. Staats, J. Ahn, M. Kim, and G. Rothermel. Are concurrency coverage

metrics effective for testing: a comprehensive empirical investigation. Journal of
Software Testing, Verification and Reliability, 25(4), 2015.

[26] C.-H. Hsiao, J. Yu, S. Narayanasamy, Z. Kong, C. L. Pereira, G. A. Pokam, P. M.

Chen, and J. Flinn. Race detection for event-driven mobile applications. In

Proceedings of the 35th ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI ’14, pages 326–336, 2014.

[27] Y. Hu, I. Neamtiu, and A. Alavi. Automatically verifying and reproducing

event-based races in android apps. In Proceedings of the 25th International
Symposium on Software Testing and Analysis, ISSTA 2016, pages 377–388, 2016.

[28] W. Huo, H. Yu, X. Feng, and Z. Zhang. Static race detection of interrupt-driven

programs. Journal of Computer Research and Development, 12:016, 2011.
[29] I. Jackson. IRQ handling race and spurious IIR read in 8250.c. Web page.

https://lkml.org/lkml/2009/3/12/379.

[30] S. Joshi, S. K. Lahiri, and A. Lal. Underspecified harnesses and interleaved bugs.

In ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages
(POPL), pages 19–30, 2012.

[31] V. Kahlon, N. Sinha, E. Kruus, and Y. Zhang. Static data race detection for

concurrent programs with asynchronous calls. In ACM SIGSOFT International
Symposium on Foundations of software engineering (FSE), pages 13–22, 2009.

[32] J. Kotker, D. Sadigh, and S. A. Seshia. Timing analysis of interrupt-driven

programs under context bounds. In Formal Method in Computer-Aided Design
(FMCAD), pages 81–90, 2011.

[33] V. Kuznetsov, J. Kinder, S. Bucur, and G. Candea. Efficient state merging in

symbolic execution. In ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI), pages 193–204, 2012.

[34] Z. Lai, S.-C. Cheung, and W. K. Chan. Inter-context control-flow and data-flow

test adequacy criteria for nesc applications. In ACM SIGSOFT International
Symposium on Foundations of software engineering (FSE), pages 94–104, 2008.

[35] P. Maiya, A. Kanade, and R. Majumdar. Race detection for android applications.

In Conference on Programming Language Design and Implementation (PLDI), 2014.
[36] J. Manson, W. Pugh, and S. V. Adve. The Java memory model, volume 40. ACM,

2005.

[37] P. D. Marinescu and C. Cadar. Make test-zesti: A symbolic execution solution for

improving regression testing. In International Conference on Software
Engineering (ICSE), pages 716–726, 2012.

[38] D. Marino, M. Musuvathi, and S. Narayanasamy. LiteRace: effective sampling for

lightweight data-race detection. In ACM SIGPLAN Symposium on Programming
Language Design and Implementation (PLDI), pages 134–143, 2009.

[39] M. Musuvathi, S. Qadeer, T. Ball, G. Basler, P. A. Nainar, and I. Neamtiu. Finding

and reproducing Heisenbugs in concurrent programs. In USENIX Symposium on
Operating Systems Design and Implementations (OSDI), pages 267–280, 2008.

[40] M. Naik, C.-S. Park, K. Sen, and D. Gay. Effective static deadlock detection. In

International Conference on Software Engineering (ICSE), pages 386–396, 2009.
[41] A. Nistor, Q. Luo, M. Pradel, T. R. Gross, and D. Marinov. Ballerina: Automatic

generation and clustering of efficient random unit tests for multithreaded code.

In International Conference on Software Engineering (ICSE), pages 727–737, 2012.
[42] R. O’callahan and J.-D. Choi. Hybrid dynamic data race detection. ACM

SIGPLAN Notices, 38(10):167–178, 2003.
[43] L. Osterman. Larry Gets Taken to Task on Concurrency, 2005.

https://blogs.msdn.microsoft.com/larryosterman/2005/02/11/larry-gets-taken-

to-task-on-concurrency/.

[44] E. Pozniansky and A. Schuster. Efficient on-the-fly data race detection in
multithreaded C++ programs, volume 38. ACM, 2003.

[45] M. Pradel and T. R. Gross. Fully automatic and precise detection of thread safety

violations. In ACM SIGPLAN Symposium on Programming Language Design and
Implementation (PLDI), pages 521–530, 2012.

[46] R. Raman, J. Zhao, V. Sarkar, M. Vechev, and E. Yahav. Scalable and precise

dynamic datarace detection for structured parallelism. In Conference on
Programming Language Design and Implementation (PLDI), 2012.

[47] V. Raychev, M. Vechev, and M. Sridharan. Effective race detection for

event-driven programs. In ACM SIGPLAN Notices, volume 48, pages 151–166.

ACM, 2013.

[48] J. Regehr. Random testing of interrupt-driven software. In ACM international
conference on Embedded software (EMSOFT), pages 290–298, 2005.

[49] J. Regehr and N. Cooprider. Interrupt verification via thread verification.

Electronic Notes in Theoretical Computer Science, 174(9):139–150, 2007.
[50] M. Samak, M. K. Ramanathan, and S. Jagannathan. Synthesizing racy tests. In

ACM SIGPLAN Notices, volume 50, pages 175–185. ACM, 2015.

[51] M. Samak, O. Tripp, and M. K. Ramanathan. Directed synthesis of failing

concurrent executions. In Proceedings of the 2016 ACM SIGPLAN International
Conference on Object-Oriented Programming, Systems, Languages, and
Applications, pages 430–446. ACM, 2016.

[52] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T. Anderson. Eraser: A

dynamic data race detector for multithreaded programs. ACM Transactions on
Computer Systems (TOCS), 15(4):391–411, 1997.

[53] K. Sen. Effective random testing of concurrent programs. In International
Conference on Automated Software Engineering, pages 323–332, 2007.

[54] K. Sen. Race directed random testing of concurrent programs. In ACM SIGPLAN
Symposium on Programming Language Design and Implementation (PLDI), pages
11–21, 2008.

[55] K. Sen and G. Agha. Cute and jcute: Concolic unit testing and explicit path

model-checking tools. In International Conference on Computer Aided
Verification, pages 419–423, 2006.

[56] SSE Instructions: Which CPUs Can Do Atomic 16B Memory Operations?, 2014.

http://stackoverflow.com/questions/7646018/sse-instructions-which-cpus-can-

do-atomic-16b-memory-operations.

[57] B. Steensgaard. Points-to analysis in almost linear time. In ACM
SIGPLAN-SIGACT symposium on Principles of programming languages (POPL),
pages 32–41, 1996.

[58] W. Visser, K. Havelund, G. P. Brat, S. Park, and F. Lerda. Model checking

programs. Autom. Software. Eng., 10(2):203–232, 2003.
[59] V. Vojdani, K. Apinis, V. Rõtov, H. Seidl, V. Vene, and R. Vogler. Static race

detection for device drivers: The goblint approach. In IEEE/ACM International
Conference on Automated Software Engineering, pages 391–402, 2016.

[60] C. von Praun and T. R. Gross. Static conflict analysis for multi-threaded

object-oriented programs. In ACM SIGPLAN Symposium on Programming
Language Design and Implementation (PLDI), pages 115–128, 2003.

123

For Research Only

https://clang-analyzer.llvm.org
https://klee.github.io/
https://github.com/klee/klee-uclibc
http://stp.github.io/
http://clang.llvm.org/docs/ClangTools.html

ISSTA’17, July 10-14, 2017, Santa Barbara, CA, USA Yu Wang, Linzhang Wang, Tingting Yu, Jianhua Zhao, and Xuandong LI

[61] Y. Wang, J. Shi, L. Wang, J. Zhao, and X. Li. Detecting data races in

interrupt-driven programs based on static analysis and dynamic simulation. In

Asia-Pacific Symposium on Internetware, pages 199–202, 2015.
[62] J. Whaley and M. S. Lam. Cloning-based context-sensitive pointer alias analysis

using binary decision diagrams. In Proceedings of the ACM SIGPLAN Conference
on Programming Language Design and Implementation, pages 131–144, 2004.

[63] A. Williams, W. Thies, and M. D. Ernst. Static deadlock detection for java

libraries. In European Conference on Object-Oriented Programming (ECOOP),
pages 602–629, 2005.

[64] J. Yu, S. Narayanasamy, C. Pereira, and G. Pokam. Maple: a coverage-driven

testing tool for multithreaded programs. In International Conference on

Object-Oriented Programming Systems, Languages and Applications (OOPSLA),
2012.

[65] T. Yu, X. Qu, and M. B. Cohen. Vdtest: an automated framework to support

testing for virtual devices. In International Conference on Software Engineering
(ICSE), pages 583–594, 2016.

[66] T. Yu, W. Srisa-an, and G. Rothermel. Simtester: a controllable and observable

testing framework for embedded systems. In ACM SIGPLAN Notices, volume 47,

pages 51–62, 2012.

[67] Y. Yu, T. Rodeheffer, and W. Chen. Racetrack: efficient detection of data race

conditions via adaptive tracking. In ACM SIGOPS Operating Systems Review,
volume 39, pages 221–234, 2005.

124

For Research Only

