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Lazy-RTGC: A Real-Time Lazy Garbage Collection Mechanism with
Jointly Optimizing Average and Worst Performance for NAND Flash
Memory Storage Systems

QI ZHANG, XUANDONG LI, LINZHANG WANG, and TIAN ZHANG, Nanjing University
YI WANG, Shenzhen University and The Hong Kong Polytechnic University
ZILI SHAO, The Hong Kong Polytechnic University

Due to many attractive and unique properties, NAND flash memory has been widely adopted in mission-
critical hard real-time systems and some soft real-time systems. However, the nondeterministic garbage
collection operation in NAND flash memory makes it difficult to predict the system response time of each
data request. This article presents Lazy-RTGC, a real-time lazy garbage collection mechanism for NAND
flash memory storage systems. Lazy-RTGC adopts two design optimization techniques: on-demand page-level
address mappings, and partial garbage collection. On-demand page-level address mappings can achieve high
performance of address translation and can effectively manage the flash space with the minimum RAM cost.
On the other hand, partial garbage collection can provide the guaranteed system response time. By adopting
these techniques, Lazy-RTGC jointly optimizes both the average and the worst system response time, and
provides a lower bound of reclaimed free space. Lazy-RTGC is implemented in FlashSim and compared with
representative real-time NAND flash memory management schemes. Experimental results show that our
technique can significantly improve both the average and worst system performance with very low extra
flash-space requirements.
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1. INTRODUCTION

NAND flash memory has many attractive properties, such as low power consumption,
fast access time, and shock resistance. Therefore, NAND flash memory has been widely
adopted in mission-critical hard real-time systems such as aerospace [AEEC 1991] and
in soft real-time systems such as iPhones and tablets. Different from other computing
systems in real-time systems, a NAND flash memory storage system needs to provide
both the worst and the average system response time. However, due to the constraint of
“out of place update” in flash memory, the number of valid page copy operations in the
victim block is unpredictable. This unfavorable characteristic may negatively impact
the predictability of system response time and make the management of the garbage
collection process become the major performance bottleneck. In this article, we propose
a real-time lazy garbage collection mechanism to achieve the real-time property by
jointly optimizing the average and worst system performance in NAND flash memory
storage systems.

In past decades, many studies have been conducted on the management of flash mem-
ory storage systems. A lot of work has been conducted on storage system architecture
design [Wang et al. 2014; Chang et al. 2013a, 2014a; Hsieh et al. 2013, 2014; Huang
et al. 2013], while others studied the flash translation-layer design [Wu and Kuo 2006;
Lee et al. 2008; Chung et al. 2009; Wu and Lin 2012]. Several techniques have been
proposed to improve the system performance of NAND flash memory storage systems
[Hu et al. 2010; Jung et al. 2010; Guan et al. 2013; Huang et al. 2014a]. Different from
prior works, our scheme aims to guarantee the worst system response time and, at the
same time, optimize the average system performance in NAND flash memory storage
systems. There are also many studies [Kim et al. 2000; Bacon et al. 2003; Chang and
Wellings 2010] focusing on real-time garbage collection for computing systems with
dynamic memory requirements. However, for NAND flash memory storage systems,
the concept of garbage collection is different from that in the dynamic memory version
due to many unique constraints.

Only a few works focus on the real-time garbage collection techniques for NAND
flash storage systems. These works mainly focus on two directions: task-driven free-
space replenishment [Chang et al. 2004] and partial garbage collection [Choudhuri
and Givargis 2008]. The first direction promises to replenish several free pages to
ensure that there will be enough free space to execute each real-time task. In order to
provide a lower bound of reclaimed space, these techniques have to store the runtime
information of each real-time task, which normally requires significant modification
to existing file systems. In another direction, a partial garbage collection mechanism
partitions one garbage collection process into several steps and distributes these steps
to different time slots. The partial garbage collection mechanism needs to allocate
some extra physical blocks as a write buffer. A queue has to be maintained to record
the garbage collection information. In partial garbage collection schemes, the process of
garbage collection is triggered very early, which may further incur lots of unnecessary
garbage collection with a large number of extra valid page copies.

In order to solve the performance issue of partial garbage collection, Qin et al. [2012]
proposed a real-time flash translation layer (FTL) called RFTL. In RFTL, the partial
garbage collection is distributed to different logical blocks, and each logical block is
pre-allocated to three physical blocks (i.e., primary block, buffer block, and replace-
ment block). RFTL can significantly reduce the number of unnecessary garbage col-
lection processes. However, the flash-space utilization of RFTL is very low and the
garbage collection process is also triggered early due to its fixed physical block alloca-
tion. Although the previous schemes can satisfy real-time requirements, they make no
specific attempt to provide a guaranteed average system response time. Moreover,
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the space utilization in these schemes is another critical issue, as these schemes
necessarily allocate a large amount of extra flash memory space to ensure real-time
performance.

In this article, we present Lazy-RTGC, a real-time lazy garbage collection mechanism
that can ensure guaranteed system response time for both the worst case and average
case with the minimum space requirement. Lazy-RTGC adopts the page-level mapping
scheme that can fully utilize the flash memory space and effectively postpone the
garbage collection process as late as possible. Therefore, Lazy-RTGC does not need to
pre-allocate a fixed number of physical space as the write buffer, which can provide
optimized average system response time. Through the space configuration, Lazy-RTGC
can guarantee the number of reclaimed free space more than a lower bound after each
garbage collection. The entire process of garbage collection is divided into a set of partial
garbage collections which can provide an upper bound of service time. The reclaimed
free space from the previous set of partial garbage collections, considered as a free
write buffer, can be further used in the next partial garbage collection set. As a result,
our scheme can not only guarantee the reclaimed free space of garbage collection, but
also provide a deterministic service time of garbage collection in the worst case.

We have performed analysis and the results show that the page-level mapping
scheme is the best option to sufficiently manage the flash space and delay garbage
collection. In order to reduce the large mapping table in the page-level address map-
ping scheme, Lazy-RTGC adopts a demand-based page-level mapping scheme that can
significantly reduce the RAM footprint and achieve similar performance as block-level
mapping schemes. Only the on-demand address mappings will be allocated and stored
in the cache. Moreover, Lazy-RTGC requires no changes to the file system or NAND
flash memory chip, so it is a general strategy that can be applied to any page-level
address mapping schemes.

Lazy-RTGC is implemented in the FlashSim framework [Kim et al. 2009], and a
set of benchmarks from both real-world and synthetic traces is used to evaluate the
effectiveness of Lazy-RTGC. In the evaluation, we compare our scheme with FSR
[Chang et al. 2004], GFTL [Choudhuri and Givargis 2008], RFTL [Qin et al. 2012],
and the Pure-Page-Level mapping scheme [Ban 1995] in terms of system response
time in the worst case, average system response time, valid page copies, block-erase
counts, and the space utilization ratio. FSR is the free-space replenishment strategy, a
main part in Chang et al. [2004]. It can guarantee the reclaimed free space after each
garbage collection process. GFTL [Choudhuri and Givargis 2008] and RFTL [Qin et al.
2012] are representative schemes that adopt a partial garbage collection technique. The
Pure-Page-Level scheme [Ban 1995] is a page-level address mapping scheme without
applying any real-time mechanisms.

The experimental results show that our scheme can achieve better worst- and
average-case system performance compared with previous work. For system response
time in the worst case, our scheme can achieve 90.58% improvement compared with
the pure-page-level FTL scheme. For average response time, our scheme can improve
94.08% and 66.54% average system performance compared with GFTL and RFTL, re-
spectively. For the number of valid page copies, our scheme can achieve 95.36% and
86.11% reductions compared to GFTL and RFTL, respectively. Since many valid page
copies are reduced, our scheme can also significantly reduce the number of block-erase
counts. For space utilization, our scheme can achieve 87.5% space utilization, which is
very close to GFTL and much higher compared to RFTL. Therefore, by costing small
extra flash space, our scheme can not only provide an upper bound of the worst sys-
tem response time, but also significantly improve the average system performance and
endurance of NAND flash memory storage systems.
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This article makes the following contributions.

—We present for the first time a real-time lazy garbage collection mechanism with
joint optimization of average- and worst-case system response time.

—We adopt on-demand page-level address mapping that can delay the garbage col-
lection process and provide guaranteed system response time with minimum space
cost.

—We demonstrate the effectiveness of Lazy-RTGC by comparing it with representative
works in the literature using a set of real traces.

The rest of this article is organized as follows. We give the models and clarify the
problem in Section 2. Section 3 presents our technique details and task scheduling
algorithm. We analyze the task schedulability on the time level and space level in
Section 4. In Section 5, we extend our scheme to an on-demand page-level mapping
scheme. In Section 6, we present the evaluation of our scheme. The related work in the
literature is presented in Section 7. Finally, we give the conclusion and future work in
Section 8.

2. MODELS AND PROBLEM STATEMENT

In this section, we formulate task models and clarify the problem we want to solve in
this work.

2.1. Task Models

In this article, each I/O request issued from the file system to NAND flash chip is
modeled as an independent real-time task T = {pT , eT , wT , dT , rT }, where pT , eT , wT ,
dT , and rT denote the period, execution time, and the maximum number of page writes
per period, deadline, and the release time of the task, respectively. Without loss of
generality, we assume that the deadline d of each task is equal to period p. There are
two kinds of data request task: read task (Tr) and write task (Tw). Here w is equal to
0 if it is a read task; w is equal to 1 if it is a write task. pT represents the frequency
of read and write requests issued from the file system, while eT denotes the time of
executing a read or write request, which is determined by the specific NAND flash
memory. The lower bound on pT (denoted as L(pT )) determines the maximum arrival
rate that the flash storage system can handle. The upper bound on eT (denoted as
U(eT )) represents the longest execution time of a request that would be served by the
flash memory storage system.

The release time of the data request task depends on the request execution time and
the location of the task in the queue. In our model, the garbage collection process is
independent from the logical address of coming data tasks. That is, the execution of
the data request task in the queue does not influence the current garbage collection
process. Therefore we can calculate the release time of each task Ti as follows:

rTi =
nw∑
j

eTj +
nr∑
k

eTk + eTi . (1)

In Eq. (1), nw and nr represent the number of write tasks and read tasks in queue
before Ti, respectively. Therefore the release time of Ti is the sum of three execution
times, that is, the execution time of read tasks before Ti, of write tasks before Ti, and
of Ti.

Due to the constraint of “out-of-place update” in flash memory, garbage collector
is used to reclaim free pages from obsolete invalid pages. In this article, we model
the process of garbage collection as a garbage collection task G = {pG, eG, wG, dG, rG},
where pG and eG represent the period and the total execution time, respectively. The
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total execution time of a garbage collection task includes the time cost to copy valid
pages in a victim block and the time cost to erase the victim block. wG denotes the
number of reclaimed pages after garbage collection. dG and rG, the same as defined in
T , represent the deadline and release time of the garbage collection task. When the
number of free pages is smaller than the predefined threshold, the garbage collector
will select a victim block and schedule the corresponding garbage collection task for
reclaiming the victim block. Since the atomic operations cannot be interrupted in the
flash memory, the garbage collection task G and the data request task T exist in
dependency. That is, the data request task cannot be executed until the completion of
the scheduled garbage collection task.

Based on the task models, we give the definitions of system response time in NAND
flash memory storage systems. There are two main processes during the system re-
sponse time. One process is the execution time of a data request task Ti, which includes
the time cost for logical-to-physical address translation (denoted by taddr) and the time
cost for the atomic operations (read or write operations). Another process is time cost
to schedule garbage collection tasks before executing Ti. The system response time is
given in Eq. (2).

tres = texec + taddr + tgc. (2)

In Eq. (2), tres, texec, taddr, and tgc represent system response time, data request execution
time, address translation time, and garbage collection time, respectively. Since the
address translation overhead in the RAM is at least an order of magnitude less than
the flash operation time, we mainly discuss texec and tgc of the tasks, which correspond
to eT and eG, respectively, in our task models. Furthermore, we define the response
time for one data request task as follows.

Definition 2.1 (System Response Time). Given a data request task Ti the garbage
collector schedules a set of garbage collection tasks VG = {G1, G2, . . . , Gn} (n = 0 if
there is no scheduled task Gj) before the execution of task Ti. The system response
time for task Ti contains the execution time of task (eTi ) and the total execution time
of the scheduled garbage collection tasks (VG). That is,

RTi = eTi +
n∑

j=1

eGj , n ≥ 0. (3)

Without loss of generality, we assume the garbage collector schedules only one
garbage collection task for each data request task. Then, we give the definitions of
average response time and worst-case response time in our models as follows.

Definition 2.2 (Average System Response Time). Given a set of data request tasks
VT = {T1, T2, . . . , Tn}, the average system response time is the arithmetic mean of
system response time of the tasks in the VT . That is,

Ravg = 1
n

n∑
i=1

RTi , n > 0. (4)

Definition 2.3 (Worst-Case System Response Time). The worst-case system re-
sponse time in the flash memory is bounded by the worst-case execution time of the
data request task (U(eT )) and the worst-case execution time of the garbage collection
task (U(eG)). That is,

U(RT ) = U(eT ) + U(eG)
= max{trd, twr} + (π − 1)(trd + twr) + ter. (5)
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Fig. 1. An example of nondeterministic garbage collection.

In Eq. (5), trd and twr denote the execution time of reading and writing one page,
respectively. π represents the total number of pages in one block. In the worst case,
the garbage collector selects a victim block with π − 1 valid pages. We present the
execution process of the garbage collection task in Section 2.2 and show why it causes
nondeterministic system response time.

2.2. Nondeterministic Garbage Collection

A garbage collection task mainly consists of two subtasks: valid page copies and block
erase. Valid page copy, also called atomic copy [Chang et al. 2004], reads the valid data
in each valid page from the victim block and writes the data into another free page.
After all valid pages are copied, the erase operation is invoked so that it can get the
reclaimed free space. The total execution time (eG) of one garbage collection task is
defined as follows:

eG = λ × (trd + twr) + ter . (6)

In Eq. (6), λ denotes the number of valid pages in the victim block. Since λ is unpre-
dictable in each victim block, the execution time of each garbage collection task is vari-
able. Figure 1 shows an example of nondeterministic garbage collection. In Figure 1(a),
suppose there is a victim block with four valid pages. Then, λ = 4 and all valid pages in
the victim block are rewritten to another free block. Figure 1(b) and Figure 1(c) show
the different system response time due to the nondeterministic value of λ. Suppose twr,
trd, and ter are 220μs, 29μs, and 2000μs, respectively. When executing write task Tw2,
the garbage collector triggers a garbage collection task G and the victim block has 12
valid pages (λ = 12). Thus, to reclaim such a block takes 12×(29+220)+2000 = 4988μs.
Since Tw2 needs to wait for the completion of G, the system response time for Tw2 is
R = 220 + 4988 = 5208μs. In Figure 1(c), if λ = 2 in the victim block, the execution
time of the garbage collection task is 2 × (29 + 220) + 2000 = 2498μs and the system
response time is only R = 2718μs. Therefore λ causes unpredictable execution time of
the garbage collection.
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2.3. Problem Statement

Based on the task models and concepts, we further clarify the problem as follows.

Given a data request task set VT = {T1, T2, T3, . . . , Tn} and the garbage collection
task set VG = {G1, G2, . . . , Gm} on system demand, we want to obtain a task schedule
in which each data request can be executed within the upper bound U(RT ) in the
worst case, and the average system response time can be guaranteed with low space
cost.

3. LAZY-RTGC: A REAL-TIME LAZY GARBAGE COLLECTION MECHANISM

In this section, we present our real-time lazy garbage collection mechanism which
jointly optimizes the worst and average system response time. The system architecture
is presented in Section 3.1. The task scheduling scheme for Lazy-RTGC is introduced
in Section 3.2 and the overhead analysis is presented in Section 3.4.

3.1. Page-Level Address Mappings in Lazy-RTGC

In the proposed Lazy-RTGC, the physical flash space can be partitioned into three
areas: valid data area, invalid data area, and free area. The valid data area stores the
latest data. When a data page is updated and the latest data is rewritten to another
free page, the obsolete data belongs to the invalid data area. The free area contains
free pages that can be utilized to store the updated data. Since Lazy-RTGC adopts a
page-level address mapping scheme, these three areas are not predefined to specified
physical blocks or pages. Therefore our scheme can maximize the space utilization. In
NAND flash memory storage systems, the logical address space is normally smaller
than the actual physical address space in the raw flash memory chip. This is because
some physical blocks are utilized to manipulate the management of physical spaces in
flash memory (e.g., translation blocks that store the address mapping tables, reserved
blocks for bad block management, etc.). By taking advantage of these physical blocks,
the size of the logical address space can help determine the lower bound of reclaimed
free pages in the garbage collection.

In Lazy-RTGC, the page-level address mapping table is maintained in the RAM.
Page-level address mapping can provide high performance of address translation and
can effectively manage the flash space. Since there is no fixed physical flash space, as
the write buffer and the trigger condition are independent from the logical address of
the coming requests, any free space in the flash can be considered as the write buffer.
Therefore Lazy-RTGC can delay the scheduling of garbage collection tasks as late as
possible. That is, Lazy-RTGC will schedule garbage collection tasks only when the
flash memory is about to run out of space. As the garbage collection process is the
most time-consuming operation in flash memory management, postponing the garbage
collection can significantly reduce the overhead that may impact each single data
request. This could significantly improve the average system response time. Based on
this observation, Lazy-RTGC adopts the page-level mapping scheme to achieve a real-
time performance and further provides good average system performance in NAND
flash memory storage systems.

3.2. Task Scheduling of Partial Garbage Collection Tasks

In our models, there are two kinds of tasks: the data request task (T ) and garbage
collection task (G). The flash memory controller serves the data request task to execute
the atomic read or write operation. The garbage collector generates partial garbage
collection tasks when the number of free pages in the flash memory is below the
predefined threshold. If there is no garbage collection task, we schedule the data request
tasks sequentially by coming order of the requests. Otherwise, the garbage collector
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first selects a victim block and then generates several partial nonperiodic garbage
collection tasks for reclaiming the victim block. Finally, the generated partial garbage
collection tasks are scheduled to execute behind each write task one at a time until
their executions are completed.

In order to hide the unpredictable service time of garbage collection, the partition
of the garbage collection task is dependent on the entire garbage collection process of
one victim block. We define a minimal deadline for each garbage collection task. Each
Gj is executed within the deadline so that we can provide an upper bound of the worst
system response time. Since the number of valid pages in the victim block is variable,
one garbage collection task in previous schemes should be divided into several partial
garbage collection tasks. Each partial garbage collection task executes many atomic
operations, such as valid page copies or block erase, until the total execution time
reaches the minimal deadline. Moreover, the block-erase operation, as the longest time
cost operation, cannot be interrupted in the partial garbage collection task so that its
execution time is the minimal deadline of each Gj . Therefore, the execution time of
each garbage collection is guaranteed so that the worst system response time can be
guaranteed as the minimal upper bound.

In Eq. (7), we define α as the number of valid copies in each partial garbage collection
task, which is a constant specified to the flash storage systems.

α =
⌈

ter

trd + twr

⌉
. (7)

ALGORITHM 1: Task Scheduling of Partial Garbage Collection Tasks
Input: A set of data request task (VT = {T1, T2, . . . , Tn}), an empty set of garbage collection

tasks (VG = ∅), garbage collection threshold (ρth), and the number of free pages (�).
Output: A task schedule.

1 for each Ti ∈ VT is executed do
2 if Ti ∈ Tw then
3 if VG �= ∅ then
4 rGj ← rTi + eTi ;
5 remove gc task(Gj);
6 end
7 if � < ρth then
8 PBNvictim ← get victim block() ;
9 VG ← generate gc tasks(PBNvictim) ;

10 rGj ← rTi + eTi ;
11 remove gc task(Gj) ;
12 end
13 end
14 end

Lazy-RTGC will not schedule garbage collection tasks after the execution of read
tasks, since read tasks do not consume free pages. Thus Lazy-RTGC will not affect the
read performance.

The task scheduling of partial garbage collection tasks is presented in Algorithm 1.
The inputs of the algorithm contain a set of data request tasks, a set of garbage
collection tasks, the threshold of garbage collection, and the number of free pages in
the flash. The output is a task schedule of the garbage collection tasks, each with
guaranteed execution time. Algorithm 1 handles each data request task from the data
request set one by one and removes the task from the set after it is executed. In line 2,
the type of data request task is identified to decide the garbage collection task schedule.
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Fig. 2. An example task scheduling in lazy-RTGC.

As shown in lines 2 to 6 of Algorithm 1, if the current task is a write request and the
garbage collection task set is not empty, it schedules one garbage collection task from
the set and removes it once executed. The response time of the garbage collection task
is the total time of the execution time of the write data request and the upper bound
of the garbage collection task execution time (i.e., the erase block time). Otherwise,
as shown in lines 7 to 12, if the garbage collection task set is empty and the number
of free pages is lower than the threshold, our scheme will pick up one victim block
and generate garbage collection tasks from the victim block. These generated garbage
collection tasks are pushed into the set, where the valid page copy tasks are sorted
by their first copied valid page number and the erase task is the last task. Then, our
scheme selects the first garbage collection task from the set and schedules it behind
the data request task. In Algorithm 1, our scheme schedules each data request task
from the VT and schedules the garbage collection task from VG according to the type of
data request task and the space usage of flash space. Suppose there are N data request
tasks in the set of VT , the algorithm will schedule all tasks one by one. Therefore the
complexity of Algorithm 1 is O(N).

In order to avoid flash in the long-term worst case, Lazy-RTGC can be optimized
by making use of system idle time. That is, Lazy-RTGC schedules the partial garbage
collection task in system idle time, even though the flash does not meet the worst case.
To reduce the impacts to average performance, we select that victim block with no
valid pages and only schedule the partial garbage collection task after write tasks. As
a result, Lazy-RTGC rarely meets the worst case and the system performance can be
further improved.

Figure 2 shows an example task schedule generated from Lazy-RTGC. Suppose there
is a set of data request tasks VT = {Tw1, Tr2, Tw3, Tr4, Tw5, Tw6}, where Twi represents
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the write task and Tri denotes the read task. When the flash storage system serves the
request task Tw3, the garbage collector will invoke garbage collection as the number of
free pages is smaller than the predefined threshold. Suppose α = 2, which means each
garbage collection task can execute at most two atomic copies. Since the selected victim
block has 4 valid pages, the garbage collector generates 3 garbage collection tasks, G0
and G1 for valid page copies and G2 for victim block erase. The garbage collector can
reclaim free pages only after finishing the erase operation. Therefore wG1 = 0, wG2 = 0,
and wG3 is equal to −(8 − 4) = −4 (a negative value represents the reclaimed pages).
G0 is released after task Tw3. Since the deadline of G1 is ter, the Tw3 can give response
to the file system within R = twr + ter, which is the minimal upper bound of the worst
system response time in a flash storage system. Task G2 is scheduled after Tw5, which
executes the same way as Tw3. After the completion of task G3, the victim block is
erased and becomes a free block that can be used to handle the coming tasks.

3.3. System Performance

In this section, we analyze the system performance of our scheme and compare it
with representative real-time schemes. Given that the worst case does not happen
frequently, the average system response time is becoming another important metric.
The previous work in the literature mainly focuses on providing an upper bound of
service time in flash storage systems, but ignores the average system response time.
Therefore these real-time schemes suffer significant performance degradation even
though they can guarantee the worst system performance.

Worst System Performance. The system response time in the worst case consists
of the upper bound of a data request task and the deadline of a garbage collection
task by using partial garbage collection. The free-space replenishment strategy in FSR
[Chang et al. 2004] cannot guarantee the worst performance due to missing dependent
real-time task information. GFTL, RFTL, and Lazy-RTGC can guarantee the worst-
case response time by adopting a partial garbage collection technique. Due to the
address mapping scheme, the upper bounds of the three schemes are different. GFTL
[Choudhuri and Givargis 2008] uses a block-level mapping scheme, where the logical
page number is written into the OOB area. There are extra OOB (out of band) read
operations within the process of handling data request tasks so this impacts the upper
bound of the worst-case response time. RFTL [Qin et al. 2012] uses a hybrid-level
mapping scheme and the mapping table is partially stored in the OOB area so there
are some OOB operations during address translation. Since our scheme adopts a page-
level mapping scheme whose mapping table is maintained in the RAM, there are no
extra OOB operations compared with GFTL and RFTL. Therefore Lazy-RTGC can
provide the minimal upper bound of worst system response time.

Average System Performance. Garbage collection incurs the largest overhead in
NAND flash memory storage systems due to the valid page copies and block eras-
ing. Our scheme does not need to specify certain flash space as the write buffer. That
is, any free space can be used as the write buffer due to the adoption of a page-level
mapping scheme. The threshold of garbage collection is only related to the rest of
the physical free space. The garbage-collection-triggered time is postponed as late as
possible in Lazy-RTGC, which maintains high average performance.

Compared to our scheme, GFTL cannot provide good average performance. The main
difference between GFTL and Lazy-RTGC is that our scheme can not only guarantee
the worst-case response time, but also provide good average system performance. GFTL
predefines a number of physical blocks as the write buffer and maintains a central
garbage collection queue to decide which logical block is used for garbage collection.
Once the primary block is full, the data should be written to the write buffer and invokes
partial garbage collection for the primary block. The early garbage collection will cause
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Table I. Service Guarantee Bounds of Ideal Case [Ban 1995], FSR [Chang et al. 2004], GFTL [Choudhuri and
Givargis 2008], RFTL [Qin et al. 2012], and Lazy-RTGC

Bounds U(er) U(ew) U(RT ) U(λ) U(σ )

Ideal trdpg twrpg ter π 0.99
FSR trdpg twrpg U(eT ) + U(eG) σ × π N/A

GFTL trdpg + πtrdoob twrpg ter + max{U (er),U (ew)} π 1 − [(κ + 1)]/2π

RFTL trdpg + trdoob twrpg + trdoob max{U (er), ter + U (ew)} π 1/3
Lazy-RTGC trdpg twrpg max{U (er), ter + U (ew)} σ × π [(π − 1)α]/[(α + 1)π ]

lots of block erasing and valid page copies. As a result, GFTL suffers significant average
system performance degradation.

RFTL pre-allocates three physical blocks to one logical block so that the execution of
partial garbage collection is only related to the logical block. That is, once the primary
physical block of the corresponding logical block is full, even if there exists free space
in many physical blocks belonging to other logical blocks, GFTL and RFTL all trigger
garbage collection. Therefore the garbage collection in GFTL and RFTL is invoked
very early and the space utilization may be very low under unbalance workloads. As
a result, average system performance is degraded and the high number of block-erase
counts indirectly impacts the endurance of the flash memory. As average performance
and the space utilization are also important since the worst case does not frequently
happen, our scheme can not only provide an upper bound of execution time for each
data request, but also provide better average performance and endurance compared to
previous real-time flash schemes.

Table I shows the service guarantee bounds in different schemes. The symbols trdpg,
twrpg, and trdoob denote the execution of page reading, page writing, and OOB reading
time, respectively. σ is the ratio between logical and physical address space which used
in the overprovisioning strategy. Through configuring σ , the reclaimed free space after
each garbage collection is bounded. The upper bound of σ (denoted as U(σ )) shows
the maximum space utilization. For comparison purposes, we present a hypothetical
ideal case as the baseline, where a read or write request task can be executed directly
without triggering any garbage collection. Since the erase operation is the longest
atomic operation in the flash and cannot be interrupted, the U(RT ) in the ideal case is
ter. FSR is a representative scheme of a free-space replenishment strategy which can
provide an upper bound of valid pages in the victim block (denoted as U(λ)). However,
FSR cannot provide the worst system response time and the upper bound of σ due
to missing real-time task information so that its U(RT ) is the theoretical worst-case
value given in Eq. (5). GFTL schedules garbage collection tasks after the execution
of a read or write task so that it impacts the read performance. The U(σ ) in GFTL is
1 − [(κ + 1)]/2π , where κ is the number of steps in partial garbage collection. Since
GFTL cannot guarantee the valid pages in a victim block, in the worst case, κ =
[(π − 1)trdpg + πtrdoob + πtwrpg]/ter + 1. RFTL and our scheme only schedule garbage
collection tasks after the completion of write tasks, so there is no read performance
degradation. The U(σ ) in RFTL is only 1/3 due to fixed block pre-allocation and that in
Lazy-RTGC depends on the specification of flash. In the next section, we will present
and analyze some properties and task schedulability to prove the bounds on time and
space requirements.

3.4. Overhead Analysis

The resource overhead in Lazy-RTGC mainly comes from the RAM footprint and flash
space. Due to the big page-level mapping table maintained in the RAM, Lazy-RTGC
has large RAM-space consumption. For 1GB flash space, it requires 2MB RAM space to
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store the mapping table. To solve this problem, several on-demand approaches [Gupta
et al. 2009; Qin et al. 2011; Zhang et al. 2013] have been proposed. They can provide
the page-level mapping performance but only cost RAM space similar to that in block-
level mapping schemes. In order to guarantee the number of reclaimed free pages
after each garbage collection, the logical address space is configured smaller than the
entire physical flash space. Therefore Lazy-RTGC has flash space overhead. The space
utilization only depends on the specification of the flash. For mainstream SLC NAND
flash memory, Lazy-RTGC can achieve 87.5% space utilization. By adopting a page-
level mapping scheme and partial garbage collection, the CPU resource consumption
from address translation is close to that in the page-level mapping table. There are
no further computing resource requirements in partial garbage collection, since it
only defines the partial task start point and finish point. Therefore the CPU resource
consumption is similar to the pure-page-level mapping scheme.

4. SCHEDULABILITY ANALYSIS

4.1. Bound of the Worst System Response Time

In this section, we analyze the bounds of the worst system response time of each data
request task. In our task model, the entire process of garbage collection is divided into
several partial garbage collection tasks, and each task G has the same deadline which
is equal to the longest execution time of the atomic operations in the flash. We use λ
to represent the number of valid pages in the victim block and use N (VG) to denote
the total number of generated garbage collection tasks. Then we can define N (VG) as
follows.

N (VG) =
⌈

λ

α

⌉
+ 1. (8)

Based on Eq. (8), we can get some properties of partial garbage collection tasks.

Property 4.1. Since the erase operation is the longest atomic operation in NAND
flash memory storage systems, the deadline of each garbage collection task (dG) is
equal to ter.

Property 4.2. If λ = 0, the number of generated garbage collection tasks is equal to
1, which is the minimal number. That is, N (VG) = 1. For the worst case, λ = π − 1,
where the victim block has the maximal number of valid pages, the number of generated
garbage collection tasks also reaches the maximal value according to Eq. (8).

From the preceding properties, we propose Lemma 4.1 to analyze partial garbage
collection tasks.

LEMMA 4.1. The garbage collector can generate a finite number of partial garbage
collection tasks from any garbage collection. The size of the garbage collection task set
(N (VG)) has an upper bound which is only related to the specification of the NAND flash
storage system.

PROOF. Since each block has a fixed number of pages in the flash memory, the number
of valid pages in the victim block has an upper bound of π − 1 (i.e., at least one invalid
page). Moreover, Property 4.1 shows that ter is the longest atomic operation execution
time. ter is the minimal value of deadline for each Gj . Since the garbage collector doesn’t
generate more partial garbage collection tasks until all previous tasks are scheduled,
the upper bound of N (VG) can be obtained, which is only related to π and α. Therefore
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the upper bound of N (VG) is only affected by the specification of the NAND flash storage
system.

Based on the properties and lemma of partial garbage collection tasks, we further
propose a theorem to analyze the schedulability of data request tasks and partial
garbage collection tasks in terms of the worst system response time.

THEOREM 4.2. For a data request task (Ti), in the worst case, Twi is a write task and
VG is not empty. Lazy-RTGC can schedule Ti and Gj so that RTwi can be guaranteed
under a minimal upper bound.

PROOF. Since Ti and Gj have dependency, the worst system response time is the pe-
riod between the start time of Ti and the finishing time of Gj . According to Lemma 4.1,
each Gj has a minimal deadline and the execution time of a write operation is the
upper bound of eTi . Moreover, only one Gj in the VG is scheduled to be executed behind
Ti at one time. The upper bound of the system response time is bounded by eTw

and
ter. Therefore we can schedule them within the minimal upper bound of the system
response time in the worst case.

4.2. Bound of the Reclaimed Free Space

In our task models of the NAND flash storage system, the schedulability of data request
tasks and garbage collection tasks is not only related to the guaranteed system response
time, but also to the free space in the flash. That is, if there is no free space to allow the
execution of write operations or atomic copies, tasks cannot be scheduled and executed
successfully. Therefore, in this section, the page requirement (w) in the task is discussed
and we give the bounds of the space configuration to promise the tasks’ schedulability
on the space level.

Since the entire garbage collection task is divided into several partial garbage col-
lection tasks and each task is executed behind one write task at one time, our scheme
in fact delays the reclaiming time. On the other hand, by making use of a page-level
mapping scheme, our scheme can fully use each free page in the flash space, that is,
each free block can handle data from both the atomic copies in the garbage collection
tasks and the write data request tasks. Therefore our scheme can improve the space
utilization.

Here we summarize the property of the space requirement as follows.

Property 4.3. If N (VG) = k, the total free pages’ cost on the dependent write tasks
is

∑k
i=1 wTi , while the reclaimed free space after k partial garbage collection tasks is

π − λ.

From Property 4.3, we can observe the space dependency between data request
tasks and garbage collection tasks. That is, garbage collection tasks depend on data
request tasks to be scheduled, while at the same time data request tasks depend on the
reclaimed free space from the garbage collection tasks to be executed. Therefore it can
be considered as a producer and consumer problem, where the garbage collection task
is a producer to reclaim the free space while the data request task is a consumer to
cost the reclaimed free space. When there is no free space in the flash, the data request
task cannot be executed so that the corresponding garbage collection task cannot be
scheduled either. Moreover, there is no reclaimed free space due to the failed scheduling
of the garbage collection task. As a result, in this situation, the flash memory never
has free space and no write task nor garbage collection task can be scheduled. In order
to protect our task scheduling from such deadlocks, we need to promise the following
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equations.
k∑

i=1

wTwi ≤
k∑

j=1

(−wGj )

k ≤ (π − λ)

(9)

Since wTw
is equal to 1 for each write task,

∑k
i=1 wTwi is equal to k and has an upper

bound.
∑k

j=1(−wGj ) is the number of reclaimed free pages of one victim block, which is
equal to (π −λ). However, due to the unpredictable λ in each victim block, flash memory
cannot give a bound of reclaimed free space. In our scheme, we adopt the strategy used
in Chang et al. [2004] which limits the logical space address to guarantee the number
of valid pages in each block. Therefore we propose the following theorem to analyze the
guaranteed number of valid pages.

THEOREM 4.3. Suppose the total number of data pages is denoted as 	 and the number
of logical pages is bounded by 
. If the garbage collector adopts a greedy policy to select
a victim block, the number of valid pages in the victim block can be guaranteed to an
upper bound (denoted as U(λ)). That is, U(λ) = �


	
× π	.

PROOF. The garbage collector adopts a greedy policy to select that victim block with
the least number of valid pages. Assume a victim block is picked out with λ′ = U(λ) + 1
valid pages and the flash space is fully used. Thus other blocks have at least λ′ valid
pages. Suppose there are N data blocks and 	 = π × N, 
 = λ′N = 
×π×N

	
+ N = 
+ N.

Obviously, the number of logical pages contradicts the assumption in the theorem.
Therefore U(λ) is the upper bound of the number of valid pages in the victim block.

Since Theorem 4.3 gives an upper bound of valid pages in each victim block, the value
of (π − λ) can also provide a lower bound of the number of invalid pages. Therefore,
we further propose the following theorem to analyze the schedulability of data request
tasks and garbage collection tasks in terms of space requirements.

THEOREM 4.4. The garbage collection tasks can be scheduled to execute after write
tasks when and only when the lower bound of reclaimed space is greater than or equal to
the upper bound of space requirement of dependent write tasks. That is, after scheduling
partial garbage collection tasks in the VG, the flash memory has enough reclaimed free
space to schedule newly generated garbage collection tasks in the future.

PROOF. According to Eq. (9), k is the free page cost of the write tasks with the
scheduled garbage collection tasks. In Lemma 4.1, we show that N (VG) has an upper
bound. On the other hand, we prove the number of reclaimed free pages in each victim
block has a lower bound in our scheme. If the upper bound of N (VG) is always lower
than the lower bound of the reclaimed free space, we can promise that there always
exists enough space for scheduling data request tasks with garbage collection tasks.

Since we limit the logical address space lower than the total flash space, our scheme
also has a trade-off of flash space compared with previous works. In order to reduce
such space overheads as much as possible, we set k to be equal to the lower bound of the
reclaimed space. Then, we have the following equation by combining Eqs. (6) and (9).

λ ≤
⌈

(π − 1)α
α + 1

⌉
. (10)

In order to simplify the representation, we use σ to denote the ratio of logical address
space to total physical space (i.e., physical-space utilization). Therefore the upper bound
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of λ analyzed in Theorem 4.3 can be represented as �σ × π	. Further, we can get the
following equation of the space configuration parameter of σ in our models.

σ ≤ (π − 1)α
(α + 1)π

. (11)

Therefore, we can see that σ is only related to the specification parameters (α and π )
of the flash memory. Moreover, we can get the relation between k and σ by combining
Eqs. (10) and (11).

k ≤ max
{⌈

σπ

α + 1

⌉
, �(1 − σ )π	

}
. (12)

In order to delay scheduling garbage collection tasks as much as possible, we define
the minimal threshold of starting to generate and schedule the partial garbage collec-
tion task compared with previous schemes. We give the following equation to define
the garbage collection threshold (denoted as ρth). That is, we can execute write tasks
without scheduled partial garbage collection tasks until the free space is under the ρth.
Here U(k) and U(λ) represent the upper bound of free page costs and valid page copies
during the garbage collection tasks, respectively.

ρth = U(k) + U(λ). (13)

4.3. Space Configuration

Since the space configuration of Lazy-RTGC is only related to α and π , we select
six representative flash memory chips to show the relationship between the space
utilization and the specification. Table II shows the parameters of different NAND
flash chips, and Table III presents the space utilization for different schemes using
the parameters in Table II. NAND flash design can be categorized into SLC (single-
level cell), MLC (multilevel cell), and TLC (triple-level cell) flash memory. SLC flash
stores one bit value per cell, which can provide faster write performance and greater
reliability. An MLC and a TLC cell can represent multiple values so as to provide
high storage capacity with performance and reliability degradation. Lazy-RTGC can
achieve about 87% space utilization in SLC NAND flash and meet the worst space
utilization (about 49.6%) in Samsung 512MB MLC NAND flash. The space utilization
is decided by the ratio between the sum of trd and twr and the ter. Since the ratio is
only 1 in Samsung MLC NAND flash, that is, each partial task can copy only one
data page, Lazy-RTGC reaches the worst space utilization, which is about half of the
entire flash. GFTL has better space utilization compared to our scheme, but suffers
performance degradation. Since RFTL pre-allocates three physical blocks to one logical
block, its space utilization is about 33.3%, not related to specification of flash. The space
utilization of FSR is decided by the real-time task information so that it does not have
a fixed upper bound. The ideal scheme has the highest space utilization since it uses
the Pure-Page-Level mapping scheme without considering real-time properties. TLC
NAND flash memory has high storage capacity but its performance is poor. GFTL and
our scheme have low space utilization on a TLC NAND flash memory specification.
From the theoretical value comparison, Lazy-RTGC shows better space utilization in
SLC NAND flash than those in MLC and TLC NAND flash. Moreover, SLC NAND flash
has good reliability and endurance so is more suitable to real-time embedded systems.
Therefore Lazy-RTGC can be applied on SLC NAND flash for real-time systems.

5. EXTENSION TO ON-DEMAND ADDRESS MAPPING

Page-level address mapping in Lazy-RTGC can improve the average system per-
formance by postponing garbage collection operations as late as possible. However,
the big address mapping table costs large RAM space, which is not suitable for
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Table II. Space Configurations in Different Flash Memory Chips

NAND Flash trd(μs) twr(μs) ter(μs) π U(σ )

Spansion 512MB SLC NAND Flash [Spansion 2013] 25 200 2000 64 0.875
Toshiba 512MB SLC NAND Flash [Toshiba 2012] 25 300 3000 64 0.886

Samsung 512MB MLC NAND Flash [Samsung 2007] 60 800 1500 128 0.496
Micron 16GB MLC NAND Flash [Micron 2012] 50 1600 5500 256 0.747
Toshiba 2GB TLC NAND Flash [Toshiba 2008] 250 2700 4000 192 0.497

Table III. Space Utilization Comparison

NAND Flash Ideal FSR RFTL GFTL Lazy-RTGC

Spansion 512MB SLC NAND Flash [Spansion 2013]

99% N/A 33.3%

92.9% 87.5%
Toshiba 512MB SLC NAND Flash [Toshiba 2012] 92.9% 88.6%

Samsung 512MB MLC NAND Flash [Samsung 2007] 68.8% 49.6%
Micron 16GB MLC NAND Flash [Micron 2012] 84.2% 74.7%
Toshiba 2GB TLC NAND Flash [Toshiba 2008] 59.6% 49.7%

resource-constrained embedded systems. In this section, we present how to apply our
scheme to on-demand page-level mapping.

5.1. Lazy-RTGC for On-Demand Page-Level Address Mapping

To solve the big RAM cost in page-level mapping, some on-demand approaches have
been proposed [Gupta et al. 2009; Qin et all . 2011; Zang et al. 2013]. We select DFTL
[Gupta et al. 2009], a representative on-demand scheme, to introduce how to apply our
Lazy-RTGC scheme to on-demand page-level mapping.

In DFTL, there are two kinds of blocks: data blocks and translation blocks. The entire
page-level mapping table is stored in translation blocks. Each translation page stores
multiple consecutive mapping items from a fixed starting logical address. Frequently
used mapping items are cached in a cached mapping table (CMT) in the RAM and
there is a global translation directory (GTD) to track the translation pages in flash.
The performance of DFTL is close to those of pure-page-level schemes, while the RAM
space it requires is close to those of block-level mapping schemes. Thus it can be applied
to resource-constrained embedded systems. However, by introducing translation blocks
and CMT, it is more difficult to jointly optimize its worst-case response time and average
response time.

Compared with pure-page-level address mapping schemes, DFTL triggers extra
translation page operations in NAND flash. In particular, in the worst case, one write
request incurs two extra read operations and one extra write operation. The reason is
as follows: First, one translation page needs to be read in order to get the corresponding
address mapping of the write request if we could not find the mapping information from
CMT; second, by caching the new address mapping information into CMT, it may cause
an eviction operation that will introduce one read and one write operation in order to
write the updated mapping item back to the translation page. Similarly, in the worst
case, one read request also incurs two extra read operations and one write operation.

In order to jointly optimize the average- and worst-case performance of DFTL, we
apply Lazy-RTGC to manage both the cached mapping table and translation blocks.
To make our scheme easily extended to other on-demand page-level schemes, we do
not modify the data structures of DFTL. Our scheme includes three tasks, namely
the data-block partial garbage collection task (denoted as DG), the translation-block
partial garbage collection task (denoted as TG), and the translation page writeback
task (denoted as TW). Basically, DG manages partial garbage collection for data blocks,
TG manages partial garbage collection for translation blocks, and TW writes several
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Fig. 3. An example of Lazy-RTGC for DFTL.

translation pages back to translation blocks by grouping all corresponding mapping
items in CMT together so as to reduce the size of CMT. Our basic idea is to guarantee
the following two conditions in the worst-case scenario.

(1) A predefined number of free pages in data blocks and a predefined number of free
pages in translation blocks (both of the numbers are not larger than π ) are good
enough to hold all write requests during execution of the aforesaid three tasks.

(2) After the three tasks have been finished, one new free data block and one new
free translation block are generated so there is always enough space for garbage
collection, even in the worst-case scenario.

Figure 3 shows an example in which a data block and a translation block are used
to provide free pages that can hold all write requests for data and translation pages,
respectively, when the three tasks are executed.

Like in Lazy-RTGC, DG, TG, and TW are all executed in partial garbage collection
manner in which each is divided into partial tasks that are scheduled to interleave with
tasks that serve read/write requests (see Figure 4 for an example). In TG, Lazy-RTGC
is applied in garbage collection for translation blocks, in which a garbage collection
operation is divided into a partial task for copying valid translation pages and one for
erasing the victim translation block. Moreover, the overprovisioning strategy is also
applied in translation blocks. By configuring the space ratio of translation blocks, we
can guarantee the maximum number of valid translation pages in a victim translation
block so the number of partial tasks of TG can be bounded. In DG, to reduce extra
update operations for translation pages, for both write requests and valid page copies,
all address mappings are cached into CMT. Accordingly, TW is used to reduce the size
of CMT by grouping related mapping items into their corresponding translation pages
and writing back to translation blocks. Similar to partial garbage collection tasks,
the upper bound of the execution time of TW is ter and each TW task can update α
translation pages. DG, TG, and TW are independently invoked based on their own
thresholds. When all or any two of them are triggered at the same time, the precedence
order is DG > TG > TW.

The worst-case scenario occurs when DG, TG, and TW all reach their thresholds at
the same time. Based on the preceding precedence order, DG is first scheduled to be
executed. Since all related address mapping information will be cached in CMT, DG
will not introduce any updates for translation pages. Next, TG will be scheduled to
be executed after DG has finished. In TG, as data blocks and translation blocks are
separated, valid translation pages from a victim translation block will be copied to
another translation block. Thus TG itself does not require data pages. However, free
pages from data blocks are still needed to serve write requests during the execution
of TG, because partial tasks of TG are interleaved with tasks to serve read/write
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requests. Finally, TW is scheduled to write address mapping items back to translation
pages in a batch manner. The number of TW tasks is decided by the size of CMT
and the thresholds of DG and TG, which is discussed in detail in space utilization
in Section 5.2. Free pages required by the three tasks can be provided as shown in
Figure 3. Here, DG requires λd data pages for valid page copies while kd data pages are
used to serve write requests that are interleaving with the partial tasks of DG. And
TG requires λt translation pages for valid translation page copies in translation blocks,
and kt data pages provide the space for write requests interleaving with the partial
tasks of TG. Then TW writes λw translation pages back while kw data pages are used
for write requests. As discussed in Section 5.2, based on the overprovisioning strategy,
we can guarantee kt + kd + λd + kw ≤ π and λt + λw ≤ π , so our scheme can work in the
worst-case scenario.

Figure 4 shows a specific example. Suppose each block has eight pages and each
partial garbage collection task can copy at most three valid pages. When there is
only one free data block, the garbage collection of the data block is triggered. DG1
and DG2 are scheduled after Tw1 and Tw2, respectively, to copy the valid data pages
and erase the block. During the garbage collection, the updated address mapping
items from valid page copies and write requests are cached in CMT. After the data-
block garbage collection, since CMT is close to full and the translation block has not
reached the threshold, Lazy-RTGC generates a TW task (write back TP19 and TP45)
that is executed after Tw4 to write back the corresponding updated mappings to the
current translation block. Then, after Tw4 and TW, the number of free pages in the
translation block is smaller than the threshold. This will trigger translation-block
garbage collection. After executing Tw5 to write to PPN30, we schedule TG1 to copy
three translation pages (TP11, TP18, and TP14) to the current translation block. Then,
in TG2, the victim translation block is erased after Tw7 that serves a write request. As
a result, one new free data block and one new free translation block are reclaimed with
our scheme.

5.2. Bound Analysis

In this section, we present bound analysis for applying Lazy-RTGC on DFTL. We start
with the worst-case response time, then discuss the average-case response time, and
finally analyze space utilization.

Worst-Case Response Time. Lazy-RTGC for DFTL includes two kinds of garbage
collection operations: data-block garbage collection and translation-block garbage col-
lection. Our scheme only schedules one kind of garbage collection operation at a time.
After a victim data block is erased, we make use of remaining free pages to schedule the
writeback tasks and partial garbage collection tasks on translation blocks. Moreover,
our scheme caches the updated mapping items in CMT during the garbage collection
so that it does not incur translation page updates. In the worst case, there is a cache
miss to handle a write request. Accordingly, there is an extra read translation page
operation to locate the address mapping information. Thus the worst-case response
time is as shown in Eq. (14).

U(RT ) = max{U (er), ter + U (ew + er)}. (14)

Average-Case Response Time. Since the entire mapping table is stored in the trans-
lation blocks, the operations on the mapping item between the cache and translation
blocks incur extra overhead. For the worst case of DFTL, there are an extra two trans-
lation page read and one translation page write operations attaching to one data page
write request due to cache replacement. The upper bound of each data task without
triggering garbage collection is presented in Eq. (15).

U(Ravg) = 2 × (twr + trd). (15)
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Fig. 4. An illustrative example to show how Lazy-RTGC for DFTL works.

Space utilization. To provide enough free space for scheduling two kinds of partial
garbage collection operations, the overprovisioning strategy is applied for both data
blocks and translation blocks. We define Nd as the number of physical data blocks
and Nt as the number of translation blocks. Let σd be the ratio between the logical
address space and Nd, where σt is represented as the ratio between Nt and predefined
physical space for the translation block. σd decides the number of reclaimed data pages
and σt is used for getting the upper bound of the valid translation page copies. λd
and λt represent the guaranteed number of valid pages in the victim data block and
translation block, respectively.

With demand-based approaches, translation blocks will occupy some flash space. If
the size of each page is 2KB and the RAM cost for each page-level mapping item is 4
bytes, the physical space overhead is 1/512 (about 0.2%) of the entire space. The logical
address space 
d is decided by �σ × Nd	 and the corresponding number of translation
blocks is �
t = 
d/512	. To guarantee the number of valid translation page copies, we
also apply the overprovisioning strategy to translation blocks, that is, Nt = σt × 
t.
Here N is the total number of physical blocks in flash, N = Nd + Nt. To reclaim the free
space for translation-block garbage collection, the value of k and the number of partial
garbage collection tasks for the data block and translation block are defined as follows.

kd + kt ≤ (π − λ)

N (VGd) =
⌈

λd

α

⌉
+ 1;N (VGt ) =

⌈
λt

α

⌉
+ 1

(16)

The garbage collection of translation blocks does not require free data pages but only
translation pages, so we only need kt extra free data pages to serve write requests that
are interleaving with the partial tasks in a translation-block garbage collection task.
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According to the prior equations, we can get the space configuration under on-demand
page-level mapping in Eq. (17).

σd ≤ (π − 2)α − λt

(α + 1)π

λt ≤ σt × π.

(17)

Here σt can be configured to a small value since the entire space for translation blocks
is small. Then σd can be decided by the flash specification of α, π , and the configured σt.
For example, in the experiments, the space utilization ratio of Lazy-RTGC for DFTL is
about 80%.

On the other hand, we cache address mappings to CMT during the garbage collection.
In the worst case, data write requests and valid data copies all cause cache misses
so that π mapping items may be added to CMT. Each writeback task can update α
translation pages and each translation-block garbage collection can update at least λt
translation pages. Thus, the number of TW tasks is (π − λd − kd − kt), which represents
the number of free pages not scheduled for partial garbage collection in the last free
data block. Then, the total number of updated translation pages (denoted as γ ) from
TW tasks and TG tasks can be calculated in the following equation:

L(γ ) = (π − 2)α − (α + 1)σd × π. (18)

In Eq. (18), σd is the space configuration parameter for overprovisioning, and α and π
are only related to the flash specification. In the worst case, π cached mapping items are
all from different translation pages. To balance the number of increased π mapping
items and the γ writeback translation pages, each updated translation page should
have at least π/γ mapping items from CMT. We define Nt as the number of all valid
translation pages in the flash, which is decided by the logical address space. Then we
can get an upper bound of the CMT size as follows:

Lcmt ≤ π

γ
× Nt. (19)

6. EVALUATION

In this section, we present the experimental setup and results with analysis to demon-
strate the effectiveness of the proposed scheme. We compare Lazy-RTGC with the
Pure-Page-Level [Ban 1995], FSR [Chang et al. 2004], GFTL [Choudhuri and Givargis
2008], and RFTL [Qin et al. 2012], techniques in terms of five performance metrics: sys-
tem response time in the worst case, average system response time, valid page copies,
block-erase counts, and the space utilization ratio.

6.1. Experimental Setup

The framework of our simulation platform, as shown in Figure 5, is based on Disksim
[Bucy and Ganger 2003], a well-regarded disk-drive simulator. FlashSim [Kim et al.
2009], as a module of Disksim, is used to manage and supply basic operations of a
flash memory chip. We adopt the FlashSim framework because it is a widely used
simulation platform to evaluate the performance of FTL schemes. In the simulation
framework, we implemented our scheme, FSR, GFTL, RFTL, and the Pure-Page-Level
mapping scheme. We also applied our scheme on a demand-based page-level mapping
scheme (called On-demand Lazy-RTGC) to reduce RAM cost. FSR is a representative
scheme that can guarantee the reclaimed free space. However, it cannot satisfy real-
time requirements. GFTL and RFTL are representative schemes adopting the partial
garbage collection technique. The Pure-Page-Level scheme is the page-level address
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Fig. 5. The framework of simulation platform.

Table IV. Parameters of the NAND Flash Memory

Parameter Value

Total capacity 32GB
The number of planes in the chip 8
The number of blocks per plane 2048
The number of pages per block 64
Page size 2KB
Page read latency 29.0μs
OOB read latency 29.0μs
Page write latency 220.9μs
Block erase latency 2000.0μs

Table V. Traces Used in the Simulation

Traces Number of Requests Write (%) Average Request Size (KB)

Websearch 1,055,448 0.02 15.05
Financial 3,698,864 17.66 5.24
Copy File 670,412 71.89 42.30

Download File 1,730,415 67.21 41.10
Play Video 875,928 63.44 47.75

mapping scheme without applying any real-time mechanisms. In our simulation, a
32GB NAND flash memory is configured and the parameters are shown in Table IV.

We use a set of benchmarks from both real-world and synthetic traces to study the
performance of different schemes. The traces used in our simulation are summarized
in Table V.

Among them, Websearch [UMass 2013] is a read-dominant I/O trace obtained from
Storage Performance Council (SPC), which has lots of read operations. Most of the read
operations in Websearch are random data requests. Financial is an I/O trace with high
sequential accesses from an OLTP [UMass 2013] application running at a financial
institution. The logical address space in Financial is far smaller than the physical
space of the simulated NAND flash. Copy File is a trace collected when copying files
from one location to another. Copy File consists of a high ratio of write request tasks,
including many sequential read and write operations. Download File is collected when
downloading files from the network. It is also a write-dominant trace. Compared to
the trace Copy File, it has more sequential write operations with a large number of
requests. Play Video is collected under a hybrid workload of playing an online video in
which the video player is reading the video data and, at the same time, downloading
the data from the network. The trace Play Video contains many random read and write
operations. These three traces are collected from a desktop running Diskmon [2013]
with Windows XP on an NTFS file system. To make a fair comparison, performance
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data is collected after the first garbage collection is triggered and there is a warm-up
process that writes the data into the NAND flash before the simulation starts so that
all read requests can read data from the simulator.

Compared to Pure-Page-Level, Lazy-RTGC adopts a different policy to trigger
garbage collection. For Pure-Page-Level, the garbage collection can be delayed as late
as possible. Since it does not use the overprovisioning strategy, the entire physical ad-
dress space is mapped to the logical address space. Only one extra swap block is used
as the buffer to hold the valid page copies during garbage collection. When there is
no free data page in NAND flash memory, Pure-Page-Level triggers garbage collection
operations to copy free pages to swap blocks and to reclaim free pages. FSR adopts the
overprovisioning strategy where the logical address space is smaller than the physical
space. The trigger condition in FSR is similar to that in Pure-Page-Level. GFTL and
RFTL adopt a block-level and a hybrid-level mapping scheme, respectively. When the
primary block for the corresponding logical block is full, garbage collection is triggered.
Therefore, the trigger condition for these two schemes depends on the logical address
of the coming data task. In Lazy-RTGC, by adopting a page-level mapping scheme, the
garbage collection trigger time is delayed as late as possible compared to GFTL and
RFTL. When there is only one free block in flash, partial garbage collection is triggered
in our scheme. In all schemes, every garbage collection process reclaims one victim
block when garbage collection is finished in the experiment.

6.2. Results and Discussion

In this section, we present the experimental results in terms of five performance met-
rics: system response time in the worst case, average system response time, valid page
copies, block-erase counts, and the space utilization ratio. For each performance met-
ric, we use six figures to represent the results from all five traces and the average
results of these traces, respectively. We use Pure-Page-Level, FSR, GFTL, RFTL, Lazy-
RTGC, and On-demand+Lazy-RTGC to represent the simulation results generated by
the schemes in Ban [1995], Chang et al. [2004], Choudhuri and Givargis [2008], and
Qin et al. [2012], the proposed Lazy-RTGC based on Pure-Page-Level, and Lazy-RTGC
applied on an on-demand page-level mapping scheme, respectively.

(1) Worst-Case Response Time. The main objective of our scheme is to provide an upper
bound of system response time. The experimental results are shown in Figure 6. The
upper bound of worst-case response time in Pure-Page-Level is defined by Definition 5,
that is, the garbage collection process needs to copy π−1 valid pages. Moreover, due
to the shortage of free pages, one data task may trigger multiple garbage collection
operations. Therefore Pure-Page-Level may suffer bad worst-case response time. FSR
can guarantee the number of reclaimed free pages but cannot guarantee the worst-
case response time due to missing information of real-time tasks. Since our scheme
adopts page-level address mapping and the mapping table is maintained in RAM,
there is no OOB operation compared with GFTL and RFTL. Therefore our scheme
can achieve the minimal upper bound of worst system response time. That is, U(Rt) =
twrpg + ter = 2, 220.9μs. GFTL needs at most π OOB read operations to locate the
page. In evaluation, GFTL reached this state in all traces so that the real upper bound
is U(T ) = trd + πtrdoob + ter = 3, 885μs. Therefore, our scheme can achieve a 42.83%
reduction on the upper bound of worst system response time compared to GFTL. We
can also achieve better performance (i.e., reduced one OOB read operation) compared
to RFTL. As shown in Figure 6, our scheme can achieve 90.58% and 83.78% reductions
on worst system response time compared with Pure-Page-Level and the FSR scheme,
respectively.

In the on-demand Lazy-RTGC scheme, we cache the updated mapping items from
data requests and valid page copies in the CMT so as not to incur any translation page
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Fig. 6. Worst-case response time.

Fig. 7. Average response time.

operations during partial garbage collection. After garbage collection, we schedule
writeback tasks to reduce the CMT size. For a single data request, it may need to
read mapping information from the translation page in flash memory. Therefore the
worst-case response time is slightly more than that in Lazy-RTGC.

(2) Average Response Time. Given that the worst case does not happen frequently,
the average system response time is one of the most important metrics to represent
system performance. The experimental results are shown in Figure 7. From the results,
we can see that GFTL and RFTL suffer significant performance degradation compared
with Pure-Page-Level and our scheme. Our scheme can achieve 94.56% and 50.84%
improvements on average system response time compared with GFTL and RFTL,
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Fig. 8. The cache hit ratio and average response time for on-demand Lazy-RTGC with different RAM size
configurations.

respectively. Since our scheme adopts a page-level address mapping scheme that can
freely manage the data pages in the flash memory and sufficiently make use of the
flash space, our scheme can achieve better average system response time. Compared
to our scheme, GFTL adopts a block-level mapping scheme, and once some logical
block is fully used, the corresponding physical block is added to the central garbage
collection queue to do partial garbage collection. As a result, there is a large number
of unnecessary garbage collections which are triggered very early. RFTL pre-allocates
three physical blocks to each logical block. When the logical block is full, partial garbage
collection is triggered within the allocated blocks. Therefore RFTL still triggers garbage
collection early and requires lots of extra physical flash space. Compared with FSR and
Pure-Page-Level that cannot guarantee real-time performance, our scheme can achieve
similar average system performance.

In Lazy-RTGC, the logical address space is smaller than the physical. When garbage
collection operations are triggered, the number of valid page copy operations can be
guaranteed. Pure-Page-Level does not adopt the overprovisioning strategy, that is, the
entire physical address space is mapped to logical address space. Only one block is used
as the log buffer to hold valid page copies. Therefore, they may meet worst case when
flash memory is fully utilized and few free pages can be reclaimed. As a result, the
continuous garbage collection operations degrade the average performance in Pure-
Page-Level. As shown in Figure 9, the average number of valid page copies during
garbage collection in our scheme is smaller than that in Pure-Page-Level. Therefore
more free pages are reclaimed after garbage collection, which can further postpone
the next garbage collection triggering time. As a result, compared to Pure-Page-Level,
the number of block-erase counts is also reduced in our scheme. As can be see from
the results, our scheme has similar or even better average performance compared to
Pure-Page-Level because of its smaller valid page copies and block-erase counts.

In On-demand Lazy-RTGC, as shown in Figure 8, we evaluate the average response
time with different RAM cache sizes. Figure 8(a) presents the cache hit ratio with
different RAM sizes over different benchmarks. Benchmark Web Search has lots of
random read requests, so the hit ratio is below 20%. For benchmark Financial, the
logical address space is small and contains a large number of sequential data requests.
Therefore the hit ratio can achieve more than 50%. By making use of writeback tasks,
for On-demand Lazy-RTGC, most cached mapping items can be written back to flash
memory in a batch way. From the results in Figure 8(b), we see the average response
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Fig. 9. The normalized number of valid page copies.

time with 1024KB RAM size over different benchmarks can achieve an average 7.50%
improvement than that with 64KB RAM size. This is due to the fact that, with increase
in RAM size, the number of translation page operations is reduced, and the worst-case
response time is bounded. To make a fair comparison, for other performance metrics,
we select 256KB as the CMT size in the experiments.

(3) Valid Page Copies. The number of valid page copies in garbage collection impacts
the time consumption of the garbage collection process. By making use of a page-
level address mapping scheme, Lazy-RTGC can fully use the free pages in the flash
and trigger garbage collection as late as possible. Moreover, the logical address space
is configured lower than the entire physical flash space. Thus there are more invalid
pages in victim blocks when the flash memory is almost full. In order to reclaim enough
free space to do both data garbage collection and translation-block garbage collection
in On-demand Lazy-RTGC, the space utilization is lower than that in Lazy-RTGC.
For Web Search, due to the cache replacement, 56.26% valid page copies are from
translation pages. In other traces, about 3.98% valid page copies are translation page
copies. By applying the overprovisioning strategy on translation blocks, there are few
valid page copies in translation-block garbage collections. GFTL and RFTL adopt a
block-level scheme so that the condition to trigger garbage collection depends on the
logical address of the data request. That is, garbage collection is invoked when the
allocated blocks are full, even though there are lots of free pages in the flash. Therefore
GFTL and RFTL trigger garbage collection very early and there is a large amount of
valid pages that need to be copied. To represent the results clearly, we normalized the
experimental results and the results of GFTL are set to 1.

As shown in Figure 9, our scheme can achieve 95.36% and 86.11% reductions in valid
page copies during the garbage collection compared to GFTL and RFTL, respectively.
By adopting the overprovisioning strategy that limits the logical address space lower
than the entire physical address space, there are more invalid pages in the victim block
when running garbage collection compared to Pure-Page-Level. Moreover, as discussed
in Section 4.2, the number of valid pages in a victim block has an upper bound while
that for Pure-Page-Level is not predictable. Therefore our scheme can achieve a 60.51%
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Fig. 10. The normalized number of block-erase counts.

reduction, on average, compared to Pure-Page-Level. Compared to FSR, our scheme
has 21.56% more valid page copies since FSR has a lower space utilization ratio.

(4) Block-Erase Counts. The number of block-erase counts will influence the average
system response time and the endurance of NAND flash memory. To show the results
clearly, we normalized the experimental results and the results of GFTL are set to 1.
As shown in Figure 10, our scheme can achieve 83.66% and 67.38% reductions in block-
erase counts compared with GFTL and RFTL, respectively. That is because, for the cen-
tral partial garbage collection policy in GFTL and distributed partial garbage collection
policy in RFTL, the condition to trigger garbage collection depends on the usage of logi-
cal blocks. Thus these schemes will trigger lots of unnecessary garbage collection opera-
tions. Since our scheme, On-demand Lazy-RTGC, and FSR reduced the logical address
space to guarantee the reclaimed free space, there are more reclaimed free pages after
each garbage collection so that it can postpone the next garbage collection operation. As
a result, our scheme has lesser number of block-erase counts compared with Pure-Page-
Level and the number of block-erase counts is very close to the one in FSR. On-demand
Lazy-RTGC contains two kinds of block, namely data block and translation block, and
both of them will be erased due to shortage of free space. For Web Search, cache replace-
ment incurs many translation-block garbage collections so the block-erase counts are
increased 43.59% compared to Lazy-RTGC. In other traces, since the logical address
space is reduced due to the overprovisioning strategy of translation blocks, the total
number of block-erase counts in On-demand Lazy-RTGC is close to that in Lazy-RTGC.

(5) Space Utilization. In order to achieve the objective of guaranteeing the worst-case
system response time, GFTL, RFTL, and our scheme all incur extra space overhead. In
Lazy-RTGC, we can get the space utilization ratio σ according to Eq. (11). That is, the
space utilization ratio of Lazy-RTGC is limited by U(σ ) = (64−1)×8

(8+1)×64 = 87.5%, where α =
� 2000

220+29	 = 8. According to Eq. (17) in On-demand Lazy-RTGC, we configure the σt = 0.5
first to pre-allocate more free blocks for the translation block and then we can get the
space utilization ratio of On-demand Lazy-RTGC at about 80%. In GFTL, there is a
central write buffer to serve the coming write requests when running partial garbage
collection, whereas it exists in a distributed write buffer (i.e., buffer block) in RFTL for
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Fig. 11. The space utilization ratio.

each logical block. The buffer length in GFTL is limited by N(k+1)/2 so the utilization
is about 92.18%. RFTL pre-allocated three physical blocks to one logical block; thus
the space utilization is very low (about 33.3%). As shown in Figure 11, our scheme can
achieve an 80.77% reduction on average in extra flash-space overhead compared with
RFTL, but costs a little more space than GFTL. Since FSR cannot get real-time task
information, we set 75% as the ratio between the logical space and physical space. From
the experimental results, we see FSR has better average performance and block-erase
counts. However, it cannot guarantee the worst-case system response time. Pure-Page-
Level does not apply any real-time mechanism so that the space utilization is close to
100%.

6.3. Memory and Energy Overhead

In this section, we analyze the memory overhead caused by Lazy-RTGC and other
representative schemes, that is, Pure-Page-Level, FSR, GFTL, RFTL, Lazy-RTGC, and
On-demand Lazy-RTGC. Table VII presents the experimental results. In these schemes,
Pure-Page-Level, FSR, Lazy-RTGC, and On-demand Lazy-RTGC adopt page-level ad-
dress mapping in which the entire page-level mapping table is cached in the RAM space.
This will incur large RAM-space cost. As shown in Table VII, for a 32GB NAND flash
memory, the RAM cost for the Pure-Page-Level scheme is 64MB. FSR, Lazy-RTGC, and
On-demand Lazy-RTGC adopt the overprovisioning strategy that limits the logical ad-
dress space to be smaller than the physical address space. According to the different
space utilization ratios, the RAM costs for FSR, Lazy-RTGC, and On-demand Lazy-
RTGC are different. GFTL uses block-level address mapping, but requires a page-level
address mapping table to manage the central write buffer. Therefore GFTL still needs
about a 12.2MB RAM footprint to maintain the address mapping table. RFTL adopts
a hybrid-level address mapping scheme and the entire mapping table is stored in the
OOB area. Therefore, it can significantly reduce the RAM cost. On-demand Lazy-RTGC
stores the entire page-level mapping table in flash memory and caches a small number
of mapping items in RAM space, so reducing large RAM cost. From the experimental
results, On-demand Lazy-RTGC can reduce 90.0% and 47.6% RAM overhead compared
to Pure-Page-Level and GFTL, respectively.
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Table VI. Parameters of CACTI Power Model
[Shyamkumar et al. 2008]

Parameter Value

Capacity (MB) 16
Output width (bits) 512
Number of banks 1
Number of read/write ports 1
Technology-node (nm) 65
Temperature (K) 360
SRAM cell/wordline technology flavor ITRS HP
Peripheral/Global circuitry technology flavor ITRS HP
Wire type inside/outside mat Semi-global

Table VII. Memory and Energy Overhead Comparison

On-demand
Metrics Pure-Page-Level FSR RFTL GFTL Lazy-RTGC Lazy-RTGC

RAM overhead (KB) 65,536 49,152 1,024 12,480 57,344 6,528
Energy consumption (nJ) 19.193 14.609 1.155 5.545 16.452 3.822

The energy consumption is affected by the size and number of accesses to RAM.
There is research on power consumption analysis of storage devices [HP Laboratories
2009; Vidyabhushan et al. 2013]. We select CACTI 5.3 [HP Laboratories 2009] as
the RAM power model. The parameters of the power model are listed in Table VI.
We calculate the energy consumption by applying different RAM-space requirements
from evaluated schemes to the power model and the results are shown in Table VII.
Pure-Page-Level, FSR, and Lazy-RTGC adopt page-level mapping by which the entire
page-level mapping table is cached in the RAM. The large RAM overhead leads to
a large energy overhead in these schemes. RFTL stores the entire mapping table in
the OOB area so its RAM overhead and energy consumption are very small. However,
RFTL has very low space utilization ratio and its average performance is degraded due
to a large number of garbage collections. GFTL uses the block-level mapping scheme to
record primary block mapping and a page-level mapping table is used for the central
write buffer. Though the RAM cost and energy cost are better than those of page-
level mapping schemes, GFTL still costs 79.2% extra energy consumption compared
to RFTL. To reduce the large energy consumption in Lazy-RTGC, we make use of the
on-demand approach that stores the entire page-level mapping table in flash memory
and only caches a small number of mapping items in the RAM. Therefore On-demand
Lazy-RTGC can reduce 80.1% and 31.1% RAM energy overhead compared to Pure-
Page-Level and GFTL, respectively.

7. RELATED WORKS

The design and architecture of flash translation layer (FTL) for flash storage systems
has been extensively studied in the literature. Many schemes have been proposed
to optimize the management of address mapping information [Wu et al. 2007; Lee
et al. 2007; Liu et al. 2012; Zhang et al. 2013] and to solve endurance and power failure
problems [Chang 2007; Wang et al. 2011; Guo et al. 2013; Chen et al. 2013; Chang et al.
2013b, 2015; Zhang et al. 2014; Huang et al. 2014a]. Only few works are about real-
time NAND flash memory storage systems. Among them, Chang et al. [2004] proposed
a real-time garbage collection mechanism. The mechanism needs to get real-time task
information from the file system and allocate a garbage collection task to each real-
time task for replenishing required free pages. In order to determine the reclaimed free
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pages after each garbage collection process, the mechanism limits that logical address
space which is smaller than the physical space, as the overprovisioning strategy. The
number of valid pages in each data block can have an upper bound. Therefore this
mechanism can guarantee that each real-time task has enough free pages to execute.
However, it does not consider the average performance that can promise the deadline of
each real-time task. Moreover, the mechanism needs extra real-time task information
from the file system, which may require significant modification to current file systems.

Partial garbage collection is proposed in GFTL [Choudhuri and Givargis 2008]. In
GFTL, a block-level mapping scheme is adopted, and there is a central garbage collec-
tion queue to record the block number needed to execute garbage collection. A write
buffer is used to handle the coming request when the corresponding data block is full.
Once the block is full, the block number will be added to the garbage collection queue
and wait for garbage collection. Before the corresponding block is erased, the coming
write request will be written to the write buffer. GFTL can guarantee that the buffer
length has an acceptable upper bound. However, there are many unnecessary garbage
collections and valid page copies. Many hot data blocks may be erased frequently while
other blocks stay free for a long time.

To solve the problem, Qin et al. [2012] proposed a distributed partial garbage col-
lection scheme called RFTL [2012]. In RFTL, each logical block is allocated to three
physical blocks and the partial garbage collection process is distributed to the corre-
sponding logical block. That is, the write request only triggers its own corresponding
partial garbage collection and the data is moved within three pre-allocated physical
blocks. RFTL can reduce the performance impact from partial garbage collection but
cannot solve the unnecessary garbage collection problem, since cold free blocks are still
not be used due to the block-level mapping scheme. Moreover, the low space utilization
that costs 2/3 physical space is another problem in RFTL.

There is also much research on the architectures of solid state drives (SSDs) [Payer
et al. 2009; Seong et al. 2010; Sun et al. 2010; Chang and Wen 2014; Chang et al.
2014b; Wu et al. 2013]. These works mainly focus on the optimization of parallel read
or write without considering the garbage collection in SSDs. Lee et al. [2013] proposed a
pre-emptible garbage collection (PGC) scheme for SSDs. PGC can identify pre-emption
points that can minimize the pre-emption overhead, and can merge incoming I/O re-
quests to enhance the performance of SSDs. However, PGC does not consider the
mapping scheme impact performance. The objective of PGC is to improve the system
performance instead of providing deterministic garbage collection. Therefore it may
not provide effective solutions to our problem. There are also some write buffer and
cache schemes proposed to improve write performance [Wu et al. 2006; Ding et al. 2007;
Shi et al. 2013, 2014; Hu et al. 2013]. These techniques target at the management of
data buffers during garbage collection. The objectives are to reduce the write activities.
Craciunas et al. [2008] proposed a system call scheduling technique for resource and
workload management in network- and disk-related system call scheduling [Huang
et al. 2014b]. Although the scheduling technique can effectively control I/O process be-
havior with good real-time performance, it targets at hard disk drives instead of flash
memory. Our technique can be combined with these techniques to provide determinis-
tic garbage collection and optimize both the average and worst performance for NAND
flash memory storage systems.

8. CONCLUSION

In this article, we have proposed a real-time lazy garbage collection mechanism for
NAND flash memory storage systems. By making use of an on-demand page-level
mapping scheme and a partial garbage collection technique, Lazy-RTGC can guaran-
tee system response time in the worst case and further optimize the average system
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performance. We have evaluated Lazy-RTGC using a set of benchmarks and compared
with representative works. The simulation results show that our scheme can signifi-
cantly improve both the average and worst system performance with very low extra
flash-space requirements. In the future, the on-demand method will be optimized to fur-
ther reduce the RAM-space cost, and we would like to make use of the system idle time
to invoke garbage collection early and to avoid the flash memory staying in a long-term
worst-case situation. We plan to apply our real-time lazy garbage collection mecha-
nism to the parallelism architecture in solid-state drives. Moreover, Vidyabhushan
et al. [2013] proposed FlashPower to model the power consumption of NAND flash
memory. We also plan to use FlashPower to evaluate the power consumption of Lazy-
RTGC and previous works.
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