Software Engineering Group
Department of Computer Science
Nanjing University
http:/ﬁ,eg.nju.edu.cn

NJU Software
Engineering Group

Technical Report No. NJU-SEG-2013-1C-006

2013-1C-006

Modeling and Evaluation of Wireless Sensor Network Protocols

by Stochastic Timed Automata

Fenglin Zhang, Lei Bu, Linzhang Wang, Jianhua Zhao, Xuandong Li

Electronic Notes in Theoretical Computer Science 2013

Most of the papers available from this document appear in print, and the corresponding copyright is held by the

publisher. While the papers can be used for personal use, redistribution or reprinting for commercial purposes is
prohibited.


http://seg.nju.edu.cn/

PASM / PDMC 2012

eling and Evaluation of Wireless Sensor
work Protocols by Stochastic Timed
Automata

Fengling #ha ei Bu, Linzhang Wang, Jianhua Zhao,
Xin Chiengalian Zhang, and Xuandong Li

State Key Laboratory for Nove tware Technology, Nanjing University, Jiangsu, P.R.China
Em Mjju.edu.cn, bulei@nju.edu.cn

Abstract

Wireless Sensor Networks (WSNs) are wi iferent kinds of environments. They may
i bs like message loss and node dynamics.
Thus, it is critical to ensure the correctness offl pEotocols in WSNs and evaluate their
performance under different circumstances. In thisg@ape ropose a new method to analyze
and evaluate WSN protocols based on stochastic tirmg omata and statistical model checking.
For modeling, the work flow of a WSN protocol can mo ith classical timed automata.
Then, to model the uncertainties such as message loss and e dybamig@s, which are common in
realistic circumstances, the timed automata can be exten by s
in the stochastic timed automata. For analysis, the correct of
by classical model checking on the timed automata, while the pe
realistic environments can be evaluated by statistical model checking o
illustrate the feasibility and scalability of the modeling and verificati;
paper, Timing-sync Protocol for Sensor Networks (TPSN) will be st
the paper.

tic transitions, resulting
tocol can be answered
of the protocol under

Keywords: Wireless Sensor Network Protocol, Modeling and Evaluation, Sto
Automata, Statistical Model Checking

1 Introduction

Nowadays, Wireless Sensor Networks (WSNs) have attracted world wide at
tention and have been used in military operations, medical care, environ

tal monitoring and protection etc [1]. All high level applications in WSNs
are working based on their underlying protocols. To run these applications
correctly and efficiently, the low level wireless sensor network protocols must
be robust and reliable. In addition, devices in WSNs are usually difficult to
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change once deployed, so we must ensure that the protocols work well under
their target environment in the design phase.

Currently, the approaches to examine the correctness of protocols mainly
include simulation, testing and formal verification. Simulation and testing
can be used to check large scale networks and discover errors, but they cannot
guarantee to explore all the possible bugs in a system. As a result, researchers
are trying to use formal modeling and verification to model the behaviors of
stem and prove the correctness of the system under examination [2].

e work flow of the system. But classical timed automata can only
viors of a system under ideal circumstance. As WSN systems
can be oyed in a@y kinds of environments, they may encounter many kinds
of uncertainties li Mysage loss and node dynamics. Thus, it is important to
introduce stoché h@viors into timed automata to support the modeling
of uncertainty beha#iors to make the model more realistic.
For verification, cking has been widely used to check the correct-

ness of WSN protocolsy/1 Glet19]. It can explore the full state space of the
model for a protocol. erth@lesy, this technique is very expensive. It faces
1

the notorious state-explosio nd limits the scale of the networks that

can be checked. As WSN syste s consist of dozens of nodes at least,
classical model checking can not real-case WSN networks very well.
Fortunately, Statistical Model C (SMC) has recently been pro-
posed as an alternative to avoid exh e oration of the state-space
of a model [3]. SMC is a simulation-ba oluti@n, which is less time and
memory intensive than classical model checkingf|13]. rocedure of SMC
is to generate enough sample execution paths fi es and then use the

statistical hypothesis testing to decide whether theg¥stemasatisfies the given
property or not. SMC techniques can also be used to e ate the probability
that a system satisfies a given property [3].

By combining these techniques, in this paper, we prese
to model and evaluate WSN protocols by stochastic timed au®
tistical model checking. First of all, we propose to model

network dynamics, node failures and intermittent communication link
are common in WSNs [1,6], we extend the timed automata with stoch#stic
transitions. For example, in the extended stochastic timed automata, when
message is broadcasted, it has a probability to be lost instead of all the nodes
receiving it successfully. Similarly, in real environment, a node may die and
leave the network at any time, and it can resurrect and rejoin the network
randomly as well.
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For evaluation, we propose that the correctness of the design of a protocol
can be verified by model checking on its ideal model. For example, whether
there are deadlocks in the protocol, whether the protocol can achieve the
function it claimed successfully and etc. Furthermore, by the technology of
statistical model checking [8], we can check the performance of the protocol
under different environments by adjusting the probability factors on the sys-
tem, like what is the probability that the protocol can work correctly when
t essage loss probability is around 10%7?

illustrate the above method, we present a complete study of the model-
g and evaluation of a well-known WSN protocol- Timing-sync Protocol for
Sensg@Ngtworks (TPSN) [4], which is believed to have advantages of high pre-
cisithe suitability for multi-hop networks [4]. By using the modeling
and “euiftc method presented in this paper, we can find that, although the
design e protocql is correct in general, this protocol is extremely sensitive
to environment ap ot a suitable candidate when the system is supposed
ents.

ared as follows. Section 2 gives the preliminary knowl-
edge of this study, the existing works in modeling and verification
of WSN protocols, and a f description to stochastic timed automata and
their verification. In sec 3Qweppresent our method to model and evaluate
a protocol with stochastic tlinedaut@mata. The stochastic timed automata of
a well-known WSN protocol a Jpective evaluation are given in section
4. Section 5 describes the conclu@i s at last!.

2 Background /

2.1 Related Work

e

So far, there is no unified approach to model and ve#ify N protocols. Re-
lated works in modeling and verification of WSN proto are generally con-
ducted in the following ways:

in [15,14,16]. In [14], Kusy et al have considered complex ety
WSN systems, and proposed that a radio message would be dro
a probability because of link failure. However, due to state space exp,
they only checked FTSP in network with 2 nodes without node and link4&il-
ure. [15] has verified several important properties of FTSP and showed, th
network could converge to a single root node, and agree on a global time.

similar to [14], they did not consider link and node failure in their model.

I Part of the idea of this paper is published in our work-in-progress poster of abstract
nature [22].
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In [16], they modeled and verified networks consisting of 2-7 nodes. An error
is described in a specific scenario where two nodes fail after the entire work is
synchronized. Due to state space explosion, clock drift and link failure have
not been introduced into their model.

In [17] and [18], Vaandrager et al also model a WSN protocol in the similar
way. They verified the protocol with fully connected topology, and analyzed
the counterexample given by the model checker. Nevertheless, their models
dogs not incorporate all the features of the system neither, such as uncertain

m ication delays and unreliable radio communication.

n [19], a timed automaton of the Timing-sync Sensor Network Protocol
(TP3PMg given. In this timed automaton, TPSN’s work flow in ideal envi-
ro described. Properties including whether all nodes can synchronize
wit T de, and whether the clock drift between a node and the root

are bounffed are verified. They introduce integer clock to read and assign the
value of local clo

o model protocols in other languages. Study

performance of mobile WSNs by means of
a ISM [21]. They propose to model systems
with the stochastic m-calcu ganslate them into the PRISM language
to check these properties. As w he WSN protocols are time related,
m-calculus cannot support this d§pect¥vemgwell. Furthermore, probabilistic

[20] gives a method t&ché

probabilistic model check

model checking is very expensive whi it§ the size of the system that can
be analyzed.

To conclude, we can see that, first, of t odeling and evaluation
works still treated WSN protocols as general prgfocold Oaly a few considered
to model the uncertainty behaviors, which are cO in WSN, into the
system model. Second, most of the works only che th@lcorrectness of the

protocol, only a few of them considered the evaluation #f the performance of
the protocol under different profile or environment. Last but g

are limited. As the size of deployed WSN systems are always quite
scalability of current analysis technique can not handle real-case sy$tem gty
well.

2.2 Stochastic Modeling and Verification of Timed Automata

Timed automata [9] are widely used to model and analyze the behaviors of
real time systems. A timed automaton is a finite state machine with a set
of clocks to ensure adherence to strict timing constraints, such as execution

4



ZHANG ET AL

times, response times and communication delays.

The simplest form of a constraint compares a clock value with a time
constant [5]. Timed automata only allow Boolean combinations of simple
constraints, i.e., for a set C of clock variables, the set ®(C') of clock constraints
0 is defined inductively by 0 := = < n[n < x[=d]d; A 02 where z is a clock
in C and n is an integer constant. These clock variables are initiated with
zero when the system is started, and then increase synchronously with the
S rate. Clock variables can also be attached to locations as invariants. A

catin can be entered and stayed in only when all of its invariants are true.
ssume a finite alphabet ¥ ranged over by a, b etc. standing for actions,
a form@INdefinition of timed automaton [9] I is a tuple < L, ly, F, I > where

ite set of locations (or nodes)
i@ the initial location
e FecLxd(C) ¢ x L is the set of edges and

o [:L— P( S variants to locations

In a timed aut@ma events are modeled as transitions. Clock con-
straints, i.e. guards'o re used to restrict transitions of the automaton.
A transition can only ake en are values satisfy the guards labeled on
the edge.

The theory of timed au be used to prove the correctness of
real time systems [5]. Generally,fw es of properties, liveness and safety,
are concerned. As checking livendsss is tationally expensive, the main
effort of verifying a timed system fod@ checking the safety properties,
which can be checked using reachability aftal traversing the state-space
ea ity verification of timed

Timed automata can be extend to model stoc itions via weighted
probabilistic branches, resulting in the stochastic t omata. Recently,
Statistical Model Checking (SMC) [12] is proposed tofnswer themgumerical
properties of stochastic systems. It simulates the system del repeatedly
based on Monte Carlo simulation to generate enough sample @ecutiogypaths,
then relies on statistical algorithms, such as hypothesis testing
estimate of the correctness of the entire design [8,10].

Owing to the use of sample executions, the verification results ca
guaranteed to be correct all the time, but at least the likelihood of error Caufbe
bounded [8]. Let Hy be the hypothesis that the property formula ¢ holds, an
let H; be the alternative hypothesis. Two parameters o and 3 can be us
bound the probability of error, where « is the largest acceptable probability of
H, given that Hj holds, and the probability of accepting Hy if H; holds should
be no more than  [8]. Then, techniques like Wald’s sequential probability
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ratio test [11] are used to test the hypothesis. The sequential probability
ratio test of a statistical hypothesis is carried out without a predetermined
number of observations. Instead, at any stage of the experiment, it makes
decision to accept/reject the hypothesis, or to continue the experiment by
making an additional observation. The process is terminated when, and only
when, the hypothesis is accepted or rejected [11]. Study [13] has conducted
such techniques to answer numerical properties of stochastic timed automata.

deling and Evaluating WSN Protocols with Stochas-
Timed Automata

we present a method to model and evaluate WSN protocols

odel a protocol’s work flow in ideal environment with
, in order to model the uncertainties in WSN be-
timed automata should be extended with stochastic
t, hastic timed automata.

e For modeling,
timed auto
haviors, the wor
transitions, getti

» For evaluation, classical checking can be performed on the ideal work
flow timed automata stallhscale system to answer whether the design
of the system is correct o Stadistical model checking can be conducted

on the stochastic model to e the performance of the system with
realistic scale under different efyyiro

3.1 Modeling of WSN Protocols /
3.1.1 Model WSN Protocols with Timed uto@
In most of the WSN protocols, nodes/sensors

roles, i.e., sender and receiver, in the work progre
the nodes with the same role, they basically share sinftlar beh
we can use a template timed automaton to describe the wo

nodes in ideal environment in general. Then, each node @n be aSsigned
with a unique number as its identity. Different nodes can co i

v deafycertain functional
of protocol. For all
iors. Thus,

synchronization messages.

For a template timed automaton which describes the behaviors of
with certain role, we propose to build the template model in a bottom-u
style. By bottom-up, we mean the life cycle of a protocol can be divided%
different modules/phases. The fragment of timed automaton for each specific
module/phase can be built independently. Then, they can be combined to-
gether in the end, which can make the modeling effort much easier and more
controllable.
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Received Regu Failed
SUC

Update ()

Fig. 1. Model Uncertainties in WSNs
3.1.2 FExtend Timed Automata with Stochastic Transitions

usually work in harsh environments. Thus they may encounter lots of
cert@nties such as message loss and node dynamics in reality. To address
spects and make the model more realistic, we propose to extend the
ﬁ pmaton with stochastic transitions. The extension is made in two

st%add probability factors to the transitions where messages are

received del the message loss. Then node dynamics are described by
introdudig probabj
and resurrect.

branches to model the scenarios where nodes may fail

Considerin@ of ssage loss, when a message is broadcasted, instead
of all nodes receivi sage successfully, each node has a probability of
failing to receive this . That is, some of its neighbors can receive this
packet successfully, w them can not get the packet. To address
this aspect, in our model, gwe d probablhstlc factors at the receiver of a
message, the probability o i successfully is marked as SUC and
'AIL. When the system fires the SUC
branch, variables are updated acc i

automaton goes to the next state. O @ er,hand, when the FAIL branch
is fired, the automaton ignores the messagy

a s back to the original state.
As an example, Fig.1.(a) shows the receividg of ge.

Since nodes in a WSN network have limite@l nd are usually de-

ployed in harsh environmental conditions, WSN eMdynamics with the
constantly changing of network topology. That is,¥lode the network fail
and resurrect frequently. To model such behaviors, wedhitroducesamiiew state,
Failed to denote the situation that a node has died and thu

enter the Fuailed state from any state randomly. As shown in Fig.1.(
in a regular state can jump to Failed state with probability FAIL,
this state with probability SUC. Nodes in the Fuailed state can also re
and join the network again.
By now, we can get both the ideal and the stochastic timed auto

for a WSN protocol. After that, the correctness verification of the design
of the protocol can be performed on the classical timed automaton. The
performance evaluation of the protocol under different kinds of environments
can be conducted on the stochastic model.

7
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3.2 Evaluation of WSN Protocols
3.2.1 Correctness Verification by Classical Model Checking

Correctness verification is conducted on the ideal timed automata by classical
model checking techniques. In this phase, we can check functional properties
of the protocol, such as whether there are deadlocks, whether all nodes can
be eventually synchronized and etc. As classical model checking for timed
a ata has very high complexity, the verification can only be performed on

steMig with small scale. By checking functional properties, we can see the
cOurectness of its logic design, and find bugs in the early phase.

3.2 ‘formance Evaluation by Statistical Model Checking

Compar ith classical model checking, statistical model checking is much
cheaper and has paftCly better scalability. Using the statistical model check-
ing, we can cheg % al properties in the stochastic timed automata. For
example, we can ch¢¢kmhe probability that a system can satisfy a given prop-

erty in bounded tile, L rltime < bound](<> expr). By collecting and
introducing the rea b ty factors of the link and environment into the
model ? | it is easy to at performance of the candidate protocol in

target environment.

oying a protocol, there may be many
key parameters whose values are &gl for the performance of the complete
system. Statistical model checking usto check and compare the proba-

bilities that the system can satisfy ce qﬂgement under different candi-

Furthermore, when desig

date values. Thus, by statistical model diieckifig 6n the stochastic model, we
can achieve the target of parameter configiiftatiofi”as$yell.

4 Modeling and Evaluation of TP with Stochastic
Timed Automata

To illustrate the feasibility and scalability of the method we pfesented
section, we give the details of modeling and evaluating a time
protocol, the Timing-sync Protocol for Sensor Networks (TPS

n this
1Zation

4.1  Modeling of TPSN

The Timing-sync Protocol for Sensor Networks (TPSN) [4] is a network-wid
time synchronization protocol for WSNs. The work flow of TPSN is as follows:
a hierarchical structure is created in the network with a designated node as
the root, and all the other nodes’ level are assigned after. This is called the

2 The real values of these factors can be acquired from the network profile.

8
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level discovery phase. Then, each node synchronizes with its upper level node
through a two way message exchange, and eventually all nodes synchronize
with the root node. This is the synchronization phase.

4.1.1 Model TPSN with Timed Automata

As mentioned before, in our approach, the timed automata are built in a
-up style. Details of timed automaton for each phase are as follows:
Level Discovery Phase: The level discovery phase aims to establish a
iedarchical structure in the network, with a designated node as the root and
eachfi node assigned a level. This part of the timed automaton is shown
in & .#n our model, system is allowed to leave Waiting state in a short
period ﬁ"ime < 6, in this example). When the network starts, the
designatéd node, i.g e root node, is assigned level 0, and goes directly to
the Discovered st ' e other nodes go to the Initial state. The root node
starts the leveWdiscOugu® phase by broadcasting a level_discovery packet and
eaning it has done its job in this phase. Neighbors

enters the Broadcasksta

of the root node wlho the level_discovery packet go to the Discovered
state if they are in thé\u:t%a te, otherwise they will ignore the message.
Then nodes in Discovered gha 1 broadcast their level_discovery messages

to neighbors. This procedu n until every node in the network is
assigned a level and enters the

Synchronization Phase: he"18yel discovery phase is over, that

is, every node in the network is assig @‘, , elg (count == N, N is the node

number of the network) or the root nodg ed in the Broadcast for a
long enough period of time (WaitTime IME), the root node
starts the synchronization phase by broadcasti@t nc packet. As the
root node holds the global standard time, it goe the Synchronized
state. Nodes in level 1 receive the time_sync packét, wa@ting for a random
time (5 < WaitTime < 10), and then go to the Transil state ich means

they can start to exchange messages with the root node.
a synchronization_pulse packet, a node enters Transmitted s

an acknowledgement message Ack, the node adjusts its clock to the nale
(drift/id]==0 ). All these messages are broadcasted and a node in lével
at least one neighbor in level 1, so it can overhear these message exch
When a node receives a synchronization_pulse from upper level nodes, it wil
back off for a random time (8 < WaitTime < 15), waiting for the end o
message exchange between the upper level nodes. Then it initiates message
exchange with upper level nodes. This process is carried out throughout the
network until all nodes enter the Synchronized state.

Due to clock drift among sensor nodes, it is necessary to resynchronize

9
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Waiting synchronization_pulse[j]?

Broadcast myLevel[id] >= 2 Wait

nyLevel [id] == 1
mylevel [{d] >

time fyne? 8<=Waitime<=15

id ==
myLevel [/d] = 0, d 1= 0 && (fai
WaitTfme = 0,

Transmit

id) =f
Level discovery[j]? WaitTime
Tevel_discovery(J),
WaitTime = 0, —
count++ s
level difscovery[id]! Ack[id])s,

Waitflime = 0

ed driftlid] =0

. Ack[j1?

myLevel = myLevel [j] -1
synchifonizdtion_pulse[j1?

Bro

(a) Level Discovery Phase (b) Synchronization Phase

cast

Fig. 2. Timed Automata of TPSN

ReTrhnsmit = 0

ReTransmit != 0
synchronization pulselid]!

WaitTime = 0

(b) Level Re-discovery Phase

mata of TPSN

periodically to limit the drifts betwee @
chronization phase is almost same with™§
node broadcasts the time_sync packet agai
nized state for a fixed period. Other nodes in tli€ Sy
for some time then broadcast synchronization._
exchange with the root node if they are in level 1. e, they will jump
to the Broadcast state to wait for synchronization_pulsedtom uppaiglevel. The
timed automaton of synchronization phase is depicted in Fig

Special Provisions: In our timed automata, we also
cases that the authors emphasize in the profile [4].

First, local level discovery is caused by new nodes joining to thé’Syst
after the main part of the network have already finished level discovery S
As shown in Fig.3.(a), if a node has been in Initial state for a period butfeis
not receive any level_discovery message from neighbor nodes, it timeouts an
broadcasts a level_request message to request a level. The neighbors rep
this request by sending their levels. If there are two or more replies, it assigns
itself a level one greater than the smallest one. As the time when a node
can join the network is unlimited, we make a node capable of replying the
level_request packet at any time as long as it has been assigned a level.

10

in a small range. The resyn-
onization phase. The root

taying in the Synchro-
ized state will wait
to start message
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synchronization pu
....... yLevel[id] >

TimeOut

sync?
drift{id] = 0
Acklii?

Fig. 4. Complete Ideal Timed Automaton of TPSN

eg@ind, sensor nodes may also die randomly. A node would retransmit the
@ ation_pulse after a period of time if it cannot get an acknowledge-
it badk. er retransmitting the synchronization_pulse a fixed number of
times, a e assumes that it has lost all its neighbors in the upper level and
jumps to the Timyg tate, then it broadcasts a level_request message. On
getting back a rgf yode is assigned a new level and joins the hierarchical
structure agairt. T art of timed automaton is shown in Fig.3.(b).

So far, we can c parts of the timed automaton together and get a
complete model to des@ib whole work flow of TPSN in ideal environment,
as shown in Fig.4.

4.1.2  FExtend Timed Autom with Stochastic Transitions

In wireless networks, communica Seable and message collision is in-
evitable when messages are broadca

@ AE a result, message loss is com-
mon. As proposed in section 3, we use S transitions to address such
phenomenons in our timed automata. As€an le, Fig.5.(a) shows the
receiving of level_discovery/id]. To model the ;@@ that any message
may loss in a sensor network, we add probabilis X to every message
receiving transitions in the model.

Similarly, to model node dynamics, we introduce th@” failed
that a node is dead and will ignore any messages. We allo
to enter the failed state randomly from any states. As sho
node in a regular state can jump to Failed state with probal§ ,
stay in this state with probability SUC. Nodes in the Fuiled state
resurrect and join the network again. If the node is not the root node, i
to the Waiting state with probability SUC' and waits to be assigned
level. Note that, as the root node is designated, the dynamic of the root nod
is simplified in the model. The root node may enter the Failed state fro
other states, similar with regular nodes. But when it is in the Fuailed state, it
resurrects and enters the Waiting state directly, then restarts the timing-sync
protocol in the whole network.

As shown in Fig.6, by integrating the above methods into the ideal model,

11
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Ini

evel discovery[jl? Dis
j:Nodes 3 o _ S _
evel_discover(j), count+t,
: -
temp = myLevel[id] - WaitTime = 0
~
~ P

~— Bl _—=—"
myLevel[id] = temp

(@

(b)

Fig. 5. Extended Timed Automaton of TPSN with Probability

Broadcast

\WaitTime = 0,/
N
| Lcountt+t /
W= 0N 7~
WaltTime -=-0_
-~

Transmited

Ack ont Synchronized

Fig. 6. Stogha Automaton of TPSN

the uncertainties in the real-time%eh WSN protocols can be described
in the model now. Due to space limitata
seg.nju.edu.cn/people/~bl/exp/T

4.2 Verification of TPSN

In section 4.1, we give both the ideal and stochastic tomata of TPSN
respectively. In this section, we will analysis TPSN base these models. We
verify the ideal timed automata against typical functiorfal prop and eval-

uate the performance of TPSN under different environments atistical
model checking technique on the stochastic timed automata.
The system we verify is a TPSN system with N nodes. In and®
is a timed automata network consists of N automata according to
built in the last sections. The topology of the TPSN system studied
with full connectivity. All the nodes in the network are neighbors with €ach
other®. The computer we use is configured with Intel(R) Core(TM) 2 Qua
Q9500 processor, 2G RAM and Windows 7 Professional. The model checKer
we use is UPPAAL (V.4.1.7) [7]. The false negatives (a) and false positives

3 The topology of the system under verification can be easily changed by modifying the
topology matrix in the model. The readers are referred to the complete models for detail.

12
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Table 1
Correctness Verification Results in the Timed Automata
N 3 4 5 6
Level Assignment(C(T/M)) Y (0.031/13) | Y(0.032/19) Y (0.25/32) Y(3.791/17)
Node Synchronization(C(T/M)) | Y(0.031/14) | Y(0.53/20) | Y(43.384/31) | Y(16984.546/47)

Bounded Time Range(C(T/M))

Y (0.031/15)

Y (0.249/19)

Y (10.28/47)

Y (3024.326,/430)

Deadlock Free(C(T/M))

Y(0.047/15)

Y(0.375/18)

Y (15.865/47)

Y (3603.202/580)

(B) used in the statistical model checking experiments are both set as 0.05.

1 orrectness Verification of TPSN

ked respectively. The properties we checked are as follows:

Check whether every node in the network can be

model, a node’s level is initiated with N, and once

e level value is less than N. So, this property can be
as: A <> V(id : Nodes)myLevel[id] < N.

Check whether every node in the network can

d state. This is expressed by: A <> V(id :

e Level” Assign
assigned a ley

it is assigne®a le
specified by a CBL fi

e Node Synchronizgti
eventually enter the c
Nodes)tpsn(id).Synchrofiz

e Bounded Time Range: 4@ property to see whether TPSN can
work well is to check whetherQthe*loggdrift between regular nodes and
the root node is bounded in a reas eftange. This property is checked
by: Alldriftlid] < Num.

e Deadlock Free: Last but not the least,

ab

We check these properties on networks wi
timed automata with UPPAAL. All these proper
the TPSN can work correctly in the ideal environme
(whether the property is satisfied (C:Y/N), CPU time
usage (M:MB)) are shown in Table 1.

The verification results show that the design log
correct basically, i.e., it can work well if all messages aré
without any error and nodes work well all the time.

of deadlock: A[|not deadlock:.
3-6 Pr

ssors/nodes in the
satisfied, which means

—~

.0econd

4.2.2  Performance Measurement of TPSN

Except to know whether the functionality of the protocol is correct or ’
when designing a protocol, or choosing which protocol to use in a system, the
designers/users are always interested in the performance of the protocol under
certain target environment. Actually, in TPSN, there are many factors which
are closely related with the system’s performance as:

13
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e Resynchronization Interval: Resynchronization Interval (RESYNC) is
an important factor in the design of TPSN. The value of this factor has a
great effect on the system’s efficiency. There is a tradeoff when choosing
the value of RESYNC. It should be long enough to help the synchronization
complete in a synchronization cycle; On the other hand, it also has to be
as short as possible to limit the clock drift between two nodes in a small
range [4]. Thus, it is helpful to find a way to make the choice of a proper

lue for this factor easier.

Syfighronization Time: When TPSN works well, one important aspect
ople care is the efficiency of the protocol, like how long it takes to syn-

ifity: Failure Probability is the value of the probability of

@ ode dynamic in the system. Its value is decided by
FAIL/(FA®L +8U@) in our model. Users would like to know how it can
impact the perfoi TSPN. For example, if the system is suppose to
work in a terrible'e nt, then if the influence of failure probability is
huge, the protocol suitable choice.

Now, we start to analyige the“performance of TPSN numerically in the
stochastic timed automata
model checking as follows.

Resynchronization Interval: venodeled resynchronization in our

timed automata. To show how RES ﬁhe performance of TPSN,

we verify a series of networks with 3-1 s and record the probabilities
that a system can get synchronized in a cycle iffecent RESYNC. The
verification results are plotted in Fig.7, with falure p

From this figure, we can see that with the'ingreasing of RESYNC,
the probability of synchronizing all nodes in a single cycle increases

rapidly at first; then when RESYNC value gets clos 0, the

the probability only fluctuates slightly.
We can see that even when RESYNC' is large enough, i.e,
ability of all nodes to get synchronized in the first cycle is approxi

fore, instead of increasing the value of RESYNC and waiting for all nodes t
get synchronized, we can choose a proper value of RESYNC, then the sys
can start over again quickly. From this study, 150 time units seem to be a
suitable reference value for RESYNC. Therefore, in the following experiments
RESYNC will be set as 150.
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Fig. 7. Data of RESYNC with Failure Probability = 0.1

Synchroni ime: When the TPSN works well and all nodes in
the network ¢ ronized eventually, we are interested in the time it
takes to synchronizg all odes to evaluate the efficiency of the protocol.

The verification Tegh probabilities of all nodes get synchronized in M

cycles in stochastic modg Wure probability set as 0 and 0.1 are shown in
Table 2. We can see that whenWhé environment is stable, with the increase of
node number in the network$ bility of successfully synchronizing in
certain periods becomes smaller, eans it takes longer to get synchro-
nized. Furthermore, when the en » ‘% ctting worse, the performance of
TPSN drops dramatically. For examf 1@. en failure probability is 0, for a
system with 10 nodes, 3 cycles are eno ﬁ the nodes to get synchro-
nized. When failure probability is 0.1, for s blem, even 400 cycles,

0
the probability that all the nodes are synchron@ around [2%, 12%)].
r

Furthermore, even there are only 3 nodes in a ne es more than 400
cycles to make sure the network is synchronized. ingPase the number of
the nodes in the system continuously and find that wheff'the nupaler of nodes
reaches 20, the probability to make the whole system get syngh
ble in less than 5%. The same story happened on the system
These phenomenons means for a TPSN system with

we only report the data with 3-20 nodes in this study. From these data,
surprisingly to see that the performance of TPSN is sensitive to environment,
Furthermore, the disturbance caused by failure probability is more seve
system with more nodes. Thus, we decide to dig deeper to see how can the
environment can affect TPSN actually.

Failure Probability: In the last experiments, we find that message loss
and node dynamics could affect the performance of TPSN a lot. To know
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Table 2

Synchronization Probabilities in M Intervals in Stochastic Timed Automata with Failure
Probability set 0 and 0.1

Failure Probability = 0 Failure Probability = 0.1
N M=1 M=2 M=3 M=1 M=10 M=100 M=400
3 | [0.84,0.94] | [0.95,1] | [0.95,1] || [0.17,0.27] | [0.31,0.41] | [0.65,0.75] | [0.93,1]
4 | [0.86,0.96] | [0.95,1] | [0.95,1] || [0.08,0.18] | [0.14,0.24] | [0.40,0.50] | [0.82,0.92]
5 | [0.88,0.98] | [0.95,1] | [0.95,1] || [0.02,0.12] | [0.09,0.19] | [0.27,0.37] | [0.62,0.72]
[0.88,0.98] | [0.95,1] | [0.95,1] || [0.03,0.13] | [0.03,0.13] | [0.13,0.23] | [0.41,0.51]
7 1§0.89,0.99] | [0.95,1] | [0.95,1] [0,0.10] | [0.02,0.12] | [0.07,0.17] | [0.25,0.35]
I'r\onr\n'l m aor 11 I aor 11 m n nm~l m n nol M n1 n 111 MM 1= n orl
10.69,U.99) 10.99,1] 10.99,1] 10,0.07] 10,0.09] 10.01,0.11) 10.15,0.25
]| [0.95,1] | [0.95,1] [0,0.06] [0,0.07] [0,0.09] | [0.06,0.16]
] | [0.95,1] | [0.95,1] [0,0.06] [0,0.07] [0,0.07] | [0.02,0.12]
[0.95,1] | [0.95,1] [0,0.05] [0,0.05] [0,0.05] [0,0.05]
% 07 F
;9: 06 | [/ p—
B FP=0.1 s
Lo s
¢ 0.3
02|
0.1k -
0 . j
10 100 5000
Synchronization
Fig. 8. Synchronization Probabilities with Differgnt FailGre bability (FP)

the details of how the environment can impact T
performance of the protocol will be if the environment

performance of TPSN drops extremely quickly. When failure probabili
0, i.e, the protocol works in an ideal environment, we can almost guara;
that all nodes can get synchronized in less than 10 resynchronization periods
When failure probability is 0.1, it takes longer for all nodes to be synchron

However, it can still be guaranteed that all the nodes can be synchronized in
400 cycles. Meanwhile, when failure probability is 0.2, the probability is less
than 40% in even 5000 cycles. Not to mention when failure probability is
0.3, in the same system, it is almost impossible to synchronize all nodes in
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5000 cycles. From these studies, we can tell that the performance of
TPSN is very sensitive to message loss and node dynamics, even a
small WSN system, with only 3 nodes, could not perform well in
harsh environments.

5 Conclusion

I is paper, we propose a complete method to analyze and evaluate WSN
oto®gls. By our method, we can model not only the ideal work flow of
aWVSN protocol, but also the nondeterministic behaviors which are quite

compa@yin WSN systems’ behavior, like message loss and node dynamics.
Fun @ re, besides of checking the correctness of the protocol, we propose
at

to uSessfati 1 model checking to evaluate the performance of the protocol
numeri as well.

To illustrate th bility and scalability of our approach, a real-case WSN
protocol TPS thoroughly in this paper. It indicates that stochastic
timed automata and statistical model checking are very helpful in analyzing
large WSN systemd in unreliable environments. Furthermore, as sta-

easier to conduct and less expensive than
le to examine real-case large systems, e.g.
a system consists of 100 n istical model checking, while classical
model checking can only able to system up to 6 nodes. We show that
it is possible and very convenient§o istical model checking to analyze
large WSN systems numerically for m ifferent objectives, e.g., parameter
configuration, performance evaluation %mdidate protocol selection.

classical model checking;
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