Software Engineering Group
Department of Computer Science

Nanjing University
http://%eg.nju.edu.cn

NJU Software
Engineering Group

Technical Report No. NJU-SEG-2015-1J-003

2015-1J-003

Lazy-RTGC: A Real-Time Lazy Garbage Collection Mechanism
with Jointly Optimizing Average and Worst Performance for
NAND Flash Memory Storage Systems

Qi Zhang, Xuandong Li, Linzhang Wang, Tian Zhang, Yi Wang, Zili Shao

Transactions on Design Automation of Electronic Systems 2015

Most of the papers available from this document appear in print, and the corresponding copyright is held by the

publisher. While the papers can be used for personal use, redistribution or reprinting for commercial purposes is
prohibited.

http://seg.nju.edu.cn/

Lazy-RTGC: A Real-Time Lazy Garbage Collection Mechanism with
Jointly Optimizing Average and Worst Performance for NAND Flash
Memory Storage Systems

Q G, XUANDONG LI, LINZHANG WANG, and TIAN ZHANG, Nanjing University

AN henzhen University and The Hong Kong Polytechnic University
IL AQ, The Hong Kong Polytechnic University

and can effectively manage the flash space with the minimum RAM cost.
On the other hand, partial gagbage coliggtion can provide the guaranteed system response time. By adopting
i izes both the average and the worst system response time, and
ace. Lazy-RTGC is implemented in FlashSim and compared with
nagement schemes. Experimental results show that our
technique can significantly improve ge and worst system performance with very low extra
flash-space requirements.

Jjoin @
provides a lower bound of reclai fregs

Categories and Subject Descriptors: B.3.2 i]: Mass Storage; D.4.2 [Storage Management]:
Garbage Collection; D.4.7 [Organization and Desi eal-TIme Systems and Embedded Systems

General Terms: Design, Performance

Additional Key Words and Phrases: NAND flash me e system, garbage collection, storage
systems

ACM Reference Format:

Qi Zhang, Xuandong Li, Linzhang Wang, Tian Zhang, Yi Wang, and Zj 015. Lazy-RTGC: A real-time
lazy garbage collection mechanism with jointly optimizing average @nd wor mance for NAND flash

memory storage systems. ACM Trans. Des. Autom. Electron. Syst. ti June 2015), 32 pages.
DOIL: http://dx.doi.org/10.1145/2746236

no. 61272103, no. 61373049), the grants from the Research Grants Council of the Hong Kong®8
istrative Region, China (GRF 152138/14E), the Germany/Hong Kong Jomt Research Scheme SPO;

G-YK24, G-YM10, and G-YN36), and Guangdong Natural Science Foundation (2014A030310269).
Authors’ addresses: Q. Zhang, X. Li, L. Wang, T. Zhang, State Key Laboratory for Novel Software Tech:
ogy, Department of Computer Science, Nanjing University, Nanjing, China; Y. Wang (corresponding author),
College of Computer Science and Software Engineering, Shenzhen University, Shenzhen, China and Depart-
ment of Computing, The Hong Kong Polytechnic University, Hong Kong; email: ssywang@comp.polyu.edu.li¥;
Z. Shao, Department of Computing, The Hong Kong Polytechnic University, Hong Kong.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by
others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to
post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions
from Permissions@acm.org.

© 2015 ACM 1084- 4309/2015/06 ART43 $15.00

DOI: http://dx.doi.org/10.1145/2746236

ACM Transactions on Design Automation of Electronic Systems, Vol. 20, No. 3, Article 43, Pub. date: June 2015.

43:2 Q. Zhang et al.

1. INTRODUCTION

NAND flash memory has many attractive properties, such as low power consumption,
fast access time, and shock resistance. Therefore, NAND flash memory has been widely
in mission-critical hard real-time systems such as aerospace [AEEC 1991] and
I-time systems such as iPhones and tablets. Different from other computing
real-time systems, a NAND flash memory storage system needs to provide
e worst and the average system response time. However, due to the constraint of
placgupdate” in flash memory, the number of valid page copy operations in the
@ s unpredictable. This unfavorable characteristic may negatively impact
Cl

11?' of system response time and make the management of the garbage
D

T s Pecome the major performance bottleneck. In this article, we propose
a real-timeflazy garbage
jointly optimizing the
storage systems.

In past decades,@ es have been conducted on the management of flash mem-
ory storage systems. A 1t of work has been conducted on storage system architecture
design [Wang et al. 2014, t al. 2013a, 2014a; Hsieh et al. 2013, 2014; Huang
et al. 2013], while others s e flash translation-layer design [Wu and Kuo 2006;
Lee et al. 2008; Chung et ; and Lin 2012]. Several techniques have been
proposed to improve the syste nce of NAND flash memory storage systems
[Hu et al. 2010; Jung et al. 2010, 2013; Huang et al. 2014a]. Different from
prior works, our scheme aims to g worst system response time and, at the

ollection mechanism to achieve the real-time property by
e and worst system performance in NAND flash memory

same time, optimize the average syst mance in NAND flash memory storage
systems. There are also many studies Wi 00; Bacon et al. 2003; Chang and
Wellings 2010] focusing on real-time garba, lgetion for computing systems with
dynamic memory requirements. However, sh memory storage systems,
the concept of garbage collection is different fr h e dynamic memory version

due to many unique constraints.

Only a few works focus on the real-time garbage cgllectioh teghniques for NAND
flash storage systems. These works mainly focus on two directifns: task-driven free-
space replenishment [Chang et al. 2004] and partial a i i
and Givargis 2008]. The first direction promises to repl

provide a lower bound of reclaimed space, these techniques haVe to storegii@guntime
information of each real-time task, which normally requires significg

to different time slots. The partial garbage collection mechanism needsmt®
some extra physical blocks as a write buffer. A queue has to be maintained
the garbage collection information. In partial garbage collection schemes, the
garbage collection is triggered very early, which may further incur lots of unnec
garbage collection with a large number of extra valid page copies.

In order to solve the performance issue of partial garbage collection, Qin et al. [2012]
proposed a real-time flash translation layer (FTL) called RFTL. In RFTL, the parti
garbage collection is distributed to different logical blocks, and each logical block 1s
pre-allocated to three physical blocks (i.e., primary block, buffer block, and replace-
ment block). RFTL can significantly reduce the number of unnecessary garbage col-
lection processes. However, the flash-space utilization of RFTL is very low and the
garbage collection process is also triggered early due to its fixed physical block alloca-
tion. Although the previous schemes can satisfy real-time requirements, they make no
specific attempt to provide a guaranteed average system response time. Moreover,

ACM Transactions on Design Automation of Electronic Systems, Vol. 20, No. 3, Article 43, Pub. date: June 2015.

Lazy-RTGC: A Real-Time Lazy Garbage Collection Mechanism 43:3

the space utilization in these schemes is another critical issue, as these schemes
necessarily allocate a large amount of extra flash memory space to ensure real-time
performance.
is article, we present Lazy-RTGC, a real-time lazy garbage collection mechanism
nsure guaranteed system response time for both the worst case and average
e minimum space requirement. Lazy-RTGC adopts the page-level mapping
that can fully utilize the flash memory space and effectively postpone the
ction process as late as possible. Therefore, Lazy-RTGC does not need to
fixed number of physical space as the write buffer, which can provide
; system response time. Through the space configuration, Lazy-RTGC
can guaye umber of reclaimed free space more than a lower bound after each

provide an upper bound of service time. The reclaimed
free space from the set of partial garbage collections, considered as a free

our scheme can not onlyjgtiarantee the reclaimed free space of garbage collection, but
also provide a determi i ion i

We have performed
scheme is the best option
collection. In order to reduc
ping scheme, Lazy-RTGC adopt
significantly reduce the RAM foo

d the results show that the page-level mapping
iemtly manage the flash space and delay garbage
apping table in the page-level address map-
and-based page-level mapping scheme that can

ieve similar performance as block-level

mapping schemes. Only the on-demandya s mappings will be allocated and stored
in the cache. Moreover, Lazy-RTGC reguires’n anges to the file system or NAND
flash memory chip, so it is a general strate afican be applied to any page-level
address mapping schemes.

Lazy-RTGC is implemented in the Flash a k [Kim et al. 2009], and a
set of benchmarks from both real-world and synth@fic t s is used to evaluate the
effectiveness of Lazy-RTGC. In the evaluation, we ¢ our, scheme with FSR
[Chang et al. 2004] GFTL [Choudhurl and leargls 008] [Qin et al. 2012],

system response
pies, block-erase

average-case system performance compared with previous work. For system
time in the worst case, our scheme can achieve 90.58% improvement compared
the pure-page-level FTL scheme. For average response time, our scheme can impr
94.08% and 66.54% average system performance compared with GFTL and RFTL, re-
spectively. For the number of valid page copies, our scheme can achieve 95.36% and
86.11% reductions compared to GFTL and RFTL, respectively. Since many valid pa
copies are reduced, our scheme can also significantly reduce the number of block-erase
counts. For space utilization, our scheme can achieve 87.5% space utilization, which is
very close to GFTL and much higher compared to RFTL. Therefore, by costing small
extra flash space, our scheme can not only provide an upper bound of the worst sys-
tem response time, but also significantly improve the average system performance and
endurance of NAND flash memory storage systems.

ACM Transactions on Design Automation of Electronic Systems, Vol. 20, No. 3, Article 43, Pub. date: June 2015.

43:4 Q. Zhang et al.

This article makes the following contributions.

—We present for the first time a real-time lazy garbage collection mechanism with
joint optimization of average- and worst-case system response time.

— opt on-demand page-level address mapping that can delay the garbage col-

rocess and provide guaranteed system response time with minimum space

strate the effectiveness of Lazy-RTGC by comparing it with representative

wor literature using a set of real traces.
The igparticle is organized as follows. We give the models and clarify the
proble 10n 2. Section 3 presents our technique details and task scheduling
algorithm.We analyze fhe task schedulability on the time level and space level in

Section 4. In Section
scheme. In Section 6
literature is prese
Section 8.

xtend our scheme to an on-demand page-level mapping
t the evaluation of our scheme. The related work in the
fion 7. Finally, we give the conclusion and future work in

2. MODELS AND PROBLEM NT

In this section, we formula s and clarify the problem we want to solve in
this work.

2.1. Task Models

In this article, each I/O request issu the file system to NAND flash chip is
modeled as an independent real-time t er, wr, dr,rp}, where pr, er, wyp,
dr, and rp denote the period, execution time maximum number of page writes

per period, deadline, and the release time asley respectively. Without loss of
generality, we assume that the deadline d of e t 1S%qual to period p. There are
two kinds of data request task: read task (7}.) and§writ (T,). Here w is equal to
0 if it is a read task; w is equal to 1 if it is a write task” pr fepregents the frequency
of read and write requests issued from the file system, while denotes the time of
executing a read or write request, which is determine
memory. The lower bound on pr (denoted as L(pr)) deter maximum arrival
rate that the flash storage system can handle. The upper bo on ey (denoted as
U(er)) represents the longest execution time of a request that Would b
flash memory storage system.

The release time of the data request task depends on the request exé
the location of the task in the queue. In our model, the garbage colle
independent from the logical address of coming data tasks. That is, th

the data request task in the queue does not influence the current garbage
process. Therefore we can calculate the release time of each task 7; as follows:

nw ne
ry, = E er; + E er, +er;.)
j k

In Eq. (1), n,, and n, represent the number of write tasks and read tasks in queu
before T;, respectively. Therefore the release time of T} is the sum of three execution
times, that is, the execution time of read tasks before T}, of write tasks before T;, and
of Ti .

Due to the constraint of “out-of-place update” in flash memory, garbage collector
is used to reclaim free pages from obsolete invalid pages. In this article, we model
the process of garbage collection as a garbage collection task G = {pg, eg, wg, dg, rg},
where pg and eg represent the period and the total execution time, respectively. The

ACM Transactions on Design Automation of Electronic Systems, Vol. 20, No. 3, Article 43, Pub. date: June 2015.

Lazy-RTGC: A Real-Time Lazy Garbage Collection Mechanism 43:5

total execution time of a garbage collection task includes the time cost to copy valid
pages in a victim block and the time cost to erase the victim block. wg denotes the
number of reclaimed pages after garbage collection. dz and rg, the same as defined in
T, rgpresent the deadline and release time of the garbage collection task. When the
f free pages is smaller than the predefined threshold, the garbage collector
a victim block and schedule the corresponding garbage collection task for
1ng the victim block. Since the atomic operations cannot be interrupted in the
, the garbage collection task G and the data request task T exist in
hat is, the data request task cannot be executed until the completion of
bage collection task.

models, we give the definitions of system response time in NAND

flash mem storage systems. There are two main processes during the system re-
sponse time. One procegs’1S§ithe execution time of a data request task 7}, which includes
the time cost for logi sical address translation (denoted by #,44-) and the time
cost for the atomig (read or write operations). Another process is time cost
to schedule garbage collgction tasks before executing 7;. The system response time is
given in Eq. (2).

es = lexec + laddr + tgc~ (2)
In Eq. (2), tres, Loxec, tuddr, a0 eprésent system response time, data request execution
time, address translation time,{an bage collection time, respectively. Since the
address translation overhead in t least an order of magnitude less than
the flash operation time, we mainly di . and . of the tasks, which correspond

to ey and eg, respectively, in our tas) rthermore, we define the response

time for one data request task as follows!

Definition 2.1 (System Response Time). d request task 7; the garbage
collector schedules a set of garbage collection %: {G1,Gs,...,G,} (n = 0 if
there is no scheduled task G;) before the executién of . The system response
time for task 7 contains the execution time of task (efy) andithedbtal execution time
of the scheduled garbage collection tasks (V). That is,

RT,- =er, + Zegj, n>0. (3)
j=1

Without loss of generality, we assume the garbage collector sche
garbage collection task for each data request task. Then, we give the
average response time and worst-case response time in our models as

Definition 2.2 (Average System Response Time). Given a set of data requegt'tas
7 = {T1,Ts, ..., T,}, the average system response time is the arithmeticémea
system response time of the tasks in the V. That is,

1 n
=-Y Rr. n>0. 4)
st

Definition 2.3 (Worst-Case System Response Time). The worst-case system re-
sponse time in the flash memory is bounded by the worst-case execution time of the
data request task (U(er)) and the worst-case execution time of the garbage collection
task (U(eg)). That is,

URT) = Uler) +Uleg)
max{tyq, tyr} + (7 — Dteg + twr) + Lor. (5)

ACM Transactions on Design Automation of Electronic Systems, Vol. 20, No. 3, Article 43, Pub. date: June 2015.

43:6 Q. Zhang et al.

Victim Data Block Free Block

' A
Valid Page Ci
ge Copy C A4
D
B v
[D |
LB]
(a) Valid Page Copies (A=4)
29us ! 220ps
Data
Task Tr1 Tw2 Tw3 >
GC

Task e
——— 4988ys ———» Time
——— R=5208ys ——»
(b) A=12

Tw3

»
»

»
Time

inistic garbage collection.

In Eq. (5), t.q and t,, denote the exeégution’'time of reading and writing one page,
respectively. = represents the total nu a in one block. In the worst case,
the garbage collector selects a victim bloc — 1 valid pages. We present the
execution process of the garbage collection ta 2.2 and show why it causes
nondeterministic system response time.

2.2. Nondeterministic Garbage Collection

A garbage collection task mainly consists of two subtas
erase. Valid page copy, also called atomic copy [Chang et al.

copies and block

dictable in each victim block, the execution time of each garbage collection ta
able. Figure 1 shows an example of nondeterministic garbage collection. In Figur
suppose there is a victim block with four valid pages. Then, A = 4 and all valid pagesd
the victim block are rewritten to another free block. Figure 1(b) and Figure 1(c) show
the different system response time due to the nondeterministic value of 1. Suppose

t.q, and t,, are 220us, 29us, and 2000us, respectively. When executing write task T2,
the garbage collector triggers a garbage collection task G and the victim block has 12
valid pages (. = 12). Thus, to reclaim such a block takes 12 x (29+220)+2000 = 4988us.
Since T2 needs to wait for the completion of G, the system response time for T, is
R = 220 + 4988 = 5208us. In Figure 1(c), if A = 2 in the victim block, the execution
time of the garbage collection task is 2 x (29 + 220) + 2000 = 2498us and the system
response time is only R = 2718us. Therefore A causes unpredictable execution time of
the garbage collection.

ACM Transactions on Design Automation of Electronic Systems, Vol. 20, No. 3, Article 43, Pub. date: June 2015.

Lazy-RTGC: A Real-Time Lazy Garbage Collection Mechanism 43:7

2.3. Problem Statement
Based on the task models and concepts, we further clarify the problem as follows.

Gi a data request task set Vp = {T4, Ts, Ts, ..., T} and the garbage collection
Ve = {G1, Go, ..., G} on system demand, we want to obtain a task schedule

whicl® each data request can be executed within the upper bound U/(Rr) in the
wougst case, and the average system response time can be guaranteed with low space

EAL-TIME LAZY GARBAGE COLLECTION MECHANISM

present our real-time lazy garbage collection mechanism which
and average system response time. The system architecture
W The task scheduling scheme for Lazy-RTGC is introduced
in Section 3.2 and th gad analysis is presented in Section 3.4.

3.1. Page-Level Adc gs in Lazy-RTGC
In the proposed Lazy- physical flash space can be partitioned into three
areas: valid data area, 1hv: 3 area, and free area. The valid data area stores the

ed and the latest data is rewritten to another
free page, the obsolete data be tojthe invalid data area. The free area contains
free pages that can be utilized
page-level address mapping sche
physical blocks or pages. Therefore ou

ee areas are not predefined to specified
can maximize the space utilization. In
ieabh address space is normally smaller
ash memory chip. This is because
anagement of physical spaces in
afldmess mapping tables, reserved
dvan of these physical blocks,
the size of the logical address space can help determi e lower bound of reclaimed
free pages in the garbage collection.
In Lazy-RTGC, the page-level address mapping ta

Page-level address mapping can provide high performance

than the actual physical address space 1 egRawW
some physical blocks are utilized to manipu @,
flash memory (e.g., translation blocks that sto¥e

the write buffer and the trigger condition are independent fro

the coming requests, any free space in the flash can be considered as
Therefore Lazy-RTGC can delay the scheduling of garbage collection
possible. That is, Lazy-RTGC will schedule garbage collection task

collection can significantly reduce the overhead that may impact each si
request. This could significantly improve the average system response time. Bas
this observation, Lazy-RTGC adopts the page-level mapping scheme to achieve are
time performance and further provides good average system performance in NA
flash memory storage systems.

3.2. Task Scheduling of Partial Garbage Collection Tasks

In our models, there are two kinds of tasks: the data request task (T') and garbage
collection task (G). The flash memory controller serves the data request task to execute
the atomic read or write operation. The garbage collector generates partial garbage
collection tasks when the number of free pages in the flash memory is below the
predefined threshold. If there is no garbage collection task, we schedule the data request
tasks sequentially by coming order of the requests. Otherwise, the garbage collector

ACM Transactions on Design Automation of Electronic Systems, Vol. 20, No. 3, Article 43, Pub. date: June 2015.

43:8 Q. Zhang et al.

first selects a victim block and then generates several partial nonperiodic garbage
collection tasks for reclaiming the victim block. Finally, the generated partial garbage
collection tasks are scheduled to execute behind each write task one at a time until
irgexecutions are completed.

r to hide the unpredictable service time of garbage collection, the partition

ollection task in previous schemes should be divided into several partial
e asks. Each partial garbage collection task executes many atomic
operation ch as valid page copies or block erase, until the total execution time
reaches the minimal dg e. Moreover, the block-erase operation, as the longest time
D
[)

cost operation, can berrupted in the partial garbage collection task so that its
execution time is deadline of each G;. Therefore, the execution time of
each garbage collection is guaranteed so that the worst system response time can be
al ound.

In Eq. (7), we define « as ber of valid copies in each partial garbage collection

task, which is a constant speci e flash storage systems.

&) @
wr
ALGORITHM 1: Task Scheduling of Part

Input: A set of data request task (Vp = {T7,
tasks (Vg =), garbage collection thresk
Output: A task schedule.

1 for each T; € Vr is executed do
2 if T, ¢ T, then

wJAan empty set of garbage collection
@ and the number of free pages (®).

3 if Vi # ¢ then

4 rg; < rr, +er;

5 remove_gc_task(G;);

6 end

7 if ® < p;, then

8 PBN,ctim < get_victim _block() ;
9 Ve < generate_gc_tasks(PBN,ictim) ;
10 rg;, < I, +er ;

11 remove _gc_task(G;) ;

12 end

13 end

14 end

Lazy-RTGC will not schedule garbage collection tasks after the execution of read
tasks, since read tasks do not consume free pages. Thus Lazy-RTGC will not affect ghe
read performance.

The task scheduling of partial garbage collection tasks is presented in Algorithm 1.
The inputs of the algorithm contain a set of data request tasks, a set of garbage
collection tasks, the threshold of garbage collection, and the number of free pages in
the flash. The output is a task schedule of the garbage collection tasks, each with
guaranteed execution time. Algorithm 1 handles each data request task from the data
request set one by one and removes the task from the set after it is executed. In line 2,
the type of data request task is identified to decide the garbage collection task schedule.

ACM Transactions on Design Automation of Electronic Systems, Vol. 20, No. 3, Article 43, Pub. date: June 2015.

Lazy-RTGC: A Real-Time Lazy Garbage Collection Mechanism 43:9

V(T) w1 2 w3 r4 w5 wb

DATA T N M T
wT 1 0 1 0 1 1
Victim Block . Current Data Block
PPN_[DATA Val(I:d Page PPN | DATA Tt
8 E opy 24 T 5 ™56 Threshold
9 EN- - 25 N le Tw3
10 A I Gl » 26 E
11 B |-/ [27 B
12 C 28 M [« Tw5
13 A r G2 > 29 A
14 D Tt »[30 C
15 Chlt--- 31 T [« Twé
Free Block
PPN [DATA
8 . GC Threshold

Task

R1 | R2 |

[] Invalid Page

Fig. 2. An example task e 1in lazy-RTGC.

As shown in lines 2 to 6 of Algorithm 1, if the ct
garbage collection task set is not empty, it schedules o
the set and removes it once executed. The response ti

a write request and the
llection task from
age collection task
the upper bound
ime). Otherwise,
y and the number
of free pages is lower than the threshold, our scheme will pi€k up onegwietim block
and generate garbage collection tasks from the victim block. These ge
collection tasks are pushed into the set, where the valid page copy

from the V1 and schedules the garbage collection task from Vg according to t
data request task and the space usage of flash space. Suppose there are N data re
tasks in the set of V, the algorithm will schedule all tasks one by one. Therefore
complexity of Algorithm 1 is O(N).

In order to avoid flash in the long-term worst case, Lazy-RTGC can be optimi
by making use of system idle time. That is, Lazy-RTGC schedules the partial garba
collection task in system idle time, even though the flash does not meet the worst case.
To reduce the impacts to average performance, we select that victim block with no
valid pages and only schedule the partial garbage collection task after write tasks. As
a result, Lazy-RTGC rarely meets the worst case and the system performance can be
further improved.

Figure 2 shows an example task schedule generated from Lazy-RTGC. Suppose there
is a set of data request tasks Vp = {Ty1, Tre, Tws, Tr4, Tws, Twe), where T,; represents

ACM Transactions on Design Automation of Electronic Systems, Vol. 20, No. 3, Article 43, Pub. date: June 2015.

43:10 Q. Zhang et al.

the write task and T;; denotes the read task. When the flash storage system serves the
request task T, 3, the garbage collector will invoke garbage collection as the number of
free pages is smaller than the predefined threshold. Suppose « = 2, which means each
e collection task can execute at most two atomic copies. Since the selected victim
4 valid pages, the garbage collector generates 3 garbage collection tasks, Gy
valid page copies and G; for victim block erase. The garbage collector can
free pages only after finishing the erase operation. Therefore wg, = 0, wg, =0,

Siequal to —(8 — 4) = —4 (a negative value represents the reclaimed pages).

e in a flash storage system. Task Gy is scheduled after T',5, which
T, 3. After the completion of task Gs, the victim block is
ock that can be used to handle the coming tasks.

In this section, we an the system performance of our scheme and compare it

with representative real-ti emes. Given that the worst case does not happen
frequently, the average ‘sygte ponse time is becoming another important metric.
The previous work in the Yiteraftirggmainly focuses on providing an upper bound of
service time in flash storage Systems, but ignores the average system response time.
Therefore these real-time schemes er_significant performance degradation even
though they can guarantee the w erformance.

Worst System Performance. The syste ponse time in the worst case consists

of the upper bound of a data requestSask @ndgthe deadline of a garbage collection
task by using partial garbage collection. The fisee-space replenishment strategy in FSR
[Chang et al. 2004] cannot guarantee the wo @ prmance due to missing dependent
real-time task information. GFTL, RFTL, and*azy can guarantee the worst-
case response time by adopting a partial garbagé’collegtion technique. Due to the
address mapping scheme, the upper bounds of the'threé’schéines are different. GFTL
[Choudhuri and Givargis 2008] uses a block-level mapping s , where the logical

page number is written into the OOB area. There are
operations within the process of handling data request tas

mapping scheme and the mapping table is partially stored in4€he OOB
are some OOB operations during address translation. Since our schemefa
level mapping scheme whose mapping table is maintained in the RAW
extra OOB operations compared with GFTL and RFTL. Therefore I
provide the minimal upper bound of worst system response time.

NAND flash memory storage systems due to the valid page copies and bl
ing. Our scheme does not need to specify certain flash space as the write buffer.
is, any free space can be used as the write buffer due to the adoption of a page-le
mapping scheme. The threshold of garbage collection is only related to the rest of
the physical free space. The garbage-collection-triggered time is postponed as lategas
possible in Lazy-RTGC, which maintains high average performance.

Compared to our scheme, GFTL cannot provide good average performance. The main
difference between GFTL and Lazy-RTGC is that our scheme can not only guarantee
the worst-case response time, but also provide good average system performance. GFTL
predefines a number of physical blocks as the write buffer and maintains a central
garbage collection queue to decide which logical block is used for garbage collection.
Once the primary block is full, the data should be written to the write buffer and invokes
partial garbage collection for the primary block. The early garbage collection will cause

ACM Transactions on Design Automation of Electronic Systems, Vol. 20, No. 3, Article 43, Pub. date: June 2015.

Lazy-RTGC: A Real-Time Lazy Garbage Collection Mechanism 43:11

Table I. Service Guarantee Bounds of Ideal Case [Ban 1995], FSR [Chang et al. 2004], GFTL [Choudhuri and
Givargis 2008], RFTL [Qin et al. 2012], and Lazy-RTGC

Bounds | Uley) | Ulew)] URT) LU] UG) \
trdpg twrpg ter e 0.99
trdpg twrpg Uler) +Uleg) o X7 N/A
brdng + Ttrdoob twrpg tor + max{U(e;), Uley)} b4 1- [k +D]/2n
trdpg + trdoob twrpg + trdoob max{U (e;), ter + Uley)} T 1/3
lrdpg turpg max{U(e;), ter +Uley)} | 0 xm [(r — Dal/l(e + Dl

and valid page copies. As a result, GFTL suffers significant average
system perférmance degradation.

RFTL pre- allocates hysical blocks to one logical block so that the execution of
i 3 ly related to the log“lcal block. That is, once the primary

in many physical blocksgtbelonging to other logical blocks GFTL and RFTL all trigger
garbage collection. Thg garbage collection in GFTL and RFTL is invoked
very early and the space may be very low under unbalance workloads. As
a result, average system p is degraded and the high number of block-erase
counts indirectly impacts th uranceof the flash memory. As average performance
and the space utilization are alse i ortant since the worst case does not frequently
happen, our scheme can not onl upper bound of execution time for each

ge writing, and OOB reading
ical address space which used
eclaimed free space after

ent a hypothetical
executed directly
on is the longest
atomic operation in the flash and cannot be interrupted, the 2/(i
t.-. FSR is a representative scheme of a free-space replenish t strateg hich can
provide an upper bound of valid pages in the v1ct1m block (denoted as

of a read or write task so that it impacts the read performance. The U(o) in
1 — [(x + 1)]/27, where « is the number of steps in partial garbage collectién.
GFTL cannot guarantee the valid pages in a victim block, in the worst case
[(m — Dtrdpg + Ttrdood + Tturpgl /ter + 1. RFTL and our scheme only schedule gar
collection tasks after the completion of write tasks, so there is no read performance
degradation. The (o) in RFTL is only 1/3 due to fixed block pre-allocation and thatin
Lazy-RTGC depends on the specification of flash. In the next section, we will prese
and analyze some properties and task schedulability to prove the bounds on time and
space requirements.

3.4. Overhead Analysis

The resource overhead in Lazy-RTGC mainly comes from the RAM footprint and flash
space. Due to the big page-level mapping table maintained in the RAM, Lazy-RTGC
has large RAM-space consumption. For 1GB flash space, it requires 2MB RAM space to

ACM Transactions on Design Automation of Electronic Systems, Vol. 20, No. 3, Article 43, Pub. date: June 2015.

43:12 Q. Zhang et al.

store the mapping table. To solve this problem, several on-demand approaches [Gupta
et al. 2009; Qin et al. 2011; Zhang et al. 2013] have been proposed. They can provide
the page-level mapping performance but only cost RAM space similar to that in block-
apping schemes. In order to guarantee the number of reclaimed free pages
garbage collection, the logical address space is configured smaller than the
ical flash space. Therefore Lazy RTGC has flash space overhead. The space

. Lazy-RTGC can achieve 87.5% space utlhzatlon By adopting a page-
scheme and partial garbage collection, the CPU resource consumption
slation is close to that in the page-level mapping table. There are
ing resource requirements in partial garbage collection, since it
only defin e partial task start point and finish point. Therefore the CPU resource
consumption is simila i

In this section, we analyze ds of the worst system response time of each data
tire process of garbage collection is divided into
nd each task G has the same deadline which
is equal to the longest executio the atomic operations in the flash. We use A
to represent the number of vali he victim block and use M (Vg) to denote
the total number of generated garbage on tasks. Then we can define N (Vg) as
follows.

several partlal garbage collée

N(Vg) = { (8)
Based on Eq. (8), we can get some properties @f paftial’garbage collection tasks.
Property 4.1. Since the erase operation is the lon atgmic

flash memory storage systems, the deadline of each\garbage£bllection task (dg) is
equal to .

Property 4.2. If . = 0, the number of generated garbage coll
1, which is the minimal number. That is, N(Vg) = 1. For the
where the victim block has the maximal number of valid pages, the nu
garbage collection tasks also reaches the maximal value according to

From the preceding properties, we propose Lemma 4.1 to analyze pa g
collection tasks.

LemMma 4.1. The garbage collector can generate a finite number of partial gagbag
collection tasks from any garbage collection. The size of the garbage collection task
(N (V@) has an upper bound which is only related to the specification of the NAND flash
storage system.

Proor. Since each block has a fixed number of pages in the flash memory, the number
of valid pages in the victim block has an upper bound of 7 — 1 (i.e., at least one invalid
page). Moreover, Property 4.1 shows that ¢, is the longest atomic operation execution
time. %, is the minimal value of deadline for each G;. Since the garbage collector doesn’t
generate more partial garbage collection tasks until all previous tasks are scheduled,
the upper bound of N (V) can be obtained, which is only related to = and «. Therefore

ACM Transactions on Design Automation of Electronic Systems, Vol. 20, No. 3, Article 43, Pub. date: June 2015.

Lazy-RTGC: A Real-Time Lazy Garbage Collection Mechanism 43:13

the upper bound of N (V) is only affected by the specification of the NAND flash storage
system. O

Baged on the properties and lemma of partial garbage collection tasks, we further

nd G; have dependency, the worst system response time is the pe-
e start time of T and the ﬁmshmg t1me of G;. Accordmg to Lemma 4.1,

response time in the wg¥st

4.2. Bound of the Reclaimed a

In our task models of the NAND flasRistorage system, the schedulability of data request
tasks and garbage collection taskStis not lated to the guaranteed system response
time, but also to the free space in the fl t is, if there is no free space to allow the
execution of write operations or atomicicopi88y tasks cannot be scheduled and executed
successfully. Therefore, in this section, t a q@irement (w) in the task is discussed
and we give the bounds of the space configu promise the tasks’ schedulability

on the space level.
Since the entire garbage collection task is diVaded”into several partial garbage col-

lection tasks and each task is executed behind on&wri t one time, our scheme
in fact delays the reclaiming time. On the other handffby maki se of a page-level
mapping scheme, our scheme can fully use each free in ash space, that is,

each free block can handle data from both the atomic copie thelgarbage collection
tasks and the write data request tasks. Therefore our schéme cafi’improve the space
utilization.

Here we summarize the property of the space requirement as follow

Property 4.3. If N(Vg) = k, the total free pages’ cost on the depende

is Zf’:l wr,, while the reclaimed free space after & partial garbage co
T = A

From Property 4.3, we can observe the space dependency between datd”req
tasks and garbage collection tasks. That is, garbage collection tasks depend o
request tasks to be scheduled, while at the same time data request tasks depend on
reclaimed free space from the garbage collection tasks to be executed. Therefore it can
be considered as a producer and consumer problem, where the garbage collection t
is a producer to reclaim the free space while the data request task is a consumer to
cost the reclaimed free space. When there is no free space in the flash, the data request
task cannot be executed so that the corresponding garbage collection task cannot be
scheduled either. Moreover, there is no reclaimed free space due to the failed scheduling
of the garbage collection task. As a result, in this situation, the flash memory never
has free space and no write task nor garbage collection task can be scheduled. In order
to protect our task scheduling from such deadlocks, we need to promise the following

ACM Transactions on Design Automation of Electronic Systems, Vol. 20, No. 3, Article 43, Pub. date: June 2015.

43:14 Q. Zhang et al.

equations.

k k
> wr, < (—wg)
i=1 j=1

9)
kE<(m—2A)

pqual to 1 for each write task, Zle wr,, is equal to £ and has an upper
) is the number of reclaimed free pages of one victim block, which is

equal to"@P— ever, due to the unpredictable A in each victim block, flash memory
cannot giv ound of reglaimed free space. In our scheme, we adopt the strategy used
in Chang et al. [2004] s#fhich

of valid pages in eack
guaranteed numb

> the number of data pages is denoted as © and the number

of logical pages is bounded the garbage collector adopts a greedy policy to select
a victim block, the numberfof ages in the victim block can be guaranteed to an
upper bound (denoted as U () = f% x 7.

Proor. The garbage collector @do reedy policy to select that victim block with
the least number of valid pages. im block is picked out with A’ =U/(L) + 1
valid pages and the flash space is fullg’u hus other blocks have at least 1’ valid

pages. Suppose there are N data blocks = N,A=XN= w +N=A+N.
Obviously, the number of logical pages contf@dicts)the assumption in the theorem.
Therefore /(1) is the upper bound of the nu af valid pages in the victim block. O

Since Theorem 4.3 gives an upper bound of va es 1n each victim block, the value
of (m — A) can also provide a lower bound of the fltimb invalid pages. Therefore,

we further propose the following theorem to analyze th€'sche ity of data request
tasks and garbage collection tasks in terms of space requirem

THEOREM 4.4. The garbage collection tasks can be sche
tasks when and only when the lower bound of reclaimed space is
the upper bound of space requirement of dependent write tasks.
partial garbage collection tasks in the Vg, the flash memory has enoug
space to schedule newly generated garbage collection tasks in the futu

Proor. According to Eq. (9), k is the free page cost of the write fas
scheduled garbage collection tasks. In Lemma 4.1, we show that A (Vg) ha
bound. On the other hand, we prove the number of reclaimed free pages in e
block has a lower bound in our scheme. If the upper bound of N (V) is always 1
than the lower bound of the reclaimed free space, we can promise that there alwa
exists enough space for scheduling data request tasks with garbage collection tasks.

Since we limit the logical address space lower than the total flash space, our sch
also has a trade-off of flash space compared with previous works. In order to reduce
such space overheads as much as possible, we set & to be equal to the lower bound of the
reclaimed space. Then, we have the following equation by combining Egs. (6) and (9).

A< F];;ll)q' (10)

In order to simplify the representation, we use o to denote the ratio of logical address
space to total physical space (i.e., physical-space utilization). Therefore the upper bound

ACM Transactions on Design Automation of Electronic Systems, Vol. 20, No. 3, Article 43, Pub. date: June 2015.

Lazy-RTGC: A Real-Time Lazy Garbage Collection Mechanism 43:15

of A analyzed in Theorem 4.3 can be represented as [o x 7]. Further, we can get the
following equation of the space configuration parameter of o in our models.

(r — Da
< .
“(a+ D
e, we can see that o is only related to the specification parameters (« and 7)

(11

o1
In order elay scheduling garbage collection tasks as much as possible, we define

the minimal threshold g
tion task compared

wious schemes. We give the following equation to define
the garbage collecf; ld (denoted as p;). That is, we can execute write tasks
without scheduled INg@rbage collection tasks until the free space is under the p;.
Here U/(k) and U()) repr sen upper bound of free page costs and valid page copies
during the garbage coll8cti , respectively.

UR) +UD). (13)

4.3. Space Configuration

Since the space configuration o

six representative flash memory chi
utilization and the specification. Tab
flash chips, and Table III presents the
the parameters in Table II. NAND flash de
level cell), MLC (multilevel cell), and TLC ({rip

is only related to « and =, we select
w the relationship between the space
e parameters of different NAND
zation for different schemes using
be categorized into SLC (single-
ge/l) flash memory. SLC flash
ste erformance and greater
reliability. An MLC and a TLC cell can represernit multiplefvalues so as to provide
high storage capacity with performance and reliabilitl)y degradagion. Lazy-RTGC can
achieve about 87% space utilization in SLC NAND t the worst space
utilization (about 49.6%) in Samsung 512MB MLC NAND space utilization
is decided by the ratio between the sum of ¢.; and ¢,, and the . Smce the ratio is
only 1 in Samsung MLC NAND flash, that is, each partial
data page, Lazy-RTGC reaches the worst space utilization, which is a
entire flash. GFTL has better space utilization compared to our sch
performance degradation. Since RFTL pre-allocates three physical bloc
block, its space utilization is about 33.3%, not related to specification of
utilization of FSR is decided by the real-time task information so that it does
a fixed upper bound. The ideal scheme has the highest space utilization sin
the Pure-Page-Level mapping scheme without considering real-time properties,
NAND flash memory has high storage capacity but its performance is poor. GF'T
our scheme have low space utilization on a TLC NAND flash memory specification.
From the theoretical value comparison, Lazy-RTGC shows better space utilizatio
SLC NAND flash than those in ML.C and TLC NAND flash. Moreover, SLC NAND flas
has good reliability and endurance so is more suitable to real-time embedded systems.
Therefore Lazy-RTGC can be applied on SLC NAND flash for real-time systems.

5. EXTENSION TO ON-DEMAND ADDRESS MAPPING

Page-level address mapping in Lazy-RTGC can improve the average system per-
formance by postponing garbage collection operations as late as possible. However,
the big address mapping table costs large RAM space, which is not suitable for

ACM Transactions on Design Automation of Electronic Systems, Vol. 20, No. 3, Article 43, Pub. date: June 2015.

43:16 Q. Zhang et al.

Table Il. Space Configurations in Different Flash Memory Chips

‘ NAND Flash H tea(us) ‘ twr(us) ‘ tor(1us) ‘ 7 ‘ Uo) ‘
Spansion 512MB SLC NAND Flash [Spansion 2013] 25 200 2000 64 0.875
hiba 512MB SLC NAND Flash [Toshiba 2012] 25 300 3000 64 0.886
512MB MLC NAND Flash [Samsung 2007] 60 800 1500 128 | 0.496
Micron 16GB MLC NAND Flash [Micron 2012] 50 1600 5500 256 | 0.747
'oshiba 2GB TLC NAND Flash [Toshiba 2008] 250 2700 4000 192 | 0.497

Table Ill. Space Utilization Comparison
D Flash | Ideal | FSR | RFTL | GFTL | Lazy-RTGC

Spansion 5 B SLLC NAND Flash [Spansion 2013] 92.9% 87.5%
Toshiba 512MB SLC NANPWlash [Toshiba 2012] 92.9% 88.6%
Samsung 512MB MLC 2 [Samsung 2007] 99% N/A | 33.3% | 68.8% 49.6%
Micron 16GB ML@INA [Micron 2012] 84.2% 74.7%

Toshiba 2GB TLC NANDF [Toshiba 2008] 59.6% 49.7%
resource-constrained emb tems. In this section, we present how to apply our
scheme to on-demand pagesleve ing.

5.1. Lazy-RTGC for On-Demand Page-Level"Address Mapping

To solve the big RAM cost in pa ing, some on-demand approaches have
been proposed [Gupta et al. 2009; Qin 011; Zang et al. 2013]. We select DFTL
[Gupta et al. 2009], a representative ongdemandeeheme, to introduce how to apply our
Lazy-RTGC scheme to on-demand page-leve

5 translation blocks. The entire
page-level mapping table is stored in translatis mliach translation page stores
ical address. Frequently
used mapping items are cached in a cached mappin, in the RAM and
there is a global translation directory (GTD) to trac i
The performance of DFTL is close to those of pure-pag
space it requires is close to those of block-level mapping sch s it can be applied
translation blocks
and CMT, it is more difficult to jointly optimize its worst-case response ti
response time.

Compared with pure-page-level address mapping schemes, DFTI

address mapping of the write request if we could not find the mapping informa#ton fr
CMT; second, by caching the new address mapping information into CMT, it may
an eviction operation that will introduce one read and one write operation in order,
write the updated mapping item back to the translation page. Similarly, in the worst
case, one read request also incurs two extra read operations and one write operati
In order to jointly optimize the average- and worst-case performance of DFTL, w

apply Lazy-RTGC to manage both the cached mapping table and translation blocks.
To make our scheme easily extended to other on-demand page-level schemes, we do
not modify the data structures of DFTL. Our scheme includes three tasks, namely
the data-block partial garbage collection task (denoted as DG), the translation-block
partial garbage collection task (denoted as T'G), and the translation page writeback
task (denoted as TW). Basically, DG manages partial garbage collection for data blocks,
TG manages partial garbage collection for translation blocks, and TW writes several

ACM Transactions on Design Automation of Electronic Systems, Vol. 20, No. 3, Article 43, Pub. date: June 2015.

Lazy-RTGC: A Real-Time Lazy Garbage Collection Mechanism 43:17

Free Data Block Free Translation Block

The free pages for valid data page copies At The free pages for valid translation
page copies

The free pages for serving write requests that The free pages for holding translation

are interleaving with the partial tasks of DG Aw pages written back by TW

B

The free pages for serving write requests that
are interleaving with the partial tasks of TG

The free pages for serving write requests that
are interleaving with the partial tasks of TW

A 4

Fig. 3. An example of Lazy-RTGC for DFTL.

translation pages ba
items in CMT toget o0 reduce the size of CMT. Our basic idea is to guarantee

the worst-case scenario.

(1) A predefined numb ages in data blocks and a predefined number of free
th of the numbers are not larger than 7) are good
) ing execution of the aforesaid three tasks.

(2) After the three tasks have been finished, one new free data block and one new
here is always enough space for garbage
collection, even in the worst-c

Figure 3 shows an example in whichja d and a translation block are used
to provide free pages that can hold all w gueSts for data and translation pages,
respectively, when the three tasks are execu

in partial garbage collection
manner in which each is divided into partial tas eduled to interleave with
tasks that serve read/write requests (see Figure 4 for a, le).JIn TG, Lazy-RTGC
is applied in garbage collection for translation blocksy(i garbage collection
operation is divided into a partial task for copying vali pages and one for
erasing the victim translation block. Moreover, the overp ilg strategy is also
slation blocks, we
can guarantee the maximum number of valid translation page a victim pslation
block so the number of partial tasks of TG can be bounded. In DG,

the upper bound of the execution time of TW is ¢, and each TW task can
translation pages. DG, TG, and TW are independently invoked based on thei
thresholds. When all or any two of them are triggered at the same time, the precede
order is DG > TG > TW.

The worst-case scenario occurs when DG, TG, and TW all reach their threshold
the same time. Based on the preceding precedence order, DG is first scheduled to
executed. Since all related address mapping information will be cached in CMT, DG
will not introduce any updates for translation pages. Next, TG will be scheduled to
be executed after DG has finished. In TG, as data blocks and translation blocks are
separated, valid translation pages from a victim translation block will be copied to
another translation block. Thus TG itself does not require data pages. However, free
pages from data blocks are still needed to serve write requests during the execution
of TG, because partial tasks of TG are interleaved with tasks to serve read/write

ACM Transactions on Design Automation of Electronic Systems, Vol. 20, No. 3, Article 43, Pub. date: June 2015.

43:18 Q. Zhang et al.

requests. Finally, TW is scheduled to write address mapping items back to translation
pages in a batch manner. The number of TW tasks is decided by the size of CMT
and the thresholds of DG and TG, which is discussed in detail in space utilization
in Sgetion 5.2. Free pages requlred by the three tasks can be prov1ded as shown in

e Write requests that are interleaving with the partial tasks of DG. And
uires), translation pages for valid translation page copies in translation blocks,
ages provide the space for write requests interleaving with the partial
hen TW writes A,, translation pages back while %, data pages are used
] . As discussed in Section 5.2, based on the overprovisioning strategy,
we can gue +ki+Arg+k, <mand A; + A, <, so our scheme can work in the
worst-case gfenario.
Figure 4 shows a s
partial garbage col
only one free datg
and DGs are scheduled/#

example. Suppose each block has eight pages and each
task can copy at most three valid pages. When there is
garbage collection of the data block is triggered. DG,
er T,; and T9, respectively, to copy the valid data pages
and erase the block. garbage collection, the updated address mapping
items from valid page copi rite requests are cached in CMT. After the data-
block garbage collection, siace is, close to full and the translation block has not
reached the threshold, Lazy-RTGC\generates a TW task (write back TP19 and TP45)
that is executed after T',4 to wriite Back the corresponding updated mappings to the
current translation block. Then, i
translation block is smaller than th
garbage collection. After executing T,
three translation pages (TP11, TP18, and
in T'Gs, the victim translation block is erase
aresult, one new free data block and one new
our scheme.

esliold. This will trigger translation-block
itegio PPN30, we schedule TG, to copy
the current translation block. Then,
widhat serves a write request. As
19 ion block are reclaimed with

5.2. Bound Analysis

In this section, we present bound analysis for applying - n DFTL. We start
with the worst-case response time, then discuss the averagé”case gesponse time, and
finally analyze space utilization.

Worst-Case Response Time. Lazy-RTGC for DFTL includes®two kinds
collection operations: data-block garbage collection and translation-blg

garbage
garbage col-

so that it does not incur translation page updates. In the worst case, there i§a ca
miss to handle a write request. Accordingly, there is an extra read translation
operation to locate the address mapping information. Thus the worst-case respo
time is as shown in Eq. (14).

UR7) = max{Ul(e,), t,, + Ule, +e,)}.

Average-Case Response Time. Since the entire mapping table is stored in the trans-
lation blocks, the operations on the mapping item between the cache and translation
blocks incur extra overhead. For the worst case of DFTL, there are an extra two trans-
lation page read and one translation page write operations attaching to one data page
write request due to cache replacement. The upper bound of each data task without
triggering garbage collection is presented in Eq. (15).

u(Ravg) =2x (twr + trd)~ (15)

ACM Transactions on Design Automation of Electronic Systems, Vol. 20, No. 3, Article 43, Pub. date: June 2015.

Lazy-RTGC: A Real-Time Lazy Garbage Collection Mechanism 43:19

Data Block Garbage Collecton Translation Block Garbage Collecton
Victim Data Block Current Data Block Victim Translation Block Current Translation Block
Valid Data Page [PN | DATA}_Threshold
Copy 24 P [Twi
25 E Valid Translation
DG1 B Page Copy
N_ [Tw2 TP19
A TG1 TP45 Threshold
M Twd TPl |~ T~
T Tws TP18
T e Tw7 TP14
Erase Blocki TG2
Write Back Cached
Free Block Mappings ™
wh w5 6 w7 | Trans. Page | Cached Mapping Table (CMT)
LPN PPN
8 24
65 25
74 26
17 27
89 28
Time

R7 |

Valid P

r scheduling two kinds of partial
' gy is applied for both data

blocks and translation blocks. We define N; a nu of physical data blocks
and N; as the number of translation blocks. Let o4 b e fatio ketween the logical
address space and N;, where o; is represented as the f@tio be N; and predefined
physical space for the translation block. o; decides the aimed data pages
and o; is used for getting the upper bound of the valid page copies. Ay
and A; represent the guaranteed number of valid pages in the im data block and
translation block, respectively.
With demand-based approaches, translation blocks will occupy so
the size of each page is 2KB and the RAM cost for each page-level m

address space Aq is decided by [0 x N;] and the corresponding number ‘6fut#@
blocks is [A; = A4/512]. To guarantee the number of valid translation page ¢
also apply the overprovisioning strategy to translation blocks, that is, N; =¥o; x
Here N is the total number of physical blocks in flash, N = Ny + N;. To reclaim t
space for translation-block garbage collection, the value of £ and the number of parti
garbage collection tasks for the data block and translation block are defined as follows.

kg +k <(r—2)

2) (16)
NVe) = | & |+ 1nve) = | 2| +1

a a
The garbage collection of translation blocks does not require free data pages but only

translation pages, so we only need %; extra free data pages to serve write requests that
are interleaving with the partial tasks in a translation-block garbage collection task.

ACM Transactions on Design Automation of Electronic Systems, Vol. 20, No. 3, Article 43, Pub. date: June 2015.

43:20 Q. Zhang et al.

According to the prior equations, we can get the space configuration under on-demand
page-level mapping in Eq. (17).
(r — 2)a — As

(@ + Dm an

od

)\tSUtXﬂ.

be configured to a small value since the entire space for translation blocks
éll o4 can be decided by the flash specification of @, 7, and the configured o;.

On the other hand, weféache address mappings to CMT during the garbage collection.

2 e requests and valid data copies all cause cache misses
be added to CMT. Each writeback task can update «
anslation-block garbage collection can update at least A;
he er of TW tasks is (m — Aq — kg — k:), which represents

translation pages and e
translation pages. Thus

the number of free pagés uled for partial garbage collection in the last free
data block. Then, the totalfnu updated translation pages (denoted as y) from
TW tasks and TG tasks can alcfilated in the following equation:

L~y (o— (o + 1oy x 7. (18)

In Eq. (18), o4 is the space configuration % meter for overprovisioning, and « and &
are only related to the flash specification. In'the st case, 7 cached mapping items are
all from different translation pages. To%ala number of increased # mapping
items and the y writeback translation pag pdated translation page should
have at least 7/y mapping items from CMT e ; as the number of all valid
translation pages in the flash, which is decided®y logical address space. Then we
can get an upper bound of the CMT size as follow

Low < % x N, (19)

6. EVALUATION

In this section, we present the experimental setup and results With analysi demon-
strate the effectiveness of the proposed scheme. We compare Lazy-
Pure-Page-Level [Ban 1995], FSR [Chang et al. 2004], GFTL [Choudh

tem response time in the worst case, average system response time, va
block-erase counts, and the space utilization ratio.

6.1. Experimental Setup

The framework of our simulation platform, as shown in Figure 5, is based on Dis
[Bucy and Ganger 2003], a well-regarded disk-drive simulator. FlashSim [Kim et al.
2009], as a module of Disksim, is used to manage and supply basic operations
flash memory chip. We adopt the FlashSim framework because it is a widely use
simulation platform to evaluate the performance of FTL schemes. In the simulation
framework, we implemented our scheme, FSR, GFTL, RFTL, and the Pure-Page-Level
mapping scheme. We also applied our scheme on a demand-based page-level mapping
scheme (called On-demand Lazy-RTGC) to reduce RAM cost. FSR is a representative
scheme that can guarantee the reclaimed free space. However, it cannot satisfy real-
time requirements. GFTL and RFTL are representative schemes adopting the partial
garbage collection technique. The Pure-Page-Level scheme is the page-level address

ACM Transactions on Design Automation of Electronic Systems, Vol. 20, No. 3, Article 43, Pub. date: June 2015.

Lazy-RTGC: A Real-Time Lazy Garbage Collection Mechanism 43:21

Configured Parameters

Implementation of Flash
< Translation Layer
y Results
g ‘ MTD Simulator
D
_‘ |:“> Traces FlashSim Module

Fig. 5. The framework of simulation platform.

Flash Model with [DiskSim Framework

‘ ‘ Value
32GB

2048
64

2KB
29.0us
29.0us
220.9ps
2000.0us

Traces H Number of Requests ‘
Websearch 1,055,448
Financial 3,698,864
Copy File 670,412
Download File 1,730,415
Play Video 875,928

mapping scheme without applying any real-time mechanisms dn our simulation, a
32GB NAND flash memory is configured and the parameters a#€ shown imsfilable IV.

We use a set of benchmarks from both real-world and synthetic trag Qdy the
performance of different schemes. The traces used in our simulation i
in Table V.

Among them, Websearch [UMass 2013] is a read-dominant I/O trace™8
Storage Performance Council (SPC), which has lots of read operations. Most of
operations in Websearch are random data requests. Financial is an I/O trace
sequential accesses from an OLTP [UMass 2013] application running at a fin
institution. The logical address space in Financial is far smaller than the physi
space of the simulated NAND flash. Copy File is a trace collected when copying files
from one location to another. Copy File consists of a high ratio of write request tasks
including many sequential read and write operations. Download File is collected whe
downloading files from the network. It is also a write-dominant trace. Compared to
the trace Copy File, it has more sequential write operations with a large number of
requests. Play Video is collected under a hybrid workload of playing an online video in
which the video player is reading the video data and, at the same time, downloading
the data from the network. The trace Play Video contains many random read and write
operations. These three traces are collected from a desktop running Diskmon [2013]
with Windows XP on an NTFS file system. To make a fair comparison, performance

ACM Transactions on Design Automation of Electronic Systems, Vol. 20, No. 3, Article 43, Pub. date: June 2015.

43:22 Q. Zhang et al.

data is collected after the first garbage collection is triggered and there is a warm-up
process that writes the data into the NAND flash before the simulation starts so that
all read requests can read data from the simulator.

C ared to Pure-Page-Level, Lazy-RTGC adopts a different policy to trigger
ollection. For Pure-Page-Level, the garbage collection can be delayed as late

ace is mapped to the logical address space. Only one extra swap block is used
to hold the valid page copies during garbage collection. When there is
age in NAND flash memory, Pure-Page-Level triggers garbage collection
free pages to swap blocks and to reclaim free pages. FSR adopts the
overpro i ategy where the logical address space is smaller than the physical

and a hybrid-level mapping scheme, respectively. When the

primary block for the % ding logical block is full, garbage collection is triggered.
, igf onditdon for these two schemes depends on the logical address

-RTGC, by adopting a page-level mapping scheme, the

eblock in flash, partial garbage collection is triggered
Ve, arbage collection process reclaims one victim

block when garbage collectio fintgshed in the experiment.

6.2. Results and Discussion

In this section, we present the experi sults in terms of five performance met-
rics: system response time in the wors e system response time, valid page
copies, block-erase counts, and the space utilizatiomyratio. For each performance met-
ric, we use six figures to represent the re 1 five traces and the average
results of these traces, respectively. We use P I, FSR, GFTL, RFTL, Lazy-
RTGC, and On-demand+Lazy-RTGC to represe tion results generated by
the schemes in Ban [1995], Chang et al. [2004], Chou i

applied on an on-demand page-level mapping scheme,
(1) Worst-Case Response Time. The main objective of our sc,

upper bound of worst-case response time in Pure-Page-Level is@efined b
that is, the garbage collection process needs to copy 71— 1 valid pages,

adopts page-level address mapping and the mapping table is maintained
there is no OOB operation compared with GFTL and RFTL. Therefore our sc,
can achieve the minimal upper bound of worst system response time. That is, 2(
turpg + tor = 2,220.9us. GFTL needs at most # OOB read operations to locate the
page. In evaluation, GFTL reached this state in all traces so that the real upper bo
is U(T) = trg + Ttrdoos + tor = 3, 885us. Therefore, our scheme can achieve a 42.83%
reduction on the upper bound of worst system response time compared to GFTL. We
can also achieve better performance (i.e., reduced one OOB read operation) compared
to RFTL. As shown in Figure 6, our scheme can achieve 90.58% and 83.78% reductions
on worst system response time compared with Pure-Page-Level and the FSR scheme,
respectively.

In the on-demand Lazy-RTGC scheme, we cache the updated mapping items from
data requests and valid page copies in the CMT so as not to incur any translation page

ACM Transactions on Design Automation of Electronic Systems, Vol. 20, No. 3, Article 43, Pub. date: June 2015.

Lazy-RTGC: A Real-Time Lazy Garbage Collection Mechanism

Worst Case Response Time (ms)

Lazy-RTGC
I On-demand-+Lazy-RTGC
_1Pure-Page-Level

Lazy-RTGC
B On-demand+Lazy-RTGC
[Pure-Page-Level

Average Response Time (ms)

°
n

u

(d) Download File

pzz1 -

Lazy-RTGC
I On-demand+Lazy-RTGC
[_1Pure-Page-Level

o B — e
(a) Web Search

Lazy-RTGC
I On-demand+Lazy-RTGC
[1Pure-Page-Level
COFSR
[RFTL
. GFTL

(d) Download File

Worst Case Response Time (ms)

(b) Financial

Lazy-RTGC
I On-demand+Lazy-RTGC
1 Pure-Page-Level

Ponse Time (ms)

Lazy-RTGC
I On-demand+Lazy-RTGC
[Pure-Page-Level

(e) Play Video

Fig. 7. Average response time.

Worst Case Response Time (ms)

Worst Case Response Time (ms)

Average Response Time (ms)

Response Time (ms)

Lazy-RTGC
M On-demand+Lazy-RTGC
[Pure-Page-Level
COFSR
ERFTL
I GFTL

Lazy-RTGC
I On-demand+Lazy-RTGC
[Pure-Page-Level

43:23

nll

(¢) Copy File

(f) Average

(f) Average

Lazy-RTGC
I On-demand+Lazy-RTGC
1 Pure-Page-Level
CIFSR
ERFTL
. GFTL

operations during partial garbage collection. After garbage collection, we schedule
writeback tasks to reduce the CMT size. For a single data request, it may needgto
read mapping information from the translation page in flash memory. Therefore t
worst-case response time is slightly more than that in Lazy-RTGC.
(2) Average Response Time. Given that the worst case does not happen frequently,
the average system response time is one of the most important metrics to represent
system performance. The experimental results are shown in Figure 7. From the results,
we can see that GFTL and RFTL suffer significant performance degradation compared
with Pure-Page-Level and our scheme. Our scheme can achieve 94.56% and 50.84%
improvements on average system response time compared with GFTL and RFTL,

ACM Transactions on Design Automation of Electronic Systems, Vol. 20, No. 3, Article 43, Pub. date: June 2015.

43:24 Q. Zhang et al.

—a— Websearch 040

—e— Financial
—4a— Copy-file
—w— Download-file|
—<— Play-video

—&— Websearch
—e— Financial
—a— Copy-file
0.32 —w— Download-file
—<— Play-video

0.28 -— .

0.24

0.20 e L N

0.16

0.36

Average Response Time (ms

0.124

0.08 ¢ e .

T T T T T
1024 64 128 256 512 1024
RAM Size (KB)

(b) average response time

Fig. 8. The cache hit ratio a age response time for on-demand Lazy-RTGC with different RAM size

configurations.
respectively. Since our schéme page-level address mapping scheme that can
freely manage the data pages®in t h memory and sufficiently make use of the

flash space, our scheme can achievetbhetter average system response time. Compared
to our scheme, GFTL adopts a apping scheme, and once some logical
block is fully used, the corresponding block is added to the central garbage
collection queue to do partial garbage a result, there is a large number
of unnecessary garbage collections whic iggebed very early. RFTL pre-allocates

three physical blocks to each logical block. ogical block is full, partial garbage
collection is triggered within the allocated bloc RFTL still triggers garbage
collection early and requires lots of extra physic S Compared with FSR and
Pure-Page-Level that cannot guarantee real-time perfo nce) ourgcheme can achieve
similar average system performance.

In Lazy-RTGC, the logical address space is smaller t
collection operations are triggered, the number of valid p
guaranteed. Pure-Page-Level does not adopt the overprovisioni
entire physical address space is mapped to logical address spac
as the log buffer to hold valid page copies. Therefore, they may meet

flash memory is fully utilized and few free pages can be reclaimed.
continuous garbage collection operations degrade the average perfo

ical. When garbage
perations can be
rategy, that is, the

the number of block-erase counts is also reduced in our scheme. As can be see 1r
the results, our scheme has similar or even better average performance compared to
Pure-Page-Level because of its smaller valid page copies and block-erase counts.

In On-demand Lazy-RTGC, as shown in Figure 8, we evaluate the average respon
time with different RAM cache sizes. Figure 8(a) presents the cache hit ratio with
different RAM sizes over different benchmarks. Benchmark Web Search has lots of
random read requests, so the hit ratio is below 20%. For benchmark Financial, the
logical address space is small and contains a large number of sequential data requests.
Therefore the hit ratio can achieve more than 50%. By making use of writeback tasks,
for On-demand Lazy-RTGC, most cached mapping items can be written back to flash
memory in a batch way. From the results in Figure 8(b), we see the average response

ACM Transactions on Design Automation of Electronic Systems, Vol. 20, No. 3, Article 43, Pub. date: June 2015.

Lazy-RTGC: A Real-Time Lazy Garbage Collection Mechanism 43:25

V77 Lazy-RTGC
On-demand+Lazy-RTGC
e-Level

Lazy-RTGC
B On-demand-+Lazy-RTGC
[Pure-Page-Level

Lazy-RTGC
I On-demand+Lazy-RTGC
[Pure-Page-Level

1 |=3Fsr 084
[RFTL
I GFTL

Ratio
Ratio

0.0 T T T 0.0 T T T

(b) Financial (c) Copy File

V77 Lazy-RTGC
[On-demand+Lazy-RTGC
age-Level

Ratio

(f) Average
Fig. 9. lizedl number of valid page copies.
time with 1024KB RAM size over diffi chmarks can achieve an average 7.50%
improvement than that with 64KB RAM siz isyis due to the fact that, with increase

ns is reduced, and the worst-case
i§on, for other performance metrics,

in RAM size, the number of translation page ope

rbage collection impacts
. BJAmaking use of a page-
pages in the flash
ical address space
are more invalid
to reclaim enough
free space to do both data garbage collection and translation-block garb, ollection
in On-demand Lazy-RTGC, the space utilization is lower than that in
For Web Search, due to the cache replacement, 56.26% valid page [€opies aré)from

the time consumption of the garbage collection proc
level address mapping scheme, Lazy-RTGC can fullyfise the f]
and trigger garbage collection as late as possible. Mor

is configured lower than the entire physical flash space. T

copies. By applying the overprovisioning strategy on translation blocks,the
valid page copies in translation-block garbage collections. GFTL and RFTL adopt
block-level scheme so that the condition to trigger garbage collection dependS on
logical address of the data request. That is, garbage collection is invoked whe
allocated blocks are full, even though there are lots of free pages in the flash. Theref
GFTL and RFTL trigger garbage collection very early and there is a large amount of
valid pages that need to be copied. To represent the results clearly, we normalized ghe
experimental results and the results of GFTL are set to 1.

As shown in Figure 9, our scheme can achieve 95.36% and 86.11% reductions in valid
page copies during the garbage collection compared to GFTL and RFTL, respectively.
By adopting the overprovisioning strategy that limits the logical address space lower
than the entire physical address space, there are more invalid pages in the victim block
when running garbage collection compared to Pure-Page-Level. Moreover, as discussed
in Section 4.2, the number of valid pages in a victim block has an upper bound while
that for Pure-Page-Level is not predictable. Therefore our scheme can achieve a 60.51%

ACM Transactions on Design Automation of Electronic Systems, Vol. 20, No. 3, Article 43, Pub. date: June 2015.

43:26 Q. Zhang et al.

Lazy-RTGC azy-RTGC

Y-
n-der

Lazy-RTGC
B On-demand+Lazy-RTGC
[Pure-Page-Level

1 | E=3FsR

Ratio
Ratio

(b) Financial (c) Copy File

Ratio

(d) Download File

(f) Average

Fig. 10. e iz&8d number of block-erase counts.

reduction, on average, compared : ge-Level. Compared to FSR, our scheme
has 21.56% more valid page copies singe RPhas a lower space utilization ratio.

b counts will influence the average
system response time and the endurance of ash memory. To show the results
clearly, we normalized the experimental res results of GFTL are set to 1.
As shown in Figure 10, our scheme can achieve % 67.38% reductions in block-
erase counts compared with GFTL and RFTL, respéctive t is because, for the cen-
tral partial garbage collection policy in GFTL and distribtuted partidl garbage collection
policy in RFTL, the condition to trigger garbage collect i
cal blocks. Thus these schemes will trigger lots of unnece
tions. Since our scheme, On-demand Lazy-RTGC, and FSR féduc
space to guarantee the reclaimed free space, there are more rec

collection opera-
e logical address

aresult, our scheme has lesser number of block-erase counts compared
Level and the number of block-erase counts is very close to the one in F§
Lazy-RTGC contains two kinds of block, namely data block and translati
both of them will be erased due to shortage of free space. For Web Search, ca
ment incurs many translation-block garbage collections so the block-erase c

space is reduced due to the overprovisioning strategy of translation blocks, th
number of block-erase counts in On-demand Lazy-RTGC is close to that in Lazy-RT
(5) Space Utilization. In order to achieve the objective of guaranteeing the worst-case
system response time, GFTL, RFTL, and our scheme all incur extra space overhead
Lazy-RTGC, we can get the space utilization ratio o according to Eq. (11). That is, the

space utilization ratio of Lazy-RTGC is limited by U(o) = Egi’l}lﬁ = 87.5%, where a =

[22282391 = 8. According to Eq. (17) in On-demand Lazy-RTGC, we configure the o; = 0.5

first to pre-allocate more free blocks for the translation block and then we can get the
space utilization ratio of On-demand Lazy-RTGC at about 80%. In GFTL, there is a
central write buffer to serve the coming write requests when running partial garbage
collection, whereas it exists in a distributed write buffer (i.e., buffer block) in RFTL for

ACM Transactions on Design Automation of Electronic Systems, Vol. 20, No. 3, Article 43, Pub. date: June 2015.

Lazy-RTGC: A Real-Time Lazy Garbage Collection Mechanism 43:27

] Extra Flash Space
[Valid Logical Space

1094 — — — — p— p—

0.8]

0.6

0.4

\Ratio
|

v T v T v T v T v T |
e-Page-Leyel FSR GFTL RFTL Lazy-RTGC On-demand
Lazy-RTGC

Fi The space utilization ratio.

each logical block. The buffer length
is about 92.18%. RFTL pre-alloc
the space utilization is very low (aboutf837€ As shown in Figure 11, our scheme can
in extrapflash-space overhead compared with
RFTL, but costs a little more space than GEPE e FSR cannot get real-time task
information, we set 75% as the ratio between algpace and physical space. From
pave erformance and block-erase
counts. However, it cannot guarantee the worst-ca yst sponse time. Pure-Page-
Level does not apply any real-time mechanism so thatghe space utilization is close to
100%.

is limited by N(%2+ 1)/2 so the utilization

6.3. Memory and Energy Overhead
In this section, we analyze the memory overhead caused by azy-RT ad other

memory, the RAM cost for the Pure-Page-Level scheme is 64MB. FSR, Lazy-RTGC,
On-demand Lazy-RTGC adopt the overprovisioning strategy that limits the logic
dress space to be smaller than the physical address space. According to the differ
space utilization ratios, the RAM costs for FSR, Lazy-RTGC, and On-demand Lazy-
RTGC are different. GFTL uses block-level address mapping, but requires a page-lege
address mapping table to manage the central write buffer. Therefore GFTL still nee
about a 12.2MB RAM footprint to maintain the address mapping table. RFTL adopts
a hybrid-level address mapping scheme and the entire mapping table is stored in the
OOB area. Therefore, it can significantly reduce the RAM cost. On-demand Lazy-RTGC
stores the entire page-level mapping table in flash memory and caches a small number
of mapping items in RAM space, so reducing large RAM cost. From the experimental
results, On-demand Lazy-RTGC can reduce 90.0% and 47.6% RAM overhead compared
to Pure-Page-Level and GFTL, respectively.

ACM Transactions on Design Automation of Electronic Systems, Vol. 20, No. 3, Article 43, Pub. date: June 2015.

43:28 Q. Zhang et al.

Table VI. Parameters of CACTI Power Model
[Shyamkumar et al. 2008]

Parameter ‘ ‘ Value
Capacity (MB) 16
Output width (bits) 512
Number of banks 1
Number of read/write ports 1
Technology-node (nm) 65
Temperature (K) 360
SRAM cell/wordline technology flavor ITRS HP
eripheral/Global circuitry technology flavor ITRS HP
Wire type inside/outside mat Semi-global

emory and Energy Overhead Comparison

On-demand
Metrics i ge-Level FSR | RFTL | GFTL | Lazy-RTGC | Lazy-RTGC

RAM overhead (KB) 49,152 | 1,024 | 12,480 57,344 6,528
14.609 | 1.155 | 5.545 16.452 3.822

The energy consumption is affected By the size and number of accesses to RAM.
There is research on power cons sis of storage devices [HP Laboratories
2009; Vidyabhushan et al. 2013]. ACTI 5.3 [HP Laboratories 2009] as
the RAM power model. The paramet&xs o eqpower model are listed in Table VI.
We calculate the energy consumption b plyng @ifferent RAM-space requirements
from evaluated schemes to the power mode @ e results are shown in Table VII.
Pure-Page-Level, FSR, and Lazy-RTGC adoptwpage-1 apping by which the entire
page-level mapping table is cached in the RAM e large RAM overhead leads to
a large energy overhead in these schemes. RFTI®stor ntire mapping table in

ce is degraded due

record primary block mapping and a page-level mapping t
write buffer. Though the RAM cost and energy cost are bet

to RFTL. To reduce the large energy consumption in Lazy-RTGC, we ake usejof the
on-demand approach that stores the entire page-level mapping table 1 flash m€mory
and only caches a small number of mapping items in the RAM. Therefore,On
Lazy-RTGC can reduce 80.1% and 31.1% RAM energy overhead compared
Page-Level and GFTL, respectively.

7. RELATED WORKS

The design and architecture of flash translation layer (FTL) for flash storage systems
has been extensively studied in the literature. Many schemes have been propo

to optimize the management of address mapping information [Wu et al. 2007; Le
et al. 2007; Liu et al. 2012; Zhang et al. 2013] and to solve endurance and power failure
problems [Chang 2007; Wang et al. 2011; Guo et al. 2013; Chen et al. 2013; Chang et al.
2013b, 2015; Zhang et al. 2014; Huang et al. 2014a]. Only few works are about real-
time NAND flash memory storage systems. Among them, Chang et al. [2004] proposed
a real-time garbage collection mechanism. The mechanism needs to get real-time task
information from the file system and allocate a garbage collection task to each real-
time task for replenishing required free pages. In order to determine the reclaimed free

ACM Transactions on Design Automation of Electronic Systems, Vol. 20, No. 3, Article 43, Pub. date: June 2015.

Lazy-RTGC: A Real-Time Lazy Garbage Collection Mechanism 43:29

pages after each garbage collection process, the mechanism limits that logical address
space which is smaller than the physical space, as the overprovisioning strategy. The
number of valid pages in each data block can have an upper bound. Therefore this
ism can guarantee that each real-time task has enough free pages to execute.
it does not consider the average performance that can promise the deadline of
ime task. Moreover, the mechanism needs extra real-time task information
e file system which may require signiﬁcant modification to current file systems.
1 bage collectlon is proposed in GFTL [Choudhurl and Givargis 2008]. In

rd the block number needed to execute garbage collection. A write
} ndle the coming request when the corresponding data block is full.
Once the b, is full, the block number will be added to the garbage collection queue
and wait for garbage ion. Before the corresponding block is erased, the coming
write request will byg o the write buffer. GFTL can guarantee that the buffer

To solve the problem, Q
lection scheme called RF
physical blocks and the partia
sponding logical block. That is,
partial garbage collection and th

[2012] proposed a distributed partlal garbage col-
) RFTL, each logical block is allocated to three

request only triggers its own corresponding
ved within three pre-allocated physical

blocks. RFTL can reduce the performdnc act from partial garbage collection but
cannot solve the unnecessary garbage cellection pmeblem, since cold free blocks are still
not be used due to the block-level mappin e. Moreover, the low space utilization
that costs 2/3 physical space is another pro F

There is also much research on the archite S
et al. 2009; Seong et al. 2010; Sun et al. 20105 ng
2014b; Wu et al. 2013]. These works mainly focuson t pt
or write without considering the garbage collection in S§Ds. L
pre-emptible garbage collection (PGC) scheme for SSDsNRGC ntify pre-emption
points that can minimize the pre-emption overhead, and ¢ incoming I/O re-
quests to enhance the performance of SSDs. However, PGC s not cons1der the
mapping scheme impact performance. The objective of PGC i i

state drives (SSDs) [Payer

Wen 2014; Chang et al.
ization of parallel read
. [2013] proposed a

not provide effective solutions to our problem. There are also some Y
cache schemes proposed to improve write performance [Wu et al. 2006;
Shi et al. 2013, 2014; Hu et al. 2013]. These techniques target at the

Craciunas et al. [2008] proposed a system call scheduling technique for res
workload management in network- and disk-related system call scheduling
et al. 2014b]. Although the scheduling technique can effectively control I/O process
havior with good real-time performance, it targets at hard disk drives instead of flash
memory. Our technique can be combined with these techniques to provide determinis-
tic garbage collection and optimize both the average and worst performance for NA
flash memory storage systems.

8. CONCLUSION

In this article, we have proposed a real-time lazy garbage collection mechanism for
NAND flash memory storage systems. By making use of an on-demand page-level
mapping scheme and a partial garbage collection technique, Lazy-RTGC can guaran-
tee system response time in the worst case and further optimize the average system

ACM Transactions on Design Automation of Electronic Systems, Vol. 20, No. 3, Article 43, Pub. date: June 2015.

43:30 Q. Zhang et al.

performance. We have evaluated Lazy-RTGC using a set of benchmarks and compared
with representative works. The simulation results show that our scheme can signifi-
cantly improve both the average and worst system performance with very low extra
ace requirements. In the future, the on-demand method will be optimized to fur-
ce the RAM-space cost, and we would like to make use of the system idle time
rbage collection early and to avoid the flash memory staying in a long-term
ase situation. We plan to apply our real-time lazy garbage collection mecha-
parallelism architecture in solid-state drives. Moreover, Vidyabhushan

ajan. 2003. A real-time garbage collector with low overhead and
the 30" ACM SIGPLAN-SIGACT Symposium on Principles of
M Press, New York, 285—298.

John S. Bucy and Gregory R. Ganger. heyDiskSim simulation environment version 3.0 reference
manual. Tech. rep., CMU-CS-03-10 i gllon University.

Che-Wei Chang, Chuan-Yue Yang, Yuan-H g ei-Wei Kuo. 2014a. Booting time minimization for
real-time embedded systems with non-volatile . IEEE Trans. Comput. 63, 4, 847-859.

in Chang. 2014b. BLAS: Block-level adaptive

Hung-Sheng Chang, Yuan-Hao Chang, Pi-Cheng Hsiu/ uo,,and Hsiang-Pang Li. 2015. Marching-
based wear-leveling for PCM-based storage systems: s. Autom. Electron. Syst. 20, 2.
Li-Pin Chang. 2007. On efficient wear leveling for large-scaléflagh-memo

of the ACM Symposium on Applied Computing (SAC’07).

Li-Pin Chang, Tung-Yang Chou, and Li-Chun Huang. 2013a. An ad.
for multichannel solid-state disks. ACM Trans. Embed. Compu

Yuan-Hao Chang, Ming-Chang Yang, Tei-Wei Kuo, and Ren-Hung Hwang:
design under the flash translation layer for MLC-based flash-mem
Embed. Comput. Syst. 13, 1.

Li-Pin Chang, Tei-Wei Kuo, and Shi-Wu Lo. 2004. Real-time garbage collect
systems of real-time embedded systems. ACM Trans. Embed. Comput. Syst. 3, 4, 83

Li-Pin Chang and Chen-Yi Wen. 2014. Reducing asynchrony in channel garbage-coll¢
internal parallelism of multichannel solid-state disks. ACM Trans. Embed. Compu?

Yang Chang and A. Wellings. 2010. Garbage collection for flexible hard real-time sys
Comput. 59, 8, 1063-1075.

Renhai Chen, Yi Wang, and Zili Shao. 2013. DHeating: Dispersed heating repair for self-heali
flash memory. In Proceedings of the IEEE | ACM//IFIP International Conference on Hardwaré/ Soft
Codesign and System Synthesis (CODES+ISSS’13). 1-10.

Siddharth Choudhuri and Tony Givargis. 2008. Deterministic service guarantees for NAND flash 4is-
ing partial block cleaning. In Proceedings of the 6th IEEE/ACM/IFIP International Conference on
Hardware/ Software Codesign and System Synthesis (CODES+ISSS’08). ACM Press, New York, 19-24.

Tae-Sun Chung, Dong-Joo Park, Sangwon Park, Dong-Ho Lee, Sang-Won Lee, and Ha-Joo Song. 2009
survey of flash translation layer. J. Syst. Archit. 55, 5—6, 332—343.

Silviu S. Craciunas, Christoph M. Kirsch, and Harald Rock. 2008. I/O resource management through system
call scheduling. SIGOPS Oper. Syst. Rev. 42, 5, 44-54.

Xiaoning Ding, Song Jiang, and Feng Chen. 2007. A buffer cache management scheme exploiting both
temporal and spatial localities. ACM Trans. Storage 3, 2.

DiskMon. 2013. DiskMon for Windows. http:/technet.microsoft.com/en-us/sysinternals/bb896646.aspx.

Yong Guan, Guohui Wang, Yi Wang, Renhai Chen, and Zili Shao. 2013. BLog: Block-level log-block manage-
ment for NAND flash memory storage systems. In Proceedings of the 14th ACM SIGPLAN/SIGBED

storage systems. In proceedings
York, 1126-1130.

ACM Transactions on Design Automation of Electronic Systems, Vol. 20, No. 3, Article 43, Pub. date: June 2015.

Lazy-RTGC: A Real-Time Lazy Garbage Collection Mechanism 43:31

Conference on Languages, Compilers and Tools for Embedded Systems (LCTES’13). ACM Press, New
York, 111-120.
Jie Guo, Jun Yang, Youtao Zhang, and Yiran Chen. 2013. Low cost power failure protection for MLC NAND
flash storage systems with PRAM/DRAM hybrid buffer. In Proceedings of Design, Automation Test in
e Conference Exhibition (DATE’13). 859-864.

ased selective caching of page-level address mappings. In Proceedings of the 14th International
erence on Architectural Support for Programming Languages and Operating Systems (ASPLOS
. A@M Press, New York, 229-240.

2009. CACTI: An integrated cache and memory access time, cycle time, area, leakage, and
odel. http://www.hpl.hp.com/research/cacti/.

ao Chang, and Yuan-Sheng Chu. 2013. Implementation strategy for downgraded

Jen-Wei Hsiely]
multi-version bjsupg+j

1.

Jingtong Hu, Chun Ji he Tseng, Y. He, Meikang Qiu, and E. H.-M. Sha. 2010. Reducing
write activities on non-vo e memories in embedded CMPs via data migration and recomputation. In
Proceedings of the 47th A Resign Automation Conference (DAC’10). 350-355.

Jingtong Hu, Chun Jason X Q uge, Wei-Che Tseng, and Edwin H.-M. Sha. 2013. Write activ-
ity reduction on non—volatlle nainWa@mories for embedded chip multiprocessors. ACM Trans. Embed.

Comput. Syst. 12, 3.

Po-Chun Huang, Yuan-Hao Chang, and
tive caching for huge-scale low-cost

. 2013. An index-based management scheme with adap-
h storages. ACM Trans. Des. Autom. Electron. Syst.

18, 4.

Po-Chun Huang, Yuan-Hao Chang, Kam-Yiu Lai, o Wang, and Chien-Chin Huang. 2014a. Garbage
collection for multiversion index in flash-basgd em¥Bgdd atabases. ACM Trans. Des. Autom. Electron.
Syst. 19, 3.

Yazhi Huang, Liang Shi, Jianhua Li, Qingan Li, and 14b. WCET-aware re-scheduling register
allocation for real-time embedded systems with cl I\Warchitecture. IEEE Trans. VLSI. Syst.
22,1, 168-180.

Dawoon Jung, Jeong-Uk Kang, Heeseung Jo, Jin-Soo Kim, Joo ee. 2010. Superblock FTL: A

superblock-based flash translation layer with a hybrid address t e. ACM Trans. Embed.

Comput. Syst. 9, 1.

Taehyoun Kim, Naehyuck Chang, and Heonshik Shin. 2000. Boun
for embedded real-time systems. In Proceedings of the 6" IEEE Real-Ti
Symposium (RTAS’00). 46-55.

Youngjae Kim, B. Tauras, A. Gupta, and B. Urgaonkar. 2009. FlashSim: A si
solid-state drives. In Proceedings of the 1% International Conference on A
(SIMUL09). 125-131.

Junghee Lee, Youngjae Kim, G. M. Shipman, S. Oral, and Jongman Kim. 2013. Preempti
garbage collection for solid state drives. IEEE Trans. Comput.-Aid. Des. Integr. Circ.

arbage collection time
logy and Applications

for NAND flash memory-based storage systems. ACM SIGOPS Oper. Syst. Rev. 42, 6, 36—42.
Sang-Won Lee, Dong-Joo Park, Tae-Sun Chung, Dong-Ho Lee, Sangwon Park, and Ha-Joo Sodg’
log buffer-based flash translation layer using fully-associative sector translation. ACM Trans. E
Comput. Syst. 6, 3.
Duo Liu, Yi Wang, Zhiwei Qin, Zili Shao, and Yong Guan. 2012. A space reuse strategy for flash translatien
layers in SLC NAND flash memory storage systems. IEEE Trans. VLSI. Syst. 20, 6, 1094-1107.

Micron. 2012. Micron NAND flash memory MT29E128GO8CECAB datasheet. http:/www.micron.
products/nand-flash.

Hannes Payer, Ma Sanvido, Zvonimir Z. Bandic, and Christoph M. Kirsch. 2009. Combo drive: Optimizing cost
and performance in a heterogeneous storage device. In Proceedings of the 15 Workshop on Integrating
Solid-State Memory into the Storage Hierarchy. Vol. 1, 1-8.

Zhiwei Qin, Yi Wang, Duo Liu, and Zili Shao. 2011. A two-level caching mechanism for demand-based
page-level address mapping in NAND flash memory storage systems. In Proceedings of the 17th IEEE
Real-Time and Embedded Technology and Applications Symposium (RTAS’11). 157-166.

ACM Transactions on Design Automation of Electronic Systems, Vol. 20, No. 3, Article 43, Pub. date: June 2015.

43:32 Q. Zhang et al.

Zhiwei Qin, Yi Wang, Duo Liu, and Zili Shao. 2012. Real-time flash translation layer for NAND flash memory
storage systems. In Proceedings of the IEEE 18th Real-Time and Embedded Technology and Applications
Symposium (RTAS’12). 35-44.

g Electronics. 2007. Samsung K9G4G08UOA(v1.0)-4Gb MLC NAND flash data sheet. http:/www.

ung.com/global/business/semiconductor/minisite/SSD/us/html/why/MlcNandFlash.html?gclid=

Seong, Eyec Hyun Nam, Jin Hyuk Yoon, Hongseok Kim, Jin Yong Choi, Sookwan Lee, Young Hyun
jim Lee, Yookun Cho, and Sang-Lyul Min. 2010. Hydra A block-mapped parallel flash memory
isk architecture. IEEE Trans. Comput. 59, 7, 905-921.

i, Qingan Li, C. J. Xue, Chengmo Yang, and Xuehai Zhou. 2014. A unified write buffer

Thoziyoor Shyamkumar,
http://www.hpl.hp.cg

spansion.com/Support/Datasheets/S34ML01G1-04G1.pdf.

Guangyu Sun, Yongsoo Joo, ¥ibo imin Niu, Yuan Xie, Yiran Chen, and Hai Li. 2010. A hybrid
solid-state storage architect performance, energy consumption, and lifetime improvement.
In Proceedings of the IEEE 16th I ational Symposium on High Performance Computer Architecture
(HPCA'10). 1-12.

Toshiba. 2008. Toshiba CMOS NAND E2PROM (multi-level-cell) TC58NVG4T2ETA00 datasheet. https:/
www.toshiba.com/taec/components/Datas NVGOS3ETAO00.pdf.

Toshiba. 2012. TOSHIBA NAND flash me ge capacity) TC58NVG3SOFBAID datasheet. http://
media.digikey.com/pdf/Data%20Sheets/Tos %)Fs/NAND _Flash_ Memory(SLC_Large_Capacity)-
Web.pdf.

UMASS. 2013. Trace from UMass trace repository.

Mohan Vidyabhushan, Trevor Bunker, Laura Grupp,
Swanson. 2013. Modeling power consumption of N.
Comput.-Aid. Des. Integr. Circ. Syst. 32, 7, 1031-1044.

Yi Wang, Duo Liu, Zhiwei Qin, and Zili Shao. 2011. An endfifance-; ed flash translation layer via
reuse for NAND flash memory storage systems. In Proceedings offéhe Destgn, mation Test in Europe
Conference Exhibition (DATE’11). 1-6.

Yi Wang, Zili Shao, H. C. B. Chan, L. A. D. Bathen, and N. D. Dutt:
mapping strategy for three-dimensional (3-D) NAND flash memory.
2402-2410.

Chin-Hsien Wu and Tei-Wei Kuo. 2006. An adaptive two-level management fi

.umass.edu/index.php/Storage/Storage.

urumurthi, Mircea R. Stan, and Steven
ies using FlashPower. IEEE Trans.

memory storage systems. ACM Trans. Embed. Comput. Syst. 6, 3.
Chin-Hsien Wu, Tei-Wei Kuo, and Chia-Lin Yang. 2006. A space-efficient caching meclia
memory address translation. In Proceedings of the 9" IEEE International Symposium on O,
Component-Oriented Real-Time Distributed Computing (ISORC’06).
Chin-Hsien Wu and Hsin-Hung Lin. 2012. Timing analysis of system initialization and crash recover;
segment-based flash translation layer. ACM Trans. Des. Autom. Electron. Syst. 17, 2.
Guanying Wu, Xubin He, Ningde Xie, and Tong Zhang. 2013. Exploiting workload dynamics to improve
read latency via differentiated error correction codes. ACM Trans. Des. Autom. Electron. Syst. 18, 4.
Chi Zhang, Yi Wang, Tianzheng Wang, Renhai Chen, Duo Liu, and Zili Shao. 2014. Deterministic ¢
recovery for NAND flash based storage systems. In Proceedings of the 51st Annual Design Automation
Conference (DAC’14). ACM Press, New York.
Qi Zhang, Xuandong Li, Linzhang Wang, Tian Zhang, Yi Wang, and Zili Shao. 2013. Optimizing translation
information management in NAND flash memory storage systems. In Proceedings of the 18th Asia and
South Pacific Design Automation Conference (ASP-DAC’13). 326-331.

Received July 2013; revised December 2014; accepted March 2015

ACM Transactions on Design Automation of Electronic Systems, Vol. 20, No. 3, Article 43, Pub. date: June 2015.

