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Abstract The usability of mobile applications is critical
for their adoption because of the relatively small screen
and awkward (sometimes virtual) keyboard, despite the
recent advances of smartphones. Traditional laboratory-
based usability testing is often tedious, expensive, and does
not reflect real use cases. In this paper, we propose a toolkit
that embeds into mobile applications the ability to automat-
ically collect user interface (UI) events as the user interacts
with the applications. The events are fine-grained and use-
ful for quantified usability analysis. We have implemented
the toolkit on Android devices and we evaluated the toolkit
with a real deployed Android application by comparing
event analysis (state-machine based) with traditional labora-
tory testing (expert based). The results show that our toolkit
is effective at capturing detailed UI events for accurate
usability analysis.

Keywords Toolkit · Usability testing ·
Mobile application · Automated · Logging method

1 Introduction

Led by the rapid growth of the smartphone market, mobile
Internet usage in the US is expected to reach 50 % total
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usage by 2013 [1]. The usability of the mobile applications,
however, remains a thorny issue. A recent study shows that
the task completion rate using mobile Web ranges from 38
to 75 % on different phones [2]. The average success rate
was only 59 %, substantially lower than the roughly 80 %
success rate when testing websites on a regular PC today.
Another study shows that 73 % of users experienced the
slow-to-load problem when using the mobile Web, and 48 %
of users found mobile Web applications difficult to read and
use [3].

In this paper, we focus on the usability testing of mobile
applications, particularly native (instead of Web based)
applications. We envision a system that can automatically
collect user interface (UI) events as the user interacts with
the mobile application. The collected UI data will then be
uploaded to a remote server for either automated or man-
ual usability analysis. This kind of system can complement
traditional laboratory testing, and we believe it will be
particularly useful to deploy for field-based usability test-
ing. For many mobile application developers, it is often
too costly to conduct extensive laboratory-based usabil-
ity testing and we anticipate that the system described in
this paper will be an indispensable toolkit for low-cost
usability analysis. We have implemented an Android-based
automatic usability toolkit. To use our usability testing sys-
tem, the Android developer needs to modify the application
source code by inserting statements calling our library,
which captures UI events and uploads them to a cen-
tral server. We have designed the system to minimize the
amount of required code modification and the impact of
event-uploading overhead. To evaluate this system, we con-
ducted a traditional laboratory-based usability test on a
home-built Android application, and compared it with state-
machine based usability analysis using collected UI events.
The results show that our usability toolkit can effectively
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capture most of the usability problems, some of which were
not even discovered by traditional laboratory testing.

In the rest of this paper, we first discuss related work in
Section 2. Section 3 describes the details of the design and
implementation of our toolkit. We introduce our automatic
metric extraction model in Section 4. Then we discuss the
user study and present the usability analysis results in Sec-
tions 5 and 6, respectively. Last we talk about some potential
issues in Section 7 and conclude in Section 8.

2 Related work

Many studies have been done with event logging methods,
which are compared to traditional laboratory testing meth-
ods in terms of usability problems identified. Tullis et al. [4]
presented results that showed high correlations between
laboratory and remote tests for task completion data and
time-on-task data. The most critical usability issues with
web sites were identified by both techniques, although each
technique also uniquely uncovered other issues [5]. Another
study by West and Lehman [6] was conducted to evaluate a
method for usability testing with an automated data collec-
tion system. They found it to be an effective alternative to a
laboratory-based test [5], but these studies were conducted
on desktop machines instead of mobile devices.

Waterson et al. [7] conducted a remote usability study on
mobile devices. They asked participants to find some infor-
mation on a web site with wireless Internet-enabled digital
assistants. Half of the participants ran the test in a tradi-
tional laboratory set-up while the other half performed the
task with an observer present, but with an event logging
tool to collect clickstream data remotely. They revealed that
the event logging and analysis tool can easily gather many
of the content-related usability issues, but had difficulty in
capturing device-related usability problems. However, their
study focused on the mobile websites rather than the mobile
applications.

There have been few usability tools developed especially
for mobile applications. Flurry Analytics1 was developed
to provide accurate, real time data to developers about
how consumers use their mobile applications, as well as
how applications are performing across different hand-
sets. Application developers receive anonymous, aggregated
usage and performance data, as well as the use of robust
reporting and analysis tools. However, this tool focuses
on statistical information instead of identifying usability
problems.

1http://www.flurry.com/

3 Event logging system

In this section, we first provide an overview of the Android
UI framework, which forms the foundation for our event
logging system. Then we discuss the details of its imple-
mentation and how it can be integrated with Android
applications.

3.1 Android UI framework

To set up the event logging system and integrate it with
developers’ applications, we need to have a comprehensive
understanding of Android system’s UI components, as well
as how these components communicate with users’ interac-
tion. So here we give a brief introduction of this knowledge.
The user interface of an Android application consists of
Activity classes (terms with italic font indicates they are
classes of Android Library; we use this convention through-
out this paper, unless specially stated). Each screen in an
Android application is a Java class that extends the Activity
class, and activities use Views to form graphical user inter-
faces that display information and respond to user actions.
An activity itself can be considered to be the root View for
a screen and it is composed of smaller Views, which are
interaction components like controls or widgets. Also, there
might be other components attached to an activity, such as
Dialogs or Menus, which are usually small windows that
may appear in front of an activity. The top-most window in
the foreground (View, Dialog or Menu) will always inter-
cept and handle user inputs, whether it occupies a full or
only partial screen.

To allow an application to react to user events such as
a key press, screen touch and button click, developers have
to utilize either event handlers or event listeners to accept
user inputs and respond to them. An event handler is usually
implemented by overriding some callback function while
an event listener is a programming interface that contains a
single callback method. As both event handlers and event
listeners are constructed through calling underlying Android
callback functions and they have the same functionality, for
convenience we will use the term “Event Listener” to stand
for both of them in the rest of this paper.

Usually an Event Listener is only attached to the window
that registers it, and it will “consume” the events captured by
it. This means if a button registers an onClickListener and
then is clicked, the Event Listener of the button would inter-
cept and handle the click, while the screen activity that owns
the button has no idea that there was ever a click. Hence,
if we want to log every single movement of users’ inter-
action, for each Event Listener that handles an user input,
we need to trace into the innermost level of the window
that possesses it, and acquire our desired information that is
intercepted by it.
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3.2 System overview

For usability studies of websites, it is possible to build an
instrumented Web browser which allows the users’ inter-
actions with the websites to be automatically logged in
a fashion that is transparent to the website developer. On
the other hand, this is not feasible for Android applica-
tions because the UI interactions cannot be automatically
captured. Application developers must get involved in mod-
ifying the source code and capturing UI events explicitly. To
minimize developers’ effort, we provide an event logging
toolkit that takes care of most of the work of event capturing,
formatting and packing, and transmission.

Our event logging system works as follows. The devel-
opers make small modifications to the source code of their
applications adding API calls and recompiling the source
code with the Software Development Kit (SDK) we provide.
The SDK contains the APIs for each Event Listener and the
developers call the corresponding API in their own listener
code. The functionality of the Application Programming
Interface (API) is to log ongoing user interaction events,
its timestamp and properties of the relevant windows. For
example, by inserting one statement in a View’s onClickLis-
tener, the library can retrieve information such as the View’s
identifier, size, owner activity, and so on.

The recompiled applications now can automatically
record the users’ UI events, and transmit the captured inter-
action data periodically to a central server. These events are
then used for usability analysis by the evaluators. Instead
of transmitting the events immediately to the remote server,
the logger runs in the background as a service and puts
the captured events in a memory queue. When the num-
ber of events accumulates to a predetermined amount, they
are transferred to our remote server through the 3G or WiFi
network. If there is no available network at the time of trans-
mission, these events will be stored on the device’s Secure
Digital(SD) card or hard disk sequentially according to their
availability. In every event uploading cycle, these two places
will be examined, and all existing data stored there will be
transmitted if the network allows. The event transmitter cre-
ates a new thread for the transporting module so that this
process is separated from the UI process.

The remote receiver module simply provides a relational
database, as all the UI events are saved into different tables
depending on their type. Usability analysis can then be
conducted either manually or automatically (see Section 6).

3.3 The logger implementation

Android has many Event Listeners, and one listener can be
attached to a View, a Dialog or a Menu. As Views, Dialogs
and Menus have different appearances and functionalities,
they have different sets of listeners. For instance, click-

ing on a Menu may trigger onMenuItemClickListener while
clicking on a View may trigger onViewClickListener, though
both of the interactions are click events. Moreover, even
if two subclasses inherit from the same parent, they may
not have the same sets of listeners. Take View for exam-
ple, the subclass AbsListView nests the interface component
onScrollListener, which will handle the user’s scrolling on
this view. In comparison, most subclasses of View do not
support scroll events (they discard these events) if they
do not implement onScrollListener. Indeed, the View class
hierarchy is quite complex, as it has eight direct subclasses
and dozens of indirect subclasses. To assure we log user
interaction events as completely as possible, we performed
a thorough survey of the class hierarchy of View, Dialog and
Menu, and only extracted those listeners that are related to
user interaction. We then consolidated the listeners in the
following ways.

View events Some listeners differ in their names or adher-
ing classes, but they take care of the same user interaction,
e.g. onOptionItemSelectedListener, onMenuItemClickLis-
tener and onMenuItemSelectedListener may all be respon-
sible for selecting one item in an Option Menu. More
interestingly, the three listeners can be registered at the same
time, which means that they can all be triggered upon one
click. Since we are interested in the user’s interaction type
rather than listeners’ name, we decided to combine these
sorts of similar listeners into one event type to avoid redun-
dancy. Some listeners were distinguished by the type of
user event they can handle but take identical parameters,
such as the View’s onClickListener and onLongClickLis-
tener, which deal with View’s short click and long click
events, respectively (Android detects the temporal length of
a press, if the press is longer than a certain amount of time,
it’s a long-click event, otherwise, it’s a click event). For
the simplicity of the logging library and back-end database
design, we treated them as the same events as well, but
differentiated them by adding a flag parameter. Thus the
View’s events were consolidated into view click, view key
press, view scroll and AdapterView item click (note the terms
for event types are also italicized). An AdapterView is a
View whose children are determined by an Adapter object
acting as a bridge between the AdapterView and its underly-
ing data, e.g. an ArrayAdapter allows an array of objects to
reside in the AdapterView.

Dialog and Menu Events triggered by Dialog and Menu
are harder to capture. Dialogs and Menus are usually man-
aged by their adhering activities, and they may not have
an identifier (anonymous). Thus in order to locate which
Dialog or Menu was fired, we need to infer it from the
users’ action sequence, by looking at which activity, through
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which action a Dialog or Menu, was initiated and how a Dia-
log or Menu was dismissed. It is not difficult to record the
initiation event, but some attention needs to be paid to the
dismiss event. Dialog has an onDismissListener but we can-
not rely on it because it does not provide any information
about how a Dialog was dismissed. Even worse, no mat-
ter how a dialog disappeared, this listener would always be
triggered. For instance, if a user presses the OK button in
a dialog, Android will first call Dialog’s onClickListener,
and then call onDismissListener as the dialog will disappear
after the action. This will cause a double counting prob-
lem because the single event fires two listeners. Fortunately,
we found that if a dialog was not dismissed by hitting the
BACK key on the hard keyboard, at least one of the Dialog’s
onClickListener methods will be called, and it tells us which
button was clicked that caused the dialog to be dismissed.

We have a different solution for Menu’s dismiss event.
An onOptionMenuClosed or onContextMenuClosed meth-
od will be toggled when a menu is closed, depending on the
menu type. We can monitor onMenuItemSelectedListener to
judge whether a menu was closed by selecting an item or
by other means. Overall, we included dialog key press and
dialog button clicked events for Dialog and menu item select
and menu close events for Menu to our logging library.

System keys Android devices have BACK, MENU, HOME
and SEARCH hard keys, and we name them system keys
collectively as these keys function for all applications in
general. Since an Android application is composed of activ-
ities, we can override onKeyDown listener in each activity
to intercept these system keys. However, Android disabled
HOME key interception to preserve its system’s running
state. If the developers can intercept all key events, they
can easily make the system malfunction, such as prevent-
ing users from quitting their applications by intercepting
the HOME key press. Thus, we have to find other ways to
detect that a user clicked the HOME key. Through a class
named ActivityManager, we can acquire the currently run-
ning tasks as well as the top activity of each task. Then we
can override each activity’s onStop method to check if its
top activity equals to com.android.launcher, which is the
activity name of the Android home screen, to decide if the
activity is stopped by clicking the HOME button.

Unhandled events We believe that the above effort can
already help us to record those events whose listeners were
registered by the developers. This, however, is not enough.
We want to collect a comprehensive set of the user’s inter-
action behaviors, but the developers will most likely only
register listeners in which they are interested. Suppose a
developer does not register an onKeyDownListener method
in one activity, and a user tried to click a button that belongs

to this activity. If, for some reason, this user missed click-
ing on the button but happened to click on the activity itself
(recall an activity is also a view), the application will still
run well because that activity will discard this mis-click
by default. The developers may not care about this kind of
event, but these events can be important to discover usabil-
ity issues. For example, if we detected many clicks around
the button, we can infer that the button is hard to click for
some reason. Thus we would like to capture such events as
much as possible, and we name them unhandled events in
general. Please be advised that orientation change is not one
of unhandled events, as in most cases developers will let
Android system deal with it.

In summary, the events we captured were classified by
their adhering class and are listed in the Table 1. For dif-
ferent events, we obtained different attributes according to
their own available properties. From an event that occurred
in a View, we can retrieve its ID, width, height and its par-
ent class etc., while for events that happened in a menu or
dialog, they may not have such information. But for what-
ever window, we tried to retrieve as many event attributes as
possible.

3.4 Code revision

The extent of the revision that needs to be done in the devel-
opers’ code greatly depends on the hierarchical organization
of the source code. Thus here we only discuss the best and
the worst cases in terms of the code modification workload.
In the best case, all activities in an application extend from
a single root activity, so the developer just needs to insert
one event recording statement (by calling our API) into
the onTouchEvent, onKeyUp, onStop methods of that root
activity. Meanwhile, the event listeners were implemented
uniformly rather than redefined in each View/Dialog/Menu,
so that only one recording statement in the implemented
View/Dialog/Menu event listeners needs to be inserted.

In the worst case, the activities in the application have
no hierarchical structure at all and the event listeners were
implemented separately from each View/Dialog/Menu.
Then the developers have to insert the recording statement
into the onTouchEvent, onKeyUp, onStop methods in each of

Table 1 Event type summary

Event type

View Click, key press, adapter item click, scroll

Dialog Key press, button click

Menu Item select, close

Other Unhandled motion event, unhandled key event,

home key click, system key click, preference click
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their activities, and insert the recording statement into each
View/Dialog/Menu Event Listener.

In both cases, we require that the application classes
extend the application class of our own library so that our
library can make use of the static memory space allocated
to the application.

There are two additional challenges. First, the Android
framework has already implemented some event listeners
by default, such as the onKeyDownListener for an edit box.
In this way, an edit box can accept key presses even with-
out developers registering this listener explicitly. For such
cases, we have to override the related listeners and register
them so as not to miss recording the user’s input. Second,
the hierarchical relationship between classes can be trouble-
some for counting the user’s interaction events accurately.
While usually the user’s interaction in one window will not
be passed to its parent, the developers can call the super
method to allow this to happen. If we add the logging func-
tion in both super and subclasses, one event that happened
in the subclass may be recorded twice. Thus to avoid this
double counting problem, we have to examine the applica-
tion’s class hierarchy and check whether at some point the
developers called the super method. We considered using
timestamps to verify if multiple events are triggered by a
single user interaction, but function calls among these hier-
archical listeners are sequential, thus the timestamps can
vary when an event is passed down from one listener to
another, and it’s hard to define boundaries to tell when
different events can be regarded as one.

In the future, we plan to provide a tool that can auto-
matically inspect an application’s source code and make
appropriate changes for event logging, without the devel-
opers’ involvement. We could do this by first representing
a source code file as an Abstract Syntax Tree, and search-
ing for functions that correspond to event listeners (as we
know the name of each event listener), then extracting
parameter names from these functions and finally insert-
ing logging statements into these functions with extracted
parameters.

3.5 Events not captured

So far, our logging system is able to capture all the events
that the developers have already set to listen as well as
those unhandled events at the activity level. But there still
remain some events that are not being captured. First, we
cannot log events that occurred in Android native activities,
such as the Android Settings. We do not, however, really
need these events as the goal of our system is to identify
usability issues of the third-party applications, rather than
the Android native screens. Second, we have not found any
feasible way to trace keystrokes on the Android soft key-
board. Finally, we did not capture the unhandled events

occurring in child Views, Dialogs and Menus of an activ-
ity. Although this is doable by registering listeners in each
View/Dialog/Menu, we do not think it deserves so much
effort (which involves changing source code) compared to
its usefulness and potential event logging overhead.

Despite missing these events, the current system can
already capture a comprehensive set of interaction events
that can be used for usability analysis, as demonstrated in
the next section.

4 Automated metric discovery model

Most of previous work on automated usability testing
focused on task completion rate and timing analysis, few
went deep into fine-grained usability problem identification
or quantitative measurements. Thanks to the capability of
the logging toolkit which can help collect a detailed set of
user interaction events, we are able to build an automata-
based model that leverages these events to perform usability
analysis automatically. The core idea proposed here is the
sequence comparison technique, which was described by
Hilbert and Redmiles as the process of comparing a tar-
get sequence against the source sequences and producing
measures of correspondence [8]. For each user task, we
ask the developer to provide an expert sequence as the tar-
get sequence, and we collect a set of non-expert sequences
from the testing users as the source sequences. We then
examine how these source sequences deviate from the tar-
get sequence, and extract some quantitative metrics as the
indicators of the usability problems.

In order to facilitate the specification of the expert
sequence, as well as help distributing the tasks to the users,
we provide developers an Android application to manage
the user study tasks. This application allows the developers
to name a task, describe it and set up its expert sequence.
Meanwhile, the developers can configure the preference
about how frequently to assign these tasks to the users. We
generate a unique identifier for each task, so that when it is
assigned to the users, we know which task a user takes. The
expert sequence and the non-expert sequences are all trans-
mitted and stored at our back-end server, so we can construct
an automata to compare them, by extracting usability related
metrics as its measurement. We need two phases to achieve
this, as explained in the next two subsections.

4.1 Creating baseline state machine

We assume that there is only one best way to complete
a given task, thus each task binds with a unique expert
sequence provided by the developer (alternative expert
sequence may exist, and we plan to allow the develop-
ers to provide multiple expert sequences for a task in the

For Research Only



86 Mobile Netw Appl (2013) 18:81–97

future. Right now if we find users complete a task through
a sequence other than the expert one, we will report this
instance to the developer and let him/her decide whether
it can be concluded to a usability problem). We map these
expert sequences to one automata, as we think the automata
can concisely and accurately represent each step in the
expert sequence and the flows (order) between the steps. We
call the automata of the expert sequence the baseline state
machine, as this automata only involves indispensable steps
to complete a task. Similar to a standard nondeterministic
finite automata (NFA), the baseline state machine consists
of five components.

• A finite set of states
In the first version of our toolkit we only used activity
name as the identifier of a state, but this will mix up
the scenarios of whether there are menu or dialog pop-
ups, as usually activity name wouldn’t change when a
menu or a dialog is popped up. Hence we added menu
and dialog flags as two additional fields, which indi-
cate various status of menu and dialog. For menu, the
flag is set to one of None, Option, Context and Popup
(these are currently available menu types); for dialog,
the flag is set to an integer value that is defined by
the developer. Two states are deemed as identical only
if their activity name, menu and dialog flag values are
the same. In order to sense the status change of the
menu and the dialog, we inserted some more logging
statements into the developer’s code. The current toolkit
receives an event every time a menu and dialog is shown
or closed.

• A finite set of input symbols
Here the user’s interaction events are deemed as input
symbols, since it is the user’s interactions that cause
the baseline state machine to transit from one state to
another. As introduced in previous section, each inter-
action event consists of different fields, and we combine
these fields all together as the identifier of an input sym-
bol, since every field is an indispensable contributor to
the input symbol. For instance, if a user clicks an item in
a Preference Activity, the item’s title and order need to
be considered as part of the input symbol, as a different
title or order implies that the user clicked on a different
item.

• Transition functions
Transition functions are a set of rules that regulate con-
versions between the states. The input of a transition
function is a two dimensional tuple that contains the
current state and an input symbol, which we call the
precondition. The output of the transition function tells
which state will the be reached after this transition,
given the precondition. As this automata is an NFA,
the set of transition functions only define the avail-

able flows between the states. If there are no transitions
between two states, no flow connects each other. For
simplicity, we assign each state with an integer value as
its index. We assume that under the same precondition,
its outcome should be decidable. Thus if we find two
cases with exactly the same preconditions but return
different results, we will raise an exception.

• An initial state
The initial state is the point where an automata starts
with handling input symbols, usually it is a state with-
out particular meanings. As in our case, each state binds
with an activity name, thus the initial state’s activity
name should be the name of home activity of the given
task. Currently when we ask the developers to create
an expert sequence, we will direct them to the launcher
activity of their applications, and by default, both menu
and dialog are closed. So for every task of an appli-
cation, the initial state would always be the launcher
activity of the application, with both menu and dialog
flags set to be none.

• A set of final state
A regular NFA might have more than one final states,
but it is different here. We assume that as long as
a task is successfully completed, the same state (the
same activity and the same menu/dialog flags) would
be reached, even though the intermediate states may not
be the same. Hence we only have a single final state for
each task.

We call the states in the baseline state machine baseline
states, and the transition functions baseline transitions. The
procedure of creating baseline state machine is as follows.
At the beginning, we initialize all components of the state
machine with empty sets, and set both menu flag and dialog
flags to be none. Then we iteratively read events from the
expert sequence. We have two types of events, one type can
only cause the value of menu flag or dialog flag to change.
In this case, we update the corresponding flag value and
continue to read the next event. In the other case, we cre-
ate a baseline transition. As for any two consecutive events,
the former one’s state index and input symbol compose the
precondition of a transition function, while the latter one’s
state index serves as the outcome of that transition function,
so the key point here is to figure out what is the state index
for each event. We maintain a baseline state set, and look up
whether the state of an event belongs to this set. If it does
not, we add it to the state set and assign it with a new integer
value. After handling all events in the expert sequence, we
obtain the set of states, input symbols and transition func-
tions of this baseline state machine. Additionally, we set the
initial state’s activity name to be the first event’s activity
name, and we assume after processing the last event, the
final state is reached.
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4.2 Running user sequence

The user’s interaction sequences are expected to have some
divergence from the expert sequence, as the users make
mistakes. The users may go to some states that are out of
the state set of baseline state machine, and these states are
called mistaken states. Apparently, all transition functions
associated with mistaken states (either as input or output)
are excluded from the baseline state machine. In addition,
the user’s interaction sequences might contain transitions
between baseline states which are not accessible in the base-
line state machine (the simplest example is backtracking
between baseline states). When an NFA sees an unfamil-
iar precondition, it will halt by default. This is not what we
want, because we will not get any useful metrics for analy-
sis. We need to keep the automata running till it processes all
events in the user sequences. Thus, we enhance the baseline
state machine with self-learning ability. If the baseline state
machine encounters a transition that it is familiar with, it fol-
lows the transition function as usual and transits to the result
state of the transition function. However, if the baseline state
machine sees a transition which it never meets before, it cre-
ates a new transition and finds its own way to continue. We
will explain how it works in detail in the following section.

To be able to extract usability related metrics while han-
dling the user sequences, the baseline state machine must be
precisely aware of the user’s position towards the final state
at every moment. On one hand, if the user is situating on
a baseline state, the baseline state machine needs to know
what is the expected transition that leads to the next base-
line state. On the other hand, if the user is deviating from
the expert sequence, the baseline state machine needs to tell
how far the current mistaken state is away from the baseline
transition. Here we first introduce several auxiliary variables
which can be obtained by the baseline state machine.

• Precondition queue of each state
By verifying whether a transition is a baseline tran-
sition, we do not only check whether this transition’s
result state is correct, but also examine whether its pre-
condition is the same with the baseline transition. If the

transition’s precondition is different than the baseline
transition’s, we do not consider this transition as the
same as expert sequence even if it leads to the expected
state. Thus for each baseline state, we need to remember
through what precondition it is directed to. Moreover,
a baseline state might be visited more than once in
the expert sequence. To distinguish between visits, we
maintain a precondition queue for each state, indicating
the corresponding precondition of each visit.

• Regressive pointer and non-regressive pointer
We introduce the two types of pointers to help under-
stand where a user is situated in a baseline state machine
at each move. The Non-regressive pointer, as implied
by its literal meaning, will never retrograde. We can
see from Fig. 1, when the user moves from state q2

to q1, the non-regressive pointer stays pointing to state
q3, because we use it to indicate the state reached by
the user that is closest to the final state at present. On
the other hand, regressive pointer implies the very next
baseline state that the user should try to move to from
the present state. For instance, when the user is at state
q2, the regressive pointer points to state q3, as the next
baseline state is q3. And when the user moves back from
state q2 to q1, the regressive pointer also falls back from
q3 to q2, since if the user wants to reach the final state
from state q1, q2 is the very next state he/she has to go
through. Both the regressive and non-regressive pointer
are useful in calculating usability related metrics, and
we will talk about those metrics later in this section.

• State stack
Ideally a user can not bypass any baseline state in the
transition process of a task, but an application’s design
or implementation may have flaws, plus the user’s
behaviors are not predictable, thus the ideal case might
not always be true. We deem such scenarios as excep-
tions because it disobeys the principles of the baseline
automata. We cannot eliminate these exceptions but we
can detect them. Therefore we employ a state stack to
trace the user’s interaction sequence. If there are any
unexpected situations (bypassing is only one type) in
the user sequence, we will report it to the developer and

Fig. 1 Regressive pointer and
non-regressive pointer
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let the developer decide whether it’s a problem. The
mechanism here is to push the current state into the state
stack if a move is not a backtracking, but pop out the
state at the top of the stack if a move is. In the end,
we compare this state stack with the expert sequence.
If there are no exceptions, the state stack would be the
same as the expert sequence. Otherwise, the state stack
will have at least one state less or one state more than
the expert sequence, and these two situations are con-
sidered as bypass exception and redundant exception,
respectively.

With the help of these variables, we categorize transitions
into the following status, based on the incoming state index
and the outgoing state index of a transition.

• Hit
The user is following precisely the expert sequence and
is moving to the next unreached baseline state, both
non-regressive pointer and regressive pointer will move
forward.

• Correct
The user is following a baseline transition, but this tran-
sition does not help the non-regressive pointer to move
forward. This is either because the precondition of this
transition is not expected or the user has went through
this transition before.

• Setback
The user is moving from a baseline state to a previous
baseline state. In this case, the regressive pointer must
be relocated.

• Deviating
The user is traversing to a mistaken state from a baseline
state.

• Returning
The user is returning to a baseline state from a mistaken
state.

• Roaming
The user is traversing between mistaken states.

• Mistaken
Either the transition function or the outgoing state does
not exist. The baseline state machine will create the
transition function or the state, mark it as mistaken and
add it to its corresponding set.

According to the type of transitions, we can adjust the
value of those auxiliary variables and calculate a set of met-
rics that are pertinent for usability analysis. These metrics
are explained as follows, and we will illustrate them fur-
ther in the user study section. To understand the cause of
a usability problem and locate it accurately, we granulate
the statistics of each metric to state level. That is, we check
at which baseline state does an instance occur, and count

it onto the corresponding baseline state. If the users do not
situate on a baseline state, we use the baseline state that is
pointed by the regressive pointer for such cases.

• Backtracking
Backtracking is defined as returning to a state which has
previously been traversed. In practice, we only count
how many times BACK key is pressed as the back-
tracking number. If a user goes back to a previous state
without clicking BACK key, we do not regard it as back-
tracking. As we observe that in some applications, there
are functions that intend to direct users back to previous
states. If we strictly follow the definition of backtrack-
ing as described above , we may bring in many false
backtracking instances.

• Correct Flow Ratio
This metric is defined as the ratio of the number of base-
line transitions and the number of mistaken transitions
in each baseline state. If the status of a transition is Hit
or Correct, we deem that the user makes a right choice
as the transition follows the baseline transition. We call
it a correct flow. Otherwise, it is an incorrect flow.
The correct flow ratio is an aggregated value across all
users. For each user, we only count the number of cor-
rect flows and incorrect flows. We take a ratio of total
correct flows and incorrect flows as the result of this
metric. This metric, to some extent, reflects the users’
confidence of making a correct choice at each baseline
step.

• Most Misleading State, Misleading Coefficient
Most misleading state is the mistaken state that attracts
most of the incorrect flows, and we think this state
affects the user’s decision most of making a right
choice. Only the states which can be reached in one hop
from the current state will be considered. We ignore the
portion of incorrect flows that caused by backtracking,
as if a user makes a backtracking from a baseline state,
s/he would go to a baseline state. Hence, we only con-
sider the situations when the user’s transition status is
Deviating. We hold a mistaken state set and record the
occurrence of each state, and after we complete process-
ing the user sequence, we take the mistaken state that
appears most as the most misleading state. The mislead-
ing coefficient is simply the ratio of the occurrence of
the most misleading state and the correct flow number,
it reveals how much confusion this state brings to the
users.

• First Time Choice
We are particularly concerned about whether the users
can make a correct choice at the first time they are asked
to choose, as we think the first time choice is not influ-
enced by the user’s prior selections on this interface,
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but a pure reflection of the users’ intuition. So that we
regard this metric as a criteria of clarity of an interface.

• Number of Actions between States
In the expert sequence, we use exactly one action to
transit from a baseline state to another. But whenever a
user makes a mistake, he will spend at least one more
actions between that transition. The more mistakes a
user makes, the more number of actions he consumes.
Hence we use this metric to judge how many mistakes
a user makes between two expert states.

In the expert state machine, we do not have an activity
name for the final state, as it is a virtual state. So how could
we determine whether the user has reached the final state?
To make sure we catch the proceeding to the final state, we
keep an eye on the preceding state of the final state. As long
as a user performs the correct transition on the preceding
state, we regard this user reaches the final state, and we use
this to decide if a user successfully finished a task.

When we succeed in processing the user sequence, we
will obtain the metrics explained above. In later sections,
we will give some concrete examples to illustrate how we
use these metrics to identify usability problems and how
effectively they are in a practical user study.

5 User studies

We conducted a user study to evaluate whether the proposed
event logging toolkit is effective and helpful in identi-
fying usability problems. One Android application called
AppJoy [9], which has been deployed to the Google Mar-
ket, was used as our subject application. It was developed
by our group; we have the source code so it is convenient
for us to integrate it with our logging library. We recruited
participants to use this application and asked them to exe-
cute certain tasks assigned by us. Afterwards, we examined
the logged events for usability analysis.

5.1 AppJoy overview

The explosive growth of the mobile application market has
made it a significant challenge for users to find interesting
applications in crowded App Stores. While the application
stores allow the users to search for applications by keywords
or browse top applications in different categories, it is still
difficult for the users to find interesting applications that
they like. In light of this problem, existing industry solutions
often use users’ application download history or their rat-
ings on some applications to predict users’ preferences, such
as Amazon’s book recommendations. However, “download-
ing” is actually a weak indicator of users’ fondness for an

application, particularly if the application is free and users
just want to try it out. Using application ratings, on the other
hand, suffers from tedious manual input and potential data
sparsity problems.

AppJoy makes personalized application recommenda-
tions by analyzing users’ statistical usage of their installed
applications. It can also allow users to browse popular
applications according to their location, and track their
application usage.

5.2 Participant briefing

Participants were recruited through posters. We recruited 12
participants in total, all of them were undergraduate or grad-
uate students of our school. We asked the participants to fill
in a demographic information survey before the study. The
questions included gender, major, own cellphone platform,
familiarity with Android platform and previous experience
in usability testing, and so on.

Among the participants, 7 were from the Computer
Science department while 5 were not, 7 were male and the
other 5 were female. All of them were between 20 and 35
years old. 2 participants owned an Android phone, 3 partic-
ipants owned an iPhone and 7 participants did not have a
smartphone. One iPhone user and one non-smartphone user
also used an Android phone before, so in addition to the
two participants who owned an Android phone, we had 4
Android phone users, but none of them were Android devel-
opers. 4 participants had previous experience with usability
tests. None of the participants had used AppJoy before.

5.3 AppJoy tasks

All participants were given the same Android device—
Motorola Droid with Android version 2.2.2. AppJoy was
preloaded onto the device and the device was connected to
a university WiFi network. Every participant was assigned
the following tasks one by one in the same order:

1. Browse recommended applications in AppJoy and “dis-
like” the first application the user is not interested in.

2. Browse the newest applications in AppJoy and install
the first one whose rating is greater than 4 stars and the
number of downloads is greater than 50,000.

3. Clear search history in AppJoy settings.
4. Search applications used by people in Boston, and point

out the first application that was installed on this device.
5. Use AppJoy to uninstall the application that has been

installed in task 2.
6. In AppJoy, look up the usage time of AppJoy.

As we did not code a special function to indicate the
completion of a task, we used Android’s SCREEN ON
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and SCREEN OFF broadcasting events as the separator
between tasks during the test. Participants were asked to
give the device back to one of the evaluators after complet-
ing each task, and the evaluator turned off and turned on
the screen twice and reset the application to its homepage
before the next task.

6 Evaluation results

In this section we answer the question of whether the UI
events collected via the Android UI framework can indeed
be used for usability analysis. The laboratory-based usabil-
ity testing method known as formal usability testing is one
of the most widely used approaches by usability practi-
tioners for performing usability analysis [10, 11]. Thus we
performed a laboratory-based usability test and compared
it to a quantified state-machine based analysis using the
collected events.

When the participants were executing tasks, we asked
them to “think aloud” [12] and had several evaluators sit-
ting beside them to take notes. At the same time, all of the
user’s interaction events with the AppJoy were simultane-
ously logged and the data was transmitted to our server.
In this way, we were able to get a fair comparison for the
two different methods, since they were compared using the
same participants, the same Android device, at the same
time, within the same testing environment and the same user
behaviors.

During the test, we lost two participants’ data due to
the misconfiguration of the event logging system. So when
comparing the two methods, we only considered informa-
tion collected from the remaining 10 participants. The two
people we lost data from were participant 4 and 5, one
of them is male and the other is female. Neither of them
majored in computer science and neither of them had prior
Android experience. When presenting the evaluation in this
section, we do use all 12 participants’ data except for the
comparison results.

6.1 Traditional laboratory-based usability testing results

When the participants were executing tasks, we asked them
to “think aloud” and had 3 evaluators taking notes beside
them. The evaluators were all very familiar with AppJoy
and one of them is the lead developer. In order to get a
better understanding of wrong moves the participants made
when executing specific tasks, we talked with them about
the difficulties they encountered during the test, and what
caused their confusion. We found that these conversations
with participants were indeed valuable for us to judge the
exact cause of a usability problem. After the experiment was
over, the evaluators discussed and consolidated usability

problems identified based on their notes, the participants’
survey and their verbal feedback. Then we rated the sever-
ity of each usability problem according to Nielsen’s severity
rating criteria [13], and summarized them in Table 2.

Some of the problems were apparently caused by the
AppJoy design, which we call AppJoy problems. Some of
the other issues could not be categorized as AppJoy prob-
lems because AppJoy just leveraged some components of
the Android framework that caused the user confusion. For
instance, some participants did not know how to view the
notifications on Android, as they tapped on the notification
bar instead of dragging. Also, there was one participant who
said that he/she did not know how to scroll the view on
the screen, and he/she moved his/her finger in the opposite
direction. For these problems, we say that they were gener-
ated by the users’ unfamiliarity with some of the Android
conventions.

In addition, we have two problems not included in
Table 2. One problem was that the participants had trou-
ble finding the AppJoy setting. The reason for this problem
was unclear, and we could not arbitrarily say whether this
was because the participants did not know that pressing the
Menu button can trigger application settings as an Android
convention or they did not believe that the Menu is the
right place to find the AppJoy settings. Although the con-
fusion was mostly from the Non-Android participants, one
Android participant also spent a lot of effort before getting
to the right place. The other problem was that the par-
ticipants frequently touched the AppJoy’s caption bar by
tapping, dragging or scrolling. This problem is not negligi-
ble as 5 participants had this issue in 6 tasks. However, we
cannot simply blame either AppJoy or Android for this as
we do not see that any application or the Android frame-
work itself defined the functionality of the caption bar. Thus
we left the two problems described above uncategorized.

6.2 Event logging method result

As we described before, in this method we first identify
the baseline sequence for each task, and then we examine
how users’ interaction sequences deviated from the baseline
sequence.

First we draw the baseline state machine each task. To
be concrete, we use task 1 as example. Figure 2 shows the

Table 2 Usability problems identified by laboratory testing

AppJoy problem Android convention

Cosmetic 5 2

Minor 4 2

Major 4 2

Catastrophe 1 0
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Fig. 2 Task 1 baseline state machine

baseline finite state machine for task 1, and Table 3 lists
the associated activities corresponding to the states, and the
user actions corresponding to the transition functions. As
we can see, there are four states in this state machine with
state 0 being the initial state and state 3 being the final state.
Because this state machine represents the baseline sequence,
we name the states in the state machine as fundamental
states. Events e1, e3, e5 are the three imperative actions to
complete this task, while e2 and e4, though not required,
are also considered to be “correct” actions. Recall the task
was asking the participants to dislike one application they
were not interested in, so the participants may freely browse
the applications by scrolling in the activity, or by checking
the detailed information of an application and then going
back. Events e2 and e4 correspond to these two actions,
respectively.

Then we manually processed users’ interactions se-
quences. We counted two kinds of behaviors that can,
to some extent, indicate participants’ confusion. One is
backtracking (sometimes called “regressive behavior” by
usability evaluators), and the other is engaging in unhandled
events as we mentioned before.

We define backtracking as redundantly returning to the
state that has already been traversed. We use “redundant”
only to exclude situations where backward transitions are
also considered to be appropriate responses, such as e4
in task 1. Basically if a user goes back to a state which
he/she has visited before, that is backtracking, no mat-
ter whether he/she traces back from a baseline state or a
mistake state. Additionally, if a user goes back from one
activity to another, then immediately back to an even earlier
state, we count this circumstance as two backtracking events
rather than one. Usually backtracking reflects a user’s con-
fusion. When a backtracking event happens [14], it means
that the user has picked the option that he/she thought to
be most probably right, but apparently he/she did not reach

Table 3 States and transitions for baseline state machine of Task 1

Activity Event

a0 Home page e1 Click my recommendations

a1 My recommendation e2 Scroll in my recommendations

a2 Application detail e3 Click in an application

a3 Dislike dialog e4 Click back button

e5 Click dislike button

the desired state via that option. For example, to find the
usage time of AppJoy, many participants went to AppJoy
settings first. After realizing there is no such information,
they stepped back to the home page of AppJoy.

Similarly, unhandled events are user behaviors that
occurred beyond the developers’ expectations, since the
developers did not even register listeners for those events.
Although some events were triggered by the users’ unin-
tentional touches, most of these events reflected the users’
intentional purpose. If a user performed a lot of such actions,
we can infer that this user might not know where to navigate
to the next step, as he/she was trying actions either ran-
domly or exhaustively, hoping to hit something correct by
chance or by systematically attempting to activate all plausi-
ble interface actions in turn. We list the number of instances
that occurred for the above two behaviors by task in Table 4.

Simply from these numbers, we can infer that tasks 3
and 6 were the two most difficult jobs for the participants,
and tasks 1 and 2 were relatively easy. However, having
only these numbers is insufficient for us to analyze usability
problems; thus we examined these events more closely.

As we recorded the participants’ every single move from
one activity to another, we represent these transitions as well
as the volume of these transitions graphically, in a form of
traffic flow chart. We present task 1’s traffic flow chart in
Fig. 3 and list its states and transition functions in Table 5.
Note here we only show those states and transition functions
that were not included in Table 3 (in other words, mistake
states and transition functions).

We use the width of an edge to represent the volume of
the transitions. Blue edges represent incoming flows, while
green edges and orange edges represent outgoing flows to a
baseline state or a mistake state accordingly. Additionally,
we use dashed red edges to indicate backtracking flows.
The volume of traverses along with each transition function
is marked above each edge. Note that the number of cor-
rect outgoing flows from one baseline state and the number
of incoming flows to the next baseline state have different
implications. The former means how many times the partic-
ipants made the right choices from one state, and the latter
means how many situations occurred in which the partic-
ipants were asked to make a choice. For example, if one
participant went to some mistake state from state 1, and then
returned back to state 1, the number of incoming flows to
state 1 would be greater than the number of correct outgoing

Table 4 Backtracking and unhandled events in each task

T1 T2 T3 T4 T5 T6

Backtracking 14 13 36 35 14 70

Unhandled motion 1 4 11 1 1 21

Unhandled key 7 3 4 1 30 4
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Fig. 3 Task 1 traffic flow chart

flows from state 0. Thus we have two figures above every
baseline transition function, with the first one representing
correct outgoing flows from one state and the second one
representing incoming flows to the next state. Coincidently,
the two figures for all baseline transitions turn out to be
equal in this task.

As shown in Table 6, the participants traversed to the
home page of AppJoy 24 times, of which they went to state 1
12 times, while they went to different mistake states another
12 times. Comparatively speaking, from state 1 to state 2,
among the 12 incoming flows, 9 times the participants pro-
gressed immediately to state 2, backtracking occurred two
times during this stage, and one participant failed to find the
next move. From state 2 to state 3, all of the 9 incoming
flows traveled to the correct state. The correct flow ratios
for the three stages were 50, 75 and 100 %, respectively.
Clearly the users were less confused at state 2 than at state
0. We calculated the success ratio of flows in each step as a
measurement for detecting usability problems, because this
can be considered to be a measure of the users’ confusion
at each step. Also, the amount of flow that entered the final
state is actually the number of participants who successfully
completed a task. On the other hand, the number of partic-
ipants who failed to complete a step is also an important
indicator of usability problems. We calculated these metrics
for each task and summarized them in Table 6.

Note that the step in which backtracking occurred is
determined by the next baseline state rather than the cur-
rent baseline state, as we think users’ difficulties in locating

Table 5 States and transitions for all user actions of Task 1

Activity Event

a4 Most recent e6 Click most recent

a5 My downloads e7 Click my downloads

a6 Location-based search e8 Click location-based search

a7 Top-rated e9 Click top-rated

the next baseline state is the main reason that causes back-
tracking in the current baseline state. For instance, the
12 backtracking events that happened during the transition
between state 0 and state 1 were counted as backtracking
events that occurred at state 1.

Many usability problems can be discovered by reviewing
Table 6. Too much backtracking, such as the amount that
occurred at step 1 of task 6, indicates that the desired infor-
mation is located at a different place than anticipated by
participants, or it was not visible to users. Low correct flow
ratio, in our case less than 50 %, is another sign of poten-
tial usability problems. For instance, the ratio of correct
flows for step 1 of task 3 was only 28.6 %, which is con-
gruent with our previous discussion regarding participants
having problems finding AppJoy settings. Also, if the num-
ber of participants who cannot complete a step exceeded a
certain threshold, there is possibly a usability problem. For
instance, 4 out of 10 participants failed to find the usage
time at step 2 of task 6. Although we are unaware of the
cause, we would strongly recommend that the developer of
AppJoy inspect that component to show usage time clearer
more clearly.

By taking a step further to examine which mistake state
attracted most of the incorrect traffic, we may possibly pre-
dict the reason for that problem. If many participants went
often to the same mistake state, that state must be very con-
fusing to the participants. Hence we call that state the “most
misleading state.” For example, at step 3 of task 4, 18 out of
the 20 incorrect flows went to the detailed page of location-
based applications; obviously this is the most misleading
state. We guess the underlying reason of this problem is that
the users sought to find something at the summary screen
of the location-based applications, but that information was
not sufficiently visible.

An interesting phenomenon emerged in task 5. Three
participants failed to progress through step 1 but surpris-
ingly all of the participants successfully completed this task.
This means that some participants avoided one fundamental
state and reached the objective state through another route.
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Table 6 Traffic flow metrics
based on number of mistakes Metrics T1 T2 T3 T4 T5 T6

Step 1

No. of backtracks (*) 12 10 29 11 11 61

Mistake state no. 4 3 12 6 4 8

Correct/incorrect flows 12/12 12/10 16/40 12/7 9/12 14/58

Correct flow ratio 50 % 54.5 % 28.6 % 63.2 % 42.9 % 24.1 %

Fail to pass no. 1 0 1 1 3 0

Step 2

No. of backtracks 2 3 7 5 2 9

Mistake state no. 0 0 1 2 1 3

Correct/incorrect flows 9/3 13/3 9/7 11/6 11/2 6/8

Correct flow ratio 75 % 81.3 % 56.3 % 64.7 % 84.6 % 42.9 %

Fail to pass no. 0 0 0 1 0 4

Step 3

No. of backtracks 0 0 0 19 1 N/A

Mistake state no. 0 0 0 2 0 N/A

Correct/incorrect flows 9/0 10/0 9/0 8/20 10/1 N/A

Correct flow ratio 100 % 100 % 100 % 28.6 % 90.9 % N/A

Fail to pass no. 0 0 0 0 0 N/A

Step 4

No. of backtracks N/A N/A 0 N/A N/A N/A

Mistake state no. N/A N/A 0 N/A N/A N/A

Correct/incorrect flows N/A N/A 9/0 N/A N/A N/A

Correct flow ratio N/A N/A 100 % N/A N/A N/A

Fail to pass no. N/A N/A 0 N/A N/A N/A
*No. of backtracks = number of
backtracking incidents

We provided this information to the developer of AppJoy
who confirmed that the way it was designed had some
problems.

For unhandled motion events, we inspected the activities
in which unhandled motion events occurred and their phys-
ical positions on the screen. Among 39 unhandled motion
events across all tasks, 30 of them (76.9 %) were clicks or
moves at the caption bar in different activities; this was the
case for all 11 events in task 3 and 17 out of 21 events in
task 6. Although we didn’t classify it as a usability prob-
lem, this phenomenon reflects the participants’ frustration.
As these behaviors happened frequently in the two tasks that
participants had trouble dealing with. Maybe only when the
users could not find other ways to complete a task, they
touched the caption bar as a last resort. For the remain-
ing 9 unhandled events, 8 of them were clicks or moves on
blank pages between two activities; these actions were not
noticed in laboratory-based usability testing. Even though
we cannot conclude that lengthy loading time between two
pages caused the users to perform such actions, at least this
is an interesting finding that we did not expect: that such
events can be captured by the event logging library. The last
unhandled motion event was a mis-click on the side of one

button that one participant intended to click, but this was a
rare case.

For unhandled key events, we inspected the key code
for each click and its related activity. Our library does not
log the key code for keystrokes on the Android keyboard
except for the delete key out of concern for the users’ pri-
vacy. However, none of these unhandled key events were
from keystrokes on the Android keyboard. Actually, only
four keys were pressed: the volume down, volume up and
camera focus keys on the right side of the device, and the
search key below the screen (we did not classify the search
key as a system key because most third party applications do
not respond to this key). Except for the search key presses,
other unhandled key events were not observed by the eval-
uators during the experiment. We speculate that these keys
were probably pressed without the users’ conscious pur-
pose as these keys can be easily touched by mistake in daily
usage. However, the search key presses constitute a different
case, as 36 out of 49 unhandled key events are from search
key presses, including all of the 30 unhandled key events in
task 5. Recall that in task 5 we asked participants to unin-
stall the application they just installed in task 2; we can infer
that in task 5, the users were trying to search the application
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directly with the search key because they knew the applica-
tion name, but apparently AppJoy did not handle this key
event. This confirms a usability problem identified in labo-
ratory testing that AppJoy should add some mechanisms to
search or at least sort the recommended applications. Fur-
thermore, 3 search key presses were from task 3 and 3 were
from task 6, yet these two tasks did not involve looking for a
special application. We guess that the participants intended
to search the functionalities of AppJoy setting and usage
time by doing so.

The above statistics only dealt with the number of
total occurrences of each event but ignored the differences
between the participants. The number may be difficult to
interpret if a minority of the participants made a large num-
ber of mistakes. In fact, if only a few people had problems
with a user interface component, this component’s design is
probably satisfactory. To avoid the difficulties of interpreta-
tion, we calculated how many participants backtracked and
how many participants entered the most misleading state in
each step of a task. In this way, we can alleviate the above
issue: if the backtracking number for all participants was
large but the number of participants who experienced back-
tracking was small, it means that a few participants were
confused. Similarly, only if many participants backtracked
from a particular state can we conclude that the state was
really misleading. The two metrics related to the number of
participants are summarized in the Table 7.

Regarding backtracking, the data in Tables 6 and 7 shows
fairly uniform behavior across participants, because more
backtracking across all participants corresponds to more
participants navigating with backtracking. Regarding the

Table 7 Traffic flow metrics based on number of participants making
mistakes

Metrics T1 T2 T3 T4 T5 T6

Step 1

No. of backtracks 4 6 4 2 6 8

No. to the MMS (*) 3 2 5 2 7 8

Step 2

No. of backtracks 0 0 2 1 2 3

No. to the MMS (*) 0 0 0 2 1 2

Step 3

No. of backtracks 0 0 0 4 1 N/A

No. to the MMS 0 0 0 4 0 N/A

Step 4

No. of backtracks N/A N/A 0 N/A N/A N/A

No. to the MMS N/A N/A 0 N/A N/A N/A

*MMS = Most Misleading State

correct flow ratio and most misleading state, while the data
again shows fairly uniform behavior, there are some minor
differences that can be observed. For instance, at step 3 of
task 4, the number of incorrect flows was higher across all
users, compared to that at step 1 of task 5, but fewer par-
ticipants went to the most misleading state. This means the
problem in task 5 is more general across the users, hence
that problem should be considered to be more critical. In
summary, we can look at the data in both of the tables to rate
the severity level of usability problems.

Besides the above measurements, developers or evalua-
tors can almost “replay” the users’ behaviors if they have
time to manually review the logged events. Though time-
consuming, this approach can help to detect additional
usability problems, even for some subtle issues that were
overlooked during the laboratory-based usability testing.
For example, there was a button that overlapped with rec-
ommended applications which made it hard to be seen, so
that only one participant clicked that button and none of
the evaluators observed this phenomenon during the exper-
iment. But by examining the logged sequence, we noticed
this event and confirmed that this was a usability problem.

6.3 Comparison results

Finally, we summed up all usability problems identified
through the event logging toolkit, and compared the number
with that discovered by laboratory-based usability testing
in Table 8. Note that in this comparison we excluded the
two participants’ data that was lost with the event logging
method.

Usability problems identified by laboratory-based usabil-
ity testing are shown in parentheses (cited from Table 2) for
comparison. From the rest of the 10 participants, we identi-
fied exactly the same number of usability problems as from
all 12 participants in laboratory-based usability testing. We
can easily see that the laboratory-based testing method can
identify more cosmetic problems. All 5 cosmetic usability
issues observed through laboratory testing were not discov-
ered by the event logging method. But the event logging
method is effective for identifying critical usability issues,
including major and catastrophic usability problems. All

Table 8 Usability problems identified by auto logging method

AppJoy problem Android convention

Cosmetic 0(5) 1(2)

Minor 4(4) 1(2)

Major 5(4) 1(2)

Catastrophe 1(1) 0(0)
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critical usability problems discovered through laboratory
testing were found by the event logging method, and by
manually reviewing the participants’ behavior sequences,
we found out one more major problem that was overlooked
in the experiment. However, the shortcoming of the event
logging method is, for most of the issues it identified, that
although it can point out the location of a problem, it cannot
tell the cause of that problem. This is an issue common to
all event logging methods because they lack the information
that can be gleaned from listening to participants’ verbal-
ized thoughts and observing participants’ facial expressions
and other nonverbal signals.

Compared to laboratory testing, the event logging
method found fewer problems that were introduced by the
users’ unfamiliarity with Android conventions. We expected
this because the library cannot record the users’ interac-
tions outside of AppJoy. But because the objective of this
library is to find usability problems in third-party applica-
tions rather than in the Android framework itself, we do not
consider this to be a big issue.

7 Discussion

We have only tested the event logging toolkit on one appli-
cation, which is of course far from enough to conclude that
it can be effective to help evaluators, developers and design-
ers identify usability issues on all Android applications. We
will integrate this library into more Android applications to
validate its usefulness in the future. One thing to note is
that our toolkit does not help applications developed with-
out the Android UI framework, such as games based on
OpenGL.

On the other hand, even after conducting just one test,
we can already demonstrate that the proposed event logging
toolkit can detect some subtle actions that are difficult to
observe in laboratory testing, such as some quick moves and
the unhandled events discussed above. Meanwhile, it can
provide strong quantitative measurement and lots of statisti-
cal data describing users’ interactions with the application.
So it can at least complement traditional laboratory-based
usability testing.

The SDK we are using has been upgraded to be compat-
ible with Android Version 2.3.x (API level 10). As Android
API means to be backward-compatible, hence to be con-
sistent with future releases of Android API, we just need
to add support for new listeners and UI-related methods,
if there is any, and this is expected to be a small amount
of effort. Android 4.x introduces a variety of new features,
and alters the UI architecture to some extent, we plan to
develop another SDK that fits into Android 4.x API. In con-
cern with scalability to other mobile platforms, such as iOS,

Adobe AIR on Android, PhoneGap, we believe as long as
these platforms allow us to log event-based user interac-
tions, we are able to use the uniform mechanism (as what
we proposed in this paper) to do the analysis.

We tested the application in a WiFi network environ-
ment, which neglects possible networking problems that
could happen under poor network conditions. Although we
know that AppJoy sometimes has trouble connecting to
the server under the 3G network, we did not identify this
problem through this experiment. Hence we can see con-
text information is needed to locate usability issues under
some conditions, and this is precisely the weak point of
laboratory-based usability testing. We will include context
information retrieved from sensors of the Android device
in the next version of the event logging toolkit. Because
we can collect the users’ interaction data in a real world
environment, we can determine usability problems under
different conditions through the toolkit. We anticipate that
this approach will be a big advantage for an event log-
ging method as it is more suitable for field-based usability
testing.

Another interesting question we need to further address is
whether our usability toolkit induces new usability problems
to the applications being tested. From our design perspec-
tive, this toolkit is not expected to affect the performance
of the subject application, as we simply add some logging
statements into the original source code, and these state-
ments are supposed to be executed pretty fast. Our main
concern would be network and energy issues. We have a
separate thread posting logged data through the network,
which might compete bandwidth with other threads in this
application. The impact could be nontrivial if the application
is network-intensive. However, we can alleviate the impact
by storing the events locally and only upload when the WiFi
network is available. In addition, uploading UI events would
aggravate battery consumption, especially if the network is
intermittent. To study the performance impact, we will do
quantitative measurements in the future.

The automated metric discovery model was not tested in
a real user study, but we believe that it is as capable as what
we can do with manual effort, for which we have validated
that the automated model is able to accurately extract the
usability related metrics. The automated model outweighs
manual analysis for its significant savings on time and labor.
More importantly, it is less error prone and may discover
exceptional sequence which can be hardly observed in a
manual way, such as bypass situation discussed in previous
section. As a future work, we plan to test this model in real
user studies. Also, we are currently researching on how to
generate usability problem report in an automatic manner,
and this might require a lot of empirical knowledge learned
from the practical user studies.
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8 Conclusion

It is challenging to conduct usability testing for mobile
applications. In this paper, we present a UI event logging
toolkit that can be embedded into Android applications.
The toolkit requires minimum source code modification by
the developers and automatically uploads fine-grained UI
events to a central server. By testing a deployed Android
application, a state-machine based sequence analysis is eval-
uated using the logged events and compared to traditional
laboratory-based usability testing. The results show that the
proposed toolkit is effectively capturing detailed interaction
events, which can provide accurate and quantitative anal-
ysis of usability problems. In summary, the event logging
toolkit can discover most usability problems comparable to
those uncovered by the laboratory method, and also reveal
some unexpected issues. In future work, we will extend the
toolkit so it can be deployed for field-based journal usability
testing.

Acknowledgement This work was partly supported by the National
Science Foundation under Grant No. 1016823. Any opinions, find-
ings, and conclusions or recommendations expressed in this material
are those of the author(s) and do not necessarily reflect the views of
the National Science Foundation.

Appendix

In above sections, we only dealt with the number of usabil-
ity problems, without specifically pointing out what these
usability problems are. Here we summarize the usability
problems identified from the user study and categorize them
by their severity levels.

• Cosmetic

1. At the home activity of AppJoy, the users tried
to trigger a menu by long-clicking an item, but
the long-click listener was not implemented.

2. At location-based search activity, if the search
result is empty, the activity shows a blank
screen, instead of cueing “no result found.”

3. At recommended application activity, there is
an “install” button which misled the users to
think that by clicking this button, the installa-
tion process will be finished (actually there are
several steps).

4. The position of menu items are not consistent.
5. At Help web page, some links do not function.

• Minor

1. At location-based search activity, users clicked
on an non-editable box to alter location.

2. At location-based search activity, recom-
mended free applications did not provide infor-
mation about whether they have been installed.

3. At my downloads activity, several users com-
plained the lack of search functionality.

4. Some recommended applications cannot be
found in Android Market.

• Major

1. After the users completed installing an appli-
cation, the “install” button did not disappear
so that they thought the installation was not
successful.

2. The Help web page was outdated.
3. The most recent activity was supposed to con-

tain only applications that were not down-
loaded (according to the developer’s design),
but that was not the fact.

4. At the detailed information activity, the text
font was too small so that some important
information was easily overlooked.

• Catastrophe

1. The meaning of recommendation options at the
home activity is not clear, and the users cannot
well understand it across all tasks.

The severity level of a usability problem are mostly
related with the frequency of its occurrence and the impact
if it happens. We gathered up the notes taken by the eval-
uators, and summed up in which task and through which
participant did we notice each usability problem in Table 9.

Table 9 Occurrence of usability problems

Usability problem Which task Which participant

Cosmetic 1 1 1, 4

Cosmetic 2 5 7

Cosmetic 3 2 8, 11

Cosmetic 4 N/A Evaluator

Cosmetic 5 6 11

Minor 1 4 1, 12

Minor 2 4 3, 8

Minor 3 5 2, 7

Minor 4 2 7

Major 1 2 2, 12

Major 2 6 7, 11

Major 3 5 All

Major 4 6 9, 10, 11

Catastrophe 1 All All
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One cosmetic usability problem was discovered by the
evaluators while the users performing the tasks, none of the
users actually triggered the usability problem, so we did not
specify a particular participant number here. Some usability
problems occurred in almost all tasks or across almost all
users, so we note All here for it.
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