

Software Engineering Group
Department of Computer Science
Nanjing University
http://seg.nju.edu.cn

Technical Report No. NJU-SEG-201с-IC-00п

201с-IC-00п

BovInspector: Automatic Inspection and Repair of Buffer
 Overflow Vulnerabilities

 Fengjuan Gao, Linzhang Wang, Xuandong Li

 International Conference on Automated Software Engineering 2016
 2017

Most of the papers available from this document appear in print, and the corresponding copyright is held by the

publisher. While the papers can be used for personal use, redistribution or reprinting for commercial purposes is

prohibited.

http://seg.nju.edu.cn/

BovInspector: Automatic Inspection and Repair of Buffer
Overflow Vulnerabilities

Fengjuan Gao
State Key Laboratory of Novel

Software Technology
Nanjing University

Nanjing, 210023, China
fjgao@seg.nju.edu.cn

Linzhang Wang
State Key Laboratory of Novel

Software Technology
Nanjing University

Nanjing, 210023, China
lzwang@nju.edu.cn

Xuandong Li
State Key Laboratory of Novel

Software Technology
Nanjing University

Nanjing, 210023, China
lxd@nju.edu.cn

ABSTRACT
Buffer overflow is one of the most common types of soft-
ware vulnerabilities. Various static analysis and dynamic
testing techniques have been proposed to detect buffer over-
flow vulnerabilities. With automatic tool support, static
buffer overflow detection technique has been widely used
in academia and industry. However, it tends to report too
many false positives fundamentally due to the lack of soft-
ware execution information. Currently, static warnings can
only be validated by manual inspection, which significantly
limits the practicality of the static analysis. In this paper,
we present BovInspector, a tool framework for automatic
static buffer overflow warnings inspection and validated bugs
repair. Given the program source code and static buffer
overflow vulnerability warnings, BovInspector first performs
warning reachability analysis. Then, BovInspector executes
the source code symbolically under the guidance of reachable
warnings. Each reachable warning is validated and classified
by checking whether all the path conditions and the buffer
overflow constraints can be satisfied simultaneously. For
each validated true warning, BovInspector fix it with three
predefined strategies. BovInspector is complementary to
prior static buffer overflow discovery schemes. Experimental
results on real open source programs show that BovInspec-
tor can automatically inspect on average of 74.9% of total
warnings, and false warnings account for about 25% to 100%
(on average of 59.9%) of the total inspected warnings. In
addition, the automatically generated patches fix all target
vulnerabilities. Further information regarding the implemen-
tation and experimental results of BovInspector is available
at http://bovinspectortool.github.io/project/. And a short
video for demonstrating the capabilities of BovInspector is
now available at https://youtu.be/IMdcksROJDg.

CCS Concepts
•Software and its engineering → Software verifica-
tion and validation; Software defect analysis; Soft-

ware testing and debugging; •Security and privacy
→ Vulnerability scanners;

Keywords
Buffer Overflow; Symbolic Execution; Validation; Automatic
Repair;

1. INTRODUCTION
Buffer overflow occurs when a program writes data to a

buffer, overruns the buffer’s boundary and overwrites adja-
cent memory locations. The buffer overflow vulnerability
provides a way for attackers to corrupt data, crash the pro-
gram, or execute malicious code. Attackers often carefully
construct their inputs to overflow the buffer and overwrite
the adjacent memory which may contain return address to
execute their malicious code. Although buffer overflow has
been explored for many years, it remains one of the most
common types of software vulnerabilities according to the
statistics by Common Vulnerabilities and Exposures (CVE)
[1]. Buffer overflow attacks against both legacy and newly-
deployed software systems can lead to system crash, denial
of service, or loss of control to external attackers, leading to
disastrous consequences.

Challenge. Static program analysis and dynamic testing
approaches have been proposed to detect buffer overflow
vulnerabilities. Dynamic testing methods are commonly used
during software deployment [12][20][15], however, they highly
rely on the completeness of the test suite. Static analysis
approaches can achieve high level automation, which makes
them popular in practice, such as [7][11][13][19]. However,
the key limitation of static technique is that the reported
buffer overflow vulnerabilities warnings contain too many
false positives fundamentally due to the lack of software
execution information. Each static vulnerability warning
needs to be manually inspected to identify true vulnerabilities
and false alarms. Our experience shows that even commercial
(and mature) static analysis tools like HP Fortify [7], which
is one of the leading commercial products in application
security market1, can report a great number of warnings
for a moderate-sized program. As shown in Table 1, as the
scale of program increases, the total number of warnings
will also increase notably. It’s challenging for programmers
to manually inspect all of the warnings and source code to

1Gartner Magic Quadrant for Static Application Securi-
ty Testing, https://www.gartner.com/doc/2538715/magic-
quadrant-application-security-testing

This is the author’s version of the work. It is posted here for your personal use. Not for
redistribution. The definitive version was published in the following publication:

ASE’16, September 3–7, 2016, Singapore, Singapore
c© 2016 ACM. 978-1-4503-3845-5/16/09...

http://dx.doi.org/10.1145/2970276.2970282

786

For Research Only

Table 1: Warnings Reported by Fortify on Real
World Programs

Program Scale
Total Number
of Warnings

Total Number of
Buffer Overflow
Warnings

gzip1.2.4 5.1K 237 19

tftp-hpa5.0 5.3K 78 12

net-tool-1.60 8.1K 1256 62

inspircd2.0.5 74.1K 142 11

udisks2.1.2 92.1K 437 8

tiff4.0.3 113.4K 1743 1117

freetype2.4.8 205.6K 479 16

firefox-33.0 683.3K 23990 4204

find and repair true vulnerabilities, which is a daunting task
that can be extremely tedious, labor-intensive, and time-
consuming. In addition, the false positives waste a huge
amount of human effort on manual inspection.

Our Proposal. In this paper, we present an automatic
framework, BovInspector, to help programmers to inspec-
t buffer overflow vulnerability warnings output by existing
static program analysis tools for C programs, as well as repair
validated true buffer overflow vulnerabilities. First, BovIn-
spector performs warning reachability analysis to find reach-
able path segments of each static buffer overflow warning in
the control flow graph of the program. Next, BovInspector
explores all the program paths guided by previous generated
reachable path segments of each reachable warning in an
extended symbolic execution engine. Then, each reachable
warning is validated and classified by checking whether all
the path conditions and the buffer overflow constraints can
be satisfied simultaneously during the symbolic execution.
Finally, for each validated true warning, BovInspector fixes
it by adding boundary checks or replacing unsafe APIs with
safe ones.

So far, BovInspector is complementary to prior static
buffer overflow detection techniques. We make the following
contributions:

• We combine static analysis and dynamic symbolic exe-
cution technique to automatically inspect buffer over-
flow warnings, which will then be classified into true
warnings, false warnings, and undecidable warnings.

• We provide three strategies to automatically repair val-
idated true buffer overflow vulnerabilities, i.e., adding
boundary checks, replacing the API with a safer one,
extending buffers, according to empirical study of hu-
man repair of buffer overflow vulnerabilities in real
world projects.

• We implement a prototype tool BovInspector to support
for automatically inspecting warnings and repairing
vulnerabilities.

2. METHOD
Figure 1 shows the overall framework of BovInspector,

which mainly consists of four steps: warning reachability anal-
ysis, guided symbolic execution, buffer overflow validation,
and targeted automatic repair. The key idea of BovInspector
is to use symbolic execution to automatically identify those
buffer overflow warnings reported by static analysis that are
true warnings or false warnings. To avoid the infamous path
explosion issue of symbolic execution, BovInspector uses stat-
ic analysis to guide the symbolic execution so that it only
focuses on the execution paths that cover the buffer over-
flow warnings generated by static program analysis. After

validating the buffer overflow vulnerabilities, BovInspector
will automatically repair these buffer overflow vulnerabilities
according to popular human repair strategies.

2.1 Warning Reachability Analysis
Given the source code of a program, we first use Fortify to

perform a static analysis to get all the buffer overflow warn-
ings. Each buffer overflow warning can be represented as a
tuple: (d,<l1,l2,...,ln>,o), in which “d” is the statement label
where the buffer is declared, “li(1≤i≤n)” is the statement
label where an operation is performed on the buffer, and “o”
is the statement label where the buffer overflow may occur.
The statement label including file name and line number
represents where the statement is. To confirm whether the
buffer overflow warning point is reachable, we first build
CFG for each procedure from the source code. Each basic
block in CFG will be packaged into a CFGNode to record its
predecessor and successor. Then, we generate the Interpro-
cedural Control Flow Graph (ICFG) according to the calling
relationships among procedures. Next, we try to obtain the
reachability of the warning points on the ICFG. If we just
perform a depth-first traversal on the ICFG, we will get many
paths that does not contain any path segments in the buffer
overflow warnings. So based on our bi-direction ICFG, for
each warning point, we perform backward tracking on the
ICFG starting from the warning point, which can significant-
ly reduce the number of useless paths. For a warning point,
a warning path set is a set of complete paths covering all the
reachable path segments of the warning, starting from the
program entrance and ending at the warning point. And a
warning point may have more than one warning path set. If
there is such a warning path set existing for a warning point,
we consider the warning point is reachable. Otherwise, the
warning point is unreachable, and the corresponding warning
point will be classified as a false warning.

2.2 Guided Symbolic Execution
Symbolic execution is commonly used in software testing,

which executes a program with symbolic inputs. In this paper,
we use the KLEE [9] symbolic execution engine. But tradi-
tional symbolic execution has an infamous path explosion
issue. To avoid path explosion, BovInspector uses Warning
Reachability analysis’s results to guide KLEE’s symbolic ex-
ecution to only focus on the warning paths. And that means
we should remove the execution states not corresponding to
any of the warning paths. The symbolic execution engine
maintains an execution state pool containing all the executed
states. And the engine fetches program counter from the
pool and interprets the instruction pointed by the counter. If
the instruction is a branch command, the symbolic execution
engine will duplicate the current execution state, set the two
execution states’ next instruction to the true direction and
false direction of the branch instruction separately and add
the path constraint to the corresponding execution state.
Next, we need to decide which direction of the branch in-
struction to choose to reach the warning point, namely which
execution state to choose during symbolic execution. Each
instruction can be represented by its basic block’s entrance
statement label. If both states’ statement labels are in the
warning path set, we will not remove any of the state. If
only one state’s statement label is in the warning path set,
then we will remove the other state from the state pool. If
both states’ statement labels are not in the warning path set,

787

For Research Only

Source Code

Static Analysis

Buffer Overflow

Warnings

Warning

Reachability

Analysis

Guided

Information

Guided Symbolic

Execution

Buffer Overflow

Validation

Validated Buffer

Overflow Position

Report

Targeted

Automatic Repair

Repaired Source

Code

Fortify KLEE

BovInspector

Figure 1: The Framework of BovInspector

we will not remove any of the states because sometimes the
symbolic execution engine will explore inside some library
calls which are not in the warning path set and sometimes
the buffer overflow will be triggered by multiple execution
of a loop. Each time when an instruction is interpreted, the
symbolic execution engine will select an execution state from
the state pool to perform the next execution, which will
continue until there’s no state in the execution state pool or
the time threshold value is exceeded.

2.3 Buffer Overflow Validation
KLEE can only identify some common defects such as

null pointers and out-of-bound pointers during runtime. To
validate buffer overflow warnings during symbolic execution,
we extend KLEE’s symbolic execution engine by adding a
buffer overflow validation module. During the guided sym-
bolic execution, the extended executor will collect the path
conditions. When encountering a buffer overflow warning
point, the extended executor will duplicate the current exe-
cution state and add buffer overflow constraints (what buffer
overflow constraints need to be added will be discussed in the
following contents) into its corresponding backup state. Then
the constraint solver will be invoked to determine whether
the path conditions together with the buffer overflow con-
straints are satisfiable. Apparently, there may be more than
one reachable path for a buffer overflow warning point. If
one of the reachable path’s constraints together with the
buffer overflow constraints are satisfiable, then the buffer
overflow warning reported by Fortify is a true warning and
the specific method will be invoked to generate a test case
that will follow the path and trigger the buffer overflow. If
none of the reachable path’s constraints together with the
buffer overflow constraints are satisfiable, then the buffer
overflow warning reported by Fortify is a false warning. If
the constraints cannot be solved in the given time threshold,
then the buffer overflow warning reported by Fortify is an
undecidable warning.

First, to determine which APIs should be focused on in
our BovInspector, we studied APIs operating buffers in C99
[8] and Linux system call interface. The APIs we focus on in
BovInspector are copying functions, concatenation functions,
format input/output functions, character input/output func-
tions and file input/output functions. In addition to these
APIs, we also care about direct buffer accessing, namely
array and pointer accessing.

Next, we need to determine what condition should be
satisfied to trigger a buffer overflow vulnerability. As a buffer

overflow occurs when more data is written into a buffer than
it can hold, we need to figure out the targeted buffer’s real
capacity and the original data’s possible length. To trigger
a buffer overflow, the original data’s possible length must
be bigger than the targeted buffer’s real capacity, which
constructs the buffer overflow constraints. Accordingly, to
avoid a buffer overflow, the boundary check need to be added
will be that if buffer overflow constraints are satisfiable, the
program must be terminated.

Finally, based on the above analysis, we propose our“Buffer
Overflow Constraints and Repair Models”, which is shown in
Table 2. Particularly, we put direct buffer accessing in the
model. Direct buffer accessing includes array and pointer
accessing. Column 2 shows the APIs that BovInspector can
handle with, column 3 shows what parameters format the
APIs use, column 4 shows what constraint must be satisfied
to trigger a buffer overflow, and column 5 shows what API
can be used to replace the corresponding APIs to secure
the program. In column 4, “strlen” and “sizeof” are C lan-
guage library functions. “strlen” returns the length of the C
string without including the terminating null character [2].
And “sizeof” returns the size of data type or variables [3].
Take “strcpy” for example to explain how we construct the
“Buffer Overflow Constraints”, “strcpy” copies the C string
pointed by “src” into the array pointed by “dest”, including
the terminating null character (and stopping at that point)
[4]. To trigger a buffer overflow, “strlen(src)+1” (“+1” is
because the source string includes a terminating null charac-
ter ‘\0’) should be bigger than “sizeof(dest)”, which means
“Buffer Overflow Constraints” of “strcpy” will be “strlen(src)
≥ sizof(dest)”, and so on.

2.4 Targeted Automatic Repair
Tao et al. [21] perform an empirical study on detecting

and fixing buffer overflow bugs. More specifically they in-
vestigate officially adopted or programmers’ preferred fix
approaches for buffer overflow vulnerabilities in real world
programs reported in CVE [1]. The investigation shows that
adding boundary checks turns out the most common way
(nearly 48%) to fix buffer overflow vulnerabilities, followed by
replacing API with a safer API and extending the buffer size.
BovInspector implements the top three of the most popular
buffer overflow repair strategies according to this conclu-
sion. Currently, BovInspector can handle buffer overflow
vulnerabilities caused by the APIs listed in Table 2.

We design three repair strategies for BovInspector, i.e.,
“default” for adding boundary checks, “API-REP” for replac-

788

For Research Only

Table 2: Buffer Overflow Constraints and Repair Models
Type API Parameters Format Buffer Overflow Constraints Safer API Option

1 strcpy (char *dest, const char *src) strlen(src) ≥ sizeof(dest) strncpy(dest,src,sizeof(dest))

2

strncpy
memcpy
memmove
memset
snprintf
vsnprintf

(char *dest, const char *src, size t n) n > sizeof(dest)

3 strcat (char *dest, const char *src)
strlen(src)+strlen(dest)
≥ sizeof(dest)

snprintf(dest+strlen(dest),
sizeof(dest)-strlen(dest),“%s”,src)

4 strncat (char *dest, const char *src, size t n)
min{strlen(src),n}+strlen(dest)
≥ sizeof(dest)

5 sprintf (char *str, const char *format, ...) format string length ≥ sizeof(str) snprintf(str,sizeof(str),format,...)
6 fgets (char *str, int num, FILE *stream) num > sizeof(str)

7 fread
(void *ptr, size t size, size t count,
FILE *stream)

size*count > sizeof(ptr)

8 read (int fd, void *buf, size t count) count > sizeof(buf)

9
buf[i],
(buf+i)

i*typesize ≥ sizeof(buf)

Linux Development Environment(Ubuntu 12.04)

LLVM Infrastructure(LLVM 2.9)

Warning Reachability Analysis Module

Fortify 3.2

KLEE

Guided Symbolic Execution Module

Buffer Overflow Validation ModuleBuffer Overflow Repair Module

Figure 2: BovInspector Tool Architecture

ing the API with a safer API and “extend” for modifying
the buffer’s definition to extend its buffer. BovInspector
takes source code files that need to be repaired and their
buffer overflow vulnerabilities reports as inputs, and outputs
repaired source code files.

BovInspector reads the buffer overflow vulnerabilities re-
ports and extracts the position of each buffer overflow vul-
nerability and the targeted API. The reports may contain
buffer overflow vulnerabilities at multiple locations in differ-
ent source files. If we insert some statements in the source
code to repair the first vulnerability, it will result in a line
number mismatch between the source code and the report for
the other vulnerabilities. So BovInspector first extracts all
the buffer overflow vulnerabilities reports in each source file
and then sorts the positions of buffer overflow vulnerabilities
in each source file by the line numbers in descending order.
Then BovInspector repairs the buffer overflow vulnerabilities
in each source file according to the above order. For each
buffer overflow vulnerability, BovInspector first locates the
corresponding source code and fetches the actual parame-
ters from it. And the required parameters are listed in the
fourth column of Table 2. Given the targeted API, required
parameters and repair mode, BovInspector will return the
corresponding repair suggestions:

(1) Adding boundary checks: In this mode, BovInspector
will add a boundary check in the previous line of the buffer
overflow line. And the boundary check is an “if” statement
with the condition constructed from the fourth column of Ta-
ble 2 with the actual parameters. Specifically, if the targeted
API is “sprintf”, we will compute the length of format string
by setting the first parameter of “vsnprintf” [5] to “NULL”
and the second to “0”.

(2) Replacing the API with a safer API: In this mode,
BovInspector will rewrite the buffer overflow line with a safer
API calling constructed from the fifth column of Table 2 with
the actual parameters. Specifically, as Table 2 shows, there
are only three types of APIs having a “Safer API Option”.
The other types of APIs will be repaired by adding boundary
checks in this mode.

(3) Extending buffers: In this mode, BovInspector will
need the definition position of the buffer that may overflow,
which can be fetched from the Buffer Overflow Warnings.
But the buffer size is always program specific and we will let
the programmers configure the buffer size.

3. IMPLEMENTATION AND EVALUATION
BovInspector is built on the LLVM-2.9 compiler infrastruc-

ture [10]. It is composed of four modules, warning reacha-
bility analysis, guided symbolic execution, buffer overflow
validation, and buffer overflow repair, as shown in Figure 2.
Warning reachability analysis module is implemented as a
LLVM pass [6] to build control flow graph (CFG) of the pro-
gram, analyze the reachability of buffer overflow warnings in
the graph, and finally output warning path sets. We extend
the function of KLEE [9], a state-of-the-art symbolic execu-
tion engine, to support guided symbolic execution module
and buffer overflow validation module. Buffer overflow repair
module is implemented as a python script with three repair
strategies. The static buffer overflow detector used in our
experiments is HP Fortify with version 3.2 [7]. We provide
interface to process warnings reported by Fortify. It is very
straight forward to work with other static analysis tools.

To evaluate the capability of BovInspector, we have con-
ducted control experiments on a benchmark. To prepare
the benchmark, we select 8 programs from GNU COREUTI-
LS utilities and real-world open source programs such as
sendmail-8.12.7, gzip-1.2.4, and so on. And the programs

789

For Research Only

Table 3: Inspection and Repair Results on Real Program

Program BovPosition BovCause Fortify(before) BovInspector
Fortify(after)

Bound Checking API-Rep
gzip-1.2.4 gzip.c:1009 strcpy Bov Bov Dangerous function Nothing

wwwcount-2.3 main.c:346 strcpy Bov Bov Dangerous function Nothing
net-tool-1.6 netstat.c:450,457, 602,608,737,743 strcat Bov Bov Nothing Nothing

Table 4: Results of the BovInspector’s Repair and the Official Repair
Program BovPosition BovCause BovInspector Repair Official Repair

gzip-1.2.4 gzip.c:1009 strcpy
1©if(strlen(iname)>= sizeof(ifname))
2©strncpy(ifname,iname,sizeof(ifname));

if(sizeof ifname - 1<= strlen (iname))

man-1.5i2 man.c:299 strcpy
1©if(strlen(name0)>= sizeof(ultname))
2©strncpy(ultname,name0,sizeof(ultname));

if(strlen(name0) >= sizeof(ultname))

wu-ftpd-2.5.0 ftpd.c:1210 strcpy
1©if(strlen(mapped path) >= sizeof(path))
2©strncpy(path,mapped path,sizeof(path));

strncpy(path, mapped path, size);

xmp-2.5.1 dtt load.c:79 array 1©if(i*sizeof(pofs[0]) >= sizeof(pofs)) if (i < 256)

mapserver-
5.2.0 Beta4

mapserv.c:
1334

sprintf

1©#include “MY vsnprintf.h”
if(MY vsnprintf(“%s%s%s.map”,mapserv
->map->web.imagepath,mapserv->map
->name,mapserv->Id) >= sizeof(buffer))
2©snprintf(buffer,sizeof(buffer),“%s%s%s.

map”,mapserv->map->web.imagepath,
mapserv->map->name,mapserv->Id);

snprintf(buffer, sizeof(buffer),“%s%s%s.
map”,mapserv->map->web.imagepath,
mapserv->map->name, mapserv->Id);

cgminer-4.3.4 util.c:1883 sprintf

1©#include “MY vsnprintf.h”
if(MY vsnprintf(“%s:%s”,url,port)>=
sizeof(address))
2©snprintf(address,sizeof(address),“%s:%s”,

url,port);

snprintf(address,254,“%s:%s”,url,port);

are compiled into LLVM bitcode by LLVM-gcc. All experi-
ments are conducted on a quad-core machine with an Intel
Core (TM) Corei5-2400 3.10GHz processor and 4G memory,
running Linux 3.11.0. Due to the page limit, all the subjects
and evaluation results of the automatic inspection are put
online at http://bovinspectortool.github.io/project/.

The results of automatic repair are shown in Table 3. The
given “BovPosition” in Table 3 are all real buffer overflow
vulnerabilities that have been validated officially. The“BovIn-
spector” column shows that our BovInspector validates all
these buffer overflow warnings reported by Fortify as buffer
overflow vulnerabilities. After all the real vulnerabilities are
repaired by BovInspector, the program will be rescanned
by Fortify to verify BovInspector’s repair ability. And the
results show that Fortify will report no warnings on the pro-
grams repaired by BovInspector by adding boundary checks
or replacing with a safer API. And BovInspector’s repair
results are also validated by having a human review. So
our BovInspector can automatically and correctly repair the
buffer overflow vulnerabilities that have been validated by
itself.

To further illustrate the correctness of BovInspector’s re-
pair, we select 6 real world programs, and compare the
patches generated by BovInspector and the official manual
repair. And we obtain both the buggy and fixed versions
of programs that contain buffer overflow vulnerabilities. By
comparing the buggy and fixed versions of a program, we
will know where the buffer overflow vulnerabilities are. We
add the above buffer overflow vulnerabilities’ positions into
the buffer overflow vulnerabilities reports which will be used
to guide the BovInspector’s repair. After using BovInspector
to repair the buffer overflow vulnerabilities in the source
code, we will use Fortify to perform a static analysis on the
repaired source code. Meanwhile, we analyze where and how
the programmers repaired the buffer overflow vulnerabilities.

Next, we compare with the differences between the BovIn-
spector’s repair and the official repair. Table 4 shows the
results of the BovInspector’s repair and the official repair.
The “BovInspector Repair” column shows the results of t-
wo ways to repair buffer overflow vulnerabilities. The first
method is adding boundary checks and the second method
is replacing the buggy line with a safer API call. We list
both the two repair methods’ results to further show how
BovInspector repairs buffer overflow vulnerabilities. The
results show that BovInspector’s repair methods are very
similar to the official repair methods, namely similar to the
human programmers’ repair habit.

4. RELATED WORK
Static analysis approaches such as [11][13][19] scan soft-

ware source code to discover possible buffer overflows. Static
analysis methods can achieve high level automation, which
makes them popular in commercial tools such as [7]. These
static analysis tools are easy to use, but they often report
a large number of false warnings due to the lack of runtime
information and adopted conservative strategies in static
techniques. In BovInspector, the static analysis tool Fortify
[7] is used as a pre-processing tool to guide BovInspector’s
symbolic execution to only focus on the warning paths, which
will raise the efficiency of symbolic execution and buffer over-
flow validation. And BovInspector can inspect the Fortify’
buffer overflow warnings as true warnings or false warnings
to reduce its large number of false positives. Namely, our
method is complementary to the static analysis methods.

Dynamic testing methods are commonly used during soft-
ware deployment. Hossain et al. [15] propose a mutation-
based testing technique to generate adequate test data set
for buffer overflow vulnerabilities. Eric et al. [12] develop
a tool that instruments programs to keep track of memory

790

For Research Only

buffers and checks arguments to functions to determine if
they satisfy certain conditions and warns when a buffer over-
flow may occur. The testing completeness of these methods
highly relies on the completeness of the test suite, which
cannot be guaranteed. And without a target guidance, these
testing methods always generate a lot of test cases that can-
not trigger a real vulnerability. In BovInspector, we use
symbolic execution to automatically generate test cases that
achieve high coverage on complex programs. What’s more,
we use guided symbolic execution to only focus on the buffer
overflow warning paths reported by Fortify to reduce the
useless path execution and test case generation.

As high level automation has become a trend, many meth-
ods and tools are proposed to perform automatic bug fix.
DIRA [18] automatically instruments a network service pro-
gram to detect control hijacking and record enough runtime
information to generate the corresponding patch. The patch-
es are similar to our BovInspector except that DIRA will
extend a buffer according its runtime information but the
patch may be useless under another test case. And DIRA
detects control hijacking at runtime which depends on test
cases to find bugs. BovInspector doesn’t need the runtime
information and it can inspect and repair buffer overflow
vulnerabilities during software development. TAP [17] is an
automatic buffer and integer overflow discovery and patching
system. Its application range is limited to those programs
which contain incorrectly coded checks. What’s more, it can
only insert boundary checks to repair these buffer overflows.
Our BovInspector’s buffer overflow detection module does
not require the program to contain incorrectly coded check-
s. And BovInspector provides more ways to repair buffer
overflow vulnerabilities for the programmers. ClearView [14]
reallocates the compromised local array as a global array
and sandwiches it in a pair of write-protected pages. But its
patches are not similar to those that human programmers
write. And our BovInspector’s repair module is designed
and implemented according to programmers suggested repair
methods. CodePhage [16] automatically transfers correct
code from donor applications into recipient applications that
process the same inputs to successfully eliminate errors in
the recipient. CodePhage is different from BovInspector’s
repair method, because it relies on the existence of a specific
donor application containing of the exact program logic to
fix an error.

5. CONCLUSIONS
In this paper, we propose an automatic inspection and

repair tool BovInspector for C programs. For each static
buffer overflow warning, BovInspector first performs warning
reachability analysis, and identifies reachable path segments
for the reachable warning. Then, it uses guided symbolic
execution to explore all the reachable path segments regard-
ing to the warning. Based on the buffer overflow model and
runtime information collected during the symbolic execution,
the warning can be validated and classified as true warning,
false warning, or undecidable warning. Finally, each true
buffer overflow vulnerability could be automatically repaired
with three strategies. The experimental results show that
BovInspector can automatically and correctly inspect static

buffer overflow warnings, and repair validated buffer overflow
vulnerabilities.

6. ACKNOWLEDGMENTS
The paper was partially supported by the National Grand

Fundamental Research 973 Program of China (No.2014CB34
0703) and the National Natural Science Foundation of China
(No. 91418204, 61321491, 61472179, 61561146394, 61572249).
We thank all the students who helped us in the experiment.

7. REFERENCES
[1] http://www.cvedetails.com/index.php.

[2] http://www.cplusplus.com/reference/cstring/strlen/.

[3] http://en.cppreference.com/w/cpp/language/sizeof.

[4] http://www.cplusplus.com/reference/cstring/strcpy/.

[5] http:
//www.cplusplus.com/reference/cstdio/vsnprintf/.

[6] http://llvm.org/docs/WritingAnLLVMPass.html.

[7] Hp fortify static code analyzer. http://www8.hp.com/
us/en/software-solutions/static-code-analysis-sast/.

[8] Iso/iec 9899:1999. http://www.iso.org/iso/catalogue
detail.htm?csnumber=29237.

[9] Klee llvm execution engine. https://klee.github.io/.

[10] The llvm compiler infrastructure. http://llvm.org/.

[11] D. Evans and D. Larochelle. Improving security using
extensible lightweight static analysis. IEEE software’02,
19(1):42–51.

[12] E. Haugh and M. Bishop. Testing c programs for buffer
overflow vulnerabilities. In NDSS’03.

[13] W. Le and M. Soffa. Marple: a demand-driven
path-sensitive buffer overflow detector. In FSE’08,
pages 272–282.

[14] J. Perkins, S. Kim, S. Larsen, S. Amarasinghe,
J. Bachrach, et al. Automatically patching errors in
deployed software. In SOSP’09, pages 87–102.

[15] H. Shahriar and M. Zulkernine. Mutation-based testing
of buffer overflow vulnerabilities. In COMPSAC’08,
pages 979–984.

[16] S. Sidiroglou-Douskos, E. Lahtinen, F. Long, and
M. Rinard. Automatic error elimination by horizontal
code transfer across multiple applications. In PLDI’15,
pages 43–54.

[17] S. Sidiroglou-Douskos, E. Lahtinen, and M. Rinard.
Automatic discovery and patching of buffer and integer
overflow errors. CSAIL Technical Reports’15.

[18] A. Smirnov and T. Chiueh. Dira: Automatic detection,
identification and repair of control-hijacking attacks. In
NDSS’05.

[19] D. Wagner, J. Foster, E. Brewer, and A. Aiken. A first
step towards automated detection of buffer overrun
vulnerabilities. In NDSS’00, pages 2000–02.

[20] R. Xu, P. Godefroid, and R. Majumdar. Testing for
buffer overflows with length abstraction. In ISSTA’08,
pages 27–38.

[21] T. Ye, L. Zhang, L. Wang, and X. Li. An empirical
study on detecting and fixing buffer overflow bugs. In
ICST’16, pages 91–101.

791

For Research Only

