

Software Engineering Group
Department of Computer Science
Nanjing University
http://seg.nju.edu.cn

Technical Report No. NJU-SEG-2013-IC-001

2013-IC-001

 Optimizing Translation Information Management in NAND

Flash Memory Storage Systems

Qi Zhang, Xuandong Li, Linzhang Wang, Tian Zhang, Yi Wang, Zili Shao

Proceedings of the 18th Asia and South Pacific Design Automation Conference 2013

Most of the papers available from this document appear in print, and the corresponding copyright is held by the

publisher. While the papers can be used for personal use, redistribution or reprinting for commercial purposes is

prohibited.

http://seg.nju.edu.cn/

Optimizing Translation Information Management in NAND Flash
Memory Storage Systems

Qi Zhang†‡, Xuandong Li†‡, Linzhang Wang†‡, Tian Zhang†‡, Yi Wang§, Zili Shao§
†State Key Laboratory for Novel Software Technology, Nanjing University, Nanjing 210093
‡Department of Computer Science and Technology, Nanjing University, Nanjing 210093

§ Department of Computing, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong

zhangqi@seg.nju.edu.cn {lxd, lzwang, ztluck}@nju.edu.cn, {csywang, cszlshao}@comp.polyu.edu.hk

Abstract— Address mapping is one of the major functions in
managing NAND flash. With the capacity increase of NAND flash,
it becomes vitally important to reduce the RAM print of the ad-
dress mapping table while not introducing big performance over-
head. Demand-based address mapping is an effective approach to
solve this problem, in which the address mapping table is stored
in NAND flash (called translation pages), and mapping items are
cached on-demand in RAM. Therefore, it is critical to manage
translation pages in demand-based address mapping. This paper
solves two most important problems in translation page manage-
ment. First, to reduce frequent translation page updates caused
by data requests, we propose a page-level caching mechanism to
exploit the fundamental property of NAND flash where the basic
read/write unit is one page. Second, to reduce the garbage col-
lection overhead from translation pages, we propose a multiple
write pointers strategy to group data pages corresponding to the
same translation page into one data block, by which, when the
data block is reclaimed via the garbage collection, we only need to
update one translation page. We evaluate our scheme using a set
of benchmarks from both real-world and synthetic traces. Exper-
imental results show that our techniques can achieve significant
reduction in the extra translation operations and improve the sys-
tem response time.

I. INTRODUCTION

NAND flash memory has been widely adopted in various
storage systems from USB drives, smart phones, digital mem-
ory cards, to SSDs (Solid State Drives) due to its non-volatility,
low power consumption, high density and good shock resis-
tance. However, NAND flash memory also has some con-
straints such as “out-of-place updates”, and limited lifetime
of physical blocks. To conceal these unfavorable characteris-
tics and make NAND flash work like an ordinary block device,
an intermediate software module called flash translation layer
(FTL) is employed to serve I/O requests and manage NAND
flash correspondingly [13]. Address translation is one of main
functions in FTL, and it serves to translate a logical address
from file system to a physical address in the flash memory.
Thus, managing address translation becomes an important task
in managing NAND flash.

In FTLs, there are mainly three kinds of address mapping
schemes: block-level, page-level, and hybrid-level mapping.
The granularity of page-level mapping schemes is one data
page so FTL can directly locate the data. However, it requires

large RAM space to maintain the page-level mapping table. In
block-level mapping schemes [5, 8, 9, 12], a block-level map-
ping table is maintained so a logical block can be mapped to a
physical block and much less mapping information needs to be
stored in RAM. Block-level schemes use the block offset to lo-
cate the pages within a block so that it may trigger large number
of garbage collections due to locating collision. In hybrid-level
schemes [6, 7, 16, 19], physical blocks are logically partitioned
into data blocks and log blocks. A block-level mapping table
is maintained so a logical block can be mapped to a data block.
Log blocks are a few physical blocks to hold all page updates
for all data blocks and the update data is located through page-
level mapping table. However, the drawbacks of block-level
and page-level mapping scheme are still not solved completely
in the hybrid-level mapping scheme.

Compared to the block-level and hybrid-level mapping,
page-level mapping schemes are more efficient in address
translation. However, due to its large mapping table in the
RAM, pure page-level mapping schemes are hard to apply for
embedded systems. In recent years, demand-based approaches
[11, 15, 14] are proposed to significantly reduce the RAM foot-
print. In DFTL [11], only a small number of mapping items
are cached in the RAM, while the entire page-level mapping
table is stored in translation pages in NAND flash. The perfor-
mance of DFTL is highly influenced by the characteristics of
the workloads. In order to improve the cache hit ratio, Qin et
al. proposed a two-level cached demand-based scheme, which
makes use of the spatial locality of the workloads so that sig-
nificantly improves the cache hit ratio and performance [15].
However, only the cached mapping mechanism is considered in
the scheme, it does not optimize the management of translation
information existing in both cache and NAND flash memory.
There are also some techniques [17, 18] proposed to improve
the write buffer cache management, but they can not be directly
applied into the translation caching.

In this paper, we propose a scheme called TPM (Transla-
tion Page Management) to optimize the translation information
management for demand-based page-level address mappings
in NAND flash memory storage systems. In TPM, we first ad-
dress the problem of reducing frequent translation page updates
caused by data page updates. By exploiting the fundamental
property of NAND flash in which the basic read/write unit is
one page, we change the caching granularity to be one trans-
lation page, and achieve faster address translation by directly
connecting cache with the global address indexing. We found

978-1-4673-3030-5/13/$31.00 ©2013 IEEE

4B-2

326

For Research Only

this mechanism can better capture translation page updates in
RAM for both sequential and random writes. Furthermore, in
order to reduce the number of translation page copies during
the garbage collection, TPM allocates write requests that share
the same translation page into one data block. By doing this,
the translation page copy operations will be significantly re-
duced, and the average response time will be effectively im-
proved.

We evaluate TPM using a set of benchmarks from both real-
world and synthetic traces. FlashSim [1] is used in our ex-
periments to simulate a 32GB NAND flash memory storage
system. The experimental results show that TPM can achieve
an average 90.93% reduction in the number of translation page
operations. Moreover, our mechanism achieves a 22.14% im-
provement in the average system response time and a 26.51%
reduction in the block erase counts compared with the previous
work.

This paper makes the following contributions:

∙ We present for the first time an optimized translation in-
formation management scheme to solve two important
problems in demand-based address mapping.

∙ We demonstrate the effectiveness of this scheme by ap-
plying this into a representative demand-based page-level
address mapping scheme and comparing it with the repre-
sentative schemes using a set of application traces.

The remainder of this paper is organized as follows. Sec-
tion II introduces the observations of demand-based page-level
mapping schemes and our motivation. Section III presents the
proposed translation information management scheme. Sec-
tion IV presents the experimental results. The conclusion is
presented in Section V.

II. PROBLEM ANALYSIS AND MOTIVATION

In this section, we first introduce DFTL and its translation
information management. Then we analyze the critical issues
in the translation information management.

DFTL, as a representative demand-based page-level map-
ping scheme, is proposed to improve the system performance
by using page-level mapping and reduce the requirement of
large RAM space. In order to store the entire address trans-
lation information (i.e., address mapping information), there
are two kinds of blocks in DFTL: Data Block and Transla-
tion Block. Data blocks store the data of the requests from
file system, while translation blocks are used to maintain the
page-level mapping table. There is no fixed area preallocated
for translation blocks so that data blocks and translation blocks
share the whole flash physical space. One translation page in
the translation block contains 512 logical-to-physical mapping
items (each item costs 4 bytes) and is tracked by Global Trans-
lation Directory (GTD). Moreover, a Cached Mapping Table
(CMT) maintains a small number of frequently used mapping
items in the RAM to improve the performance by exploiting
temporal locality. GTD and CMT are two important compo-
nents in the translation information management of DFTL.

The operations on translation information mainly come from
two sources. First, in the cached mapping mechanism, fetching

LPN PPN

16 28

Cached Mapping
Table (CMT)

48 56
4 31
51 19

TP0
TP1
TP2
TP3

TP32
TP33
TP3'< 52, 96 >52 96

15 89

< 16,28 >

Update

Write Back

Read

ReadTrans. Page Trans. Block

Trans. Block

Fig. 1. The Cache Mapping Mechanism in DFTL.

a mapping item from flash device to RAM cache causes a read
operation of translation page. When there is a victim updated
mapping item should be evicted from cache to flash, the related
translation page needs to be read first and the corresponding
mapping item in the page is updated to the version of that in
the cache. At last, the updated translation page is rewritten to
another free space. That is, one cache miss leads to one read
operation in the best case, but produces two read operations and
one write operation in the worst case. Figure 1 shows an exam-
ple. Suppose that the mapping item (16,28) needs to be fetched
in the CMT. DFTL first reads TP1 from the translation block
and then put one mapping item (16,28) from 512 items to the
CMT. Moreover, if an updated mapping item (52,96) needs to
be evicted from the cache, the corresponding translation page
TP3 will be read first. Then the updated item updates the old
version in the TP3. Finally, the updated TP3 is written back
to the current translation block. From the example, we can see
that there are many extra read and write operations on transla-
tion information following a single data request, which signifi-
cantly degrades the system performance.

PPN DATA
16
17
18

D
B
A

Victim Data Block

19 D1
20 B1
21 E
22 F
23 E1

Translation Pages

PPN DATA
0
1
2
3
4
5
6
7

PPN DATA

1
2
3
4
5
6
7

PPN DATA
0
1
2
3
4
5
6
7

PPN DATA
32
33
34

Q
S
A

Current Data Block

35 D1
36 B1
37 E
38
39

Valid Data Copy

Update: 18 -> 34

Update: 19 -> 35

Update: 20 -> 36

Update: 21 -> 37

Read

Write
Back

Translation Blocks

TPPN: 12

TPPN: 15

TPPN: 34

TPPN: 5

Fig. 2. The Translation Page Updates during Garbage Collection in DFTL.

The second source of translation page operations is from
garbage collection. When a data block is reclaimed via garbage
collection, all corresponding translation pages for valid data
pages in this block should be updated after the valid data pages
are copied. Thus, there exists extra translation overhead during
the data block garbage collection. As shown in Figure 2, there
are four valid pages in the victim block (PPN from 18 to 21)
and these data pages correspond to different translation pages,
whose TPPNs are 12, 15, 34, and 5, respectively. After copying
valid data pages to the current data block, four translation pages
need to be read and written back after updating only one map-

4B-2

327

For Research Only

ping item in each translation page. Therefore, when there are
many valid data pages in the victim block, it may produce lots
of extra translation operations during the garbage collection.

There are two problems in translation information manage-
ment in DFTL. First, the caching mechanism is based on map-
ping items. That is, after reading the whole translation page,
it only caches one mapping item from 512 items in the page.
However, for sequential read/writes, it is very possible that
we may need other mapping items very soon. Second, when
handling write requests, data is stored sequentially in physical
pages. Therefore, data pages that belong to different transla-
tion pages may map into one data block. If the number of
corresponding translation pages for the victim block is very
large, it may cause many translation page copies during the
garbage collection. In this paper, we aim to solve these prob-
lems and present an optimized translation information manage-
ment scheme.

III. TPM: OPTIMIZED TRANSLATION INFORMATION

MANAGEMENT

In this section, we present our optimized translation infor-
mation management scheme in NAND flash memory storage
systems. We will first introduce the system architecture. Then,
we present the new caching mechanism and multiple-write-
pointers strategy in our management. Finally, the process of
garbage collection under TPM is introduced.

A. Overview

In TPM, the page-level address mapping table is stored in
translation pages in NAND flash. Each translation page con-
tains multiple address mapping items. TPM optimizes transla-
tion information management in two aspects, Caching Mech-
anism and Multiple Write Pointers Strategy. The architecture
of TPM is shown in Figure 3. In our caching mechanism, the
granularity of CMT is a translation page, so we can fully make
use of the translation information in the translation page. The
new CMT also records the start logical address (SLA) of the
translation page, which is used to locate the GTD item when
evicting the mapping item. To support our caching mechanism
and multiple write pointers strategy, GTD is extended to record
write pointers and cache indexes. Therefore, GTD can combine
with the CMT so as to jointly manage the translation mappings,
data writing points, and CMT items. A Free Block Pool is used
to manage free blocks in the flash and allocate free block on
demand.

B. Caching Mechanism

In TPM, the granularity of CMT is a translation page. With
our scheme, both temporal locality and spatial locality are im-
proved. Compared with the caching mechanism in DFTL, TPM
can get benefits once there is more than one access on the same
cached translation page.

Since CMT and GTD have the same mapping granularity,
our cached mapping mechanism can easily combine with GTD.
We maintain the cache index for each item in the GTD and
change the access way of CMT. GTD item index can be lo-
cated first by dividing logical page number with the number of

Index WP

15 48

Global Translation Directory (GTD)

16 94
17 26
18 65

TPPN CI

2
35
18
23

14
11
-1
13

Index Trans.

10
11
12
13

SLA

Cached Mapping Table (CMT)

8
128
24
144

Translation Blocks
TPPN Trans.
0
1
2
3

TPPN Trans.

1
2
3

TPPN Trans.
64
65
66
67

PPN Data
0
1
2
3

PPN Data
0
1
2
3

PPN Data
20 E
21 D1
22 H
23 P

Data Blocks

Write
Pointers

<R, 135>

<135, 34>

<W, 145, P>

Related Trans. Page 65

<145, 23>

Cached in RAM

TPPN: Trans. Physical Page Number
SLA: Start Logical Address

WP: Write Pointer CI: Cache Index
PPN: Physical Page Number

Fig. 3. The Overview of TPM.

mappings that one translation page can store (e.g., 512). Af-
ter getting the GTD item index, we can get both the cache in-
dex and write pointer of the item, where the cache index can
directly locate the corresponding mapping information while
the write pointer that points to a physical page the data can
be written. Therefore, we reduce the searching time of CMT
by using index to locate the mappings. “-1” in the cache in-
dex means that the corresponding mapping is not cached in the
CMT. Figure 3 shows an example of reading data. Suppose
each translation page stores 8 mapping items and LPN of the
coming read request is 135. We first get the GTD index by
computing ⌊135/8⌋ = 16 and then get the cache index that is
11. Therefore, the mapping of (135,34) is located in the cached
translation page and we can read the data with the PPN 34.

The replacement policy of the CMT is the Least Recently
Used (LRU) algorithm but it is optimized by considering the
update counts of cached translation pages. That is, if a transla-
tion page cached in the CMT has never been updated (i.e., the
update counts is zero), it can be directly evicted from the cache
without any write back operation.

C. Multiple Write Pointers Strategy

We propose a strategy called “multiple write pointers” to
group data pages corresponding to one translation page into
one data block. Different from the unified write pointer main-
tained in the CDB in DFTL, in our strategy, each GTD item
maintains its own write pointer that points to an available free
page in one data block. For each write request, through the
corresponding GTD item located shown above, we can get the
write pointer to write the data. By using the same write pointer
for one translation page, data with the logical address corre-
sponds to the same GTD item (i.e., translation page) is orga-
nized into the same data block. As TPM combines the GTD
and CMT, GTD index is only computed once so that both the
caching mechanism and multiple write pointers strategy can
make use of the information of the GTD item.

At the initial time, all free blocks belong to Free Block Pool
and write pointer for each GTD item is not allocated. To dis-
tinguish the initial state, we use “-1” to represent the state that
write pointer is not available. With the coming write requests,
if the write pointer of the corresponding GTD item is available,
the pointed data page can be directly allocated to serve the re-
quest. Otherwise, as the write pointer is not available or the

4B-2

328

For Research Only

corresponding data block is full, a new free block is allocated
from free block pool to handle the request. After issuing write
operation, the write pointer is updated to the next available free
page of the allocated block. Since the data stored in a data
block is allocated by the pointer of the same GTD item, we can
ensure that each data block will correspond to only one trans-
lation page. When the free block pool becomes empty, garbage
collection will be invoked and the reclaimed victim physical
blocks are put back to the free block pool. Algorithm III.1 il-
lustrates the process of writing data through our strategy.

Figure 3 shows an example of our multiple write pointers
strategy. Suppose each block contains 4 physical pages and
each translation page can store 8 mappings. There is a write
request with LPN 145 and the corresponding GTD index is
⌊145/8⌋ = 18. Then we can get the write pointer that points
to the data page with PPN 23. Thus, the data “P” can be di-
rectly written to the page. After writing, the translation page
will be cached into the CMT and the mapping is updated to
(145,23). To the current data block, the translation information
corresponding to the pages with PPN from 20 to 23 belongs to
only one translation page with TPPN 65. That means there is at
most one translation page copy overhead when this block is se-
lected as the victim block. Therefore, we can get benefits from
our multiple write pointers strategy in the garbage collection,
since the extra translation page updates are minimized.

D. Garbage Collection

There are two kinds of garbage collections in the TPM,
translation block garbage collection and data block garbage
collection. By optimizing the caching mechanism, translation
pages with closed hot or cold degrees would be written back to
the same translation block. Our mechanism adopts LRU algo-
rithm which replaces the least accessed translation page from
cache to flash. Since there is only one translation write pointer
in our scheme, translation pages evicted in the continuous pe-
riod are written into the same translation block. As a result,
there is more possibility that lots of invalid translation pages
exist in the victim translation block, which can further reduce
the translation page copies overhead.

Algorithm III.1 Multiple Write Pointers Strategy
Require: A logical page number (𝐿𝑃𝑁). 𝑁𝑚 is the number of mapping

items stored in a translation page
Ensure: An available physical page number (𝑃𝑃𝑁) for (𝐿𝑃𝑁).

1: Compute the index (𝑖) of 𝐺𝑇𝐷 by dividing 𝐿𝑃𝑁 with 𝑁𝑚.
2: if 𝐺𝑇𝐷[𝑖].𝑊𝑃 == -1 then
3: if Free Block Pool is ∅ then
4: while Free Block Pool is ∅ && 𝐺𝑇𝐷[𝑖].𝑊𝑃 == -1 do
5: Trigger GC
6: end while
7: end if
8: if 𝐺𝑇𝐷[𝑖].𝑊𝑃 == -1 then
9: Allocate a free block from Free Block Pool to 𝐺𝑇𝐷[𝑖].

10: 𝐺𝑇𝐷[𝑖].𝑊𝑃 ⇐ 𝑓𝑖𝑟𝑠𝑡 𝑝𝑎𝑔𝑒(𝐴𝑙𝑙𝑜𝑐𝑎𝑡𝑒𝑑𝐵𝑙𝑜𝑐𝑘).
11: end if
12: end if
13: 𝑃𝑃𝑁 ⇐ 𝐺𝑇𝐷[𝑖].𝑊𝑃
14: if allocated block of 𝐺𝑇𝐷[𝑖] is full then
15: 𝐺𝑇𝐷[𝑖].𝑊𝑃 ⇐ -1.
16: else
17: 𝐺𝑇𝐷[𝑖].𝑊𝑃 ⇐ 𝑛𝑒𝑥𝑡 𝑝𝑎𝑔𝑒(𝐺𝑇𝐷[𝑖].𝑊𝑃).
18: end if

For data block garbage collection, the number of translation
pages corresponding to each data block should be maintained
to one after garbage collection. To achieve that, TPM reuses the
multiple write pointers strategy in the data block garbage col-
lection. In data block garbage collection, we first consult GTD
to get the corresponding write pointer. After copying valid data
by using the write pointer, if the corresponding write pointer is
still available, we even don’t need a swap block. Otherwise,
when the allocated block corresponding to the GTD item is
used up, we allocate another swap block. Then the swap block
becomes an allocated block to the GTD item and the erased
block is considered as a new swap block.

IV. EVALUATION

In this section, we present the experimental results with anal-
ysis to demonstrate the effectiveness of our proposed scheme.
We compare TPM with a representative demand-based page-
level mapping scheme DFTL [11]. in terms of four per-
formance metrics: cache hit ratio, the number of translation
operations, system response time, and the number of block
erase counts. We select DFTL for comparison because it has
been compared with both block-level and hybrid-level map-
ping schemes and results show that it can provide better per-
formance.

A. Experimental Setup

Traces

SPC

DiskMon

Flash Model with
Configured Parameters

Results

Implementation of Flash
Translation Layer

MTD Simulator

DiskSim Framework

FlashSim Module

Fig. 4. The Framework of Simulation Platform

Figure 4 shows the framework of our simulation platform.
FlashSim, a module of DiskSim [10], can manage and supply
basic operations of a flash memory chip and has been widely
used to evaluate the performance of FTL schemes. Thus, we
adopt FlashSim as our simulator in the evaluation. We imple-
mented our scheme and DFTL in FlashSim. In the simulation, a
32GB NAND flash memory storage system is configured. The
parameters in the simulation are given in Table I.

We use a set of benchmarks from both real-world and syn-
thetic traces to study the performance of different schemes.
The traces used in our simulation are summarized in Table II.
Among them, Websearch [4] is a read-dominant I/O trace ob-
tained from Storage Performance Council (SPC) [3]. Finan-
cial is an I/O trace with high sequential accesses from an OLTP
application running at a financial institution also obtained from
SPC. Systemdisk1-3 are traces collected from a laptop running
Diskmon [2]. There is a warm-up process that writes the data
into the NAND flash before the simulation starts so that all read
requests can read data from simulator.

4B-2

329

For Research Only

TABLE I
PARAMETERS OF THE NAND FLASH MEMORY

Parameter Value

Total capacity 32GB
The percentage of reserved free blocks 15%
The minimum number of free blocks 3
The number of planes in the chip 8
The number of blocks per plane 2048
The number of pages per block 64
Page size 2KB
Page read latency 0.029𝑚𝑠
Page write latency 0.2059𝑚𝑠
Block erase latency 1.5𝑚𝑠

TABLE II
TRACES USED IN THE SIMULATION

Traces Num.of Req. Write (%) Avg.Req.Size (KB)

Websearch 1,055,448 0.02 15.05
Financial 3,698,864 17.66 5.24

Systemdisk1 670,412 71.89 42.30
Systemdisk2 1,730,415 67.21 41.10
Systemdisk3 875,928 63.44 47.75

B. Results and Discussion

In this section, we present the experimental results of TPM
and DFTL in terms of four performance metrics: cache hit ra-
tio, the number of translation operations, system response time,
and the number of block erase counts.

1) Cache Hit Ratio: Cache hit ratio is one of the most impor-
tant factors that significantly influence the system performance.
To make a fair comparison, we evaluate the performance under
the same RAM footprint in our scheme and DFTL. The size of
CMT is set to 128KB, 256KB, 512KB, and 1024KB. As shown
in Figure 5, our caching mechanism can reach at least 89.27%
cache hit ratio while the DFTL has an average of 40.14% cache
hit ratio. In the demand-based approach, each translation page
can hold the mapping items with 1MB (512 × 2𝐾𝐵) consec-
utive logical address space. As most write requests are with
consecutive logical addresses, caching the whole translation
page can significantly improve the cache hit ratio. For read-
dominant workload, the addresses from read operations are
usually random so that it has only about 5% improvement on
cache hit ratio when the cache size is increased. However, for
write-dominant workload, there are a large amount of sequen-
tial write requests. Thus, the cache hit ratio has about 12% to
20% improvement as the cache size increases. Specially, since
the address span of the data requests is relative small, the Fi-
nancial trace can get higher cache hit ratio compared to others
workloads.

To make a fair comparison and show the results clearly, for
other performance metrics, we select 512 KB as the CMT size
in the experiments, and the following results of DFTL and TPM
are based on this configuration.

2) Translation Page Operations: The main objective of our
scheme is to reduce the extra translation operations in the
demand-based mapping scheme. Since TPM uses new caching
mechanism to cache translation pages so as to improve the
cache hit ratio, the number of translation page operations is sig-
nificantly reduced. Moreover, by using multiple write pointers

Fig. 5. The Cache Hit Ratio under Different Cache Size

strategy, our scheme minimizes the number of translation pages
associated with a data block, so that the number of translation
page copy operations in each garbage collection process is at
most one. Therefore, our scheme can significantly reduce the
translation page operations compared with DFTL. As shown in
Figure 6, our scheme can achieve an average 90.93% reduction
on translation page operations.

Fig. 6. The Normalized Number of Translation Operations.

3) System Response Time: System response time is one of
the most important metrics in the design of NAND flash mem-
ory storage systems. We have compared the system response
time of DFTL and our proposed scheme. The experimental re-
sults are shown in Figure 7. Compared with DFTL, our scheme
achieves an average 22.14% reduction on average system re-
sponse time. TPM can greatly improve the cache hit ratio, and
effectively reduce the number of translation page operations.
Therefore, our scheme has better average performance com-
pared with the DFTL.

4) Block Erase Counts: Since TPM reduces significant trans-
lation operations by using optimized translation information
management, it can effectively reduce the block erase counts
and improve the endurance of the NAND flash memory. More-
over, different size of CMT leads to different reduction on erase
counts. That is, the large CMT size will improve the cache
hit ratio and indirectly reduce more translation page operations
and block erase counts. As shown in Figure 8, our scheme
can reduce an average of 26.51% block erase counts compared
with DFTL.

4B-2

330

For Research Only

Fig. 7. Average System Response Time.

Fig. 8. The Normalized Number of Block Erase Counts

C. Overhead

In order to optimize translation information management, we
extend GTD and CMT by recording extra information such as
the write pointer and cache index for each GTD item. How-
ever, the size of GTD is very small that only needs 2KB RAM
footprint to support 1GB space. In our scheme, GTD only
costs 96KB of RAM footprint for 32GB NAND flash mem-
ory. Our multiple write pointers strategy only introduces about
4.74% extra space overhead. But TPM achieves an average
90.93% reduction in extra translation operations and a 22.14%
improvement in the average response time compared with pre-
vious work.

V. CONCLUSION

In this paper, we have proposed TPM, an optimized trans-
lation information management for demand-based page-level
mappings in NAND flash memory system. The scheme opti-
mized the caching mechanism to cache translation pages and
locate them with indexes in the GTD. Moreover, by using mul-
tiple write pointers strategy, data belongs to the same transla-
tion page are grouped into one data block. We have evaluated
TPM using a set of benchmarks and compared with the repre-
sentative scheme. The simulation results show that our scheme
can significantly reduce translation page operations and im-
prove the average system response time compared with the pre-
vious works.

ACKNOWLEDGMENTS

The work described in this paper is partially sup-
ported by the National 863 High-Tech Programme of China
(No.2011AA010103), the National Grand Fundamental Re-
search 973 Program of China (No.2009CB320702), Intel China
University Collaboration Fund, the Graduate Research and In-
novation Project of Jiangsu Province (No.CXZZ12 0057), the
Innovation and Technology Support Programme of Innovation
and Technology Fund of the Hong Kong Special Adminis-
trative Region, China (ITS/082/10), National Natural Science
Foundation of China (Project 61272103), and the Hong Kong
Polytechnic University (G-YK24).

REFERENCES

[1] A Simulator for various FTL schemes. http://csl.cse.psu.edu/?q=node/
322.

[2] DiskMon for Windows. http://technet.microsoft.com/en-us/sysinternals/
bb896646.aspx.

[3] OLTP Trace from UMass Trace Repository. http://traces.cs.umass.edu/
index.php/Storage/Storage.

[4] Websearch Trace from UMass Trace Repository. http://traces.cs.umass.
edu/index.php/Storage/Storage.

[5] A. Ban. Flash-memory translation layer for NAND flash (NFTL). M-
systems, 1998.

[6] Y.-H. Chang and T.-W. Kuo. A commitment-based management strategy
for the performance and reliability enhancement of flash-memory storage
systems. In DAC ’09, pages 858–863, 2009.

[7] H. Cho, D. Shin, and Y. I. Eom. KAST: K-associative sector translation
for NAND flash memory in real-time systems. In DATE ’09, pages 507
–512, 2009.

[8] S. Choudhuri and T. Givargis. Performance improvement of block based
NAND flash translation layer. In CODES+ISSS ’07, pages 257–262,
2007.

[9] S. Choudhuri and T. Givargis. Deterministic service guarantees for
NAND flash using partial block cleaning. In CODES+ISSS ’08, pages
19–24, 2008.

[10] B. W. G.R. Ganger and Y. Patt. The DiskSim Simulation Environment
Version 3.0 Reference Manual.

[11] A. Gupta, Y. Kim, and B. Urgaonkar. DFTL: a flash translation layer em-
ploying demand-based selective caching of page-level address mappings.
In ASPLOS’09, pages 229–240, 2009.

[12] P.-H. Hsu, Y.-H. Chang, P.-C. Huang, T.-W. Kuo, and D. H.-C. Du. A
version-based strategy for reliability enhancement of flash file systems.
In DAC ’11, pages 29–34, 2011.

[13] T.-W. Kuo, Y.-H. Chang, P.-C. Huang, and C.-W. Chang. Special issues
in flash. In ICCAD ’08, pages 821–826, 2008.

[14] Z. Qin, Y. Wang, D. Liu, and Z. Shao. Demand-based block-level
address mapping in large-scale NAND flash storage systems. In
CODES+ISSS’10, pages 173–182, 2010.

[15] Z. Qin, Y. Wang, D. Liu, and Z. Shao. A two-level caching mechanism
for demand-based page-level address mapping in NAND flash memory
storage systems. In RTAS ’11, pages 157–166, 2011.

[16] Z. Qin, Y. Wang, D. Liu, Z. Shao, and Y. Guan. MNFTL: an efficient
flash translation layer for MLC NAND flash memory storage systems. In
DAC ’11, pages 17–22, 2011.

[17] L. Shi, J. Li, C. J. Xue, C. Yang, and X. Zhou. Exlru: a unified write
buffer cache management for flash memory. In EMSOFT’11, pages 339–
348, 2011.

[18] L. Shi, C. J. Xue, and X. Zhou. Cooperating write buffer cache and vir-
tual memory management for flash memory based systems. In RTAS’11,
pages 147–156, 2011.

[19] C.-H. Wu and T.-W. Kuo. An adaptive two-level management for the
flash translation layer in embedded systems. In ICCAD’06, pages 601–
606, 2006.

4B-2

331

For Research Only

