

Software Engineering Group
Department of Computer Science
Nanjing University
http://seg.nju.edu.cn

Technical Report No. NJU-SEG-201т-IC-001

201т-IC-001

ATOM: Automatic Maintenance of GUI Test Scripts for Evolving
 Mobile Applications

Xiao Li, NaNa Chang, Yan Wang, Haohua Huang, Yu Pei, Linzhang Wang, Xuandong Li

IEEE International Conference on Software Testing, Verification and Validation 2017

Most of the papers available from this document appear in print, and the corresponding copyright is held by the

publisher. While the papers can be used for personal use, redistribution or reprinting for commercial purposes is

prohibited.

http://seg.nju.edu.cn/

ATOM: Automatic Maintenance of GUI Test Scripts
for Evolving Mobile Applications

Xiao Li∗†1, NaNa Chang∗†, Yan Wang∗†, Haohua Huang∗†, Yu Pei‡2, Linzhang Wang∗†3, Xuandong Li∗†4
∗State Key Laboratory for Novel Software Technology, Nanjing University, Nanjing, China
†Department of Computer Science and Technology, Nanjing University, Nanjing, China

‡Department of Computing, The Hong Kong Polytechnic University, Hong Kong S.A.R., China
lx.lily.lee@gmail.com1 yupei@polyu.edu.hk2 lzwang@nju.edu.cn3 lxd@nju.edu.cn4

Abstract—The importance of regression testing in assuring the
integrity of a program after changes is well recognized. One
major obstacle in practicing regression testing is in maintaining
tests that become obsolete due to evolved program behavior
or specification. For mobile apps, the problem of maintaining
obsolete GUI test scripts for regression testing is even more
pressing. Mobile apps rely heavily on the correct functioning
of their GUIs to compete on the market and provide good user
experiences. But on the one hand, GUI tests break easily when
changes happen to the GUI; On the other hand, mobile app
developers often need to fight for a tight feedback loop and are
left with limited time for test maintenance.

In this paper, we propose a novel approach, called ATOM,
to automatically maintain GUI test scripts of mobile apps for
regression testing. ATOM uses an event sequence model to
abstract possible event sequences on a GUI and a delta ESM
to abstract the changes made to the GUI. Given both models as
input, ATOM automatically updates the test scripts written for a
base version app to reflect the changes. In an experiment with
22 versions from 11 production Android apps, ATOM updated
all the test scripts affected by the version change; the updated
scripts achieve over 80% of the coverage by the original scripts
on the base version app; all except one set of updated scripts
preserve over 60% of the actions in the original test scripts.

I. INTRODUCTION

Modern software development practices like continuous
integration often have regular and frequent regression testing
as an integrated part to ensure that changes to a program do
not break existing functionality. For regression testing to be
effective and efficient, the tests need to be updated to reflect the
evolved program behavior or specification. Such maintenance
of regression tests, however, is expensive, largely because it
often requires manual effort. Sometimes the cost is so high
that engineers would rather write new tests than to update the
old ones [1].

With the ever growing popularity of mobile devices, mobile
applications, or apps, are becoming indispensable in our
personal lives and at work. They pose new challenges to
regression testing. On the one hand, regression testing is
likely more important for mobile app development than for,
e.g., most desktop applications. Due to fierce competition on
the market, mobile app developers tend to fight for a tight
feedback loop and release more often. Effective and efficient
regression testing can greatly help improve the quality of
mobile apps under such circumstances. On the other hand,

most mobile apps interact with users through rich graphical
user interfaces (GUIs), making GUI testing an essential part
of the regression testing of apps. Because GUI test scripts
typically refer to exact sequences of actions to be performed on
specific GUI widgets, they are highly sensitive to changes in
the structure or workflow of the application GUI. In practice,
many GUI test scripts may become obsolete after only small
changes to the GUI. The high cost of manual GUI test script
maintenance renders frequent regression testing much less
appealing, if not impractical.

Techniques have been developed in recent years to auto-
matically generate test scripts for mobile apps [8]–[10]. Such
techniques can be used to help alleviate the problem, but
they do not outdate the requirements for maintaining GUI
test scripts. First, generating enough test scripts to achieve
high coverage of the app in testing is a demanding task.
Always generating new test scripts for each regression testing
can be prohibitively expensive. Second, regression test scripts
often contain manually created or customized scripts that
incorporate valuable expert knowledge about the application
domain and are less likely to be generated automatically.
Throwing away such scripts is not desirable in many cases.

Researchers have proposed different techniques to repair
such obsolete GUI test scripts for regression testing. For
example, Memon [2] present Regression Tester that uses
dynamic analysis to extract an event-flow graph (EFG) to
model possible event sequences that may be executed on a
GUI, and repairs obsolete test scripts based on the EFG using
four user-defined transformations. Due to inherent limitations
in dynamic analysis techniques and EFG models, Regression
Tester, however, does not directly apply to manually scripted
test cases [4]. Gao et al. [4] present the SITAR system to
interactively repair obsolete low level test scripts. SITAR does
this by mapping low level test scripts to an EFG model
for the GUI, repairing the model-level test cases, and then
synthesizing low level test scripts again. If a test script action
cannot be mapped to the model, e.g., due to the incompleteness
of the model, user input is required. SITAR constructs the EFG
in the same way as Regression Tester. A more detailed review
of techniques for test script repair is included in Section V-D.

In this paper, we propose a novel approach, called ATOM,

For Research Only

SCa SCb

SCc SCd

Fig. 1: Three screens and their corresponding menu items in
the NotePad app.

to automatically maintain GUI test scripts of mobile apps
for regression testing. ATOM uses an event sequence model
(ESM) to abstract possible event sequences in a GUI and
a delta ESM (DESM) to abstract the changes made to a
GUI. Given the ESM for the base version of an app and
the DESM for the changes introduced in an updated version,
ATOM automatically updates the test scripts written for the
base version app. ATOM achieves this by first computing
the simulations of test scripts on the ESM, then updating
simulations to reflect changes in the DESM, and in the end
synthesizing test scripts based on the updated simulations.
Unlike SITAR, ATOM automatically searches for alternative
maps when a test action does not have a direct map in the
updated model. After the maintenance, the scripts are able to
test most remaining parts of the app in the updated version
and preserve most of the actions.

The input models required by ATOM may be constructed
manually or through automatic mechanisms. We consider the
overhead of model construction is acceptable, even when
it is done manually, for two reasons. First, an ESM (or
DESM) has a direct connection with its corresponding app (or
apps), making model construction a fairly straightforward task.
Second, the construction of an ESM is only necessary when
ATOM is applied to the app for the first time. In subsequent
uses, only DESMs for the changes need to be built. As
differences between two versions of an app that go through

adjacent regression testing are often small, they are easy to
model. During test script maintenance, ATOM also merges the
input ESM and DESM to produce an ESM for the updated
version app. Such ESM can be used as input for the next use
of ATOM.

We have implemented the approach into a tool, also called
ATOM, to automatically maintain test scripts for Android apps.
We applied ATOM on 22 different versions from 11 production
apps from a Chinese Android Market. As the result, ATOM
was able to update all the test scripts affected by the version
change; the updated scripts achieve over 80% of the coverage
by the original scripts on the base version app; all except one
set of updated scripts preserve over 60% of the actions in the
original test scripts.

The remainder of this paper is organized as follows: Sec-
tion II illustrates ATOM from a user’s perspective using an
example mobile app. Section III describes the individual steps
of our approach. Section IV reports on the experiment we
conducted to evaluate the effectiveness of ATOM. Section V
reviews related work in GUI testing for mobile apps. Sec-
tion VI concludes the paper and presents future work.

II. A ATOM EXAMPLE

In this section, we use a simple Android App named
NotePad to demonstrate from a user’s perspective how ATOM
can be used to automatically maintain GUI test scripts during
the evolution of mobile applications.

NotePad is a sample app shipped with the Android SDK1

implementing basic functionalities for note taking. Figure 1
shows four screens from the GUI of NotePad and, on the bot-
tom of the first three screens, the corresponding menu a user
can call up by pressing the Menu physical key. Henceforth, we
refer to a widget simply by the text on it when the meaning
is clear from the context.

SCa is the initial screen when NotePad is launched in a
typical scenario, with previously saved notes listed. A user
can click on Add note on this screen to create a new note and
start editing that note on screen SCb. On SCb, once the editing
is done the user may opt to Save or Discard the changes by
clicking on the corresponding menu item and return back to
SCa. A user can also click on a note item on SCa and open
the note for editing on SCc. Later on, the user can Save the
changes, Revert changes, Delete the note, or Edit the title
of the note. We refer to this implementation of NotePad as
Version 1.0.

Figure 2(a) shows three test scripts written in Robot Frame-
work2 for testing NotePad Version 1.0. Each script defines a
sequence of actions to be taken during the test, one action per
line. All the three test scripts here start execution from SCa.
TS1 first creates a new note, then inputs some text, and at the
end saves the input. TS2 is similar as TS1, but the changes
are discarded at the end. TS3 assumes the presence of a note
item named note1. It first opens the note by clicking on the

1https://developer.android.com/studio/index.html
2http://robotframework.org/

For Research Only

TS1

1 Press Keycode MENU
2 Click Element name=Add note
3 Input Text id=some text
4 Press Keycode MENU
5 Click Element name=Save

TS2

1 Press Keycode MENU
2 Click Element name=Add note
3 Input Text id=some text
4 Press Keycode MENU
5 Click Element name=Discard

TS3

1 Click Element name=note1
2 Press Keycode MENU
3 Click Element name=Delete

(a) Version 1.0

TS1

1 Press Keycode MENU
2 Click Element name=Add
3 Input Text id=some text
4 Press Keycode MENU
5 Click Element name=Save

TS2

1 Press Keycode MENU
2 Click Element name=Add
3 Input Text id=some text

TS3

1 Click Element name=note1
2 Press Keycode MENU
3 Click Element name=Delete
4 Click Element name=Yes

(b) Version 2.0

Fig. 2: Test Scripts for NotePad

note item, then clicks on Delete to remove the note. We say a
test script runs successfully if all its actions can be performed
without causing any error, or fails if otherwise. On Version
1.0 of NotePad, all the test scripts run successfully.

We then modify the GUI of NotePad to produce its next
version, mimicking what might happen to an app during its
life cycle. The modifications include the following. First, the
Add note menu button on SCb is changed to Add; Second, a
confirmation modal dialog3 with Yes and No buttons is added
after Delete is clicked on SCc; Third, the Discard menu item is
removed from SCc. We refer to this modified implementation
of NotePad as Version 2.0.

Under such changes, some of the original test scripts are
now obsolete, i.e., they do not describe acceptable action
sequences of the application. In our example, TS1 and TS2

will both fail as SCa no longer has the menu item Add note;
although TS3 will not fail, it does not really delete the note
either.

Taken both versions 1.0 and 2.0 of NotePad, a model
describing the feasible event sequences in Version 1.0, and
another model capturing the changes introduced by Version 2.0
as the input, ATOM then automatically updates the existing test
scripts to stay in sync with the application. During the process,
ATOM preserves the actions when possible and updates or
extends them when necessary. Figure 2(b) shows the result test
scripts produced by ATOM, with added and modified actions
highlighted. TS1 is updated to reflect the change of menu item
name from Add note to Add; Besides of being updated in the
same way as in TS1, TS2 is also truncated, with infeasible
events removed from the script; TS3 is extended with the
action of clicking on the Yes button on the confirmation dialog,
and therefore successfully deletes the note test .

3A modal dialog is a dialog that disables the rest of the application. A user
must interact with the dialog before they can go back to the parent application.
For ease of presentation, we treat a modal dialog as a screen.

III. HOW ATOM WORKS

Let us now describe the detailed steps in applying ATOM
to maintain GUI test scripts when an app evolves from a base
version to a new version. Figure 3 summarizes the individual
steps during the process.

App version

N

App version

N+1

ESM

version

N+1

Test Scripts
version N

ESM

version N

DESM

versions

N+1 vs. N

Test Scripts

version N

Simulations

version N

Simulations

version

N+1

Test Scripts

version N+1

A

A

A

B

C C D D

Fig. 3: Process of the ATOM Approach.

A. Event Sequence Model

SCbSCa

SCc

C1:Menu:Add note

C2:Menu:Save

C
4
:C

lick
:L

istItem

C
5

:M
en

u
:S

av
e

/R
ev

ert ch
an

g
es/D

elete

C6:EditText:note

C7:EditText:note

Model 1C3:Menu:Discard

Fig. 4: Partial ESMs for Notepad versions 1.0 (ESM1). SCa is
the initial screen. Labels on transitions give the corresponding
event types and widget names.

To achieve automatic maintenance of the test scripts, ATOM
makes use of event sequence models (ESMs) to describe the
behaviors of an app. To be both powerful enough to support
test script maintenance and simple enough to facilitate manual
or automatic construction, an ESM leaves out information
about the internal states of an app (e.g., variables) and focuses
on the GUI elements like widgets and screens as well as events
on them.

Formally, let W be the set of widgets in an app and E
the set of event types on W , a ESM for the app is a non-
deterministic finite state machine M = <Σ,S, {s0},C,F>,
where
• Σ = W ×E is the set of events in the app;
• S ⊆ 2W (si ∩ sj = ∅,∀si ∈ S, sj ∈ S, i 6= j) is the set

of screens in the app;
• s0 ∈ S is the initial screen;
• C ⊆ S×Σ×S is a set of connections between screens.

Given a connection c = <s1, σ, s2> ∈ C, we call s1,

For Research Only

σ, and s2 the source, the cause, and the destination of c,
respectively.

• F = S is the set of final screens.
In everyday use, an event may transit an app from one screen
to different others based on the specific program state when
the event was triggered. For example, depending on whether
a mobile device is connected to the Internet through WIFI or
not, a click on a link may cause the link to be opened on a
new screen or a dialog to pop up to let you decide whether
the link should be opened at all. The nondeterminism of the
model is to reflect such possibility.

The model does not distinguish a particular set of screens
as final, as a script may stop execution at any screen during
testing. For example, a partial ESM for the three screens SCa,
SCb, and SCc in Figure 1 is shown in Figure 4. Here Σ
includes editing and clicking events on various text fields and
buttons, S = {SCa,SCb,SCc}, s0 is the initial screen, and
each connection is labeled with its ID, the event type, and
widget ID.

A non-empty sequence ε = c0c1 . . . cn (n ≥ 0, ci ∈ C,
0 ≤ i ≤ n) of connections is called a path on ESM M, if
the destination of cj is equal to the source of cj+1 for all
0 ≤ j < n. ε is called a run of the model, denoted asM |= ε,
if it starts from the initial screen of M. Runs of a model
capture important event sequences that can be triggered on the
app’s GUI. For example, the sequence of connections c1c7c2
in ESM1 forms a run and indicates that, a click on Add note
on SCa will bring a user to SCb, where multiple editing events
are possible without causing any screen transition; A click on
Save, however, will bring the user back to SCa.

The connection between a mobile App and its ESM is
straightforward, making the model suitable to be automatically
extracted from the application source code. If the model is not
available already, the construction of the whole ESM is only
necessary when ATOM is applied to an app for the first time.
This is because, when using ATOM, the model is incrementally
maintained together with the test scripts (see Section III-B) and
is suitable for use in the next maintenance.

In our experimental evaluation (see Section IV), we man-
ually created the ESMs for the subject apps. Another viable
way is to first use tools like GUI Ripper [12] to build an initial
model and then adjust that model to meet the requirement of
ATOM. The construction of an automatic ESM extraction tool
belongs to the future work.

B. Changes as a Delta-ESM

Many different reasons may cause test scripts to break dur-
ing the evolution of an app from a base version to a new one.
In this work, we focus on cases where the reason is in changes
to the GUI of the app. We model the changes by following
a similar idea as described in Section III-A and construct a
delta ESM (DESM). A DESM specifies all the changes to
the connections of an ESM as well as the involved screens.
Given an ESM M = <Σ,S, {s0},C,F>, a delta-ESM ∆M
relevant to M is a septuple <Σ∆,S∆, ∅,C∆, ∅, l, r>, where
<Σ∆,S∆, ∅,C∆, ∅> is also a finite state machine similar to

an ESM but with no initial or final screen; C∆ is the set of all
changed connections with respect to C; l : C∆ → Bool is a
total function and it partitions C∆ into two groups: the set C+

of connections producing true values are newly introduced
by the changes, and the set C− producing false are those
to be removed; A modification to a connection is modeled
in a DESM as two related changes, one deleting the original
connection and the other adding the modified. r : C− → C+

is a partial function, it maps a connection deletion to its related
addition, when applicable; Screens associated with at least
one of the changed transitions constitute S∆. In addition, we
denote the set of added and deleted screens as S+ and S−,
respectively. Consider for example the changes to NotePad
Version 1.0, as described in Section II, they can be depicted by
the DESM shown in Figure 5. Edges in thick solid line model
added connections, and those in dashed line model deleted
ones.

SCbSCa

SCc SCd

C8:Menu:Add

C10:Menu:Discard

C13:Menu:Delete

C14:Click:No

C
1
1

:M
en

u
:D

elete

Model Delta

C9:Menu:Add note

Fig. 5: A delta-ESM modeling the changes to NotePad Version
1.0.

SCb

SCc SCd

SCa

C1:Menu:Add

C2:Menu:Save

C13:Menu:Delete

C14:Click:No

C
4

:C
lick

:L
istItem

C
5

:M
en

u
:S

av
e

/R
ev

ert ch
an

g
es

C6:EditText:note

C7:EditText:note

Model 2

Fig. 6: Partial event sequence models for Notepad versions 2.0
(ESM2).

An DESM captures changes introduced by the new version,
relative to a base version. Such info is valuable in both
understanding the impact of the changes on test scripts and
devising adjustments to the test scripts to reflect the changes.

Once we have an ESM M = <Σ,S, {s0},C,Σ> mod-
eling the behaviors of the base version app and a DESM
∆M = <Σ∆,S∆, ∅,C∆, ∅, l, r> capturing the changes made
to them, we can easily merge (we use

⊕
to denote the

operation) the two and construct the ESM for the new version

For Research Only

app. The new ESM can be computed as M
⊕

∆M = <Σ ∪
Σ∆,S ∪S+−S−, {s0}, δ ∪C+−C−,S ∪S+−S−>. Note
that in this process, connections from C− first get their IDs
from their matches in M and then pass on the IDs to their
related connections in C+. Therefore, modified connections
will preserve their IDs in the new model.

C. Test Scripts and Their Simulations

A test script describes a sequence of actions to be taken to
exercise an app during testing. Each action has a type and a
target descriptor: the type specifies the nature of the action,
e.g. whether it is to click an element or to input some text; the
target descriptor describes the widget on which the action is
performed. The execution of a test script generates a sequence
of events on the GUI of the app, which can be used to simulate
its run on the ESM of the app.

In ATOM, the correspondence between ESM events and
test script actions is defined in the form of a map-
ping relation in configuration files. In this way, we
can easily use high level events in ESMs to keep
the models small. For example, instead of using two
low level events of pressing the Menu physical button and
pressing on the Save menu item that directly match test script
actions, an ESM can use just one high level event
clicking the Save menu item. Such design also makes it easy
to extend ATOM to handle test scripts in other syntaxes.

Formally, let T be the set of action types and D the set
of target descriptors, the set of possible actions is then A ⊆
T ×D. Given an ESMM = <Σ,S, {s0}, δ,F>, a test script
K = k0k1 . . . kh (h ≥ 0, ki ∈ A for 0 ≤ i ≤ h), and a
mapping relation R : A×Σ, we can easily find a sequence of
events R(K) on M by repeatedly applying R to actions in
K. Using R(K) we can derive a run P on M that models
the intended execution of K. We call P the simulation of
K on M. Nondeterminism in M can be resolved by human
input or knowledge about the actual execution trace of K on
the app.

D. Test Script Maintenance

The maintenance of test scripts is done in two phases based
on simulations of test scripts. In the first phase, by comparing
the simulation of a test script on an ESM and the changes
made to that model in a DESM, ATOM first identifies how
the changes affect the simulation, then synthesizes a new
simulation that is in line with the changes based on the
previous one. In the second phase, causes, i.e., events, of the
connections from the new simulation are collected and mapped
to test script actions according to the mapping relation R−1

between GUI events and script actions from Section III-C.
Algorithm 1 shows detailed steps in the first phase. The

algorithm takes as input the ESM M for the base version of
app, the DESM ∆ of the new version with respect to M,
and the simulation P of a test script on M, and outputs the
updated simulation P ′. First,M and ∆ are merged to produce
the updated ESM M′ for the new version (line 2). Then, the
algorithm iterates through the simulation P and updates every

event in order (lines 3 through 50). Particularly, if an event
pi is not affected by the change (line 6), it is appended to
the result simulation directly (line 7 through 9); Or, if pi is
modified (line 10), then the modified connection is appended
to the result simulation (lines 11 through 13).

Otherwise, pi is changed in other ways or deleted in the
new version, and the paths before and after pi are now
disconnected. The algorithm constructs an alternative path to
reconnect them by finding an intermediate state interState
that is connected to both paths. Three different cases are
considered here. Let e be the cause of pi. First, if e transits
the source of pi to another state inM′ (line 16), then this new
destination state is used as the interState, and the algorithm
exploits a broad first search to find a path from interState to
the original destination of pi. The search is restricted to paths
no longer than MaxPathLength to keep the cost low and
the alternative paths easier to understand, and the first hit, if
any, will be appended together with the connection between
the source of pi and interState to the result simulation.
Then the iteration proceeds to the next connection (lines 17
through 24). Second, if e transits in M′ another preState to
pi’s destination (line 25), then the algorithm tries to construct
an alternative path connecting the source and destination of pi
through preState in a similar way as described in the previous
case (lines 26 through 33); Third, if e is not associated with
either the source or destination of pi, the algorithm searches
for a short path connecting pi’s source state with any state
from the path starting from pi’s destination, with the hope to
preserve as many original connections as possible (lines 35
through 47). If such effort fails, the simulation is truncated
(line 48).

IV. EVALUATION

To empirically evaluate the effectiveness of ATOM in test
scripts maintenance we have conducted experiments that ap-
plied ATOM to 11 production mobile apps. This section reports
on the experiments and provides some preliminary assessment
of the approach.

A. ATOM Implementation

In its current implementation, ATOM automatically main-
tains scripts that are based on the Robot Framework to test
the GUI of Android apps. The Robot Framework is a generic,
keyword-driven, test automation framework. In ATOM, it uses
the Appium4 open source test automation framework to drive
the Android app under testing and it communicates with
Appium through the AppiumLibrary. Our approach, however,
is not limited to any specific testing framework. Support for
other testing frameworks can be easily added by defining
the necessary mapping between test script actions and ESM
connections.

All the experiments ran on a Windows 8 machine with
3.1 GHz Intel dual-core CPU and 8 GB of memory. ATOM
was the only computationally-intensive process running during

4http://appium.io/

For Research Only

Algorithm 1 Maintaining an ESM Path
Input: M = <Σ,S, {s0},C,F>,

∆M = <Σ∆,S∆, ∅,C+ ∪C−, ∅, l, r>,
P = p0p1 . . . pl (0 ≤ l) on M

Output: Path P ′ on M
⊕

∆M

1: P ′ ← []
2: S′ = S ∪ S∆, C′ ← C ∪C+ −C−
3: i← 0, srcState← s0

4: while i ≤ l do
5: destState← pi.destination
6: if pi /∈ C− then . pi not affected
7: P ′ ← CONCAT(P ′, [pi])
8: srcState← destState, i← i + 1
9: continue

10: else if r(pi) 6= null then . pi modified
11: P ′ ← CONCAT(P ′, [r(pi)])
12: srcState← destState, i← i + 1
13: continue
14: end if
15: e← pi.cause . pi otherwise changed or deleted
16: if POSTSTATE(M′, srcState, e) 6= null then
17: interState← POSTSTATE(M′, srcState, e)
18: path← SHORTESTPATH(M′, interState, destState)
19: if path 6= null then
20: c← CONNECTION(M′, srcState, e, interState)
21: P ′ ← CONCAT(CONCAT(P ′, [c]), path)
22: srcState← destState, i← i + 1
23: continue
24: end if
25: else if PRESTATE(M′, e, destState) 6= null then
26: interState← PRESTATE(M′, pi, destState)
27: path← SHORTESTPATH(M′, srcState, interState)
28: if path 6= null then
29: c← CONNECTION(M′, interState, e, destState)
30: P ′ ← CONCAT(CONCAT(P ′, path), [c])
31: srcState← destState, i← i + 1
32: continue
33: end if
34: else
35: hasFound← false
36: for j ← i + 1, l do
37: interState← pj .source
38: path← SHORTESTPATH(M′, srcState, interState)
39: if path 6= null then
40: P ′ ← CONCAT(P ′, path)
41: srcState← interState
42: i← j, hasFound← true
43: break
44: else
45: j ← j + 1
46: end if
47: end for
48: if not hasFound then i← l + 1 end
49: end if
50: end while

51: return P ′

52: CONCAT(path1, path2) . The concatenation of path1 and path2

53: SHORTESTPATH(M, srcState, destState) . The shortest path from
. srcState to destState onM: shorter than MaxPathLength, or null

54: PRESTATE(M, e, destState) . The state s in M such that
. <s, e, destState> is a connection in M, or null

55: POSTSTATE(M, srcState, e) . The state s in M such that
. <srcState, e, s> is a connection in M, or null

56: CONNECTION(M, srcState, e, destState) . The connection
. in M from srcState to destState, with cause e

57: MaxEditDistance← 10
58: MaxPathLength← 2

the experiments. ATOM spent less than one second to finish

updating all the test scripts of each app.

B. Measures

One goal of ATOM is to assist test script maintenance so that
the confidence provided by the test scripts in the correctness of
the app, in terms of the coverage of screens and connections
in ESMs, could be preserved as much as possible after the
maintenance. A good coverage of the models by the updated
test scripts, however, is not enough by itself. Such scripts, e.g.,
when produced by an automatic generation process, may exer-
cise very different behaviors of the app than those exercised by
the original test scripts, which incorporate valuable knowledge
about the application. Therefore, in addition to expecting the
updated test scripts to cover comparable percentage of the
ESMs as before maintenance, we also envision updated scripts
to retain most of the action sequences from the previous test
scripts. We adopt two metrics accordingly to measure the
effectiveness of the maintenance process.

Formally, let Sc be the set of screens that the updated ESM
shares with the base ESM, Sv the set of screens visited by the
original test scripts, and S′

v the set of screens visited by the
updated test scripts. The screen coverage preservation (SCP),
calculated as |S′

v ∩ Sc|/|Sv ∩ Sc|, measures, among all the
screens shared by the updated ESM and the base ESM, how
many percent of previously covered screens are still covered
by the tests after maintenance. Similarly, we can define the
connection coverage preservation (CCP) to measure, among
all the connections shared by the updated ESM and the base
ESM, how many percent of previously covered connections
are still covered by the tests after maintenance.

Let At be the set of all test actions from the base version
test scripts, Ae ⊆ At the set of effective test actions that
will be exercised if the base test scripts are run directly on the
updated app, and A′e the set of test actions that are executed by
the maintained test scripts. The test action preservation (TAP),
calculated as |(A′e −Ae)∩At|/|At −Ae|, measures, among
all the test actions that would be lost if without maintenance,
how many percent are now rescued into the updated tests.

Based on the measures, we devise our experiments to
answer the following two research questions:
• RQ1: Does using ATOM lead to updated test scripts with

high screen and connection coverage preservation?
• RQ2: Does using ATOM lead to updated test scripts with

high test action preservation?

C. Subjects

We select as the experiment subjects 11 popular production
mobile apps from a Chinese Android market. Table I lists
all the apps and briefly describes each app. Even though we
deliberately select apps with various sizes and from different
categories, they can hardly represent the wide range of all
apps. The selection of subjects presents threats to the gener-
alizability of our results, which we discuss in Section IV-F.

For each app, we randomly pick two adjacent releases that
we can download from the market, and treat the earlier release
as the base version, while the later one as the updated version.

For Research Only

TABLE I: Description of the mobile apps as subjects.

App (Acronym) Brief Description
Bilibili (BB) A video sharing website.
GNotes (GN) A simple note app.
Wannianli (WN) A calendar app.
YoudaoNote (YD) A cloud-based note app.
Wechat Phonebook (PB) A phonebook app.
Changba (CB) A Karaoke app.
Baidu Music (BD) A music player.
365 Calendar (CA) A calendar app.
Ctrip (TR) An online travel agent.
WizNote (WZ) A cloud-based information management app.
TickTick (TT) A to-do list app.

By reading the change log as well as actually playing with
the apps, we identify for each app a list of changes to their
GUI. We then asked a group of three post-graduate students to
manually build an ESM for parts of each app that are affected
by the changes. To ensure the correctness of the model, we
trained the students using the NotePad app from Section II as
an example and asked another student to review the models. In
this step, we get a partial ESM for each of the 11 apps. Even
though the models are incomplete, they are already useful
in test script maintenance, as shown by the results presented
in Section IV-E. This also speaks in favor for the usability
of ATOM. The same group of students then constructed the
DESM for each app based on the changes.

Table II lists, for each app, the base version (Base), and
the updated version (Updated). For each ESM of the base
version, the number of screens (#S) and connections (#C) in
the model are listed; For each DESM, the numbers of added
(#S+) and deleted (#S−) screens as well as the numbers of
added (#C+), deleted (#C−), and modified (#CM) connections
are also included in the table. In total, all the apps have 176
screens and 416 connections.

We also asked another group of four post-graduate students
to write test scripts for the apps. Table III reports for each app
the total number of scripts (#K) as well as the minimum (Min),
maximum (Max), average (Avg), and total (Sum) number of
actions in a single script. As a measure of the quality of the
test scripts, we also report in the table the coverage of screens
(S) and connections (C) by each set of test scripts (Cov). We
have created 145 scripts totaling 1837 actions, and they cover
99.52% of the screens and 95.33% of connections in the base
ESM.

The focus of ATOM is to help maintain the test scripts that
become obsolete after changes happen to an app. To avoid the
influence of test scripts that were not impacted by the changes,
we first run all the test scripts on the updated apps to identify
the ones that need maintenance. Table III lists for each app
the number of test scripts affected by the changes (Ka), and
the same statistics for the affected script files, including the
minimum (Mina), maximum (Maxa), average (Avga), and total
(Suma) number of actions in a single script. The number of
changed test script actions (#Chg) and the breakdown into the
numbers of deleted (Del) and modified (Mod) actions are also
included in the table. In the experiment, we consider only the

affected scripts.

D. Experimental Protocol

To get an idea of the extend to which the changes affect
the test scripts, we first calculate the screen and connection
coverage of the base ESM by the original test scripts. Next,
we apply ATOM to automatically maintain the test scripts.
The updated test scripts are then compared with the original
ones using the two metrics defined in Section IV-B. All the
comparisons are done on test scripts both as a whole and
individually.

E. Experimental Results

In this section, we report the results of our evaluations, with
the aim of answering the research questions listed at the end
of Section IV-B.

Table IV summarizes the values of the metrics we use to
measure the effectiveness. For each app, the table presents the
screen coverage preservation (SCP), the connection coverage
preservation (CCP), and the test action preservation (TAP) of
the maintenance process. Each entry in column SCP is in form
x(y/z), where x is the value of the metric, while y = |S′

v∩Sc|
is the number of shared screens that are covered by the updated
scripts and z = |Sv ∩ Sc| is the number of shared screens
visited by the original scripts. Similar information is listed also
for the CCP value of each app. Each entry in column TAP
is also in form x(y/z), where x is the value of the metric,
while y = |(A′e − Ae) ∩ At| is the number of extra test
actions rescued by the maintenance process and z = |At−Ae|
is the number of test actions that would be lost if without
maintenance.

RQ1: screen and connection coverage preservation. From
Table IV, we can see that ATOM managed to achieve SCP
and CCP values higher than 0.80 and 0.9, respectively, for all
apps. The overall SCP and CCP are also high: 0.94 and 0.98,
respectively. Such results strongly suggest ATOM is effective
in preserving the coverage of the ESM during test script
maintenance.

Figure 7 plots the distribution of the coverage preservation
values as four histograms. The x-axis of Figure 7(a) represents
the SCP value of the updated test scripts for an app, and y-
axis represents the number of apps producing such values.
Figure 7(b) shows similar distribution but at the level of
individual test scripts. Figures 7(c) and 7(d) are counterparts
of Figures 7(a) and 7(b) for CCP values.

A value larger than 1 indicates the coverage is actually
increasing after the maintenance. The increase may happen,
e.g., when the alternative path found for a deleted connection
visits other screens that were not visited by the existing test
scripts. Four scripts had very low SCP and CCP values (< 0.1)
because many of the screens and connections were removed
by the changes.

ATOM is effective in achieving high screen and connection
coverage preservation when maintaining test scripts.

RQ2: test action preservation. TAP values in Table IV
are greater than 0.6 for all apps except one. A closer look

For Research Only

TABLE II: Basic information about different versions of the experiment subjects.

APP Base Updated ESM DESM
#S #C #S+ #S− #C+ #C− #CM

Bilibili 4.12.1 4.13.0 15 36 1 5 1 16 1
GNotes 1.0.2 1.0.3 17 36 0 2 7 11 2
Wannianli 4.4.2 4.4.6 13 39 1 0 2 0 10
YoudaoNote 5.1.0 5.2.0 18 43 1 0 7 6 8
Wechat Phonebook 3.5.1 4.2.0 13 26 1 0 4 1 22
Changba 6.7.1 7.0.0 18 68 3 3 12 16 3
Baidu Music 5.6.6.1 5.7.0.3 15 33 0 2 0 5 7
365 Calendar 6.0.2 6.2.3 18 40 2 3 4 5 3
Ctrip 6.15.2 6.16.0 19 35 0 0 0 0 5
WizNote 7.1.0 7.1.6 15 30 0 2 0 4 6
TickTick 2.6.6 2.6.7 15 30 2 0 4 1 4
Total: – – 176 416 11 17 41 65 71

TABLE III: Basic statistics for all the test scripts and for affected test scripts only.

APP #K #A Cov #Ka
#Aa

Min Max Avg Sum S C Mina Maxa Avga Suma #Chg #Del #Mod
Bilibili 15 3 20 13.93 209 100 100 12 3 20 15.67 188 59 56 3
GNotes 9 7 33 20.89 188 100 91.67 8 7 33 22.38 179 25 10 15
Wannianli 9 8 26 12.89 116 100 92.31 9 8 26 12.89 116 12 0 12
YoudaoNote 12 6 16 10.67 128 100 86.05 12 6 16 10.67 128 35 8 27
Wechat Phonebook 7 3 9 5.86 41 100 92.31 7 3 9 5.86 41 33 1 32
Changba 27 5 21 12.07 325 100 100 14 5 17 12.64 177 41 31 10
Baidu Music 20 3 13 4.7 94 100 100 18 3 13 4.89 88 23 6 17
365 Calendar 8 4 44 16.25 130 100 97.5 4 10 44 22.5 90 14 9 5
Ctrip 12 4 29 18.83 226 94.74 94.29 5 4 29 14.8 74 7 2 5
WizNote 12 15 27 20.67 248 100 96.67 8 19 27 21.5 172 15 4 11
TickTick 14 3 19 9.43 132 100 100 4 7 19 12 48 5 1 4
Total: 145 3 44 12.68 1837 99.52 95.53 101 3 44 14.17 1301 269 128 141

TABLE IV: Experimental results.

APP SCP CCP TAP
Bilibili 1(7/7) 1(11/11) 0.26(35/134)
GNotes 0.93(14/15) 1(23/23) 0.87(138/159)
Wannianli 1(13/13) 1(36/36) 0.95(91/96)
YoudaoNote 0.94(17/18) 1(31/31) 0.91(116/128)
Wechat Phonebook 0.85(11/13) 0.91(21/23) 0.95(37/39)
Changba 1(9/9) 1.06(19/18) 0.74(97/131)
Baidu Music 1(12/12) 1(25/25) 0.90(79/88)
365 Calendar 0.85(9/11) 0.88(22/25) 0.65(31/48)
Ctrip 0.92(12/13) 0.91(19/21) 0.96(50/52)
WizNote 1(12/12) 1.05(22/21) 0.93(82/88)
TickTick 0.92(11/12) 1(17/17) 0.73(16/22)
Total: 0.94(127/135) 0.98(246/251) 0.78(772/985)

at that app (BB) reveals that most changes between the two
versions were deletions (as shown in Table II). In such cases, if
ATOM fails to find alternative paths on the model to continue
a test script, remaining test actions from that script will be
truncated, resulting in a low TAP value. Majority of the
individual scripts also have high TAP values (≥ 0.5). Those
with low TAP values (< 0.4) are mostly from apps BB and
CB, where many connections were removed between versions.
For better understandability of the updated tests, we restricted
that alternative paths ATOM uses should not be longer than
2. We expect TAP values to be higher if this restriction is
relaxed or removed. In general, TAP values indicate ATOM is
effective in preserving the test actions that would be lost if
without maintenance.

Figure 8 plots the distribution of TAP values as two his-
tograms. The x-axis of Figure 8(a) represents the TAP value

(a) (b)

(c) (d)

Fig. 7: Distribution of SCP and CCP values for the maintained
test scripts.

of the updated test scripts for an app, and y-axis represents

For Research Only

(a) (b)

Fig. 8: Distribution of TAP values for the maintained test
scripts.

the number of apps producing such values. Figure 8(b) shows
similar distribution but at the level of individual test scripts.

ATOM is effective in achieving high test action
preservation when maintaining test scripts.

F. Threats to Validity

In this section, we outline possible threats to the validity of
our study and show how we mitigate them.

Construct: We evaluate the effectiveness of ATOM based
on screen and connection coverage preservation and test action
preservation after the maintenance. While the overall coverage
of the new version app by updated test scripts is also an
important metric, we did not use it in this work, as our focus is
on the reuse of existing test scripts. Techniques for test script
generation can be integrated into our approach to improve the
overall code coverage by result test scripts.

Internal: The main threat to internal validity lies in
the possible faults in our implementation. We endeavored to
minimize such threats. We reviewed our source code and
manually checked the generated updates to the original test
scripts to make sure ATOM faithfully implements Algorithm 1.
We also cross reviewed the models among the post-graduate
students to ensure the correctness of the models.

External: The main threat to external validity is the rep-
resentativeness of our evaluation subjects. Mobile apps used
in this study were commercial ones selected from Chinese
Android market. On the one hand, such apps are likely better
representatives of commercial apps than most open source
apps. On the other hand, they may introduce bias to the study,
as apps from the global or other local Android market may
follow different patterns in their GUI and HCI design. Due to
the close-source nature of the selected apps, we had to prepare
models and test scripts for the subjects by ourselves. Bias may
be introduced there. Due to limited time, the evaluation was
conducted only on the Android platform. More evaluations
using other real-world mobile apps as subjects would help us
reduce the threat.

V. RELATED WORK

In this section, we discuss on testing techniques for mobile
apps that are closely related to the proposed work: regression
testing, change acquisition, model based testing, as well as
repair and maintenance of test scripts.

A. Regression testing techniques

Various regression testing techniques for mobile apps have
been proposed for ensuring that the changes meet the evolving
requirements or fix the previous identified bugs. Gao [13]
provided a review of existing testing approaches for mobile
applications. Different testing approaches have beeb proposed
for different testing goals and testing environments. During
the development and operation process, mobile apps are up-
graded or changed even more frequently than those of general
software applications delivered for PC or server, which bring
new challenges to software testing engineers for mobile appli-
cations. Rapid evolving mobile apps may cause existing test
scripts hardly reusable and outdated during regression testing
according to apps under test. To solve this problem, researchers
have been working on regression testing techniques which ver-
ify old functionalities when modifications occur. The result in
[14] shows that 31 regression testing techniques are applied in
the past 15 years. In essence, all regression testing approaches
can be divided into the following categories: minimization,
selection, prioritization and optimization. Most of existing
methods [15] [16] [17] [18] focus only on one part. In our
work, we try to take comprehensive consideration to maintain
test scripts based on changes on mobile apps under test so
as to reuse existing test scripts as much as possible in the
regression testing.

B. Change acquisition techniques

In regression testing, whether the previous created test
scripts for old app could be reused for testing changed new
one depends on the changes between two versions of the
application under test. Identifying GUI changes between the
two versions and analyzing their impact on test scripts is es-
sential. So far, researchers have proposed different approaches.
Grechanik and Qing [1] implemented a tool REST which
mainly relies on three steps: determining the modified GUI
objects base on the GUI models, detecting the affected script
statements and analyzing these scripts to determine what other
statements are affected as a result of using values computed
by the statements that reference modified GUI objects. Raina
[19] introduced an automated tool for identifying and testing
only the modified parts of a web application. An HTML DOM
tree generator is used to generate the DOM tree and the two
DOM trees in two versions are compared to locate changes in
the new version. A testing tool called GUIdiff is proposed
in [20]. It runs two versions of the same application and
observes the differences in the widget trees of their states.
It inspired us to search for the different versions of mobile
apps in our experiment. Currently, we only focus on changes
in GUI widgets, such as addition, deletion and modification.

For Research Only

In addition, these changes were represented in the modified
model for the app under test.

C. Model-based GUI testing

Traditional manual testing is time-consuming and ineffi-
cient. Automated GUI testing techniques are widely explored
in the academia, and are widely used in the industry [21].
Model-based testing is one of the supporting means of GUI
test automation [22]. GUI Models are employed to represent
the behavior of the application under test, which then can be
used to automatically generate test cases. However, modeling
the GUI-based behavior of an application can be difficult. To
settle the issue, GUICC [23] determines equivalence/difference
between GUI states to generate GUI graph, and updates
the GUI graph based on the changes. The common reverse
engineering techniques for GUI testing are GUI crawling and
GUI ripping [24] [12]. Model-based techniques can also be
applied into regression testing. For example, Fourneret [25]
presented a model-based regression testing technique based on
UML/OCL behavioral models. The results show the approach
is efficient. However GUI ripper may cause the automated
generated model imperfect and inaccurate. In our approach, we
construct the GUI model of the original application, represent
the caught changes in the model, and model-based testing
approach to facilitate automatic regression testing.

D. Test script reuse

Test scripts are used to perform automatic regression test-
ing. Generally, test scripts could be manually created or
automatically generated with the help of record/reply tools
according to specific application under test. Because of the
rapid evolving and frequent changing of mobile apps, the
existing test scripts may unusable for regression testing. It
is mentioned in [26] that more than 74 percent of the test
cases become unusable. Test script resue is the most important
and difficult problem in regression testing. To deal with this
problem, Memon [2] proposed EFG model-based approach. It
first selects unusable test script according to the original test
scripts and the modified GUI, then repairs these scripts base on
four user-defined transformations. Other approaches have been
proposed to focus on automated test script repairing. Daniel
[3] proposed a white-box approach that focused on GUI code.
They implemented a smart IDE to record the GUI refactoring.
Then, the information is used to change the GUI code as
well as to repair test cases. Wen [27] proposed an IR-based
method LOCUS to locate bugs from software changes. Locus
only outputs the modification content of the most suspicious
file in each suspicious change. Similar to our work, SITAR
[4] repairs unusable low-level test scripts. It uses QTP as the
testing tool. The approach has three main steps. First, GUI
ripper is used to construct an EFG model. In addition, EFG
model is enhanced by introducing a dominates edge. Second,
the script statements are mapped to the EFG model. If a
match is not found that a NULL entry is created. Final, a
mapped script that has at least one NULL must be repaired. It
can output a sequence of events and repaired check points.

In our work, the original model is more accurate without
using existing ripping tools. And we choose Appium and
Robotframework without a hierarchical relationship. It makes
the mapping harder but more precise. Moreover, we do not
repair oracle but our test cases are generated through automatic
traversal. Researchers try to repair these unusable test scripts
to save cost by reusing existing artifacts while without lost
efficiency. Pinto [28] pointed out that prior repairing methods
that focus on assertions have limited practical applicability.
All of these approached motivated us to reuse test scripts for
regression testing automatically and realistically. We adopt
fuzzy matching between models and scripts, employ model
comparing approaches in [29] to update the modified model
according to changes. The updated model are then used to
maintain scripts automatically.

VI. CONCLUSION AND FUTURE WORK

In this paper, we propose a novel method for automatically
maintaining test scripts based on GUI model and version
changes. First, we analyze the changes between two versions
via code, change log and behaviors of the application. Then,
the model of the application is updated. At last, the scripts
are maintained by mapping to behavior sequence, repairing
sequence based on the new model and translating to new
scripts. To implement our idea, we developed a tool called
MATS and exercised it on real world mobile applications.
MATS shows great effectiveness and accuracy, and at the same
time, it can reduce human cost.

There are still several possible enhancements to our current
work. First, we find the changes between two versions manu-
ally at present. However, it’s necessary to do it automatically
which can significantly raise the effectiveness of our approach
and reduce more human cost. Second, the coverage of test
scripts may be decreasing when adding events. Although we
have already developed a tool to complete the test scripts,
it brings some problems such as test case explosion. Third,
our approach aims at the test scripts which are generated
automatically, so we don’t consider test oracle. In the future,
we can consider to maintain test oracle.

ACKNOWLEDGMENT

This work was partially supported by ...

REFERENCES

[1] M. Grechanik, Q. Xie, and C. Fu, “Maintaining and evolving gui-
directed test scripts,” in Software Engineering, 2009. ICSE 2009. IEEE
31st International Conference on, pp. 408–418, IEEE, 2009.

[2] A. M.Memon, “Automatically repairing event sequence-based gui test
suites for regression testing,” ACM Transactions on Software Engineer-
ing and Methodology, vol. 18, no. 4, 2008.

[3] B. Daniel, Q. Luo, M. Mirzaaghaei, D. Dig, D. Marinov, and M. Pezzè,
“Automated gui refactoring and test script repair,” in Proceedings of the
First International Workshop on End-to-End Test Script Engineering,
pp. 38–41, ACM, 2011.

[4] Z. Gao, Z. Chen, Y. Zou, and A. M. Memon, “Sitar: Gui test script
repair,” IEEE Transactions on Software Engineering, vol. 42, no. 2,
pp. 170–186, 2016.

[5] J. Chen, M. Lin, K. Yu, and B. Shao, “When a gui regression test
failed, what should be blamed?,” in Software Testing, Verification
and Validation (ICST), 2012 IEEE Fifth International Conference on,
pp. 467–470, IEEE, 2012.

For Research Only

[6] G. Bae, G. Rothermel, and D.-H. Bae, “Comparing model-based and
dynamic event-extraction based gui testing techniques,” J. Syst. Softw.,
vol. 97, pp. 15–46, Oct. 2014.

[7] Z. Gao, Z. Chen, Y. Zou, and A. M. Memon, “SITAR: GUI Test Script
Repair,” IEEE Transactions on Software Engineering, vol. 42, pp. 170–
186, Feb. 2016.

[8] C. Hu and I. Neamtiu, “Automating gui testing for android applications,”
in Proceedings of the 6th International Workshop on Automation of
Software Test, AST ’11, (New York, NY, USA), pp. 77–83, ACM, 2011.

[9] F. Gross, G. Fraser, and A. Zeller, “Exsyst: Search-based gui testing,”
in Proceedings of the 34th International Conference on Software Engi-
neering, ICSE ’12, (Piscataway, NJ, USA), pp. 1423–1426, IEEE Press,
2012.

[10] S. R. Choudhary, A. Gorla, and A. Orso, “Automated test input gen-
eration for android: Are we there yet? (e),” in Proceedings of the
2015 30th IEEE/ACM International Conference on Automated Software
Engineering (ASE), ASE ’15, (Washington, DC, USA), pp. 429–440,
IEEE Computer Society, 2015.

[11] D. Amalfitano, A. R. Fasolino, P. Tramontana, B. D. Ta, and A. M.
Memon, “Mobiguitar: Automated model-based testing of mobile apps,”
Software, IEEE, vol. 32, no. 5, pp. 53–59, 2015.

[12] D. Amalfitano, A. R. Fasolino, P. Tramontana, S. De Carmine, and
A. M. Memon, “Using gui ripping for automated testing of android
applications,” in Proceedings of the 27th IEEE/ACM International
Conference on Automated Software Engineering, pp. 258–261, ACM,
2012.

[13] J. Gao, X. Bai, W. T. Tsai, and T. Uehara, “Mobile application testing:
A tutorial,” Computer, vol. 47, no. 2, 2014.

[14] R. H. Rosero, O. S. G?mez, and G. Rodraguez, “15 years of software
regression testing techniques ?a a survey,” International Journal of
Software Engineering and Knowledge Engineering, vol. 26, no. 5,
pp. 675–689, 2016.

[15] H.-Y. Hsu and A. Orso, “Mints: A general framework and tool for sup-
porting test-suite minimization,” in Proceedings of the 31st International
Conference on Software Engineering, pp. 419–429, IEEE Computer
Society, 2009.

[16] G. M. K. Chu-Ti Lin, Kai-Wei Tang, “Test suite reduction methods
that decrease regression testing costs by identifying irreplaceable tests,”
Information and Software Technology, vol. 56, no. 10, pp. 1322–1344,
2014.

[17] Q. Do, G. Yang, M. Che, D. Hui, and J. Ridgeway, “Regression test
selection for android applications,” in Proceedings of the International
Conference on Mobile Software Engineering and Systems, pp. 27–28,
ACM, 2016.

[18] X. Wang and H. Zeng, “History-based dynamic test case prioritization
for requirement properties in regression testing,” in Proceedings of the
International Workshop on Continuous Software Evolution and Delivery,
pp. 41–47, ACM, 2016.

[19] S. Raina and A. P. Agarwal, “An automated tool for regression testing in
web applications,” SIGSOFT Softw. Eng. Notes, vol. 38, no. 4, pp. 1–4,
2013.

[20] S. Bauersfeld, “Guidiff – a regression testing tool for graphical user
interfaces,” in 2013 IEEE Sixth International Conference on Software
Testing, Verification and Validation, pp. 499–500, IEEE, 2013.

[21] A. Marques, F. Ramalho, and W. L. Andrade, “Comparing model-
based testing with traditional testing strategies: An empirical study,” in
Software Testing, Verification and Validation Workshops (ICSTW), 2014
IEEE Seventh International Conference on, pp. 264–273, IEEE, 2014.

[22] A. C. Dias Neto, R. Subramanyan, M. Vieira, and G. H. Travassos,
“A survey on model-based testing approaches: A systematic review,”
in Proceedings of the 1st ACM International Workshop on Empirical
Assessment of Software Engineering Languages and Technologies: Held
in Conjunction with the 22Nd IEEE/ACM International Conference on
Automated Software Engineering (ASE) 2007, pp. 31–36, ACM, 2007.

[23] Y.-M. Baek and D.-H. Bae, “Automated model-based android gui
testing using multi-level gui comparison criteria,” in Proceedings of
the 31st IEEE/ACM International Conference on Automated Software
Engineering, pp. 238–249, ACM, 2016.

[24] A. Memon, I. Banerjee, and A. Nagarajan, “Gui ripping: Reverse
engineering of graphical user interfaces for testing,” in Proceedings of
the 10th Working Conference on Reverse Engineering, pp. 260–, IEEE,
2003.

[25] E. Fourneret, J. Cantenot, F. Bouquet, B. Legeard, and J. Botella,
“Setgam: Generalized technique for regression testing based on uml/ocl

models,” in Software Security and Reliability (SERE), 2014 Eighth
International Conference on, pp. 147–156, SERE, 2014.

[26] A. M. Memon and M. L. Soffa, “Regression testing of GUIs,” SIGSOFT
Softw. Eng. Notes, vol. 28, no. 5, pp. 118–127, 2003.

[27] M. Wen, R. Wu, and S.-C. Cheung, “Locus: Locating bugs from
software changes,” in Proceedings of the 31st IEEE/ACM International
Conference on Automated Software Engineering, pp. 262–273, ACM,
2016.

[28] L. S. Pinto, S. Sinha, and A. Orso, “Understanding myths and realities
of test-suite evolution,” in Proceedings of the ACM SIGSOFT 20th
International Symposium on the Foundations of Software Engineering,
pp. 33:1–33:11, ACM, 2012.

[29] Z. Xing and E. Stroulia, “Umldiff: An algorithm for object-oriented de-
sign differencing,” in Proceedings of the 20th IEEE/ACM International
Conference on Automated Software Engineering, pp. 54–65, ACM, 2005.For Research Only

