

Software Engineering Group
Department of Computer Science
Nanjing University
http://seg.nju.edu.cn

Technical Report No. NJU-SEG-2013-IJ-007

2013-IJ-007

Loop invariant synthesis in a combined abstract domain

Shengchao Qin, Guanhua He, Chenguang Luo, Wei-Ngan Chin, Xin Chen

Journal of Symbolic Computation 2013

Most of the papers available from this document appear in print, and the corresponding copyright is held by the

publisher. While the papers can be used for personal use, redistribution or reprinting for commercial purposes is

prohibited.

http://seg.nju.edu.cn/

Journal of Symbolic Computation 50 (2013) 386–408

Contents lists available at SciVerse ScienceDirect

Journal of Symbolic Computation

www.elsevier.com/locate/jsc

Loop invariant synthesis in a combined abstract domain

Shengchao Qin a,b,c, Guanhua He a, Chenguang Luo a, Wei-Ngan Chin d,
Xin Chen c

a School of Computing, Teesside University, Middlesbrough, TS1 3BA, UK
b College of Computer Science, Beijing University of Technology, China
c State Key Lab. for Novel Software Technology, Nanjing University, China
d School of Computing, National University of Singapore, Singapore

a r t i c l e i n f o a b s t r a c t

Article history:
Received 15 November 2011
Accepted 29 August 2012
Available online 7 September 2012

Keywords:
Loop invariant
Fixpoint analysis
Abstraction
Combining analysis
Shape analysis
Numerical analysis
Separation logic

Automated verification of memory safety and functional correctness
for heap-manipulating programs has been a challenging task,
especially when dealing with complex data structures with strong
invariants involving both shape and numerical properties. Existing
verification systems usually rely on users to supply annotations
to guide the verification, which can be cumbersome and error-
prone by hand and can significantly restrict the usability of the
verification system. In this paper, we reduce the need for some
user annotations by automatically inferring loop invariants over
an abstract domain with both shape and numerical information.
Our loop invariant synthesis is conducted automatically by a fixed-
point iteration process, equipped with newly designed abstraction
mechanism, together with join and widening operators over the
combined domain. We have also proven the soundness and
termination of our approach. Initial experiments confirm that we
can synthesise loop invariants with non-trivial constraints.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Although research on software verification has a long and distinguished history dating back to the
1960s, it remains a challenging problem to automatically verify heap-manipulating programs written
in mainstream imperative languages. This is in part due to the use of shared mutable data struc-
tures in programs, and the need to track various program properties, such as structural numerical

E-mail addresses: s.qin@tees.ac.uk (S. Qin), g.he@tees.ac.uk (G. He).
URL: http://www.scm.tees.ac.uk/s.qin/ (S. Qin).

0747-7171/$ – see front matter © 2012 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.jsc.2012.08.007

For Research Only

http://dx.doi.org/10.1016/j.jsc.2012.08.007
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jsc
mailto:s.qin@tees.ac.uk
mailto:g.he@tees.ac.uk
http://www.scm.tees.ac.uk/s.qin/
http://dx.doi.org/10.1016/j.jsc.2012.08.007

S. Qin et al. / Journal of Symbolic Computation 50 (2013) 386–408 387

information (e.g. length and height) and relational numerical information (e.g. sortedness and binary
search tree properties).

Since the emergence of separation logic (Ishtiaq and O’Hearn, 2001; Reynolds, 2002), dramatic
advances have been made in automated software verification, e.g. the Smallfoot tool (Berdine et al.,
2005) for the verification on pointer safety (i.e. shape properties asserting that pointers cannot go
wrong), the verification on termination (Berdine et al., 2006), the verification for object-oriented pro-
grams (Chin et al., 2008; Parkinson and Bierman, 2008), and Dafny (Leino, 2010) and Hip/Sleek (Chin
et al., 2007, 2012; Nguyen and Chin, 2008; Nguyen et al., 2007) for handling more general properties
(such as set-based and numerical properties for data structures) in heap-manipulating programs.

As a key to prove the correctness of loops, a suitable loop invariant for each loop must be pro-
vided by users in these verification systems. However, supplying invariants by hand in a sophisticated
domain can be tedious and error-prone. It also affects the scalability of these tools, as each program
may contain many loops.

To address this problem, various shape analysis techniques have been proposed in, e.g., the sepa-
ration logic based SpaceInvader tool (Calcagno et al., 2009; Distefano et al., 2006; Yang et al., 2008),
which, as a further step of Smallfoot, can automatically infer loop invariants as well as method speci-
fications for pointer safety properties. The Hob system (Lam, 2007) offers a set-based analysis for loop
invariant synthesis. Another tool THOR (Magill et al., 2008) incorporates simple numerical information
into the shape domain to allow automated synthesis of properties involving length of list segments.
These successes have demonstrated the feasibility to generate loop invariant automatically for shape
analysis to help automate the program verification process.

However, most of the prior loop invariant analyses focus on relatively simple properties, such as
pointer safety for lists and list length information. It is difficult to apply them in the presence of more
sophisticated program properties, such as:

• More complex user-defined data structures, such as height-balanced trees;
• Relational numerical properties, like sortedness and binary search property.

These properties can be part of the full functional correctness for heap-manipulating programs. The
(aforementioned) Hip/Sleek tool can handle such properties. It allows users to define their own shape
predicates in conjunction with properties of interests, in order to capture a higher desired level of
correctness for their programs.

In this paper, we present a technique to automatically discover loop invariants over the combined
shape and numerical domain to improve the level of automation for Hip/Sleek-like verification sys-
tems. Our approach is based on the framework of abstract interpretation (Cousot and Cousot, 1977)
with fixed-point computation. We make the following technical contributions:

• We propose a loop invariant synthesis algorithm with novel operations for abstraction, join and
widening over a combined shape and numerical domain.

• We demonstrate that our analysis is sound w.r.t. concrete program semantics and prove that it
always terminates.

• We have integrated our solution into the Hip/Sleek tool and conducted some initial experiments.
The experimental results confirm the viability of our solution and show that we can effectively
eliminate the need for user-provision of loop invariants which were previously necessary in veri-
fication.

The rest of the paper is structured as follows. We first illustrate our approach informally via an
example (Section 2), and then give our programming and specification languages (Section 3). Formal
details about loop invariant synthesis are presented in Section 4, followed by experimental results in
Section 5. Related work and concluding remarks come afterwards.

2. The approach

Before presenting an illustrative example for the analysis, we first introduce our specification
mechanism which follows the Hip/Sleek system (Chin et al., 2012).

For Research Only

388 S. Qin et al. / Journal of Symbolic Computation 50 (2013) 386–408

2.1. Specification mechanism

Separation logic (Ishtiaq and O’Hearn, 2001; Reynolds, 2002) extends Hoare logic to support rea-
soning about shared mutable data structures. One connective that it adds to classical logic is separa-
tion conjunction ∗. The separation formula p1 ∗ p2 asserts that two heaps described by the formulae
p1 and p2 are domain-disjoint. We make use of this connective in our specifications.

Similar to the Hip/Sleek system, we allow user-defined inductive predicates to specify both sep-
aration and numerical properties. For example, with a data structure definition for a node in a list
data node { int val; node next; }, we can define a predicate for a singly linked list as

root::ll〈n〉 ≡ (root= null∧ n= 0)

∨ (∃v,q,m · root::node〈v,q〉 ∗ q::ll〈m〉 ∧ n= m+ 1
)

The parameter root for the predicate ll is the initial pointer into the first node of the linked list,
or null if the list is empty. Its length is denoted by numerical parameter n. A uniform notation
p::c〈v1, . . . ,vk〉 is used for either a singleton heap or a predicate. If c is a data node with fields
f1, . . . ,fk , the notation represents a singleton heap, p 	→ c[f1 	→ v1, . . . ,fk 	→vk] which says that
the variable p points to a c data node and the value of its fields are v1, . . . ,vk , e.g. root::node〈v,q〉
in the above formula. If c is a predicate name, then the data structure pointed to by p has the shape c
with parameters v1, . . . ,vk , e.g. q::ll〈m〉 above.

We can also define a singly linked list segment as follows:

ls〈p,n〉 ≡ (root= p∧ n= 0) ∨ (
root::node〈_ ,q〉 ∗ q::ls〈p,m〉 ∧ n= m+ 1

)
where the parameter p denotes the next field for the last node of the list segment. Note that we
use the following shortened notation: (i) default root parameter in the left hand side (LHS) may be
omitted, (ii) unbound variables, such as q and m, are implicitly existentially quantified, and (iii) the
underscore _ denotes an existentially quantified anonymous variable.

If the user wants to verify a sorting algorithm, they can incorporate sortedness property into the
above predicates as follows:

sll〈n,mn,mx〉 ≡ (
root::node〈mn,null〉 ∧ n= 1∧ mn= mx

)
∨ (

root::node〈mn,q〉 ∗ q::sll〈n1,k,mx〉 ∧ mn� k∧ n= n1 + 1
)

sls〈p,n,mn,mx〉 ≡ (
root::node〈mn,p〉 ∧ n= 1∧ mn= mx

)
∨ (

root::node〈mn,q〉 ∗ q::sls〈p,n1,k,mx〉 ∧ mn� k∧ n= n1 + 1
)

where mn and mx denote respectively the minimum and maximum values stored in the sorted list.
As a more involved example, one may define the following predicate to specify sorted doubly-

linked list segments

sds〈p,q,n,mn,mx〉
≡ (

root::node2〈mn,p,q〉 ∧ n= 1∧ mn= mx
)

∨ (
root::node2〈mn,p,r〉 ∗ r::sds〈root,q,n− 1,k,mx〉 ∧ mn� k

)
based on the data structure definition

data node2 { int val; node2 prev; node2 next; }
where the parameters p and q denote, respectively, the prev field of root and the next field of
the last node of the list. Similar to the definition of sls, mn (resp. mx) is the minimum (resp. the
maximum) value stored in the double sorted list.

Such user-supplied predicates can be employed to specify loop invariants and method specifica-
tions.

For Research Only

S. Qin et al. / Journal of Symbolic Computation 50 (2013) 386–408 389

0 data node { int val; 9 while (srt != null &&
node next; } srt.val <= v) {

1 node ins_sort(node x) 10 prv=srt; srt=srt.next;
2 requires x::ll〈n〉 11 }
3 ensures res::sll〈n,mn,mx〉 12 cur.next=srt;
4 {int v; 13 if (prv != null) prv.next=cur;
5 node r,cur,srt,prv=null; 14 else r=cur;
6 while (x != null) { 15 }
7 cur=x; x=x.next; v=cur.val; 16 return r;
8 srt=r; prv=null; 17 }

Fig. 1. Insertion sort for linked list.

2.2. Illustrative example

We now illustrate via an example our loop invariant synthesis process. The method ins_sort
(Fig. 1) sorts a linked list with the insertion sort algorithm. It is implemented with two nested while
loops. The outer loop traverses the whole list x, takes out each node from it (line 7), and inserts that
node into another already sorted list r (which is empty initially before the sorting). This insertion
process makes use of the inner while loop in lines 9–11 to look for a proper position in the already
sorted list for the new node to be inserted. The actual insertion takes place at lines 12–14.

To verify this program, we need to synthesise appropriate loop invariants for both while loops.
Our analysis follows a standard fixpoint iteration process. It starts with the (abstract) program state
immediately before the while loop (i.e., the initial state) and symbolically executes the loop body for
several iterations, until the obtained states converge to a fixpoint, which is the loop invariant.1 At
the start of each iteration, the obtained state from the previous iteration is joined with the initial
state. In addition to this join operator, we have also defined an abstraction function and a widening
operator both of which will help the fixpoint iteration to converge. The join and widening operators
are specifically designed to handle both shape and numerical information.

As for our example, due to the presence of nested loops, each iteration of the analysis for the outer
loop actually infers a loop invariant for the inner loop. We shall now illustrate how we synthesise a
loop invariant for the inner loop.

Suppose that in one iteration for the outer loop, the state at line 9 becomes

r::sll〈nr,a,b〉 ∗ cur::node〈v,x〉 ∗ x::ll〈nx〉
∧ srt= r∧ prv= null∧ nr + nx + 1= n

Note that since the inner loop does not mutate the heap part referred to by cur and x (i.e.,
cur::node〈v,x〉 ∗ x::ll〈nx〉), we can ignore it during the invariant synthesis and add it back to the
program state using the frame rule of separation logic (Reynolds, 2002). Therefore, the initial state for
loop invariant synthesis becomes

r::sll〈nr,a,b〉 ∧ srt= r∧ prv= null∧ nr + nx + 1= n (1)

From this state, symbolically executing the loop body once yields the state:

r::node〈a,srt〉 ∗ srt::sll〈ns,c1,b〉 ∧ prv= r

∧ a� c1 ∧ a� v∧ nr + 1= n− nx ∧ ns + 1= nr (2)

which says that the pointer srt moves towards the rear of the list by one node. We then join it with
the initial state (1) to obtain

(
r::sll〈nr,a,b〉 ∧ srt= r∧ prv= null∧ nr + nx + 1= n

)

1 The fixpoint iteration converges if one more iteration still yields the same result.

For Research Only

390 S. Qin et al. / Journal of Symbolic Computation 50 (2013) 386–408

∨ (
r::node〈a,srt〉 ∗ srt::sll〈ns,c1,b〉

∧ prv= r∧ a� c1 ∧ a� v∧ nr + 1= n− nx ∧ ns + 1= nr
)

(3)

The second iteration over the loop body starts with (3) and exhibits (also) the case that srt has
moved by two nodes towards the rear, while prv moves by one node. Its result is then joined with
pre-state (1) yielding the current state:

(3) ∨ r::node〈a,prv〉 ∗ prv::node〈c1,srt〉 ∗ srt::sll〈ns,c2,b〉
∧ a� c1 � c2 ∧ c1 � v∧ nr + 1= n− nx ∧ ns + 2= nr (4)

Executing the loop body a third time returns a post-state where three nodes are passed by srt, and
two by prv, as below:

(4) ∨ r::node〈a,r0〉 ∗ r0::node〈c1,prv〉 ∗ prv::node〈c2,srt〉
∗ srt::sll〈ns,c3,b〉 ∧ a� c1 � c2 � c3 ∧ c2 � v∧ nr + 1= n− nx ∧ ns + 3= nr

where we have an auxiliary logical variable r0 . Following this trend, it is predictable that every
iteration hereafter will introduce an additional logical variable (referring to a list node). If we tolerate
such increase in the subsequent iterations, the analysis will never terminate. Our abstraction process
prevents this from happening by eliminating intermediate logical variables, as follows:

(4) ∨ r::sls〈prv,n1,a,c1〉 ∗ prv::node〈c2,srt〉 ∗ srt::sll〈ns,c3,b〉
∧ a� c1 � c2 � c3 ∧ c2 � v∧ nr + 1= n− nx ∧ ns + 3= nr ∧ n1 = 2

Note that the heap part r::node〈a,r0〉 ∗ r0::node〈c1,prv〉 is abstracted as a sorted list segment
r::sls〈prv,n1,a,c1〉 with n1 denoting the length of the segment and n1 = 2 added into the state.
This abstraction process ensures that our analysis does not allow the shape to increase infinitely. Note
also that the abstraction process has made use of the fact a� c1 .

This fourth iteration results in a post-state where four nodes are passed by srt, and three by
prv. An abstraction is performed to remove the newly created logical pointer variables. As a sim-
plification of the presentation, let us denote σ as r::sls〈prv,n1,a,c1〉 ∗ prv::node〈c2,srt〉 ∗
srt::sll〈ns,c3,b〉 ∧ a � c1 � c2 � c3 ∧ c2 � v ∧ nr + 1 = n − nx . The result obtained after the
fourth iteration is

(4) ∨ (σ ∧ ns + 3= nr ∧ n1 = 2) ∨ (σ ∧ ns + 4= nr ∧ n1 = 3)

for which we have an observation that the last two disjunctions share the same shape part (as in σ).
This disjunction will be transferred to the numerical domain, as follows:

(4) ∨ (
σ ∧ (ns + 3= nr ∧ n1 = 2∨ ns + 4= nr ∧ n1 = 3)

)
This simplifies the abstraction further. After that, our widening operation compares the current state
with the previous one, to look for a common set of (numerical) constraints that both states imply,
and to replace those numerical constraints in the current state with the ones discovered by widening.
This operation helps ensure the termination of our analysis. As for the example, a set of constraints
among ns , nr and n1 can be discovered to make the widened post-state to become:

(4) ∨ (σ ∧ ns + n1 = nr − 1∧ n1 � 2) (5)

One more iteration of symbolic execution will produce the same result as (5), suggesting that it is
already the fixpoint (and hence the loop invariant):

r::sll〈nr,a,b〉 ∧ srt= r∧ prv= null∧ nr + 1= n− nx

∨ r::node〈a,srt〉 ∗ srt::sll〈ns,c1,b〉 ∧ prv= r

∧ a� c1 ∧ a� v∧ nr + 1= n− nx ∧ ns + 1= nr

For Research Only

S. Qin et al. / Journal of Symbolic Computation 50 (2013) 386–408 391

Prog ::= tdecl∗ meth∗
tdecl ::= datat | spred
datat ::= data c { field∗ }
field ::= t v
t ::= c | τ
meth ::= t mn ((t v)∗) mspec {e}
τ ::= int | bool | void
e ::= d | d[v] | v := e | e1; e2 | t v; e | if v then e1 else e2 | while v {e}
d ::= null | kτ | v | new c(v∗) | mn(v∗)
d[v] ::= v. f | v. f := w | free(v)

Fig. 2. A Core (C-like) imperative language.

spred ::= root::c〈v∗〉 ≡ Φ

mspec ::= requires Φpr ensures Φpo

Φ ::= ∨
σ ∗

σ ::= ∃v∗ · κ ∧ π
� ::= Φ | �1 ∨ �2 | � ∧ π | �1 ∗ �2 | ∃v · �
κ ::= emp | v::c〈v∗〉 | κ1 ∗ κ2

π ::= γ ∧ φ

γ ::= v1 = v2 | v = null | v1 �= v2 | v �= null | true | γ1 ∧ γ2

φ ::= b | a | φ1 ∧ φ2 | φ1 ∨ φ2 | ¬φ | ∃v · φ | ∀v · φ
b ::=true | false | v | b1 =b2

a ::=p1 = p2 | p1 � p2

p ::= kint | v | kint × p | p1 + p2 | −p | max(p1, p2) | min(p1, p2)

Fig. 3. The specification language.

∨ r::node〈a,prv〉 ∗ prv::node〈c1,srt〉 ∗ srt::sll〈ns,c2,b〉
∧ a� c1 � c2 ∧ c1 � v∧ nr + 1= n− nx ∧ ns + 2= nr

∨ r::sls〈prv,n1,a,c1〉 ∗ prv::node〈c2,srt〉 ∗ srt::sll〈ns,c3,b〉
∧ a� c1 � c2 � c3 ∧ c2 � v∧ nr + 1= n− nx ∧ ns + n1 = nr − 1∧ n1 � 2

Note that although it is possible to further join the third disjunctive branch with the fourth, our
analysis does not do so as it tries to keep the result as precise as possible by eliminating only auxiliary
pointer variables.

With the frame part cur::node〈v,x〉 ∗ x::ll〈nx〉 added back, the analysis for the outer loop
continues. Eventually, the following loop invariant is discovered for the outer loop:

(
x::ll〈nx〉 ∧ r= null∧ nx = n

) ∨ (
r::node〈a,null〉 ∗ x::ll〈nx〉 ∧ n= nx + 1

)
∨ (

r::sll〈nr,a,b〉 ∗ x::ll〈nx〉 ∧ n= nx + nr ∧ nr � 2
)

which allows us to verify the entire method successfully using Hip/Sleek verifier.

3. Language and abstract domain

To simplify presentation, we focus on a strongly-typed C-like imperative language in Fig. 2. The
program Prog written in this language consists of declarations tdecl, which can either be data type
declarations datat (e.g. node in Section 2), or predicate definitions spred (e.g. ll, ls, sll, sls in
Section 2.1), as well as method declarations meth. The definitions for spred and mspec are given later
in Fig. 3. Without loss of expressiveness, we use an expression-oriented language. So the body of a
method (e) is an expression formed by standard commands of an imperative language. Note that d
and d[v] represent respectively heap-insensitive and heap-sensitive commands.

For Research Only

392 S. Qin et al. / Journal of Symbolic Computation 50 (2013) 386–408

s,h |
 Φ1 ∨ Φ2 iff s,h |
 Φ1 or s,h |
 Φ2

s,h |
 ∃v∗ · κ ∧ π iff ∃ν∗ · s[v∗ 	→ ν∗],h |
 κ and s[v∗ 	→ ν∗] |
 π
s,h |
 κ1 ∗ κ2 iff ∃h1,h2 · h1 ⊥ h2 and h = h1 · h2 and

s,h |
 κ1 and s,h |
 κ2

s,h |
 emp iff dom(h) = ∅
s,h |
 p::c〈v1, . . . , vn〉 iff isdatat(c) and s(p) > 0 and h = [s(p) 	→ r]

and r = c[f1 	→ v1, . . . , fn 	→ vn]
or isspred(c) and c〈v1, . . . , vn〉 ≡ Φ

and s,h |
 [p/root]Φ
s |
 π1 ∧ π2 iff s |
 π1 and s |
 π2

s |
 π iff s |
A π

Fig. 4. The semantic model.

Our specification language (in Fig. 3) allows (user-defined) shape predicates spred to specify both
shape and numerical properties. Note that spred are constructed with disjunctive constraints Φ and
numerical formulae π . We require that the predicates be well-formed (Nguyen et al., 2007).

A conjunctive abstract program state, σ , is composed of a heap (shape) part κ and a numerical
part π , where π consists of γ and φ as aliasing and numerical information, respectively, and where p
is a Presburger expression and k is a constant value. We use SH to denote the set of such conjunctive
states. During the symbolic execution, the abstract program state at each program point will be a
disjunction of σ ’s, denoted by � (and its set is recognised as PSH). An abstract state � can be
normalised to a Φ form.

The memory model of our specification formula is adapted from what is given in the classical
separation logic (Ishtiaq and O’Hearn, 2001; Reynolds, 2002), and our abstract domain is capable of
handling user-defined shape predicates and related numerical properties described by this model.
We assume sets Loc of memory locations, Val of primitive values (with 0 ∈ Val denoting null),
Var of variables (program and logical variables), and ObjVal of object values stored in the heap, with
c[f1 	→ ν1, . . . , fn 	→ νn] denoting an object value of type c where ν1, . . . , νn are current values of the
corresponding fields f1, . . . , fn . Let s,h |
 � denote the model relation that the stack s and heap h
satisfy �, with s, h from the following concrete domains:

s ∈ Stacks =df Var → Val ∪ Loc

h ∈ Heaps =df Loc ⇀fin ObjVal

Note that each heap h is a finite partial mapping while each stack s is a total mapping. The detailed
model definition is given in Fig. 4. We use h1 ⊥ h2 to denote that the heaps h1 and h2 have disjoint
domains, and h1 · h2 to indicate the union of such heaps. Note that the test isdatat(c) returns true
only if c is a data node and isspred(c) returns true only if c is a shape predicate. The semantic model
for pure formulae s |
A π is left in Appendix A (Fig. 8).

We use the separation logic prover Sleek (Nguyen et al., 2007) to prove whether one abstract
state �′ entails another one �: �′ � � ∗ R. Along with the proof, Sleek also computes the residue
part R (a.k.a. the frame) which is useful for our inference framework. To prove the entailment is
to check whether heap nodes in the antecedent �′ are sufficiently precise to cover all nodes from
the consequent �. The entailment checking procedure uses unfold/fold reasoning to deal with user-
defined shape predicates with sophisticated numerical properties. During the entailment proof, the
frame R is generated and it contains the nodes which are not consumed from the antecedent af-
ter matching up with the formula from the consequent, and numerical constraints which convey the
relationship between the variables in the antecedent and consequent formulae. For instance, by en-
tailment proof

∃y · x::node〈vx,y〉 ∗ y::ll〈n〉 � x::ll〈m〉 ∗ R
we can generate the residue R as m= n+ 1, which says that x is a list of length n+ 1. Meanwhile, if
we try to prove

∃y · x::node〈vx,y〉 ∗ y::node〈vy,z〉 ∧ vx� vy � x::sls〈n,z,mn,mx〉 ∗ R

For Research Only

S. Qin et al. / Journal of Symbolic Computation 50 (2013) 386–408 393

Fixpoint Computation in Combined Domain
Input: T , �pre, while b {e}, n ;
Local: i := 0; �i := �pre; �′

i := �i;

1 repeat
2 i := i + 1;
3 �i := widen†(�i−1, join†(�i−1,�′

i−1));
4 �′

i := abs†([e]T (�i ∧ b));
5 if �′

i = false ∨ cp_no(�′
i) > n

then return fail end if
6 until �′

i = �′
i−1;

7 return �′
i

Fig. 5. Main analysis algorithm.

the residue R can be generated as n= 2∧ mn= vx∧ mx= vy∧ mn� mx, which shows that the
length of the sorted list from x to z is 2, and the minimal value of the list is vx in node x and
the maximal value is vy in node y. From the above examples, we can see that the Sleek prover
can be used to eliminate quantified pointer variables, to generate more abstract shape views, and to
preserve useful numerical information.

Based on the entailment relation, we define a partial order over the abstract states:

� � �′ =df �′ � � ∗ R for some R

We also denote this by �′ � �. Based on this partial order, we also have an induced lattice over these
states as the base of fixpoint calculation for loop invariants.

4. Analysis algorithm

Our proposed analysis algorithm is given in Fig. 5. The algorithm takes four input parameters: T as
the program environment with all the method specifications in the program, �pre as the pre-condition
for the while loop (i.e. the abstract state before the loop starts), the while loop itself while b {e},
and an upper bound n on the number of shared logical variables we keep during analysis.

Our analysis is based on abstract interpretation (Cousot and Cousot, 1977) with specifically de-
signed operations (abs, join and widen) over this combined domain.2 At the beginning, we initialise
the iteration variable (i) and two states to begin with (�i and �′

i). The starting state of the calcula-
tion is �pre . Among the two states here, the unprimed version �i denotes the initial state before the
ith execution of the loop body, and the primed one �′

i represents the result state after. Each iteration
starts at line 1. Firstly we join together the initial state �i−1 of the previous iteration with the re-
sult state �′

i−1 obtained in the previous iteration, and widen it against the state �i−1 (line 3). Then
we symbolically execute the loop body with the abstract semantics in Section 4.1 (line 4), and apply
the abstraction operation to the obtained abstract state. If the symbolic execution cannot continue
due to a program bug, or if we find our abstraction cannot keep the number of shared logical vari-
ables/cutpoints (counted by cp_no) within a specified bound (n), then a failure is reported (line 5).
Otherwise we judge whether a fixpoint is already reached by comparing the current abstract state
with the previous one (line 6). The fixpoint �′

i is returned as the loop invariant.
We will elaborate the key techniques of our analysis in what follows: the abstract semantics, the

abstraction function, and the join and widening operators.

4.1. Abstract semantics

The abstract semantics is used to execute the loop body symbolically to obtain its post-state during
the loop invariant synthesis. Its type is defined as

2 Note that our analysis uses lifted versions of these operations (indicated by †), which will be explained in more details in
Section 4.2.

For Research Only

394 S. Qin et al. / Journal of Symbolic Computation 50 (2013) 386–408

[e] : AllSpec → PSH → PSH

where AllSpec contains all the specifications of all methods (extracted from the program Prog). For
some expression e, given its pre-condition, the semantics will calculate the postcondition.

The foundation of the semantics is the basic transition functions from a conjunctive abstract state
to a conjunctive or disjunctive abstract state below:

rearr(x) : SH → PSH[x] Rearrangement

exec
(
d[x]) : AllSpec → SH[x] → SH Heap-sensitive execution

exec(d) : AllSpec → SH → SH Heap-insensitive execution

where SH[x] denotes the set of conjunctive abstract states in which each element has x exposed as
the head of a data node (x::c〈v∗〉), and PSH[x] contains all the (disjunctive) abstract states, each of
which is composed by such conjunctive states. Here rearr(x) rearranges the symbolic heap so that the
cell referred to by x is exposed for access by heap-sensitive commands d[x] via the second transition
function exec(d[x]). The third function defined for other (heap-insensitive) commands d does not
require such exposure of x.

isdatat(c) σ � x::c〈v∗〉 ∗ σ ′

rearr(x)σ =df σ

isspred(c) σ � x::c〈u∗〉 ∗ σ ′ root::c〈v∗〉 ≡ Φ

rearr(x)σ =df σ ′ ∗ [x/root, u∗/v∗]Φ
As mentioned earlier, the test isdatat(c) returns true only if c is a data node and isspred(c) returns
true only if c is a shape predicate.

The symbolic execution of heap-sensitive commands d[x] (i.e. x. f i , x. f i := w , or free(x)) assumes
that the rearrangement rearr(x) has been done previously:

isdatat(c) σ � x::c〈v1, . . , vn〉 ∗ σ ′

exec(x. f i)(T)σ =df σ ′ ∗ x::c〈v1, . . , vn〉 ∧ res= vi

isdatat(c) σ � x::c〈v1, . . , vn〉 ∗ σ ′

exec(x. f i := w)(T)σ =df σ ′ ∗ x::c〈v1, . . , vi−1, w, vi+1, . . , vn〉
isdatat(c) σ � x::c〈u∗〉 ∗ σ ′

exec(free(x))(T)σ =df σ ′

The symbolic execution rules for heap-insensitive commands are as follows:

exec(k)(T)σ =df σ ∧ res= k

exec(x)(T)σ =df σ ∧ res= x

isdatat(c)

exec(new c(v∗))(T)σ =df σ ∗ res::c〈v∗〉
t mn ((ti ui)

n
i=1) requires Φpr ensures Φpo ∈ T

ρ = [xi/ui]n
i=1 σ � ρΦpr ∗ σfr σpo = ρΦpo

exec(mn(x1, . . , xn))(T)σ =df σpo ∗ σfr

Note that the first three rules deal with constant (k), variable (x) and data node creation (new c(v∗)),
respectively, while the last rule handles method invocation. In the last rule, the call site is ensured to
meet the pre-condition of mn, as signified by σ � ρΦpr ∗ σfr , where σfr is the frame part. In this case,
the execution succeeds and the postcondition of mn (ρΦpo) is added into the post-state.

A lifting function † is defined to lift rearr’s domain to PSH:

rearr†(x)
∨

σi =df

∨(
rearr(x)σi

)

For Research Only

S. Qin et al. / Journal of Symbolic Computation 50 (2013) 386–408 395

and this function is overloaded for exec to lift both its domain and range to PSH:

exec†(d)(T)
∨

σi =df

∨(
exec(d)(T)σi

)
Based on the transition functions above, we can define the abstract semantics for a program com-

mand e as follows:
[
d[x]]T � =df exec†

(
d[x])(T) ◦ rearr†(x)�

[d]T � =df exec†(d)(T)�

[e1; e2]T � =df [e2]T ◦ [e1]T �

[x := e]T � =df
[
x′/x, r′/res

]([e]T �
) ∧ x = r′ fresh logical x′, r′

[if v then e1 else e2]T � =df
([e1]T (v ∧ �)

) ∨ ([e2]T (¬v ∧ �)
)

which form the foundation for us to analyse the loop body.

4.2. Abstraction, join and widening

This section describes our specifically designed abstraction, join and widening operations employed
in our loop invariant synthesis process.

Abstraction function. During the symbolic execution, we may be confronted with many “concrete”
shapes in postconditions of the loop body. As an example of list traversal, the list may contain one
node, or two nodes, or even more nodes in the list, which the analysis cannot enumerate infinitely.
The abstraction function deals with those situations by abstracting the (potentially infinite) concrete
shapes into more abstract shapes. Our rationale is to keep only program variables and shared cut-
points; all other logical variables will be abstracted away. As an instance, the first state below can be
further abstracted (as shown), while the second one cannot:

abs
(
x::node〈_ ,z0〉 ∗ z0::node〈_ ,null〉) = x::ll〈n〉 ∧ n= 2

abs
(
x::node〈_ ,z0〉 ∗ y::node〈_ ,z0〉 ∗ z0::node〈_ ,null〉) = - (6)

where both x and y are program variables, and z0 is an existentially quantified logical variable.
In the second case z0 is a shared cutpoint referenced by both x and y, and thus the state is not
changed (the - denotes the same formula as input). As illustrated, the abstraction transition function
abs eliminates unimportant cutpoints (during analysis) to ensure termination. Its type is defined as
follows:

abs : SH → SH Abstraction

which indicates that it takes in a conjunctive abstract state σ and abstracts it as another conjunctive
state σ ′ . Below are its rules.

abs(σ ∧ x0 = e) =df σ [e/x0] (Subst1)

abs(σ ∧ e = x0) =df σ [e/x0] (Subst2)

x0 /∈ Reach(σ)

abs(x0::c〈v∗〉 ∗ σ) =df σ ∗ true (Unreach)

isdatat(c1) c2〈u∗
2〉 ≡ Φ

p::c1〈v∗
1〉 ∗ σ1 � p::c2〈v∗

2〉 ∗ σ2 Reach(p::c2〈v∗
2〉 ∗ σ2) ∩ {v∗

1} = ∅
abs(p::c1〈v∗

1〉 ∗ σ1) =df p::c2〈v∗
2〉 ∗ σ2

(Abs)

The first two rules Sub1 and Sub2 eliminate logical variables (x0) by replacing them with their equiv-
alent expressions (e). The third rule Unreach is used to eliminate any garbage (heap part led by a

For Research Only

396 S. Qin et al. / Journal of Symbolic Computation 50 (2013) 386–408

logical variable x0 unreachable from the other part of the heap) that may exist in the heap. As x0
is already unreachable from, and not used by, the program variables, it is safe to treat it as garbage
true, for example the x0 in x::node〈_ ,null〉 ∗ x0::node〈_ ,null〉 where only x is a program
variable.

The last rule Abs plays the most significant role which intends to eliminate shape formulae led by
logical variables (all variables in v∗

1). It tries to fold data nodes up into a shape predicate. It confirms
that c1 is a data node definition and c2 is a predicate. The predicate c2 is selected from the user-
defined predicates environments and it is the target shape to be abstracted against with. The rule
ensures that the latter is a sound abstraction of the former by entailment proof, and the pointer
logical parameters of c1 are not reachable from other part of the heap (so that the abstraction does
not lose necessary information). For instance, given the user-defined predicate for singly linked list
root::ll〈n〉, the following abstraction step can take place:

abs
(
x::node〈_ ,z0〉 ∗ z0::node〈_ ,null〉) = x::ll〈n〉 ∧ n= 2

where x is program variable and z0 is logical variable. The function Reach is defined as follows:

Reach(σ) =df

⋃
v∈fv(σ)

ReachVar(κ ∧ π, v) where σ ::= ∃u∗ · κ ∧ π

returning all pointer variables which are reachable from free variables in the abstract state σ . The
function ReachVar(κ ∧ π, v) returns the minimal set of pointer variables satisfying the relationship
below:

{v} ∪ {
z2

∣∣ ∃z1,π1 · z1 ∈ ReachVar(κ ∧ π, v) ∧ π = (z1 = z2 ∧ π1) ∧ isptr(z2)
}

∪ {
z2

∣∣ ∃z1, κ1 · z1 ∈ ReachVar(κ ∧ π, v) ∧ κ = (
z1::c〈. . , z2, . . 〉 ∗ κ1

) ∧ isptr(z2)
}

⊆ ReachVar(κ ∧ π, v)

namely, it is composed of aliases of v and pointer variables reachable from v . The predicate
isptr(x) checks if x is a pointer variable. For example, ReachVar(x::node〈_ ,z0〉∗y::node〈_ ,z0〉∗
z0::node〈_ ,p0〉, {x}) = {x,z0,p0}. Note that the numerical logic parameters can be abstracted since
the numerical relations are kept in pure formulae, so we do not lose numerical information here.

We apply the above abstraction rules (following the given order) onto an abstract state exhaus-
tively until it stabilises. Such convergence is confirmed because the abstract shape domain is finite
due to the bounded numbers of variables and predicates, as discussed later.

Finally the lifting function is overloaded for abs to lift both its domain and range to disjunctive
abstract states PSH:

abs†
∨

σi =df

∨
abs(σi)

which allows it to be used in the analysis.

Join operator. The operator join is applied over two conjunctive abstract states, trying to find a com-
mon shape as a sound abstraction for both:

join(σ1,σ2) =df

let σ ′
1,σ

′
2 = rename(σ1,σ2) in

match σ ′
1, σ ′

2 with
(∃x∗

1 · κ1 ∧ π1
)
,
(∃x∗

2 · κ2 ∧ π2
)

in

if κ1 � κ2 ∗ true then ∃x∗
1, x∗

2 · κ2 ∧ (
joinπ (π1,π2)

)
else if κ2 � κ1 ∗ true then ∃x∗

1, x∗
2 · κ1 ∧ (

joinπ (π1,π2)
)

else σ1 ∨ σ2

For Research Only

S. Qin et al. / Journal of Symbolic Computation 50 (2013) 386–408 397

where the rename function prevents naming clashes among logical variables of σ1 and σ2, by assign-
ing fresh names to logical variables with the same name in the two states. For example given a name
clash on x0 , it may change states ∃x0 · x0 = 0 and ∃x0 · x0 = 1 to ∃x0 · x0 = 0 and ∃x1 · x1 = 1
instead. After this procedure it judges whether σ2 is an abstraction of σ1, or the other way round. If
either case holds, it regards the shape from the weaker state (which is more general/abstract) as the
shape of the joined state, and performs joining for numerical formulae with joinπ (π1,π2), the convex
hull operator over numerical domain (Popeea and Chin, 2006). Otherwise it keeps a disjunction of
the two states (as it would be unsound to join their shapes together in this case). We can lift this
operator for abstract state � as follows:

join†(�1,�2) =df match �1,�2 with
(∨

i

σ 1
i

)
,

(∨
j

σ 2
j

)
in

∨
i, j

join
(
σ 1

i ,σ 2
j

)

which essentially joins all pairs of disjunctions from the two abstract states, and makes a disjunction
of them.

Widening operator. The finiteness of the shape domain is confirmed by the abstraction function. To
ensure the termination of the whole analysis, we still need to guarantee the convergence over the
numerical domain. This task is accomplished by the widening operator.

The widening operator widen(σ1, σ2) is defined as

widen(σ1,σ2) =df

let σ ′
1,σ

′
2 = rename(σ1,σ2) in

match σ ′
1, σ ′

2 with
(∃x∗

1 · κ1 ∧ π1
)
,
(∃x∗

2 · κ2 ∧ π2
)

in

if κ1 � κ2 ∗ true then ∃x∗
1, x∗

2 · κ2 ∧ (
widenπ (π1,π2)

)
else σ1 ∨ σ2

where the rename function has the same effect as above. Generally this operator is analogous to
the join operator; the only difference is that we expect (the shape part of) the second operand σ2
to be weaker than (that of) the first σ1, so that the widening reflects the trend of such weakening
from σ1 to σ2. In this case it applies the widening operation widenπ (π1,π2) over the numerical
domain (Popeea and Chin, 2006).

Based on the widening over conjunctive abstract states, we lift the operator over (disjunctive)
abstract states:

widen†(�1,�2) =df match �1,�2 with
(∨

i

σ 1
i

)
,

(∨
j

σ 2
j

)
in

∨
i, j

widen
(
σ 1

i ,σ 2
j

)

which is similar to its counterpart of the join operator.
The above three operations (abstraction, join and widening) provide termination guarantee while

preserving soundness, as the following example demonstrates.

Example 4.1 (Abstraction, join and widening). Assume we have two abstract states,

�0 = x::node〈_ ,x0〉 ∗ x0::node〈_ ,null〉 and

�1 = x::node〈_ ,x0〉 ∗ x0::node〈_ ,x1〉 ∗ x1::node〈_ ,null〉
We would like to discover a sound approximation for both states. Firstly we perform abstractions on
both to obtain two abstract states, say, �′

0 = x::ll〈n0〉 ∧ n0 = 2 and �′
1 = x::ll〈n0〉 ∧ n0 = 3. Then

these two are joined together according to shape similarity to be �′′
1 = x::ll〈n0〉∧ (n0 = 2∨n0 = 3),

which transfers disjunction to the numerical domain. Finally the joined state is widened based on the
first state �′

0 , yielding a state x::ll〈n0〉 ∧ n0 � 2. It is a sound abstraction of both �0 and �1 , and
finishes the analysis with one more iteration.

For Research Only

398 S. Qin et al. / Journal of Symbolic Computation 50 (2013) 386–408

4.3. Soundness and termination

4.3.1. Soundness
The soundness of our analysis relies on the underlying operational semantics of our programming

language, which is a small-step semantics consisting of transitions of the form:

〈s,h, e〉 ↪→ 〈s1,h1, e1〉
where s(s1) and h(h1) denote respectively the stacks and the heaps and where e(e1) denotes the
program codes (an empty program code is denoted by -). The transitive closure of the above transition
relation is denoted as ↪→∗ . The full details of the operational semantics are given in Appendix A.
Soundness of analysis is important as it allows us to directly use the loop invariant inferred without
the need for another confirmation by either a user or a verifier.

We define the soundness of our analysis as follows:

Definition 4.1 (Soundness). Let � denote the loop invariant synthesised by our analysis for a while
loop while b {e}. The analysis is sound if for all s, h, such that s,h |
 � and 〈s,h, e〉 ↪→∗ 〈s′,h′, -〉
(for some s′ , h′), we have s′,h′ |
 �.

The crux to prove the soundness of our analysis is to ensure that soundness is preserved during
each step of our analysis. That is, the abstract semantics, the abstraction of shapes, the join operation
and the widening operation used in our analysis are all sound. From Lemma 4.2 on we will see that
all these can be reduced to the soundness of entailment proof provided by Sleek, which is already
proven:

Lemma 4.1 (Soundness of entailment proof). For �1 and �2 , if �1 � �2 holds, then for all s,h |
 �1 , we have
s,h |
 �2 .

Proof. The soundness of the entailment proof is proven by Chin et al. (2012). �
Lemma 4.2 (Soundness of abstract semantics). If [e]T � = �1 , then for all s, h, if s,h |
 � and 〈s,h, e〉 ↪→
〈s1,h1, e1〉, then there always exists �0 such that

s1,h1 |
 �0 and [e1]T �0 = �1

Proof. The proof is done by structural induction over program constructors and is left in Ap-
pendix A. �
Lemma 4.3 (Soundness of abs). If abs(σ) = σ ′ , then σ � σ ′ .

Proof. The soundness proof of the first two substitution rules is trivial. For the Unreach rule, we can
easily prove that x0::c〈v∗〉 ∗ σ � true ∗ σ , where σ is the frame part of the entailment check. By the
frame rule of separation logic, we only need to show that x0::c〈v∗〉 � true, which obviously is true.
The result of rule Abs is obtained via a folding operation in Sleek against a user-defined predicate, so
the soundness of this rule is guaranteed by that of the entailment proof in Sleek. �
Lemma 4.4 (Soundness of join). If join(σ1, σ2) = σ j , then we have σ1 � σ j and σ2 � σ j .

Proof. Let σ1 be (∃x∗
1 · κ1 ∧ π1), and σ2 be (∃x∗

2 · κ2 ∧ π2). By the definition of the join operator, we
have three cases:

• If κ1 � κ2 ∗ true, we have σ j = ∃x∗
1, x∗

2 · κ2 ∧ joinπ (π1,π2). Then we need to show that ∃x∗
1 · κ1 ∧

π1 � ∃x∗
1, x∗

2 · κ2 ∧ joinπ (π1,π2) and ∃x∗
2 · κ2 ∧ π2 � ∃x∗

1, x∗
2 · κ2 ∧ joinπ (π1,π2), which are true

because κ1 � κ2 ∗true by condition, κ2 � κ2 by separation logic, and π1 � joinπ (π1,π2) and π2 �

For Research Only

S. Qin et al. / Journal of Symbolic Computation 50 (2013) 386–408 399

joinπ (π1,π2) by the soundness of the convex hull operator over the numerical domains (Popeea
and Chin, 2006).

• If κ2 � κ1 ∗ true, the soundness proof is similar to the first case.
• Otherwise, we have σ j = σ1 ∨ σ2. The soundness proof of this case is trivial. �

Lemma 4.5 (Soundness of widen). If widen(σ1, σ2) = σw , then we have σ1 � σw and σ2 � σw .

Proof. The proof of soundness of widen is similar to the soundness proof of join. �
Based on the results above, we have

Theorem 4.1 (Soundness). Our analysis is sound with respect to the underlying operational semantics.

4.3.2. Termination
Next we show the termination of our analysis algorithm, which is based on two observations:

the finiteness over the shape domain and the termination over the numerical domain guaranteed
by our widening operator. The first can be proven by claiming the finiteness of the number of all
possible abstract states only with the shape information: recalling our analysis algorithm where we
set an upper bound n for shared cutpoints (logical variables) that we keep track of, we know that the
number of program variables and logical variables preserved in our analysis are finite. Note that the
number of all shape predicates are also limited; therefore all the shape-only abstract states are finite.
The second is proven in the abstract interpretation frameworks for the numerical domains (Popeea
and Chin, 2006). These two facts guarantee the convergence of our analysis. Such a termination proof
can help assure us that our analysis never goes into an infinite loop, regardless of which loop it is
made to analyse.

Lemma 4.6 (Finiteness of the abstract shape domain). With a finite number of program variables, logical
variables, data node types and shape predicates, the abstract shape domain is finite.

Proof. Let the number of program variables, logical variables, data node types and shape predicates
be m, n, l1 and l2, respectively, and the maximal number of fields of data nodes or arguments of the
predicates be k, where m,n, l1, l2,k ∈ N are finite numbers. Note that the root parameter of a data
structure is also counted in k. For example, the number of arguments of predicate ll is 3. Based on
the fact that the number of variables is (m + n), and k is the number of holes for variables in one
single predicate, we have the possible number of atomic formulae of this predicate as (m + n)k . The
number of shape structure is (l1 + l2), then the upper bound of the number of all possible different
atomic shape formulae is (l1 + l2) × (m + n)k + 1, where 1 is for when the shape formula is true. So
there are at most 2(l1+l2)×(m+n)k+1 shape formulae in this shape domain. Since m, n, l1, l2 and k are
finite natural numbers, the shape domain is finite. �
Definition 4.2. A (conjunctive) state σ is reducible if and only if abs(σ) � σ . If abs(σ) � σ , then σ is
irreducible, in which case we also say σ is stabilised.

Lemma 4.7 (Termination of abs). For all state σ , the application of the four abstraction operations over σ
exhaustively (following the given order) will terminate in finite steps within a finite shape domain.

Proof. Let us apply abs over σ0 exhaustively to obtain a sequence σ1, σ2, . . . , σn , where n ∈N. By the
soundness of abs, we have σ0 � σ1 � σ2 � · · · � σn , i.e. σ0 � σ1 � σ2 � · · · � σn . Since the shape parts
of σ0,...,n are in a finite shape domain, and the four abstraction rules do not alter the numerical parts
of these states, there must exist a σi,0�i�n which is irreducible/stabilised, i.e., σk = σi for all k � i. �
Lemma 4.8 (Termination of widening). Within a finite shape domain, given a sequence σ ′

n (n ∈ N), the se-
quence σn generated by σ0 = σ ′

0 and σn+1 = widen(σn, σ ′
n+1) is ultimately stationary, i.e. ∃i · ∀k � i ·σk = σi .

For Research Only

400 S. Qin et al. / Journal of Symbolic Computation 50 (2013) 386–408

1 node merge(node left, node right)
2 requires left::sll〈n1,s1,l1〉

∗ right::sll〈n2,s2,l2〉
3 ensures res::sll〈n3,s3,l3〉 ∧ n3 = n1 + n2

∧ s3 = min(s1,s2) ∧ l3 = max(l1,l2);
4 {
5 node r = null;
6 while (left != null && right != null){
7 if (left.val <= right.val) {
8 node tmp = left;
9 left = left.next;

10 tmp.next = null;
11 r = append(r,tmp);
12 }
13 else {

14 node tmp = right;
15 right = right.next;
16 tmp.next = null;
17 r = append(r,tmp);
18 }
19 }
20 if (left == null) {
21 r = append(r, right);
22 }
23 else {
24 r = append(r, left);
25 }
26 return r;
27 }

Fig. 6. Merge two sorted linked list.

Proof. The proof follows the idea of the widening termination proof in cofibered domains (Venet,
1996). Similar to the proof of termination of abs, the shape part of σn will be stationary since the
shape domain is finite. The termination of numerical part can be guaranteed by numerical join and
widening (Popeea and Chin, 2006). Combining them together, σn will be stationary. �

Based on the above results, we conclude the termination result about our analysis algorithm as
follows.

Theorem 4.2 (Termination). The iteration of our fixpoint computation will terminate in finite steps, given a
finite number of method specifications, program variables and user-defined predicates, and given an upper
bound on the number of logical variables to keep during the analysis.

5. Experiments and evaluation

We have built a prototype system using Objective Caml. In our experiments, we use Sleek (Nguyen
et al., 2007) as the solver for entailment proofs, and Omega constraint solver (Pugh, 1991) and Fixcalc
solver (Popeea and Chin, 2006) for join and widening operations in the numerical domain. Our test
platform was an Intel Core 2 CPU 2.66GHz system with 8Gb RAM.

Example 5.1 (Merge). Fig. 6 shows a procedure merge which merges two sorted lists referred to by
left and right into one sorted list, and returns the merged list as result. The pre-condition of the
while loop within the merge procedure (starting at line 6) is calculated as

left::sll〈n1,s1,l1〉 ∗ right::sll〈n2,s2,l2〉 ∧ r= null

The function append concatenates two sorted lists, which requires that the maximal value stored
in the first input list is smaller than or equal to the minimal value of the second input list, and ensures
that it returns a concatenated sorted list (referred to by res). The following is the specification of
append:

node append(node x, node y)

requires x::sll〈n1,s1,l1〉 ∗ y::sll〈n2,s2,l2〉 ∧ l1 � s2

ensures res::sll〈n1 + n2,s1,l2〉
By applying our analysis algorithm to the while loop in the program, we obtain the following loop
invariant, which contains seven different disjunctive branches, with each branch describing a different
situation:

For Research Only

S. Qin et al. / Journal of Symbolic Computation 50 (2013) 386–408 401

left::sll〈n1,s1,l1〉 ∗ right::sll〈n2,s2,l2〉 ∧ r= null (7)

∨ r::node〈s1,null〉 ∗ right::sll〈n2,s2,l2〉 ∧ left= null

∧ s1 = l1 ∧ s1 < s2 (8)

∨ r::node〈s2,null〉 ∗ left::sll〈n1,s1,l1〉 ∧ right= null

∧ s2 = l2 ∧ s2 � s1 (9)

∨ r::node〈s3,null〉 ∗ left::sll〈
n′
1,s

′
1,l1

〉 ∗ right::sll〈
n′
2,s

′
2,l2

〉
∧ (

s3 = s1 ∧ s1 < s2 ∧ n1 = n′
1 + 1∧ n′

2 = n2 ∧ s1 � s′
1 ∧ s′

2 = s2

∨ s3 = s2 ∧ s2 � s1 ∧ n2 = n′
2 + 1∧ n′

1 = n1 ∧ s2 � s′
2 ∧ s′

1 = s1
)

(10)

∨ r::sll〈n3,s3,l3〉 ∗ right::sll〈
n′
2,s

′
2,l2

〉 ∧ left= null∧ n3 = n1 + n2 − n′
2

∧ s3 = min(s1,s2) ∧ l3 = l1 ∧ l1 < s′
2 (11)

∨ r::sll〈n3,s3,l3〉 ∗ left::sll〈
n′
1,s

′
1,l1

〉 ∧ right= null∧ n3 = n2 + n1 − n′
1

∧ s3 = min(s1,s2) ∧ l3 = l2 ∧ l2 � s′
1 (12)

∨ r::sll〈n3,s3,l3〉 ∗ left::sll〈
n′
1,s

′
1,l1

〉 ∗ right::sll〈
n′
2,s

′
2,l2

〉
∧ n3 = n1 − n′

1 + n2 − n′
2 ∧ s3 = min(s1,s2) ∧ l3 � min

(
s′
1,s

′
2

)
(13)

The branch (7) represents the state before any iteration. The branches (8), (9), and (10) denote
three special scenarios after one iteration. The branch (8) (resp. (9)) denotes the case where initially
the left (resp. right) list contains only one node which holds a value no bigger than any value
stored in the right (resp. left) list, and after one iteration, r refers to the sole node in the initial
left (resp. right) list and the left (resp. right) pointer becomes null. The branch (10) denotes
the scenario where after one iteration neither the left list nor the right list is empty but r still
refers to the node with the smallest value. The branches (11), (12) and (13) denote possible states
reached after some (one or more) iterations. The branch (11) (resp. (12)) denotes the state reached
after some iterations where the left (resp. right) pointer has traversed to the end of the list. The
branch (13) denotes the case where neither the left pointer nor the right pointer has reached the
end of their list after some iterations. In all these three branches, r refers to the merged list obtained
so far. The shape of each branch is demonstrated in Fig. 7.

Note that branches (8), (9) and (10) are, respectively, special cases of branches (11), (12) and (13)
(logically, the former formulae entail the latter ones, respectively). So we can simplify the loop invari-
ant as

r::sll〈n3,s3,l3〉 ∗ right::sll〈
n′
2,s

′
2,l2

〉 ∧ left= null∧ n3 = n1 + n2 − n′
2

∧ s3 = min(s1,s2) ∧ l3 = l1 ∧ l1 < s′
2

∨ r::sll〈n3,s3,l3〉 ∗ left::sll〈
n′
1,s

′
1,l1

〉 ∧ right= null∧ n3 = n2 + n1 − n′
1

∧ s3 = min(s1,s2) ∧ l3 = l2 ∧ l2 � s′
1

∨ r::sll〈n3,s3,l3〉 ∗ left::sll〈
n′
1,s

′
1,l1

〉 ∗ right::sll〈
n′
2,s

′
2,l2

〉
∧ n3 = n1 − n′

1 + n2 − n′
2 ∧ s3 = min(s1,s2) ∧ l3 � min

(
s′
1,s

′
2

)
An immediate benefit to simplify the generated loop invariant is to reduce the number of disjunctions.
Therefore, it can lead to the increase of the scalability of our inference system. It also simplifies the
verification process which makes use of the loop invariant. Note that the soundness of our analysis
ensures that we do not need to re-verify the while loop with the inferred invariant; instead, we can
directly move on to verify the code fragment after the while loop, starting with the inferred loop
invariant conjoined with the negation of the loop test (a sound postcondition for the while loop).

For Research Only

402 S. Qin et al. / Journal of Symbolic Computation 50 (2013) 386–408

Fig. 7. Shape of each branch of the generated loop invariant in the merge example.

Table 1 depicts some of the programs we have conducted experiments with, including list process-
ing programs, sorting algorithms, tree processing programs, and loops code from FreeRTOS (2012).
Total LOC is the total number of lines of the code. The first column denotes the names of the pro-
grams. The second column states the programs’ functionalities. The last column exhibits the time in
second taken by our analysis. As can be seen from their functions, these programs involve recursive
data structures such as (sorted) linked lists and binary (search) trees, and employ loops to manipu-
late these data structures (and some of them even have nested loops). Our target is to verify these
programs without the need of user annotations for loops that occurred in them. Our analysis is em-
ployed to automatically infer loop invariants for those while loops. Our experiments confirm that
Hip/Sleek can verify all these programs successfully when supplied with loop invariants discovered
by our analysis. According to our experience, these experiments just require the bound of shared cut-
points be a reasonably small number, say no more than twice of the number of program variables.
Note that, it takes longer to analyse the procedures that have nested loops, such as select_sort,
list2tree, and so on, because we need to analyse the inner loop multiple times. We translated the
source code of the FreeRTOS kernel to our language, and successfully inferred the loop invariants of
the loops which do not involve pointer arithmetic in list.c and task.c. We employ double linked sorted
list predicate for the verification of FreeRTOS.

We have two main observations from our experimental results. The first is that we can handle
many different kinds of data structures with rich program properties they exhibit. To analyse these
loops, we need to deal with both single linked and double linked list predicates to capture the list
data structure, as well as their sorted version for the sorting algorithms. We can also handle tree-
like predicates such as binary trees and binary search trees. Meanwhile these predicates also capture
various numerical information such as the length of the list and size/height of the tree, and the
minimum/maximum value of a sorted list/binary search tree. With these predicates, our analysis is
capable of capturing sophisticated numerical invariants, which are simply captured as constraints over
the parameters of predicates involved.

Beyond the number of predicates and properties we can process, another observation on our anal-
ysis is that we can process them rather precisely. For example, the list creation program creates a list

For Research Only

S. Qin et al. / Journal of Symbolic Computation 50 (2013) 386–408 403

Table 1
Selected Experimental Results.

Program Function Time

List processing programs (Total LOC: 232)

create Creates a list with given length parameter 0.452
delete Disposes a list 0.720
traverse Traverses a list 0.636
length Counts the length of a list 0.772
append Appends two sorted lists 0.312
take Takes the first n elements of a list, or itself 0.852
drop Returns suffix of a list after the first n elements, or empty 0.844
reverse Reverse the elements of the list, in place 1.032
filter Drops the elements bigger than k of a list 1.182
lookup Returns the first node whose values equals to k, or null 0.876
drop_even Drops all the elements whose indexes are even 1.332

Sorting list processing programs (Total LOC: 178)

ins_sort(inner) Inner loop of Fig. 1 0.824
ins_sort(outer) Outer loop of Fig. 1 4.372
partition Auxiliary operation used by quick-sort 1.497
merge Merges two sorted lists to be one sorted list 1.972
split Divides a list into two sublists with length difference of at most one 0.354
select Selects the smallest node of a list 0.692
select_sort Outer loop of selection sort 4.892

Tree processing programs (Total LOC: 87)

tree_search Finds a node in a binary search tree 1.294
tree_insert Inserts a node into a binary search tree 1.364
list2tree Inserts nodes of a list into a binary search tree 5.176

FreeRTOS (Total LOC: 331)

list.c One loop in FreeRTOS list.c with heap manipulation 4.124
task.c Six loops in FreeRTOS task.c with heap manipulation 32.18

with the same length as a user input; the list traverse program does not change list’s length; all ele-
ments of the return list of the filter program are smaller than or equal to the input value k; and the
length of the return list of the drop_even program is between half and half+ 1 of the length of
the original list.

Moreover, critical information may be required from some loops for their enclosing procedures
to function correctly. For example, the quick-sort algorithm partitions a list into three parts, where
two are lists and the third just one node, whose value is exactly in the middle of that of the two
other lists (partition in the table). We use a list bound predicate to indicate that fact which is
successfully inferred by our analysis. We can also infer that the first loop of a mergesort (split in
the table) can divide the list into two where their length difference is at most one; such information
might be unimportant for the algorithm’s functional correctness but can be essential for its perfor-
mance. For tree_insert, we have the result that the tree’s height is increased at most one, and
the minimum/maximum value of the new binary search tree will be exactly the inserted value, if
that value is outside the value bounds of the original tree. For code in FreeRTOS, the invariants we
inferred maintain the sortedness property for the double linked list used for tasks. The invariants we
discovered are sufficiently precise to prove the functional correctness of their corresponding programs
with the given predicates.

6. Related work and conclusion

Related work. For heap-manipulating programs with any form of recursion (be it loop or recursive
method call), dramatic advances have been made in synthesising their invariants/specifications. The
local shape analysis (Distefano et al., 2006) infers loop invariants for list processing programs, fol-
lowed by the SpaceInvader tool to infer full method specifications over the separation domain, so as

For Research Only

404 S. Qin et al. / Journal of Symbolic Computation 50 (2013) 386–408

to verify pointer safety for larger industrial codes (Calcagno et al., 2009; Yang et al., 2008). The SLAyer
tool (Gotsman et al., 2006) implements an inter-procedural analysis for programs with shape infor-
mation. The Hob system (Lam, 2007) employs a set-based specification technique to describe heap
objects and to reason about the programs, where a similar loop invariant inference algorithm is pro-
posed. In their fixed-point iteration algorithm, the join operator is designed to find common conjuncts
of pre- and post-states, and there is no need for a widening operator since it is designed for a simple
heap abstract domain. Their analysis allows certain conjuncts to be dropped from the post-state to
avoid too many iterations and to enforce termination. Our analysis is designed for a more complex
abstract domain leveraging both shape and numerical information. It requires a widening operator to
ensure convergence, and it avoids direct pruning on post-states in order to make inferred loop invari-
ants as precise as possible. To deal with also size information (such as number of nodes in lists/trees),
THOR (Magill et al., 2008) derives a numerical program from the original heap-processing one in a
sound way, such that the size information can be obtained with a traditional loop invariant synthesis.
A similar approach (Gulwani et al., 2009) combines a set domain (for shape) with its cardinality do-
main (for corresponding numerical information) in a more general framework. Compared with these
works, our approach can handle data structures with stronger invariants such as sortedness and bi-
nary search property, which have not been addressed in the previous works.

One more work to be mentioned is the relational inductive shape analysis (Chang and Rival, 2008).
It employs inductive checkers to express both shape and numerical information. Our approach has two
advantages over theirs: firstly, we try to keep as many as possible shared cutpoints (logical variables)
during the analysis (within a preset bound), whereas they do not preserve such cutpoints (which is
witnessed by their joining rules over the shape domain). Therefore our analysis is essentially more
precise than theirs, e.g. in the second scenario of (6) described in Section 4.2. Meanwhile, our ap-
proach can deal with data structures with loops in them (say cyclic linked lists), whereas they do not
have a mechanism to handle it. An example in point is the state x::ls〈m,y〉 ∗ y::ls〈y,n〉 ∧ n > 0
involving both a shared cutpoint y and a circled list y::ls〈y,n〉 ∧ n > 0, neither of which can be
handled by their work (while ours is capable of that). Another advantage of our approach over theirs
is that they only demonstrate how to analyse a program with one particular shape. For instance,
they analyse programs which manipulate binary search trees and red–black trees without chang-
ing the variety of shapes in the heap. Comparatively, we allow different predicates to appear in the
analysis of one program, like in our motivating example (thanks to our more flexible abstraction op-
eration).

There are also many other approaches that can synthesise shape-related program invariant, other
than those based on separation logic. The shape analysis framework TVLA (Sagiv et al., 2002) is based
on three-valued logic. It is capable of handling complicated data structures and properties, such as
sortedness. Guo et al. (2007) report a global shape analysis that discover inductive structural shape
invariants from the code. Kuncak et al. (2002) develop a role system to express and track referencing
relationships among objects, where an object’s role (type) depends on, and changes according to, the
mutation of its referencing. Hackett and Rugina (2005) can deal with AVL-trees but is customised to
handle only tree-like structures with height property. Compared with these works, separation logic
based approach benefits from the frame rule and hence supports local reasoning.

Classical abstract interpretation (Cousot and Cousot, 1977) and its applications such as automated
assertion discovery (Cousot and Cousot, 2002; Kovacs and Jebelean, 2005; Leino and Logozzo, 2005;
Furia and Meyer, 2010) mainly focus on finding numerical program properties. Compared with their
works, ours is also founded on the abstract interpretation framework but tries to discover loop invari-
ants with both separation and numerical information. Meanwhile, we can also utilise their techniques
of join and widening to reason about the numerical domain, as we did for the work Popeea and Chin
(2006).

Concluding remarks. We have reported an analysis which allows us to synthesise sound and useful
loop invariants over a combined separation and numerical domain. The key components of our anal-
ysis include novel operations for abstraction, join and widening in the combined domain. We have
built a prototype system and the initial experimental results are encouraging.

For Research Only

S. Qin et al. / Journal of Symbolic Computation 50 (2013) 386–408 405

s |
A γ1 ∧ γ2 iff s |
A γ1 and s |
A γ2

s |
A p1 �� p2 iff s(p1) �� s(p2), where �� ∈ {=, �=}
s |
A p �� null iff s(p) �� 0, where �� ∈ {=, �=}
s |
A true always
s |
A false never
s |
A v iff s(v) = true
s |
A b1 = b2 iff s(b1) = s(b2)

s |
A v1 = v2 iff s(v1) = s(v2)

s |
A v1 � v2 iff s(v1) � s(v2)

s |
A φ1 ∧ φ2 iff s |
A φ1 and s |
A φ2

s |
A φ1 ∨ φ2 iff s |
A φ1 or s |
A φ2

s |
A ¬φ iff s |
A φ does not hold
s |
A ∃v · φ iff s |
A [k/v]φ for some k
s |
A ∀v · φ iff s |
A [k/v]φ for all k

Fig. 8. The semantic model for numerical constraints.

Acknowledgements

This work was supported in part by EPSRC Projects EP/G042322 and MOE Project 2009-T2-1-063.
We thank Florin Craciun for his invaluable comments on an earlier version of this paper and Steve
Dunne for his help in proof reading.

Appendix A

A.1. Semantic for pure formulae

The semantic model for pure (numerical) formulae s |
A π is given in Fig. 8.

A.2. Operational semantics

This section defines the operational semantics of our programming language. It is a small-step se-
mantics which are essentially transitions between machine configurations. Each machine configuration
is a triple consisting of:

• Heap h. As mentioned earlier we model heaps as finite partial maps from locations to object
values. Object values are expected to conform to their defined class types.

• Stack s. Stacks are modelled as finite maps from variables to values. Note that a stack s is viewed
as a “stackable” mapping, where a variable v may occur several times, and s(v) always refers to
the value of the variable v that was popped in most recently. A more formal definition for stacks
would make different occurrences of the same variable with different “frame” numbers. We omit
the details here.

• Current program code e. Program execution terminates when e is -, a value of type void.

Each reduction step can then be formalised as a small-step transition of the form:

〈s,h, e〉 ↪→ 〈s1,h1, e1〉
The full set of transitions is given in Fig. 9. We explain some of the notations used in them. The op-
eration [v 	→ ν] + s “pushes” the variable v to s with the value ν , and ([v 	→ ν] + s)(v) = ν . The
operation s − v∗ “pops out” variables v∗ from the stack s. s[v 	→ k] is a mapping which keeps
all the mappings in s except that of v (which is now specified to be mapped to k). We also
abuse this notation for a class type identifier c to denote a region of heap (mappings) in the form
c[f1 	→ s(v1), . . . , fn 	→ s(vn)], which is essentially a heap location where fields f i are further mapped
to values s(vi), i = 1, . . . ,n. ⊥ represents an arbitrary value. We also introduce an intermediate con-
struct as results returned by expressions/method calls ret(v∗, e), where v∗ will be dropped from s

For Research Only

406 S. Qin et al. / Journal of Symbolic Computation 50 (2013) 386–408

OS-VAR 〈s,h, v〉 ↪→ 〈s,h, s(v)〉
OS-CONST 〈s,h,k〉 ↪→ 〈s,h,k〉

OS-SEQ 〈s,h, -; e〉 ↪→ 〈s,h, e〉
OS-ASSIGN-1 〈s,h, v := k〉 ↪→ 〈s[v 	→ k],h, -〉

OS-FIELD-READ 〈s,h, v. f 〉 ↪→ 〈s,h,h(s(v))(f)〉
OS-LOCAL 〈s,h, {t v; e}〉 ↪→ 〈[v 	→ ⊥] + s,h,ret(v, e)〉
OS-RET-1 〈s,h,ret(v∗,k)〉 ↪→ 〈s − {v∗},h,k〉
OS-PROG

〈s,h, e1〉 ↪→ 〈s1,h1, e3〉
〈s,h, e1; e2〉 ↪→ 〈s1,h1, e3; e2〉

OS-ASSIGN-2
〈s,h, e〉 ↪→ 〈s1,h1, e1〉

〈s,h, v := e〉 ↪→ 〈s1,h1, v = e1〉
OS-RET-2

〈s,h, e〉 ↪→ 〈s1,h1, e1〉
〈s,h,ret(v∗, e)〉 ↪→ 〈s1,h1,ret(v∗, e1)〉

OS-FIELD-WRITE
r = h(s(v1))[f 	→ s(v2)] h1 = h[s(v1) 	→ r]

〈s,h, v1. f := v2〉 ↪→ 〈(s,h1)〉
OS-IF-1

s(v) = true

〈s,h,if v then e1 else e2〉 ↪→ 〈s,h, e1〉
OS-IF-2

s(v) = false

〈s,h,if v then e1 else e2〉 ↪→ 〈s,h, e2〉

OS-NEW

data c {t1 f1, . . , tn fn}
ι /∈ dom(h) r = c[f1 	→ s(v1), . . , fn 	→ s(vn)]

〈s,h,new c(v∗)〉 ↪→ 〈s,h[ι 	→ r], ι〉
OS-WHILE-1

s(b) = true

〈s,h,while (b) {e}〉 ↪→ 〈s,h, e; while (b) {e}〉
OS-WHILE-2

s(b) = false

〈s,h,while (b) {e}〉 ↪→ 〈s,h, -〉

OS-CALL

s1 = s[wi 	→ s(vi)]n
i=1

t0 mn((ti wi)
n
i=1){e}

〈s,h,mn(v∗)〉 ↪→ 〈s1,h,ret({wi}n
i=1, e)〉

Fig. 9. Operational semantics.

after the evaluation/invocation of e, to simulate the behaviour of stack. Whenever such a result is
yielded, we assume it is stored in a special logical variable res, although res is never explicitly put
in the stack s.

A.3. Proof of soundness of abstract semantics

In this section we prove the following lemma to complete the soundness proof for our analysis:

Lemma 4.2 (Soundness of abstract semantics). If [e]T � = �1 , then for all s, h, if s,h |
 � and 〈s,h, e〉 ↪→
〈s1,h1, e1〉, then there always exists �0 such that

s1,h1 |
 �0 and [e1]T �0 = �1

Proof. The proof is done by structural induction over program constructors:

• Case null | k | v | v. f . Straightforward.
• Case v := e. There are two cases according to the operational semantics:

– e is not a value. From operational semantics, there is e1 s.t. 〈s,h, e〉 ↪→ 〈s1,h1, e1〉, and
〈s,h, v = e〉 ↪→ 〈s1,h1, v = e1〉. From abstract semantics for assignment, if [e]T � = �2, and

For Research Only

S. Qin et al. / Journal of Symbolic Computation 50 (2013) 386–408 407

�1 = [v1/v, r1/res](�2) ∧ v = r1. By induction hypothesis, there exists �0, s1,h1 |
 �0 and
[e1]T �0 = �2. It concludes from the assignment rule that [v = e1]T �0 = �1.

– e is a value. Trivial.
• Case new c(v∗). From abstract semantics for new, we have [new c(v∗)]T � = �1, where

�1 = � ∗ res::c〈v ′
1, . . . , v ′

n〉. Let �0 = �1. From the operational semantics, we have 〈s,h,

new c(v∗)〉 ↪→ 〈s,h + [ι 	→ r], ι〉, where ι /∈ dom(h). From s,h |
 �, we have s,h + [ι 	→ r] |
 �0.
Moreover, [ι]T �0 = �1.

• Case v1. f := v2. Take �0 = �. It concludes immediately from the exec rule for field update and
the underlying operational semantics.

• Case free(x). Denote � as
∨

i(x::c〈y∗
i 〉 ∗ σi) and �0 as

∨
i σi , then from free’s operational

semantics we know that if s,h |
 � and 〈s,h,free(x)〉 ↪→ 〈s1,h1, -〉, then s1,h1 |
 �0 and
�0 = �1.

• Case e1; e2. We consider the case where e1 is not a value (otherwise it is straightforward). From
the operational semantics, we have 〈s,h, e1〉 ↪→ 〈s1,h1, e3〉. From the abstract semantics rule for
sequence, we have � {�}e1{�2}. By induction hypothesis, there exists �0 s.t. s1,h1 |
 �0, and
� {�0}e3{�2}. By the sequential rule we have [e3; e2]T �0 = �1.

• Case if v then e1 else e2. There are two possibilities in the operational semantics:
– s(v) = true. We have 〈s,h,if v then e1 else e2〉 ↪→ 〈s,h, e1〉. Let �0 = (� ∧ v). It is obvi-

ous that s,h |
 �0. From the if-conditional rule of abstract semantics, we have

[e1]T �0 = �2

[e2]T � ∧ ¬v ′ = �3

And we also have (due to sound weakening of postcondition)

[e1]T �0 = �2 ∨ �3

That is, [e1]T �0 = �1.
– s(v) = false. Analogous.

• Case mn(v1...n). For the method invocation rule, we know � � ρΦ i
pr ∗ �i , for i = 1, . . . , p. Take

�0 = ∨p
i=1 ρΦ i

pr ∗ �i . From the operational semantics and the above heap entailment, we have

s1,h1 |
 �0. Then the method invocation rule implies ∀i ∈ 1 . . . p · [e1]T ρΦ i
pr ∗ �i = �i ∗ Φ i

po .
Therefore we have [e1]T �0 = �1 which concludes. �

References

Berdine, J., Calcagno, C., O’Hearn, P., 2005. Smallfoot: Modular automatic assertion checking with separation logic. In: Inter-
national Symposium on Formal Methods for Components and Objects. In: Lecture Notes in Computer Science, vol. 4111.
Springer.

Berdine, J., Cook, B., Distefano, D., O’Hearn, P., 2006. Automatic termination proofs for programs with shape-shifting heaps. In:
Computer Aided Verification. Springer, pp. 386–400.

Calcagno, C., Distefano, D., O’Hearn, P., Yang, H., 2009. Compositional shape analysis by means of bi-abduction. In: Proceedings
of the ACM Symposium on Principles of Programming Languages (POPL). ACM Press, Savannah, GA, USA.

Chang, B.E., Rival, X., 2008. Relational inductive shape analysis. In: Proceedings of the ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages.

Chin, W., David, C., Nguyen, H., Qin, S., 2007. Automated verification of shape, size and bag properties. In: Proc. 12th IEEE
International Conference on Engineering Complex Computer Systems, pp. 307–320. http://dx.doi.org/10.1109/ICECCS.2007.17.

Chin, W., David, C., Nguyen, H., Qin, S., 2008. Enhancing modular OO verification with separation logic. In: Proceedings of the
35th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL ’08. ACM, New York, NY,
USA, pp. 87–99. http://doi.acm.org/10.1145/1328438.1328452.

Chin, W., David, C., Nguyen, H., Qin, S., 2012. Automated verification of shape, size and bag properties via user-defined predicates
in separation logic. Science of Computer Programming 77 (9), 1006–1036. http://dx.doi.org/10.1016/j.scico.2010.07.004.

Cousot, P., Cousot, R., 1977. Abstract interpretation: a unified lattice model for static analysis of programs by construction or
approximation of fixpoints. In: Conference Record of the Fourth Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages. ACM Press, New York, NY, Los Angeles, CA, pp. 238–252.

Cousot, P., Cousot, R., 2002. On abstraction in software verification. In: Proceedings of the 14th International Conference on
Computer Aided Verification. Springer-Verlag, London, UK, pp. 37–56. http://portal.acm.org/citation.cfm?id=647771.734276.

Distefano, D., O’Hearn, P., Yang, H., 2006. A local shape analysis based on separation logic. In: Tools and Algorithms for the
Construction and Analysis of Systems. In: Lecture Notes in Computer Science, vol. 3920. Springer.

For Research Only

http://dx.doi.org/10.1109/ICECCS.2007.17
http://dx.doi.org/10.1145/1328438.1328452
http://dx.doi.org/10.1016/j.scico.2010.07.004
http://portal.acm.org/citation.cfm?id=647771.734276

408 S. Qin et al. / Journal of Symbolic Computation 50 (2013) 386–408

The FreeRTOS™ project website, http://www.freertos.org, last visited: September 2012.
Furia, C.A., Meyer, B., 2010. Inferring loop invariants using postconditions. In: Fields of Logic and Computation. Springer-Verlag,

Berlin, Heidelberg, pp. 277–300. http://portal.acm.org/citation.cfm?id=1983702.1983719.
Gotsman, A., Berdine, J., Cook, B., 2006. Interprocedural shape analysis with separated heap abstractions. In: Static Analysis

Symposium 2006 (SAS’06).
Gulwani, S., Lev-Ami, T., Sagiv, M., 2009. A combination framework for tracking partition sizes. In: Proceedings of the 36th

Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL ’09. ACM, New York, NY, USA,
pp. 239–251. http://doi.acm.org/10.1145/1480881.1480912.

Guo, B., Vachharajani, N., August, D.I., 2007. Shape analysis with inductive recursion synthesis. In: Proceedings of the ACM
SIGPLAN 2007 Conference on Programming Language Design and Implementation.

Hackett, B., Rugina, R., 2005. Region-based shape analysis with tracked locations. In: POPL ’05: Proceedings of the 32nd ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages. ACM, New York, NY, USA, pp. 310–323. http://
doi.acm.org/10.1145/1040305.1040331.

Ishtiaq, S., O’Hearn, P., 2001. Bi as an assertion language for mutable data structures. In: POPL ’01: Proceedings of the 28th
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages. ACM, New York, NY, USA, pp. 14–26. http://
doi.acm.org/10.1145/360204.375719.

Kovacs, L., Jebelean, T., 2005. An algorithm for automated generation of invariants for loops with conditionals. In: Pro-
ceedings of the Seventh International Symposium on Symbolic and Numeric Algorithms for Scientific Computing.
IEEE Computer Society, Washington, DC, USA, p. 245. http://dx.doi.org/10.1109/SYNASC.2005.19. http://portal.acm.org/
citation.cfm?id=1114699.1115427.

Kuncak, V., Lam, P., Rinard, M., 2002. Role analysis. In: Proceedings of the 29th ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages. ACM, pp. 17–32.

Lam, P., February 2007. The hob system for verifying software design properties. PhD thesis, Massachusetts Institute of Technol-
ogy.

Leino, K., 2010. Dafny: An automatic program verifier for functional correctness. In: International Conference on Logic for Pro-
gramming, Artificial Intelligence and Reasoning (LPAR). Citeseer.

Leino, K., Logozzo, F., 2005. Loop invariants on demand. In: Programming Languages and Systems: Third Asian Symposium,
APLAS 2005, Proceedings. Tsukuba, Japan, November 2–5, 2005. Springer-Verlag, p. 119.

Magill, S., Tsai, M., Lee, P., Tsay, Y., 2008. Thor: A tool for reasoning about shape and arithmetic. In: Computer Aided Verification.
Springer, pp. 428–432.

Nguyen, H.H., Chin, W., 2008. Enhancing program verification with lemmas. In: CAV ’08: Proceedings of International Conference
on Computer Aided Verification 2008. In: Lecture Notes in Computer Science. Springer.

Nguyen, H., David, C., Qin, S., Chin, W., 2007. Automated verification of shape and size properties via separation logic. In:
VMCAI 2007: Proceedings of the 8th International Conference on Verification, Model Checking, and Abstract Interpretation.
In: Lecture Notes in Computer Science, vol. 4349.

Parkinson, M., Bierman, G., 2008. Separation logic, abstraction and inheritance. In: Proceedings of the 35th Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL ’08. ACM, New York, NY, USA, pp. 75–86. http://
doi.acm.org/10.1145/1328438.1328451.

Popeea, C., Chin, W., 2006. Inferring disjunctive postconditions. In: Proceedings of the 11th Asian Computing Science Conference
on Advances in Computer Science: Secure Software and Related Issues. Springer-Verlag, pp. 331–345.

Pugh, W., 1991. The omega test: a fast and practical integer programming algorithm for dependence analysis. In: Proceedings
of the 1991 ACM/IEEE Conference on Supercomputing, Supercomputing ’91. ACM, New York, NY, USA, pp. 4–13. http://
doi.acm.org/10.1145/125826.125848.

Reynolds, J.C., 2002. Separation logic: a logic for shared mutable data structures. In: Proceedings of the Seventeenth Annual IEEE
Symposium on Logic in Computer Science, pp. 55–74, http://dx.doi.org/10.1109/LICS.2002.1029817.

Sagiv, M., Reps, T., Wilhelm, R., 2002. Parametric shape analysis via 3-valued logic. ACM Transactions on Programming Languages
and Systems 24 (3), 217–298.

Venet, A., 1996. Abstract cofibered domains: Application to the alias analysis of untyped programs. In: Proceedings of the Third
International Symposium on Static Analysis. Springer-Verlag, pp. 366–382.

Yang, H., Lee, O., Berdine, J., Calcagno, C., Cook, B., Distefano, D., O’Hearn, P., 2008. Scalable shape analysis for systems code. In:
Proceedings of the 20th International Conference on Computer Aided Verification, CAV ’08. Springer-Verlag, Berlin, Heidel-
berg, pp. 385–398. http://dx.doi.org/10.1007/978-3-540-70545-1_36.

For Research Only

http://www.freertos.org
http://portal.acm.org/citation.cfm?id=1983702.1983719
http://dx.doi.org/10.1145/1480881.1480912
http://dx.doi.org/10.1145/1040305.1040331
http://dx.doi.org/10.1145/1040305.1040331
http://dx.doi.org/10.1145/360204.375719
http://dx.doi.org/10.1145/360204.375719
http://dx.doi.org/10.1109/SYNASC.2005.19
http://portal.acm.org/citation.cfm?id=1114699.1115427
http://portal.acm.org/citation.cfm?id=1114699.1115427
http://dx.doi.org/10.1145/1328438.1328451
http://dx.doi.org/10.1145/1328438.1328451
http://dx.doi.org/10.1145/125826.125848
http://dx.doi.org/10.1145/125826.125848
http://dx.doi.org/10.1109/LICS.2002.1029817
http://dx.doi.org/10.1007/978-3-540-70545-1_36

