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1. Introduction

Although research on software verification has a long and distinguished history dating back to the
1960s, it remains a challenging problem to automatically verify heap-manipulating programs writt
in mainstream imperative languages. This is in part due to the use of shared mutable data struc-
tures in programs, and the need to track various program properties, such as structural numerical

E-mail addresses: s.qin@tees.ac.uk (S. Qin), g.he@tees.ac.uk (G. He).
URL: http://www.scm.tees.ac.uk/s.qin/ (S. Qin).

0747-7171/$ - see front matter © 2012 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.jsc.2012.08.007


http://dx.doi.org/10.1016/j.jsc.2012.08.007
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jsc
mailto:s.qin@tees.ac.uk
mailto:g.he@tees.ac.uk
http://www.scm.tees.ac.uk/s.qin/
http://dx.doi.org/10.1016/j.jsc.2012.08.007

S. Qin et al. / Journal of Symbolic Computation 50 (2013) 386-408 387

information (e.g. length and height) and relational numerical information (e.g. sortedness and binary
search tree properties).

ince the emergence of separation logic (Ishtiaq and O’Hearn, 2001; Reynolds, 2002), dramatic
es have been made in automated software verification, e.g. the Smallfoot tool (Berdine et al.,
the verification on pointer safety (i.e. shape properties asserting that pointers cannot go
e verification on termination (Berdine et al., 2006), the verification for object-oriented pro-

ased and numerical properties for data structures) in heap-manipulating programs.
ve the correctness of loops, a suitable loop invariant for each loop must be pro-

pol (Calcagno et al., 2009; Distefano et al., 2006; Yang et al., 2008),
allfoot, can automatically infer loop invariants as well as method speci-
fications for pointer safetyprop The Hob system (Lam, 2007) offers a set-based analysis for loop
invariant synthesis. Anothe |
into the shape domain to all afitated synthesis of properties involving length of list segments.
These successes have demons
analysis to help automate the progr.

However, most of the prior loop Wavarjant
pointer safety for lists and list length i
sophisticated program properties, such as:

ion process.
es focus on relatively simple properties, such as
difficult to apply them in the presence of more

e More complex user-defined data structures, sug
e Relational numerical properties, like sortedne

These properties can be part of the full functional cor
(aforementioned) Hip/SLEEK tool can handle such properti
predicates in conjunction with properties of interests, in ord
correctness for their programs.

shape and numerical domain to improve the level of automation fo K-like verification sys-
tems. Our approach is based on the framework of abstract interpretatio ousot and_Cousot, 1977)
with fixed-point computation. We make the following technical contributions:

e We propose a loop invariant synthesis algorithm with novel operations for abs n and
widening over a combined shape and numerical domain.

e We demonstrate that our analysis is sound w.r.t. concrete program semantics d
always terminates.

eliminate the need for user-provision of loop invariants which were previously necessary in v
fication.

The rest of the paper is structured as follows. We first illustrate our approach informally via
example (Section 2), and then give our programming and specification languages (Section 3). Formal
details about loop invariant synthesis are presented in Section 4, followed by experimental results in
Section 5. Related work and concluding remarks come afterwards.

2. The approach

Before presenting an illustrative example for the analysis, we first introduce our specification
mechanism which follows the Hip/SLEEK system (Chin et al., 2012).
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2.1. Specification mechanism

Separation logic (Ishtiaq and O’Hearn, 2001; Reynolds, 2002) extends Hoare logic to support rea-
bout shared mutable data structures. One connective that it adds to classical logic is separa-
ction *. The separation formula p; * p, asserts that two heaps described by the formulae
d p;‘are domain-disjoint. We make use of this connective in our specifications.

ilar to the Hip/SLEEK system, we allow user-defined inductive predicates to specify both sep-
merical properties. For example, with a data structure definition for a node in a list
nt val; node next;}, we can define a predicate for a singly linked list as

(root =null An=0)

g, m-root:node(v,q)*qg::11l(m) An=m+ l)

@ ate 11 is the initial pointer into the first node of the linked list,
emp silength is denoted by numerical parameter n. A uniform notation
er a singleton heap or a predicate. If ¢ is a data node with fields
ingleton heap, p — c[f1 — v1,..., fx—>vi] which says that
the value of its fields are v, ..., vy, e.g. root::node(v, q)
in the above formula. If ¢ is a then the data structure pointed to by p has the shape c
with parameters vq,..., vy, .8 O bo

We can also define a singly linked{list nt as follows:

The parameter root
or null if the list
pic({vy,...,vi) is used foffel
f1,..., f£x, the notation re
the variable p points to a ¢ da

1s(p,n)=(root=pAn=0) _,g)*ag:ls{(p,m) An=m+ 1)

where the parameter p denotes the next
use the following shortened notation: (i) defau
omitted, (ii) unbound variables, such as g and m, a
underscore _ denotes an existentially quantified anonyme@s

If the user wants to verify a sorting algorithm, they @n ificorporate sortedness property into the
above predicates as follows:

node of the list segment. Note that we
eter in the left hand side (LHS) may be
y existentially quantified, and (iii) the

sll(n,mn,mx) = (root::node(mn, null) An=1AmR= )
\% (root::node(mn, a)*xq::sll{ng, k, mx) n < n=nj; + l)

sls(p,n,mn, mx) = (root::node(mn, p)An=1Amn =mx)

\Y, (root::node(mn, a) *xqisls(p,ni, k, mx) Amn

where mn and mx denote respectively the minimum and maximum values stored i
As a more involved example, one may define the following predicate to specif
linked list segments

sds(p, g, n, mn, mx)
= (root::nodeZ(mn, p,d)An=1Amn= mx)
\Y (root::nodeZ(mn, p,r)*risds(root,g,n—1,k,mx) Amn < k)
based on the data structure definition
datanode2 { int val; node2 prev; node2 next; }

where the parameters p and g denote, respectively, the prev field of root and the next field of
the last node of the list. Similar to the definition of sls, mn (resp. mx) is the minimum (resp. the
maximum) value stored in the double sorted list.

Such user-supplied predicates can be employed to specify loop invariants and method specifica-
tions.
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0 data node { int val; 9 while (srt != null &&
node next; } srt.val <= v) {
1 node ins_sort (node x) 10 prv=srt; srt=srt.next;
2 requires x:11(n) 11 }
3 ensures res:sll(n,mn, mx) 12 cur.next=srt;
4 {int v; 13 if (prv != null) prv.next=cur;
5 node r,cur,srt,prv=null; 14 else r=cur;
6 while (x != null) { 15 '}
7 cur=x; xX=x.next; v=cur.val; 16 return r;
srt=r; prv=null; 17 }

Fig. 1. Insertion sort for linked list.

2.2. lllustrative example

We now illustrg
(Fig. 1) sorts a link
loops. The outer loop tra
node into another alread

ple our loop invariant synthesis process. The method ins_sort
e insertion sort algorithm. It is implemented with two nested while
h hole list x, takes out each node from it (line 7), and inserts that
@ (which is empty initially before the sorting). This insertion
whille in lines 9-11 to look for a proper position in the already
sorted list for the new node toWpgginserted.“§he actual insertion takes place at lines 12-14.
sise appropriate loop invariants for both while loops.
ocess. It starts with the (abstract) program state
immediately before the while loop (i.e. te) and symbolically executes the loop body for
several iterations, until the obtained statesiton to a fixpoint, which is the loop invariant.! At
the start of each iteration, the obtained st om th vious iteration is joined with the initial
state. In addition to this join operator, we have al ned) an abstraction function and a widening
operator both of which will help the fixpoint iter e. The join and widening operators
are specifically designed to handle both shape and n ation.

As for our example, due to the presence of nested lo ion of the analysis for the outer
loop actually infers a loop invariant for the inner loop. We shaliffiow ilustrate how we synthesise a
loop invariant for the inner loop.

Suppose that in one iteration for the outer loop, the state at b

r:sll(ng, a,b)* curinode(v,x) x x::11(ny)

Asrt=rAprv=null An,+ny+1=n

program state using the frame rule of separation logic (Reynolds, 2002). Therefore, t
loop invariant synthesis becomes

ri:sll{ng a,b)Asrt=rAprv=null An,+ny+1=n

From this state, symbolically executing the loop body once yields the state:

r:node(a, srt) *xsrtislli{ng,c1,b) Aprv=r
ANa<ciAasVvVAn,+l=n—ngxAng+1=n,

which says that the pointer srt moves towards the rear of the list by one node. We then join it with
the initial state (1) to obtain

(r::sll(nr, a,b)Asrt=rAprv=null Any,+ny+1 =n)

1 The fixpoint iteration converges if one more iteration still yields the same result.
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\Y, (r::node(a, srt)*xsrtisll(ng, ci,b)
/\prv:r/\a<c1/\aév/\nr—l—l:n—nx/\ns—{—l:nr) (3)

T nd iteration over the loop body starts with (3) and exhibits (also) the case that srt has
ved wo nodes towards the rear, while prv moves by one node. Its result is then joined with
preéstate (1) yielding the current state:

inode(a, prv) * prvinode(ci, srt) * srt:iisll(ng, ca,b)
cul<caACcI<VANnr+l=n—nyAng+2=n, (4)

Executing thed®0p body a third time returns a post-state where three nodes are passed by srt, and

two by prvfids below:

xsrtiislfng, c

(4) vV rinode(zg ode(cy, prv) * prv:node(c,, srt)

a<ci<ceyg<a3AC < VAN, +1=n—ny Ang+3 =n,

. iable rq. Following this trend, it is predictable that every
iteration hereafter will introdug ional logical variable (referring to a list node). If we tolerate
such increase in the subseque analysis will never terminate. Our abstraction process
prevents this from happening by elfmi IMtermediate logical variables, as follows:

(4) vV risls{prv,ni,a,cy) * srt)*srtiisll(ng, cs,b)

ANa<ci<cy<c3ACcy<VADN Ny Ang+3=n,An; =2

Note that the heap part r::node(a, ro) * ro:: e rw) is abstracted as a sorted list segment
r:sls(prv,ni,a, ci) with n; denoting the lengt ment and n,; = 2 added into the state.
This abstraction process ensures that our analysis do lo shape to increase infinitely. Note

also that the abstraction process has made use of the faéf a 1.

This fourth iteration results in a post-state where fouf®node
prv. An abstraction is performed to remove the newly create
plification of the presentation, let us denote o as r:sls{pr
srtisll(ng,c3,b)Aa<<ci<cy<c3AC<vVAn,+1=n-—
fourth iteration is

sed by srt, and three by
oi variables. As a sim-
rv:node(cy, srt) *
obtained after the

A V(O Ang+3=n,An1 =2)V(O Ang+4=n, An; =3)

for which we have an observation that the last two disjunctions share the same shape o).
This disjunction will be transferred to the numerical domain, as follows:

(4)\/(0/\(ns+3:nr/\n1:2\/ns+4:nr/\n1:3))

This simplifies the abstraction further. After that, our widening operation compares the cur;

and to replace those numerical constraints in the current state with the ones discovered by wid g,
This operation helps ensure the termination of our analysis. As for the example, a set of constrai
among ng, n,y and n; can be discovered to make the widened post-state to become:

(4) V(o Ang+ni=n;—1An; >2) (

One more iteration of symbolic execution will produce the same result as (5), suggesting that it is
already the fixpoint (and hence the loop invariant):

risll{ng, a,b)Asrt=rAprv=null Any,+1=n-—ny
VvV rinode(a, srt)*srtisll{ng,c1,b) Aprv=r

Na<ciAhas<vAn,+l=n—nyAng+1=n,
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Prog ::= tdecl* meth*
tdecl ::= datat | spred
datat ::= data c { field* }

field ==tv

t n=c|T

meth ::=t mn ((t v)*) mspec {e}

T »=1int | bool | void

e w=d|d[v]|v:=e|ej;ex|tv; e|if vthenes elseey|whilev {e}
d s=null | k" | v |newc(v¥) | mn(v*)

dlv] s=v.f|v.f:=w| free(v)

Fig. 2. A Core (C-like) imperative language.

[vi#va|v#null|true|y1 Ay,
$21=¢|3Iv-¢|Vv ¢

pointer variables.
With the frame part cur:node(v,x) x x::11(ny) added back, the analysis
continues. Eventually, the following loop invariant is discovered for the outer loop:

(x::ll(nx) Ar=null Any= n) \Y (r::node(a, null)xx:ll(ng An=nx-+
V (rislling, a,b) #x:11(ng) An=nyx +ny Any >2)

which allows us to verify the entire method successfully using Hip/SLEEK verifier.
3. Language and abstract domain

To simplify presentation, we focus on a strongly-typed C-like imperative language in Fig. 2. The
program Prog written in this language consists of declarations tdecl, which can either be data type
declarations datat (e.g. node in Section 2), or predicate definitions spred (e.g. 11, 1s, s11, sls in
Section 2.1), as well as method declarations meth. The definitions for spred and mspec are given later
in Fig. 3. Without loss of expressiveness, we use an expression-oriented language. So the body of a
method (e) is an expression formed by standard commands of an imperative language. Note that d
and d[v] represent respectively heap-insensitive and heap-sensitive commands.



392 S. Qin et al. / Journal of Symbolic Computation 50 (2013) 386-408

s,shE® Vv o, iff s,hE®iors,hE=®,
s,shEavt .k AT iff *-sv > v hEk andsvi >V En
S,h':l(]*l(z iff Elh1,h2-h1J_h2andh:h1-hzand
s, h =K1 ands,h =39)
s,h = emp iff dom(h)=¢
s,hiEpuc(vy,...,vy) iff isdatat(c) and s(p) > 0andh = [s(p) > 1]
andr=c[f1 > Vi,..., fn> vn]
or isspred(c) and c(vi,...,vp) =P
ands,h =[p/root]®
SEmT AT iff sEm andskEm
A= iff skEam

Fig. 4. The semantic model.

Our specification g % ig. 3) allows (user-defined) shape predicates spred to specify both
shape and numericaljprop€ettie ote that spred are constructed with disjunctive constraints ¢ and
numerical formulae . We fequire that the predicates be well-formed (Nguyen et al., 2007).

A conjunctive abstract 3
part r, where 7 consists of y
is a Presburger expression and
states. During the symbolic exect
disjunction of o’s, denoted by A (a
normalised to a @ form.

The memory model of our specification f
separation logic (Ishtiaq and O’Hearn, 2001;
handling user-defined shape predicates and re
We assume sets Loc of memory locations, Val of
Var of variables (program and logical variables), an f t values stored in the heap, with
c[f1+ v1,..., fn+—> vy] denoting an object value of typ&C wiiere VY, ..., v, are current values of the
corresponding fields fq,..., f;. Let s,h = A denote the el re hat the stack s and heap h
satisfy A, with s, h from the following concrete domains:

liasing and numerical information, respectively, and where p
value. We use SH to denote the set of such conjunctive
ract program state at each program point will be a
is recognised as Psy). An abstract state A can be

adapted from what is given in the classical
2002), and our abstract domain is capable of
| properties described by this model.
values (with 0 € Val denoting null),

s € Stacks =g Var — Val U Loc

h € Heaps =45 Loc — 5, ObjVal

Note that each heap h is a finite partial mapping while each stack s is a t mapping
model definition is given in Fig. 4. We use h; L hy to denote that the heaps h; and
domains, and hj - hy to indicate the union of such heaps. Note that the test isdata,
only if ¢ is a data node and isspred(c) returns true only if c is a shape predicate. T
for pure formulae s =4 7 is left in Appendix A (Fig. 8).

part R (a.k.a. the frame) which is useful for our inference framework. To prove the entailmen
to check whether heap nodes in the antecedent A’ are sufficiently precise to cover all nodes
the consequent A. The entailment checking procedure uses unfold/fold reasoning to deal with us
defined shape predicates with sophisticated numerical properties. During the entailment proof, the
frame R is generated and it contains the nodes which are not consumed from the antecedent
ter matching up with the formula from the consequent, and numerical constraints which convey the
relationship between the variables in the antecedent and consequent formulae. For instance, by en-
tailment proof

Jy - x:node(vx,y) * yvi:11l(n) Fx:11(m) xR

we can generate the residue R as m =n + 1, which says that x is a list of length n + 1. Meanwhile, if
we try to prove

dy - xiinode(vx, y) xy:node(vy, z) Avx < vy Fxiisls(n, z, mn, mx) * R
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Fixpoint Computation in Combined Domain
Input: 7, Apre, while b {e}, n;
Local: i :=0; Aj:=Apr; Aj:=Aj;

1 repeat
2 i=i+1;
3 A :=widen' (Aj_1, join (Aj_1, A]_}));
4 Al=abs([el7(A; AD));
5 if Aj=false Vv cp_no(A)) >n
then return fail end if
until Af=A]_;
return Aj

N

Fig. 5. Main analysis algorithm.

as n=2 Amn=vx Amx=vy Amn <mx, which shows that the
length of the sorted list x to z is 2, and the minimal value of the list is vx in node x and
the maximal value is rom the above examples, we can see that the SLEEK prover
can be used to eliminate quafifif nter variables, to generate more abstract shape views, and to

Based on the entailment reldti@ a partial order over the abstract states:
ASA/deA/l—A*R for

4. Analysis algorithm

Our proposed analysis algorithm is given in Fig. 5. al takes four input parameters: 7 as
the program environment with all the method specifica the ram, Apre as the pre-condition
for the while loop (i.e. the abstract state before the loop”start; ile lgop itself while b {e},
ng analysis.
with specifically de-
ginning, we initialise

the iteration variable (i) and two states to begin with (A; and A}).
tion is Apr. Among the two states here, the unprimed version A; denot e initial

sult state Aj_, obtained in the previous iteration, and widen it against the state
we symbolically execute the loop body with the abstract semantics in Section 4.1
the abstraction operation to the obtained abstract state. If the symbolic execution cd
due to a program bug, or if we find our abstraction cannot keep the number of shared 1
ables/cutpoints (counted by cp_no) within a specified bound (n), then a failure is reported (lin
Otherwise we judge whether a fixpoint is already reached by comparing the current abstrac
with the previous one (line 6). The fixpoint A] is returned as the loop invariant.

We will elaborate the key techniques of our analysis in what follows: the abstract semantics, the
abstraction function, and the join and widening operators.

4.1. Abstract semantics

The abstract semantics is used to execute the loop body symbolically to obtain its post-state during
the loop invariant synthesis. Its type is defined as

2 Note that our analysis uses lifted versions of these operations (indicated by 1), which will be explained in more details in
Section 4.2.
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[e] : AlISpec — Psy — Psn

where AllSpec contains all the specifications of all methods (extracted from the program Prog). For
o} xpression e, given its pre-condition, the semantics will calculate the postcondition.

undation of the semantics is the basic transition functions from a conjunctive abstract state
tive or disjunctive abstract state below:

: SH — PsHiy Rearrangement
) : AllSpec — SH[x] — SH Heap-sensitive execution
lISpec - SH — SH Heap-insensitive execution

teS the set of conjunctive abstract states in which each element has x exposed as
the head of@” data node (xgg(v*)), and Pgnx contains all the (disjunctive) abstract states, each of
which is composed by su junctive states. Here rearr(x) rearranges the symbolic heap so that the
access by heap-sensitive commands d[x] via the second transition
tion defined for other (heap-insensitive) commands d does not

rearr(x)o =4r 0

isspred(c) o x:c(u*)xo
rearr(X)o =qr 0/ * [X/rod

As mentioned earlier, the test isdatat(c) retu only if ¢ is a data node and isspred(c) returns
true only if ¢ is a shape predicate.

The symbolic execution of heap-sensitive co
that the rearrangement rearr(x) has been done prev

ie. x.fi, X.fi ;== w, or free(x)) assumes

isdatat(c) o Fx:c{vy,..,vy) %0’
exec(x. fi)(T )0 =gr 0/ *x::c(V1,..,Vp) Ares =

isdatat(c) o Fx:c(vy,..,Vvn) x0’
exec(X. fi ;== W)(T )0 =gf 0/ % X::C(V1, .., Vi_1, W, Vg1, .|

isdatat(c) o Fx:c(u*)xo’
exec(free(x))(T)o =4 0’

The symbolic execution rules for heap-insensitive commands are as follows:
exec(k)(T)o =40 Ares=k
exec(x)(7T )0 =g 0 Ares =X

isdatat(c)
exec(new c(v¥))(T )0 =gf 0 * res:c(v¥)

t mn ((¢ ui)’l?zl) requires ®@py ensures @po € T
pP= [Xi/ui]?=1 O pPpr k0 Opo = PPpo
exec(mn(xi, .., xn))(T )0 =qf Opo * Of

Note that the first three rules deal with constant (k), variable (x) and data node creation (new c(v*)),
respectively, while the last rule handles method invocation. In the last rule, the call site is ensured to
meet the pre-condition of mn, as signified by o = p®p * o, where of; is the frame part. In this case,
the execution succeeds and the postcondition of mn (p®),) is added into the post-state.

A lifting function T is defined to lift rearr’'s domain to Pgy:

rearr’ (x) \/ 0 =df \/ (rearr(x)o;)
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and this function is overloaded for exec to lift both its domain and range to Psy:

exec! (d)(T) \/ 0 =4f \/(exec(d)(T)ai)

d on the transition functions above, we can define the abstract semantics for a program com-
and follows:

[dix1]-A =4 exec! (d[x])(T) orearr(x) A
=g exec'(d)(T)A

T =gr [e2l7ole1lT A
=qr [X'/x,7"/res](lelrA) Ax=1"fresh logical X', 1’

[if v thene; M A =g ([e1l7(v A D))V ([e2] 7 (=v A D))
to analyse the loop body.

This section describes our §peci designed abstraction, join and widening operations employed
in our loop invariant synthesis ess.

Abstraction function. During the syfabo
shapes in postconditions of the loop

jon, we may be confronted with many “concrete”
mple of list traversal, the list may contain one
node, or two nodes, or even more nodes i hich the analysis cannot enumerate infinitely.
The abstraction function deals with those s tracting the (potentially infinite) concrete
shapes into more abstract shapes. Our rationale i epionly program variables and shared cut-
§ anginstance, the first state below can be

abs(x::node(_, Z0) * zg::node(_, null)) = x::

(6)

abs(x::node(_, Zo) * yinode(_, zg) * zp::node(_,n

where both x and y are program variables, and z is an exis
In the second case zg is a shared cutpoint referenced by both x
changed (the - denotes the same formula as input). As illustrated, the absgdction transition function
abs eliminates unimportant cutpoints (during analysis) to ensure termindtion. Its
follows:

abs:SH — SH Abstraction

which indicates that it takes in a conjunctive abstract state o and abstracts it as an
state o’. Below are its rules.

(Subst1)
abs(o Axg =e) =4 o[e/Xo]

(Subst2)
abs(o A e =xgp) =daf ole/xol

Xo ¢ Reach(o)
abs(xp::c(v*) x0) =gr 0 * true

(Unreach)

isdatat(cy) ous)=o
puc1(vy) % 01 F puca(vy) x 03 Reach(p::ca(v3) x02) N{vi} =0
abs(p::c1{v]) * 01) =gf p::c2(Vv3) x 02

The first two rules Sub1 and Sub2 eliminate logical variables (x¢) by replacing them with their equiv-
alent expressions (e). The third rule Unreach is used to eliminate any garbage (heap part led by a

(Abs)
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logical variable xo unreachable from the other part of the heap) that may exist in the heap. As xg
is already unreachable from, and not used by, the program variables, it is safe to treat it as garbage
true, for example the x; in x:node(_,null) % xg::node(_,null) where only x is a program

ates environments and it is the target shape to be abstracted against with. The rule
e latter is a sound abstraction of the former by entailment proof, and the pointer

logica ersPof c; are not reachable from other part of the heap (so that the abstraction does
not lose imformation). For instance, given the user-defined predicate for singly linked list
root::11( e following abstraction step can take place:

abs(x:mode(_,

where x is program

Reach(o) =¢f U Re (k ATT,Vv) whereo i=3Fu* -k AT
vefv(o)
returning all pointer variables arefreachable from free variables in the abstract state o. The
function ReachvVar(k A 1, v) returngitheNminimal set of pointer variables satisfying the relationship
below:
{(v}U{z; | 321,71 - 21 € ReachVar (K T WA L= (z1 =2, ATT1) A isptr(z2)}
U{z |321,k1 - 21 € Reachvar(k AT, z1:¢(.., 22, ..) % K1) A isptr(z)}

CReachvar(k AT, V)

namely, it is composed of aliases of v and pointer v les
isptr(x) checks if x is a pointer variable. For example, Reachv
zp::node(_, po), {x}) = {x, zo, po}. Note that the numerical logi
the numerical relations are kept in pure formulae, so we do not I

We apply the above abstraction rules (following the given order)
tively until it stabilises. Such convergence is confirmed because the abstra
due to the bounded numbers of variables and predicates, as discussed late

Finally the lifting function is overloaded for abs to lift both its domain and ran Unctive
abstract states Pgy:

abs' \/ Oi =df \/ abs(0i)

which allows it to be used in the analysis.

ble from v. The predicate
o) *y:node(_, zg) *
an be abstracted since
formation here.

stract state exhaus-
ape domain is finite

Join operator. The operator join is applied over two conjunctive abstract states, trying to find a -
mon shape as a sound abstraction for both:
join(o1, 02) =¢4f
let o7, 0 = rename(01, 02) in
match o], o with (3x] - k1 A1), (3X3 - k2 A T2) in
if k1 k2 * true then 3x}, x5 - k2 A (joing (771, 72))
else if K - k1 * true then 3x], X3 - k1 A (joing (771, 72))

else o1 vV oy
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where the rename function prevents naming clashes among logical variables of o7 and o3, by assign-
ing fresh names to logical variables with the same name in the two states. For example given a name
on xg, it may change states dxg - xo = 0 and Ixp - xp =1 to Ixg - xg =0 and Ix; -x; =1
. After this procedure it judges whether o, is an abstraction of o1, or the other way round. If

e joined state, and performs joining for numerical formulae with join, (711, 772), the convex
perator over numerical domain (Popeea and Chin, 2006). Otherwise it keeps a disjunction of

Widening operator. The f
ensure the termination o nalysis, we still need to guarantee the convergence over the
ished by the widening operator.

The widening operator widé ned as

widen(a, 02) =¢f

let o{, 05 = rename(01, 02) in

match o], o5 with (3] - k1 A XY kogmyT2) in
if k1 - k2 * true then 3x], X5 - k2 A 1,72))
else o1 Vv oy
where the rename function has the same effect as aboe. Ge his operator is analogous to
the join operator; the only difference is that we expect (the e second operand o3
to be weaker than (that of) the first oq, so that the widenin rend of such weakening

from o7 to o. In this case it applies the widening operation
domain (Popeea and Chin, 2006).

Based on the widening over conjunctive abstract states, we lift the
abstract states:

widen' (A1, Ay) =g match Aq, Ay with (\/ af), (\/ af) in\/widen( ,
i j i,j

which is similar to its counterpart of the join operator.
The above three operations (abstraction, join and widening) provide termination guaraaf€e whi
preserving soundness, as the following example demonstrates.

rator over (disjunctive)

Example 4.1 (Abstraction, join and widening). Assume we have two abstract states,

Ao =x:node(_, Xg) * Xg::node(_,null) and
A1 =x:node(_, Xg) * Xp:inode(_, x1) * x1:inode(_,null)

We would like to discover a sound approximation for both states. Firstly we perform abstractions on
both to obtain two abstract states, say, Af = x::11(ng) Ang =2 and A} = x::11(ng) Ang = 3. Then
these two are joined together according to shape similarity to be A} = x::11(ng) A(ng =2Vvng=3),
which transfers disjunction to the numerical domain. Finally the joined state is widened based on the
first state A7, yielding a state x::11(ng) Ang > 2. It is a sound abstraction of both Ay and A4, and
finishes the analysis with one more iteration.
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4.3. Soundness and termination

4.3.1. Soundness
oundness of our analysis relies on the underlying operational semantics of our programming
ua hich is a small-step semantics consisting of transitions of the form:

(s,h,e) = (s1,h1,e1)

(for some s’, h’), we have §§h’

The crux to prove the soundpess
each step of our analysis. That is,
and the widening operation used in
all these can be reduced to the soun
proven:

ysis are all sound. From Lemma 4.2 on we will see that
f ent proof provided by SLEEK, which is already

Lemma 4.1 (Soundness of entailment proof). For A and if Ak~ Ay holds, then for all s, h = A1, we have
s,h = As.
Proof. The soundness of the entailment proof is proven et 012). O

Lemma 4.2 (Soundness of abstract semantics). If [e]lTA = A1, then(for all 5,9, i
(s1, h1, eq), then there always exists Ag such that

si,hil=Ap and [e1]r A=A

= Aand (s,h,e) —

Proof. The proof is done by structural induction over program constructors an in Ap-
pendix A. O

Lemma 4.3 (Soundness of abs). If abs(0) = ¢/, then o = o’.

Proof. The soundness proof of the first two substitution rules is trivial. For the Unreach rul
easily prove that xq::c(v*) * 0 F true % o, where o is the frame part of the entailment check. By
frame rule of separation logic, we only need to show that xq::c{(v*) - true, which obviously is
The result of rule Abs is obtained via a folding operation in SLEEK against a user-defined predicate,
the soundness of this rule is guaranteed by that of the entailment proof in SLEEK. O

Lemma 4.4 (Soundness of join). If join(o1, 02) = 0, then we have o1 = 0 and o3 = 0.

Proof. Let o1 be (3x] - k1 A1), and o2 be (3x; - k2 A 72). By the definition of the join operator, we
have three cases:

o If k1 F k3 * true, we have o =3x}, x5 - k2 Ajoing (71, 7r2). Then we need to show that 3x] - k1 A
71 = 3X7, X5 - k2 Ajoing (71, 2) and 3x3 - ky A 7T = 3X], X5 - k2 Ajoing (71, 7T2), which are true
because «1 - k3 * true by condition, k; - k2 by separation logic, and 71 - joiny (711, 72) and 7y -
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joing (7r1, 1) by the soundness of the convex hull operator over the numerical domains (Popeea
and Chin, 2006).
o If ko k1 * true, the soundness proof is similar to the first case.
herwise, we have o = o1 V 0. The soundness proof of this case is trivial. O

ma 4.5 (Soundness of widen). If widen(o, 02) = oy, then we have o1 = o and o3 = oy.

Proo; proof of soundness of widen is similar to the soundness proof of join. O
ults above, we have

Theorem 41 (Soundness). nalysis is sound with respect to the underlying operational semantics.

4.3.2. Termination

Next we show
the finiteness over the s
by our widening operat
possible abstract states only
set an upper bound n for sha
number of program variables an

n of our analysis algorithm, which is based on two observations:
in and the termination over the numerical domain guaranteed

hape information: recalling our analysis algorithm where we
gical variables) that we keep track of, we know that the
bles preserved in our analysis are finite. Note that the
number of all shape predicates are ; therefore all the shape-only abstract states are finite.
The second is proven in the abstract rameworks for the numerical domains (Popeea
and Chin, 2006). These two facts guarantee ghe gence of our analysis. Such a termination proof
can help assure us that our analysis never goes infinite loop, regardless of which loop it is
made to analyse.

Lemma 4.6 (Finiteness of the abstract shape domain )’ a umber of program variables, logical
variables, data node types and shape predicates, the abstractishgfe domain is finite.

and shape predicates
s or arguments of the
predicates be k, where m,n,l;,l5,k € N are finite numbers. Note
structure is also counted in k. For example, the number of argumen

number of shape structure is (I; 4+ [), then the upper bound of the number of a
atomic shape formulae is (I; + 1) x (m +n)X + 1, where 1 is for when the shape f
there are at most 2(1+2)xM+M*+1 shane formulae in this shape domain. Since m,
finite natural numbers, the shape domain is finite. O

Definition 4.2. A (conjunctive) state o is reducible if and only if abs(o) ¥ o. If abs(o) - o, then S
irreducible, in which case we also say o is stabilised.

Lemma 4.7 (Termination of abs). For all state o, the application of the four abstraction operations over o
exhaustively ( following the given order) will terminate in finite steps within a finite shape domain.

Proof. Let us apply abs over o( exhaustively to obtain a sequence o1, 02, ..., 0y, Where n € N. By the
soundness of abs, we have og o010y --- o0y, i.e. 0g =01 = 03 = - - - = 0. Since the shape parts
....n are in a finite shape domain, and the four abstraction rules do not alter the numerical parts
of these states, there must exist a 0j 0<ign Which is irreducible/stabilised, i.e., o = o; for all k >i. O

Lemma 4.8 (Termination of widening). Within a finite shape domain, given a sequence o, (n € N), the se-
quence oy, generated by oo = o) and o1 = widen(oy, UA_H) is ultimately stationary, i.e. 3i-Vk > i- o = 0.
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1 node mt‘.erge(node left, node right) 12 node tmp = right;
2 requires left:isll(ni,si,l1) . .
. 15 right = right.next;
* right:sll(ng, sz, 12)
16 tmp.next = null;
3 ensures res:sll(ns,s3,1l3)Ans=nj+n; 17 r = append(r, tmp) ;
As3=min(s1,s2) A lz =max(1li,13); 1s ) = app P LB
5 { node r = null; 19 }
while (left != null && right != null){ ;S 1fr(%e§t Z;drzlrlll)ri{ht).
if (left.val <= right.val) { 2 PP e
node tmp = left;
23 else {
eft = left.next;
24 r = append(r, left);
.next = null;
11 r = append(r, tmp) ; 25 }
s } - app HR) 26 return r;
13 else { 273

Proof. The proof follows tfje id widening termination proof in cofibered domains (Venet,
1996). Similar to the proof of on of abs, the shape part of o, will be stationary since the
shape domain is finite. The ter erical part can be guaranteed by numerical join and

d(l10
widening (Popeea and Chin, 2006). Combifling Jthem together, o, will be stationary. 0O

Based on the above results, we con @ ination result about our analysis algorithm as
follows.

ion will terminate in finite steps, given a
finite number of method specifications, program variab (user-defined predicates, and given an upper

5. Experiments and evaluation

We have built a prototype system using Objective Caml. In our
et al., 2007) as the solver for entailment proofs, and Omega constraint
solver (Popeea and Chin, 2006) for join and widening operations in the n
platform was an Intel Core 2 CPU 2.66GHz system with 8Gb RAM.

use SLEEK (Nguyen
, 1991) and Fixcalc

Example 5.1 (Merge). Fig. 6 shows a procedure merge which merges two sorted |
left and right into one sorted list, and returns the merged list as result. The pré&
while loop within the merge procedure (starting at line 6) is calculated as

leftisll(ng,si,1l1)*rightisll(ng, sz, 1) Ar=null

The function append concatenates two sorted lists, which requires that the maximal value stgpeéd
in the first input list is smaller than or equal to the minimal value of the second input list, and ensur
that it returns a concatenated sorted list (referred to by res). The following is the specification of
append:

node append(node x, node y)
requires x::sll(ni,s1,1l1)*yiisll(ng,ss,12) Al1 < sy
ensures res:sll{ni +ny, s1, 1y)

By applying our analysis algorithm to the while loop in the program, we obtain the following loop
invariant, which contains seven different disjunctive branches, with each branch describing a different
situation:



S. Qin et al. / Journal of Symbolic Computation 50 (2013) 386-408 401

leftisll(ng, s1,11)*rightisll(ng, sz, 1) Ar=null (7)
V rinode(s;,null)*right:sll(ns, sy, 1) Aleft =null
As1=11As1 <8y (8)
r:node(sy,null)xleft:sll{ni,s1,1l1) Aright =null
2=1xAs2<s1 9)
node(sz,null) left::sll(n’l, s, 11) * right::sll(n’z, s5, 12>

As;<spAn;=n]+1An,=np;As; <s)Ash=s;

3 =53 ASy 1/\n2:n/2+1/\n/1:r11/\52és’z/\s/lzsl) (10)

Vrisll(n right::sll(n/z, 5’2, 12) Aleft =null An3z=n; +ny —n/2

A s3 =min(sq, 3=11A1; <s) (11)

Vrislling, s

13)

A s3 =min(sq, Sy

t::sll(n/l, s’l, 11>/\ right =null An3z=nj+n; —n'l
2 A1y < S;_ (12)
Vv rusllins,ss,1ls) feEE1 N, s, 11>* right::sll(n’z, s5, 12)

An3 =ni —nj +np —nNQ s3 1,52) A1z <min(s), s) (13)

The branch (7) represents the state bef
three special scenarios after one iteration.
the left (resp. right) list contains only o
stored in the right (resp. left) list, and after o
left (resp. right) list and the left (resp. rig mes null. The branch (10) denotes
the scenario where after one iteration neither the 1efg listfnor the right list is empty but r still
refers to the node with the smallest value. The branches¥(11), (13) denote possible states
reached after some (one or more) iterations. The branch (11) (Fésp. (12)) tes the state reached
after some iterations where the 1left (resp. right) pointer has, travers the end of the list. The
branch (13) denotes the case where neither the 1eft pointer no inter has reached the
end of their list after some iterations. In all these three branches, r merged list obtained
so far. The shape of each branch is demonstrated in Fig. 7.

Note that branches (8), (9) and (10) are, respectively, special cases of

ration. The branches (8), (9), and (10) denote
resp. (9)) denotes the case where initially
holds a value no bigger than any value
r refers to the sole node in the initial

ant as

r::sll(ns, s3, 13) * right::sll(né, s’z, 12)/\ left=null Anz3=n; +9 5
As3=min(s1,s2)Al3=11 Al < s’2
Vv riusllins,ss,1l3)* left::sll(n’l, s, 11> Aright =null Ans; =n;+n; 4
As3=min(s1,s2)Al3=13A1y<s]
Vv riusllins,ss,1l3)* left::sll(n’l, s, 11>* right::sll(n;, 5, 12)
ANz =nq —1'1/1 +ny —n’2 As3=min(si,s3)Als <min(s’1, s’z)

An immediate benefit to simplify the generated loop invariant is to reduce the number of disjunctions.
Therefore, it can lead to the increase of the scalability of our inference system. It also simplifies the
verification process which makes use of the loop invariant. Note that the soundness of our analysis
ensures that we do not need to re-verify the while loop with the inferred invariant; instead, we can
directly move on to verify the code fragment after the while loop, starting with the inferred loop
invariant conjoined with the negation of the loop test (a sound postcondition for the while loop).
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Zero iteration right ki 5
r — null
@)
left.next=null A right.next=null otherwise, after one
As,<s, iteration
left sli<n,,s,,l,> left sli<n,’,s,’,1,">
One iteratio right — null right
r Node<s,,null> r Node<s,,null>
(9) (20
ail of right is reachedl otherwise
left — null eft left sll<nys,10>
More iterations )
: :
(11) (12) (13)
Fig. 7. Shape of each branch of the ge i jant in the merge example.

ents with, including list process-
ing programs, sorting algorithms, tree processing prog ps code from FreeRTOS (2012).
Total LOC is the total number of lines of the code. The
grams. The second column states the programs’ functionalities.
second taken by our analysis. As can be seen from their functi rams involve recursive
data structures such as (sorted) linked lists and binary (search) t mploy loops to manipu-
late these data structures (and some of them even have nested loop t is to verify these
programs without the need of user annotations for loops that occurred in
ployed to automatically infer loop invariants for those while loops. Our

source code of the FreeRTOS kernel to our language, and successfully inferred the loop invdptants
the loops which do not involve pointer arithmetic in list.c and task.c. We employ double linked so
list predicate for the verification of FreeRTOS.

We have two main observations from our experimental results. The first is that we can han
many different kinds of data structures with rich program properties they exhibit. To analyse these
loops, we need to deal with both single linked and double linked list predicates to capture the |
data structure, as well as their sorted version for the sorting algorithms. We can also handle tree-
like predicates such as binary trees and binary search trees. Meanwhile these predicates also capture
various numerical information such as the length of the list and size/height of the tree, and the
minimum/maximum value of a sorted list/binary search tree. With these predicates, our analysis is
capable of capturing sophisticated numerical invariants, which are simply captured as constraints over
the parameters of predicates involved.

Beyond the number of predicates and properties we can process, another observation on our anal-
ysis is that we can process them rather precisely. For example, the list creation program creates a list
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Table 1

Selected Experimental Results.
Function Time

(Total LOC: 232)

Creates a list with given length parameter 0.452
Disposes a list 0.720
Traverses a list 0.636
Counts the length of a list 0.772
Appends two sorted lists 0.312
Takes the first n elements of a list, or itself 0.852
Returns suffix of a list after the first n elements, or empty 0.844
Reverse the elements of the list, in place 1.032

filter
lookup
drop_even

Drops the elements bigger than k of a list 1.182
urns the first node whose values equals to k, or null 0.876
s all the elements whose indexes are even 1.332

Sorting list processing (Total LOC: 178)
ins_sort(inner) 0.824
ins_sort(outer) p.of Fig. 1 4372
partition ation used by quick-sort 1.497
merge orted lists to be one sorted list 1.972
split o sublists with length difference of at most one 0.354
select 0.692
select_sort 4.892
Tree processing programs (Total LOC: 87)
tree_search 1.294
tree_insert 1.364
list2tree 5.176
FreeRTOS (Total LOC: 331)
list.c e igblation 4.124
task.c ion 32.18

with the same length as a user input; the list traverse prograniidoes n
ments of the return list of the filter program are smaller than o al
length of the return list of the drop_even program is between hal
the original list.

Moreover, critical information may be required from some loops fortheir enclosi
to function correctly. For example, the quick-sort algorithm partitions a list into g

ge list’s length; all ele-
input value k; and the
+ 1 of the length of

the table) can divide the list into two where their length difference is at most one; suc
might be unimportant for the algorithm’s functional correctness but can be essential for.

the minimum/maximum value of the new binary search tree will be exactly the inserted v
that value is outside the value bounds of the original tree. For code in FreeRTOS, the invariants
inferred maintain the sortedness property for the double linked list used for tasks. The invariants we
discovered are sufficiently precise to prove the functional correctness of their corresponding progr
with the given predicates.

6. Related work and conclusion

Related work. For heap-manipulating programs with any form of recursion (be it loop or recursive
method call), dramatic advances have been made in synthesising their invariants/specifications. The
local shape analysis (Distefano et al., 2006) infers loop invariants for list processing programs, fol-
lowed by the Spacelnvader tool to infer full method specifications over the separation domain, so as
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to verify pointer safety for larger industrial codes (Calcagno et al., 2009; Yang et al., 2008). The SLAyer
tool (Gotsman et al., 2006) implements an inter-procedural analysis for programs with shape infor-
mat1 n. The Hob system (Lam, 2007) employs a set based spec1ﬁcat10n techmque to descrlbe heap

iterations and to enforce termination. Our analysis is designed for a more complex
leveraging both shape and numerical information. It requires a widening operator to

possible. To deal with also size information (such as number of nodes in lists/trees),
THOR (Mag' et al., 2008) ives a numerical program from the original heap-processing one in a
sound way, such that th
A similar approach (G,
main (for correspond

2009) combines a set domain (for shape) with its cardinality do-
information) in a more general framework. Compared with these

relational inductive shape analysis (Chang and Rival, 2008).
It employs inductive checkers t b, hape and numerical information. Our approach has two
advantages over theirs: firstly, we 0 Kéep a8 many as possible shared cutpoints (logical variables)
during the analysis (within a preset B@und) whereas they do not preserve such cutpoints (which is
witnessed by their joining rules over in). Therefore our analysis is essentially more
precise than theirs, e.g. in the second scen described in Section 4.2. Meanwhile, our ap-
proach can deal with data structures with lo say cyclic linked lists), whereas they do not
have a mechanism to handle it. An example i i tate x::1s(m,y) *yiils(y,n) An>0
involving both a shared cutpoint y and a circled I @ , ) An > 0, neither of which can be
handled by their work (while ours is capable of that)“%Am tage of our approach over theirs
is that they only demonstrate how to analyse a progrd articular shape. For instance,
they analyse programs which manipulate binary search trees lack trees without chang-
ing the variety of shapes in the heap. Comparatively, we allow ates to appear in the
analysis of one program, like in our motivating example (thanks xible abstraction op-
eration).

There are also many other approaches that can synthesise shape-refated
than those based on separation logic. The shape analysis framework TVLA

One more work to be menti

invariants from the code. Kuncak et al. (2002) develop a role system to express and
relationships among objects, where an object’s role (type) depends on, and changes 3
mutation of its referencing. Hackett and Rugina (2005) can deal with AVL-trees but is
handle only tree-like structures with height property. Compared with these works, separag
based approach benefits from the frame rule and hence supports local reasoning.

Classical abstract interpretation (Cousot and Cousot, 1977) and its applications such as auto
assertion discovery (Cousot and Cousot, 2002; Kovacs and Jebelean, 2005; Leino and Logozzo, 20
Furia and Meyer, 2010) mainly focus on finding numerical program properties. Compared with their
works, ours is also founded on the abstract interpretation framework but tries to discover loop inva
ants with both separation and numerical information. Meanwhile, we can also utilise their techniques
of join and widening to reason about the numerical domain, as we did for the work Popeea and Chin
(2006).

Concluding remarks. We have reported an analysis which allows us to synthesise sound and useful
loop invariants over a combined separation and numerical domain. The key components of our anal-
ysis include novel operations for abstraction, join and widening in the combined domain. We have
built a prototype system and the initial experimental results are encouraging.
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SEAVIAY2 iff SkEayiands=ay:
SFEapipbapy  iff s(p1)>as(p2), wheres € {=, #}
SEapr<null 1iff s(p) <10, where s« € {=, #}

S A true always

SkEa false never

SEaAvV iff s(v) = true

skEabi=ba iff s(b1) =s(b2)

SEavi=v; iff s(vy) =s(va)

sFEavi<vy  iff s(v1) <s(v2)

SEaAd1 A2 iff SkEa ¢1 ands =4 ¢
SEA®1V ¢2 iff Sk=a ¢ 0rs=a ¢

SkEaA—¢ iff SE=a ¢ does not hold
SEadv-¢ iff ska [k/v]lg for some k
s ) iff skEalk/vlgp forallk

The semantic model for numerical constraints.
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Appendix A

A.1. Semantic for pure formulae

The semantic model for pure (numerical) form @; isgiven in Fig. 8.

A.2. Operational semantics

This section defines the operational semantics of our programming fan, e. It is a small-step se-
mantics which are essentially transitions between machine con jon, achine configuration
is a triple consisting of:

e Heap h. As mentioned earlier we model heaps as finite partial m from locati
values. Object values are expected to conform to their defined class types.

e Stack s. Stacks are modelled as finite maps from variables to values. Note that
as a “stackable” mapping, where a variable v may occur several times, and s§
the value of the variable v that was popped in most recently. A more formal dé
would make different occurrences of the same variable with different “frame” nu
the details here.

e Current program code e. Program execution terminates when e is -, a value of type void.

Each reduction step can then be formalised as a small-step transition of the form:
(s.h,e) = (s1,h1,e1)

The full set of transitions is given in Fig. 9. We explain some of the notations used in them. The op-
eration [v +— v]+s “pushes” the variable v to s with the value v, and ([v+ v]+5s)(v) =v. The
operation s — v* “pops out” variables v* from the stack s. s[v+> k] is a mapping which keeps
all the mappings in s except that of v (which is now specified to be mapped to k). We also
abuse this notation for a class type identifier ¢ to denote a region of heap (mappings) in the form
c[f1 s(v1),..., fa > s(vp)], which is essentially a heap location where fields f; are further mapped
to values s(v;), i=1,...,n. L represents an arbitrary value. We also introduce an intermediate con-
struct as results returned by expressions/method calls ret(v*,e), where v* will be dropped from s
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0S-VAR (s,h, v) = (s, h,s(v))
0S-CONST (s, h, k) — (s, h,k)
05-SEQ (s,h,-;e) <= (s,h,e)
0S-ASSIGN-1 (s,h,v:=k) — (s[v>k],h,-)
0S-FIELD-READ (s, h,v.f) = (s,h, h(s(v))(f))

0S-LOCAL (s, h,{t v; e}) < ([vi> L]+ s,h, ret(v,e))
0S-RET-1 (s,h, ret(v*, k)) = (s — {v*},h,k)
(s,h,e1) = (s1,h1,e3)
(s,h,eq1;e2) = (s1,h1,es3;e2)

0S-PROG

(s,h,e) = (s1,h1,e1)
(s,h,v:=e) < (s;,h;,v=eq)

(s,h,e) = (s1,h1,e1)

(s, h, ret(v*,e)) < (s1,h1, ret(v*, e1))
r=h(s(v1)[f = s(v2)] hy=h[s(vi) ]
(s,h, vi.fi=va) < ((s,h1))

s(v) =true

s dimif v thenej elseey) — (s, h,eq)
s(v) =false
0S-IF-2 -
(s, £V thenej elseey) < (s, h,eq)
0S-NEW
0S-WHILE-1
0S-WHILE-2
s1=s[w; > sV}
to mn((t; wi)i_)){e
0S-CALL

(s, h, mn(v*)) < (s1,h, ret({

Fig. 9. Operational semantics.

in the stack s.

A.3. Proof of soundness of abstract semantics

In this section we prove the following lemma to complete the soundness proof for our analysi

Lemma 4.2 (Soundness of abstract semantics). If [e]l7A = A4, then for all s, h, if s,h = A and (s, h, e)
(s1, h1, eq), then there always exists Ag such that

si,hil=Ao and [e1]7Ao=Aq
Proof. The proof is done by structural induction over program constructors:

e Case null | k | v | v.f. Straightforward.
e Case v :=e. There are two cases according to the operational semantics:
- e is not a value. From operational semantics, there is ey s.t. (s,h,e) < (s1,h1,eq), and
(s,h,v =e) < (s1,h1,v =eq). From abstract semantics for assignment, if [e];A = Aj, and
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A1 =[vq/v,r1/res](A2) A v =r1. By induction hypothesis, there exists Ag, $1,h1 = Ap and
[e1]7Ao = Aj. It concludes from the assignment rule that [v =e1]7A¢ = A1.
- e is a value. Trivial.
se new c(v*). From abstract semantics for new, we have [new c(v*)];A = A1, where
A A * res::c(v/l, ..., V). Let Ag=Aq. From the operational semantics, we have (s,h,
new ¢(v*)) < (s,h + [t — 1], (), where ¢ ¢ dom(h). From s,h = A, we have s,h+ [t r] = Ao.
oreover, [t]lTAo = A1.
:=v;. Take Ag = A. It concludes immediately from the exec rule for field update and
ying operational semantics.
. Denote A as \/,-(x::c(y;k)*ai) and Ap as \/;o0;, then from free's operational

have (s, h,eq) < (s1,h1, e3). From the abstract semantics rule for
A,}. By induction hypothesis, there exists Ag s.t. s1,hy = Ag, and
tial rule we have [e3; ex2]7A9 = Ag.
e are two possibilities in the operational semantics:
- s(v) = true. We have 45, then eq else ey) <> (s, h,eq). Let Ag= (A A V). It is obvi-
ous that s, h = Ap. From the onditional rule of abstract semantics, we have

[e1lTA0= Az
[e2l7A A=V = A3

And we also have (due to sound weakeni postcondition)
[e1]lTAo=AzV Aj

That is, [E]]TA() =Aq.
- s(v) = false. Analogous.
e Case mn(vq._p,). For the method invocation rule, W

I «Al fori=1,...,p. Take
Ao = \/f’:1 p(D;r * AL, From the operational semantics andgfHle abd¥e hegp entailment, we have
s1,h1 = Ap. Then the method invocation rule implies Vi ..p- ,ocbé,r * Al = Al % ‘Dzlw'
Therefore we have [e;]7A¢ = A1 which concludes. O
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