Software Engineering Group
Department of Computer Science
Nanjing University
http://%eg.nju.edu.cn

NJU Software
Engineering Group

Technical Report No. NJU-SEG-2013-1J-003

Verifying Aspect-Oriented Models Against Crosscutting

Properties.

Zhangi Cui Linzhang Wang XilLiu LeiBu JianhuaZhao Xuandong Li

Postprint Version. In International Journal of Software Engineering and
Knowledge Engineering, Vol. 23, No. 05, World Scientific, 2013, pp.
655-676.

Most of the papers available from this document appear in print, and the corresponding copyright is held by the

publisher. While the papers can be used for personal use, redistribution or reprinting for commercial purposes is
prohibited.

http://seg.nju.edu.cn/

Int. J. Soft. Eng. Knowl. Eng. 2013.23:655-676. Downloaded from www.worldscientific.com
by NANJING UNIVERSITY on 10/23/13. For personal use only.

World Scientific

and Knowledge Engineering www.worldscientific.com

Vol. 23, No. 5 (2013) 655—676
© World Scientific Publishing Company
DOI: 10.1142/S0218194013400123

International Journal of Software Engineering \\’

RIFYING ASPECT-ORIENTED MODELS AGAINST
CROSSCUTTING PROPERTIES

ANQI CUI* T LINZHANG WANG*S,
1 LIU*, LEI BU*, JIANHUA ZHAO*
and XUANDONG LI*

h aboratory of Novel Software Technology
! ‘@ of Computer Science and Technology

Nanjing University
, 210046, China
"Key haboRaton) of Optical Fiber Sensing
and C U igasml/linistry of Education
School of Com’ nformation Engineering
University of Electro and Technology of China

re development
roposed an as-

Dealing with crosscutting concerns has been a critical pn@blem i
processes. To facilitate handling crosscutting concerns at de; has
pect-oriented modeling and integration approach with UML activi
concerns are depicted with UML activity diagrams as primary m
concerns are described with aspectual extended activity diagrams as
models can be integrated into primary models automatically. The AOM approach
the complexity of design models. However, potential faults that violate desired pi
the software system might still be introduced during the modeling or integratioll processes.
The verification technique is well-known for its ability to assure the correctness of Wodels ang
uncover design problems before implementation. We propose a framework to verify
oriented UML activity diagrams based on Petri net verification techniques. For verificatio;
purpose, we transform the integrated activity diagrams into Petri nets and prove the cdm-
sistency of the transformation. Then, crosscutting concerns in system requirements are refined
to properties in the form of CTL formulas. Finally, the Petri nets are verified against the
formalized properties to report whether the aspect-oriented design models satisfies the
requirements. Furthermore, we implement a tool named Jasmine-AOV to support the veri-
fication process. Case studies are conducted to evaluate the effectiveness of the proposed
approach.

Keywords: Aspect-oriented modeling; verification; model checking; activity diagram;
Petri net.

655

http://dx.doi.org/10.1142/S0218194013400123

Int. J. Soft. Eng. Knowl. Eng. 2013.23:655-676. Downloaded from www.worl dscientific.com
by NANJING UNIVERSITY on 10/23/13. For personal use only.

656 Z. Cui et al.

1. Introduction

ealing with crosscutting concerns has been a critical problem during software de-
ment life cycles. Aspect-oriented programming (AOP) [1] provides a viable
ming level solution by modularizing crosscutting concerns into aspects.

rog
ect-oriented modeling (AOM) handles crosscutting concerns by providing a

) earlier awareness of cross-cutting concerns in the model-centric design can
uent implementation and validation activities.

To itate handling crosscutting concerns at earlier software development

phases, in our previ , we proposed an AOM approach based on UML activity

s employed to handle the crosscutting concerns during
jages software complexity in a more abstract level. The
Q modeled with activity diagrams, and crosscutting
With “a8p 1 activity diagrams, respectively. Then the

primary functional con
concerns are modeled
overall system design mode
weaving aspect models into p
es cannot guarantee the correctness of
ving sequences may cause the in-
uifements. Design models are widely

However, aspect-oriented mo
produced design models. For instan
tegrated models to violate system crossc

used as a basis of subsequent implementati ndytesting [5—7] processes. As a
result, it is costly if defects in design models ay® di d at later implementation
and testing stages. Therefore, assuring the correefiess aspect-oriented design

models is vitally important. So far, the applicable apprdach is review, which is
time consuming and depends on reviewers’ expertise.

verification tools cannot deal with aspect-oriented activity

isting automatic

requirements are refined to properties in the form of CTL formulas. Fina
nets are verified against the formalized properties.

The rest of this paper is organized as follows. Section 2 presents backgrourtds of
activity diagrams, Petri nets, and a running example. Section 3 discusses the ve
fication of aspect-oriented activity diagrams. Section 4 presents two case studies and
evaluations of our approach. Section 5 reviews the related work. Finally, Sec. 6
concludes the paper and discusses the future work.

2. Background

In this section, we briefly introduce UML activity diagrams, Petri nets, and a running
example that will be employed to demonstrate our approach in the following sections.

Int. J. Soft. Eng. Knowl. Eng. 2013.23:655-676. Downloaded from www.worldscientific.com
by NANJING UNIVERSITY on 10/23/13. For personal use only.

Verifying Aspect-Oriented Models Against Crosscutting Properties 657

2.1. Activity diagrams and Petri nets

he UML activity diagram is a powerful tool to describe control flow based program
ic at different levels of abstraction. Designers commonly use activity diagrams to
e the sequence of behaviors between classes in a software system. Nodes and
es are two kinds of elements in activity diagrams. Nodes in activity diagrams are

where:

e N={ng,no,... a finite set of nodes, which contains action, initial/final
decision/merg join nodes, n; € N is the initial activity state, Np C N
is a set of states, N, is the subset of action nodes in N, that N, =
{n;|n; € N and ion node};

o E={ej,e,...,¢%1 et of edges;

o« FC(NXE)U(E x relation between nodes and edges.

o 2l N, is a path in AD, where N;, C N and
) eFA (ek,nkﬂ) S F/\ek € Ek} The

Wecallep:NoiNln-
Ey CE, Nppy=(Ny—{m})

action node sequence of ep is denofed (ep) =Ny — Nyy — -+ — Ny---— Ny,
which is the projection of ep on action set NPhere N, = {n;|n; € N,An; € Ni.}.
By removing all the empty set N, in AS an get the action trail 7(ep) of
AS(ep).

Due to the nature of UML is semi-formal a L diagrams are design-oriented

models, translating activity diagrams into formal v n-ogiented models is
Petri nets, because in UML 2, the semantics of acti is explained in
terms of Petri net notations [8], like tokens, flows, etc.
specification language that is widely used to model software aviors.
consists of places, transitions, and arcs. Like UML activity diagra
offer a graphical notation for stepwise processes that include choice,

net is a formal

concurrent execution. On the other hand, Petri nets have a precise
definition of their execution semantics, with a well-developed mathemat
for process analysis. A Petri net is formally defined as follows.

Definition 2. (Petri net) A Petri net [9] is a 4-tuple PN = {P,T, A, M, }, wher

e P is a finite set of places and T is a finite set of transitions, and P and T are
disjoint;

e A is a finite set of arcs connect between places and transitions, where
AC(PxTUT x P);

e M, is the initial marking.

A marking M of PN is any subset of P. For any transition ¢, *t = {p; | (p;,t) € A} is
the incoming places of ¢, t* = {p; | (t,p;) € A} is the outgoing places of ¢. A transition

658 Z. Cui et al.

t is enabled in a marking M if *t C M, otherwise, it is disabled. Let enabled(M) be
the set of transitions enabled in M.

e say pnp:MOLM1-~~E>Mki>--- is a path in PN, where My C P,
CT, *t, C M, and M, = {M,, — *t;,} Ut,*. Given a path pnp = M, i>M1 e

The aspect-orie
this subsection, we b
model crosscutting cong

crosscutting concern.

o) — enabled(M;) — - --

For modeling crosscuttin
“pointcut”, and “advice” fro
diagram with similar meaning;

in PN, the corresponding transition sequence of pnp is TS(pnp) =
— enabled(M,) - - -

itions and arcs in Petri nets are drawn as circles, boxes and arrows,

ng technique is adapted from our previous work in [2]. In
uce aspectual extensions into the activity diagram to

An advice model is used to specify additi

As described in Table 1, in order to mode

ns, we follow such terms like “joinpoint”,

enflancements or mitigations for a

, P stereotypes and 3 tagged

Int. J. Soft. Eng. Knowl. Eng. 2013.23:655-676. Downloaded from www.worl dscientific.com
by NANJING UNIVERSITY on 10/23/13. For personal use only.

values are added to the activity diagram. Extefi8ive tions and discussions
about these extensions are beyond the scope of this paper a be found in [2].
Table 1. Extensions for modeling aspects,

Extension Type Applies to Descrigffon

< Pointcut>> Stereotype Diagram Indicate an activity diagram is a pg

advice Tagged Value <Pointcut>> Indicate the corresponding advice
pointcut model.

< Joinpoint>> Stereotype Element Denote the position of the join pointe
pointcut model.

<Argument>> Stereotype Element Indicate elements that serve as actual argu S
for related formal parameters in the corre-
sponding advice model.

parameter Tagged Value <Argument>> Denote the name of the element in the advice model
which are related to the < Argument>> element.

< Advice> Stereotype Diagram Indicate an activity diagram is an advice model.

type Tagged Value <Advice> Indicate the type of the advice model; “type” is
either “Before” or “After”.

<Entry> Stereotype Node Denote where tokens flow in an advice model from
primary models.

<Exit> Stereotype Node Denote where tokens flow out an advice model to
primary models.

<Parameter> Stereotype Element Indicate elements that serve as formal parameters

in an advice model.

Int. J. Soft. Eng. Knowl. Eng. 2013.23:655-676. Downloaded from www.worldscientific.com
by NANJING UNIVERSITY on 10/23/13. For personal use only.

Verifying Aspect-Oriented Models Against Crosscutting Properties 659

In Table 1, the “Extension” column is the name of the extension, and the “Type”
column indicates the type of the extension that can be either a stereotype or a tagged

ue. The “Applies to” column specifies the type of objects that the extension can be
applied to. The “Description” column gives a brief introduction about the extension.

and LoLA

tree logic (CTL) [11] is a kind of branch time logic which can reason
eXecution paths at one time. CTL provides two path quantifiers: uni-
ial (E) in combination with four temporal operators: X (next
globally), and U(until). In a CTL formula, every temporal
path quantifier. The syntax of CTL formula would be

abot
versal A) and existg
time), F(eventua
operator is prg
defined as:
Assume AP is t

set of atomic propositions, then

e p, g€ AP are CTL f 13K

o true| false|=p|p A q|pV gar formulas;

e ¢, 1 are CTL formulas, th ?|AGP|pAUY|EX ¢ |EF ¢|EG ¢|
¢ EU ¢ are CTL formulas.

LoLA (a Low Level Petri Net Ana
dation of reduction techniques for place/t
various properties, such as reachability of
edness of the net or a place, deadlocks, dea nsiti
formulas. In LoLA, the path quantifiers A, E and t
are replaced by ALLPATH, EXPATH, NE
ALWAYS, UNTIL, respectively. The verification tas
in which a CTL formula is announced by the keywords o

been implemented for the vali-
et state spaces. LoLA can verify
en or state predicate, bound-
eversibility, and CTL

2.4. Running example

We adapt the order processing scenario from [8] as a running example t0
our approach. The requirements of this scenario are described in Fig. 1.
shows, there are 4 crosscutting concerns related to this scenario: authenti
validation, logging, and informing.

Figure 2 is the primary model of the order processing scenario, which consists o
3 main steps: fill order, ship order, and close order. Based on the requirements in
Fig. 1 and our previous aspect-oriented modeling approach [2], the crosscuttin
concerns of the running example are modeled in Fig. 3.

In order to understand how crosscutting concerns will affect primary function-
alities, aspect models are integrated with primary models to generate an overall
system design model. Different weaving sequences would produce different integrated
models. For example, we add an authorization aspect in the running example, which
describes the logged-in user need to be checked whether she/he has the permission to

Int. J. Soft. Eng. Knowl. Eng. 2013.23:655-676. Downloaded from www.worl dscientific.com
by NANJING UNIVERSITY on 10/23/13. For personal use only.

660 Z. Cui et al.

——
| In the order processing scenario, the client fills an order first, then the
\ order is shipped, finally, the order is closed after shipment.

filling orders. If the password inputted is validate, the user can
gntinue the process to fill orders. Otherwise, is the user input an

cheque needs to be validated in order to avoid
red cheque. The validation should be finished by ship order.

N/)\
Primary
Concern
A

)

l _| Authentication
| Concern

N
)
Validation
Concern

Pointcut Model

Advice Model

<<Pointcut>>
{advice:=Advicel}

<<Advice>>
{type:=Before}

<<Joinpoint>>
Fill_Order

<<Exit>>

Ship_Order

<<Exit>>

(a) Pointcut and advice model of authentication

(b) Pointcut and advice model of check pay

Pointcut Model

Advice Model

>>

Close_Order

<<Pointcut>>
{advice:=Advice3}

<<Advice>>
{type:=Before}

I>|

Pointcut Model

<<Pointcut>>
{advice:=Adviced}

Log_Order

<<Exit>>

Advice Model
<<Advice>>
{type:=After}

Send_Email

<<Exit>>

(c) Pointcut and advice model of logging

(d) Pointcut and advice model of informing

Fig. 3. Pointcut and advice models of the order processing scenario.

Int. J. Soft. Eng. Knowl. Eng. 2013.23:655-676. Downloaded from www.worldscientific.com
by NANJING UNIVERSITY on 10/23/13. For personal use only.

Verifying Aspect-Oriented Models Against Crosscutting Properties 661

HAuthorlzanon Authentication| Fill Order Loggmg
Ship OrderH Close Order
Valldatwn Informing

a) Weaving authorization before authentication

(i =@

Informing

Ship OrderH Close Order

the legal user has to be re being checked whether the corresponding
permission is granted or not. As aNestlt, the authentication aspect should be woven
firstly, and Fig. 4(b) is the co ion result we expected. Extensive expla-
nations and algorithms about the iflte n approach can be also found in our
previous paper [2].

3. Verifying Aspect-Oriented Models

In our previous work [2], aspect-oriented models, incl@iding Primagy models, aspect

models, as well as integrated models, were all depictediwith activity diagrams.

Since the correctness of the integration process cannot be'g

ments becomes a critical research problem. In UML 2, the antics @
diagrams is explained in terms of Petri nets. There are also various auti
i.e. LoLA [12], verifying Petri nets against specified properties. As a ré
translate activity diagrams into Petri nets, we could verify the actiVi
models by verifying corresponding Petri net models for specific properties.
section, we first discuss transformation from activity diagrams to Petri net§y and
then present the verification against crosscutting concerns.

3.1. Transforming from activity diagrams to Petri nets

We adapt the mapping semantics of control-flows in UML 2 activities in [13] to
convert activity diagrams into Petri nets. Basically, action nodes and fork/join nodes
are translated to net transitions, control nodes (initial, final, decision, and merge
nodes) become net places, and edges are transformed to net arcs. Auxiliary transi-
tions or places are added when the ends of an arc both are transitions or both are
places. For simplification, were strict an activity diagram only consists of action

Int. J. Soft. Eng. Knowl. Eng. 2013.23:655-676. Downloaded from www.worl dscientific.com
by NANJING UNIVERSITY on 10/23/13. For personal use only.

662 Z. Cui et al.

nodes, control nodes, and control flows in this approach. For bridging Petri nets and
UML activity diagrams smoothly, we define a Petri net corresponding to a UML
ivity diagram by extending Definition 2.

ion 3. (PN4AD) A Petri net transformed from an activity diagram
N,E,F), is a tuple PNJAD = (P,T,T4, A, My), where (P,T,A, M) is a
L, C T is a finite set of transitions which are transformed from action nodes

Base the mapping rules in [13], we construct an algorithm to transform

activity*diagrams to 26tri nets. The algorithm is described in Algorithm 1. With the

(containing data flow§, exceptions, and expansions etc.) is straightforward based on
transformation rules

Algorithm 1. Convert anactjvity i pram into a Petri net

1 INPUT: AD :=an acti
2 OUTPUT: PN(P, T, A, My):
3 for each node n in AD

4 if n is an initial node, gdeWdecision node, or merge node
5 Generate a co @v ingyplace in PN.P
6 else // action node, fork nod éﬁ\ode
7 Generate a correspofiding Sition in PN.T
8 for each edge e in AD
9 N, :=source node of e in AD
10 N := target node of e in AD
11 M := corresponding place or transition of NV PN.P
12 My := corresponding place or transition of Ny in PN.

13 if both N; and N> € (initial nodes U final node U dé@i
node U merge node)

14 Generate an auxiliary transition 77 in PN.

15 Generate an arc start from M; to T7 in PN.A

16 Generate an arc start from 77 to Ms in PN.A

17 else if both Ny and N5 € (action node U fork node U join nod

18 Generate an auxiliary place P, in PN.P

19 Generate an arc start from M; to P, in PN.A

20 Generate an arc start from Py to Ms in PN.A

21 else

22 Generate an arc start from M; to Ms in PN.A

23 for each place without an incoming arc

24 Generate an initial token for that place in PN.My

25 return PN

Int. J. Soft. Eng. Knowl. Eng. 2013.23:655-676. Downloaded from www.worldscientific.com
by NANJING UNIVERSITY on 10/23/13. For personal use only.

Verifying Aspect-Oriented Models Against Crosscutting Properties 663

Logging

_,O

Authentication
Authorization
Fill Order

Ship Order
Close Order

~O

Validation
Informing | |

}
o
ot
=)
=
[
ae]
@
-+
=.
=}
5}
-+
=+
=
&
=1
&,
[}
]
g
@
(=9
=5
(=}
B
-+
=
@
(=}
=
(oW
@
=
k=l
=
(=}
Q
o
0
=,
=3
09
0
Q
@
=1
£
©

g1

ath pnp = M, R M- — M, 2in PN, and the cor-
wence of pnp is TS(pnp) = enabled(M,) — enabled(M;) —
transition sequence of TS(pnp) is ATS(pnp) =
t;;|ti; € enabled(M;) and t; ; € T4 }. By removing
get the action trail o(php) of ATS(php).
f the transformation, we define a theorem as
endix A.

- — enabled(My,).
Ag— Ay — Ay,
all the empty A; in ATS{pnp);

In order to ensure the conf
follows. The proof of the theo

Theorem 1. Given an Activity Di@gr D= (N,E,F), and the corresponding

PN4AD = (P,T,Ty, A, M), for an h'e D, there must be a path pnp of
PN/AD, and the action trail T(ep) is equiv itisthe action trail o(pnp), vice versa.

Since the transformed Petri net shares thg s action trail with the activity
diagram, we can achieve the verification of thé¥activi ram_ by verifying the

equivalent Petri net against same system properties défined oW thé§equence of action
nodes.

3.2. Verifying Petri nets

checking the corresponding advice models appears at right places. This is bécaus
that the context specified by a pointcut model would be changed after integrati
and the join points matched by the pointcut model could no longer exist. In this
approach, the properties to be checked are directly refined from crosscuttin:
requirements.

3.2.1. Properties specified from the requirement

Based on the Petri net generated, we can easily analyze reachability, safety, liveness,
and fairness properties [9]. In this approach, we only focus on checking properties
that are closely related to crosscutting concerns. We categorize crosscutting concerns

Int. J. Soft. Eng. Knowl. Eng. 2013.23:655-676. Downloaded from www.worl dscientific.com
by NANJING UNIVERSITY on 10/23/13. For personal use only.

664 Z. Cui et al.

from two facets. Firstly, according to the execution sequence between actions in
advice models and join points, a crosscutting concern can be either executing before
fter join points. Secondly, the execution of a crosscutting concern is either se-

1 primary actions and they are finished or started by the join points.

cutting concerns

A betore-crossc gaconcern specifies some extra behaviors must be performed
before matched j A before aspect would be either sequential or parallel
primary models.

If it’s a sequential @spectddae behaviors specified by the aspect model are executed
before the join point fiod @ eyword of sequential before crosscutting concerns in
requirements level is “Before e integrated model, actions specified by the
aspect model are executed™®
the join point in the primary mod

«

etwedh the join point node and the predecessor node of

Otherwise, if it’s a parallel a 6 Behaviors in the aspect model must be
finished at the join point edge. The K of parallel before crosscutting concerns
in requirements is “be finished by”. integrated model, the actions of the
crosscutting concern are running concurre he, primary behaviors, and then
synchronized at the join node which replace i i

In corresponding Petri nets, assume jp is thi nsformed from one of
the join point, ad is the transition transformed from th tivity node that

e represented in
—adly—jp) NEXjp)).

represents the advice model. The requirement of a beforgaspect,
the form of the CTL formula as: AG—((ad AEX(—adA—jp

(2) After-crosscutting concerns

An after-crosscutting concern specifies some actions must be pe
matched join points. An after-crosscutting concern can also be either a
a parallel aspect with respect to the flows of primary models.

If it’s a sequential aspect, the behaviors specified by the aspect model are exegited
after the join point node. The keyword of sequential after crosscutting concerns i
requirements level is “after”. In the integrated model, actions specified by the aspe
model are executed between the join point node and the successor node of the join
point node in the primary model.

Otherwise, if it’s a parallel aspect, the behaviors in the aspect model must be
started by the join point edge. The keyword of parallel before crosscutting concerns
in requirements is “be started by”. In the integrated model, the actions of the
crosscutting concern are enabled by the fork node, which replaced the join point
edge, and then running concurrently with primary behaviors.

Int. J. Soft. Eng. Knowl. Eng. 2013.23:655-676. Downloaded from www.worldscientific.com
by NANJING UNIVERSITY on 10/23/13. For personal use only.

Verifying Aspect-Oriented Models Against Crosscutting Properties 665

In corresponding Petri nets, assume jp is the net transition transformed from the
join point, ad is the net transition transformed from the structured activity node that
resents the advice model. The requirement of an after aspect can be represented in
theYorm of the CTL formula as: AG—((jp AEX (—jpA—ad)) V ((—jpA—ad) NEXad)).

flicts of multiple crosscutting concerns

ula need to be adjusted if more than one crosscutting concerns (which

ing sequen etween one aspect and a join point can be affected by other
aspects of the saréh &after kind, which match the same join point. For instance,
gfiexamp e authentication and authorization concerns are con-

are before-crosscutting aspects and they have same join
The running sequence of the authentication aspect
ill be changed from “Authentication — Fill_Order”

Fill Order” after the weaving of the autho-

point, the “Fill_Order”
and the “Fill_Order” opgrat
to “Authentication — A
rization aspect.

(1) Conflicts between two before-cr. concerns

ce model ad; and join point jpq,
e join point jp; and weaves after
ccy, then some extra actions are performed % before jp;. Assume it’s a
before-crosscutting concern cc, with advice aa ves ccy, then jp; should be
replaced by ady in the CTL formula of cc; as: AGA((ad b EXX—ad; A —ady)) V
((mady A —ady) A EXad,)).

For a before-crosscutting concern wi

@ ’

if any other before aspect, which matches

(2) Conflicts between two after-crosscutting concerns

replaced by ady in the CTL formula of cc¢; as: AG—((ady A EX(—ady A —adff)V
((mady A —ad;) N EXad,)).

In the running example, the authentication and authorization aspects are c
flicting, because they match the same join point: “Fill_Order”. Suppose the
authentication aspect was weaved before authorization aspect. Base on above con-
flicts solving rules, the crosscutting requirements of authorization aspect remain
unchanged as:

A G~ ((Authorization N EX(—Authorization A ~Fill_Order))V
((mAuthorization A —Fill_Order) N EXFill_Order)) (1)

Int. J. Soft. Eng. Knowl. Eng. 2013.23:655-676. Downloaded from www.worl dscientific.com
by NANJING UNIVERSITY on 10/23/13. For personal use only.

666 Z. Cui et al.

and the crosscutting requirements of authentication aspect need to be changed from:

A G~ ((Authentication N EX (- Authentication A —Fill_Order))V
((mAuthentication A —~Fill_Order) AN EXFill_Order)) (2)

= ((Authentication N EX (- Authentication A —Authorization))V
i Authentication A ~Authorization) AN EX Authorization)) (3)

g g properties are refined as a set of CTL formulas. We can
verify the Petr¥net specified CTL formulas generated. If the verification is
passed, it means thg isfies the corresponding crosscutting requirements.
Otherwise, the model vi corresponding crosscutting requirements to some
iom about the model is needed.
ted model in Figs. 4(a) and 4(b) are both
ents of authentication, authorization,
integrated models are transformed to
ents are refined to 5 CTL formulas.
dgtie veTify the two Petri nets against the

In the running example,
verified against the crosscut
validation, logging, and informing.
Petri nets. Then the 5 crosscuttinggequ
Finally, Petri net analyzer LoLA is employe,
formalized crosscutting requirements, respé @

The Petri net transformed from the model (%b) passes the verification
process and output “result: true” for all the 5 fo . While the Petri net
transformed from the model in Fig. 4(a) fails when fyerifyi nst the 2 CTL
formulas generated from authentication and authoriza e ents, and passes
the verification against the other 3 CTL formulas. In the P
the model in Fig. 4(a), the fire of transition “Authentication”
“Fill_Order”, which violates CTL formula (3). And the
“Authorization” will enable transition “Authentication”, which viola

thentication and authorization are not hold in the aspect-oriented ni€
correcting the weaving preference fault and integrating the aspect model agai e
new integrated model passes the verification process.

3.3. Tool Implementation

We implemented a tool named Jasmine-AOV?® based on Topcased” and LoLA.¢ As
Fig. 6 shows, this tool is composed of 4 main parts: Model Transformer, Crosscutting
Concern Manager, CTL Generator, and Model Checker. The Model Transformer
converts an activity diagram to a Petri net automatically. The inputs of Model
2 Jasmine-AOV, http://seg.nju.edu.cn/~zqcui/Jasmine-AOV

bTopcased, http://www.topcased.org/
CLoLA, http://www.informatik.uni-rostock.de/tpp/lola/

Int. J. Soft. Eng. Knowl. Eng. 2013.23:655-676. Downloaded from www.worldscientific.com
by NANJING UNIVERSITY on 10/23/13. For personal use only.

Verifying Aspect-Oriented Models Against Crosscutting Properties 667

Topcased | ~ Jasmine-AOV
|

> Model
| | Transformer M

r—- - - - "

spect-Oriented| LoLA

Models

|
|
| | Model |
Crosscutting Checker
_____ J CTL
I Concern Generator !
| Manager | | T ¥ _ _ _|_ _
|

Crosscutting
Concern in
Design Models

. 6. The framework of Jasmine-AOV.

Transformer are U designed by Topcased in the form of XML files and
the outputs of the tooltare igaet files which are readable for LoLA to perform
verification tasks. The Crosscutting Goncern Manager is used to manage mapping
relations between crosscutti in requirements and elements in corre-

sponding activity diagrams. It p
requirements to design activity diaf he CTL Generator can automatically
generate CTL formulas from crosscut$ equiréments that are mapped to design
models. The CTL Generator also support input CTL formulas manually.
Model Checker is implemented by directly wrapped isting checker: LoLA. It can
verify the Petri net against crosscutting prope in rmat of CTL formulas
and report the result.

The screenshot of Jasmine-AOV is in Fig. 7. The@Cross
manages the crosscutting requirements which are mappe

concerns” area
n models. The

ting requirements to design activity diagrams. The “Petri net” 8rea displa
net transformed from the corresponding activity diagram. The “CTL F
lists the formulas refined from crosscutting concerns in the “Crosscut
area automatically or wrote by users manually. The “Verification
outputs the results of verifying the Petri net in the “Petri net” area against the
formulas in the “CTL Formulas” area by LoLA.

Writing complex CTL formulas is not easy for a software engineer without pro
training about formal methods. To tackle this problem, we implement the CTL
Generator to assist generating CTL formulas automatically. As Fig. 7 shows, the
user only need to select actions which is the advice, the join points, and the rela-
tionship between the advice and the join points, based on the textual description of
the crosscutting concern. After this information is inputted, the CTL Generator
generates a CTL formula for the crosscutting concern and adjusts CTL formulas if
there is more than one aspect of the same before/after type apply on a same join
point.

Int. J. Soft. Eng. Knowl. Eng. 2013.23:655-676. Downloaded from www.worl dscientific.com
by NANJING UNIVERSITY on 10/23/13. For personal use only.

668 Z. Cui et al.

C ing Model | he jcui/Topcased-2.5.0/work space/AD

Crosseutting concems

Crosscutting Concen| Advice Before/after | Sequential/Parall join Point

x Authentication Authenticatior Before Sequential Fill Order
2 Authorization Authorization Before Sequential Fill Order
valldation Validation Before Parallel Ship Order
‘ Logging Logging After Sequential Close Orde:
] Informing After Parallel Close Orde
Petri Net CTL Formul,
PLACE
InitialNode: Hues]
ActivityFinalWode1,
Validation,
Informing, ~NENCroTeEETG CONer

‘Walidation-=|ginMod
JoinNode 1-=Ship_Or
Ship_Order-=Close |
Close_Order-=ForkN
ForkMNode1-=Informij
ForkNodel-=>Laggin

Aushotication - b

le user an email
fter ta

Verfication Results
13 Places
10 Transitions

Formalization
Corresponding Model
Advice

Formula with
[informing v

20

and 5 temparal operators O
® be started by
result: true

[confirm |

with a trace number after the order is shipped, 3
Order” action and running concurrently with the rur

[

Description

The authentication concem is to check wh
The “Input_Pin" action needs to be perfomn

Authorization describes the user logged in

The validation concem is to validate the p. Delete
The “Validate_Cheque” action is performe:

The logging concem is to log related inforr

New...

The “Log_Order" action is fired after the =t

The informing concem is to send the user

The “Send_Email” action is fired after the Move UP
Move Down

as

® Auto Generate CTL| | ve

ALLPATH ALWAYS | NOT { Authorization-=Fill_Order = 0 AND ALLPATH |
ALLPATH ALWAYS | NOT Fill_Order->joinNodel = 0] OR ALLPATH EVE

ion->joinNodel > 0) UNTIL Ship_Ordler-:
lose_Order-=ForkNodel = 0 AND ALLPAT
nse_Order-=ForkNodel = 0 | OR ALLPATH

Fig. 7. The screenshot of Jasmine-

4. Evaluation and Case Suites

To evaluate the effectiveness of our approach, we have applied
design models adapted from the Ship Order example in [8] and the Telecg
The Ship Order example contains 5 crosscutting concerns and the Te
contains 6 crosscutting concerns. For both case studies, we transfor
grated models to Petri nets, and mapped crosscutting requirements to

approach to the

models with the help of the tool. Then, corresponding CTL formulas of verificaion

tasks are generated automatically. Finally, the
CTL formulas generated.
The faults of aspect-oriented models, which

Petri nets are checked against the

can be caused by design defects or

incorrect integration processes, are categorized as follows:

1. Aspect model faults

(a) Incorrect weaving preference. The

priorities of aspect models are in-

correctly assigned. This kind of faults will lead to match join pints faults or

running sequence changed unexpected.

dAJDT Toolkit: http://www.eclipse.org/ajdt

Int. J. Soft. Eng. Knowl. Eng. 2013.23:655-676. Downloaded from www.worldscientific.com
by NANJING UNIVERSITY on 10/23/13. For personal use only.

Verifying Aspect-Oriented Models Against Crosscutting Properties 669

Table 2. Model mutants of the 2 case studies.

Fault types Ship order Telecom system

Aspect model faults Incorrect weaving preference
Incorrect binding
Pointcut model faults ~ Overmatch join points
Mismatch join points
Incorrect position of join point
@ e model faults In correct type of advice models
Number of model mutants in total

Mutants killed
juivalent mutants

[~
B RO Ol ot ot ot ot

DN DN
S 000D W

> between pointcut model and advice model. The
pointcut model™1s incorrectly mapped to an unrelated advice model. This
wil in improper advice models apply at some join points.

2. Pointcut model famlts

(a) Overmatch/Mism joild points. The pointcut model matches extra
join points or miss sonig,j should be matched. The consequence of
this kind of faults is that effr ices are performed at unexpected join

points or desired advices areot be performed at join points.
(b) Incorrect position of join points elément which serves as a join point

in the pointcut model is incorrectly

faults is that advices are applied at ind@rr oints of the primary model.

3. Advice model faults

(a) Incorrect type of advice models. The type e a odel is declared
incorrectly. This kind of faults will cause the runnjfdg sequéhce between the
advice model and the primary model change unexpecte;

model faults. 26 and 28 model mutants are constructed for the 2 case
spectively. 22 out of 26 mutants for ship order case study and all mutants for tel
system case study are killed because they violate the crosscutting requirement§irom
various ways and these violations are detected by the verification process. The 4 alj
mutants of the ship order case study are manually checked, and turn out to b
equivalent mutants. This result illustrates the ability of our approach to find the
faults in aspect-oriented models and to improve the quality of design models. Table
classifies all these model mutants by their fault types and the verification results.

5. Related Work

There are many research projects on bringing aspect-oriented ideas to software re-
quirement engineering from different perspectives. Whittle and Araujo [15] focus on

Int. J. Soft. Eng. Knowl. Eng. 2013.23:655-676. Downloaded from www.worl dscientific.com
by NANJING UNIVERSITY on 10/23/13. For personal use only.

670 Z. Cui et al.
scenario-based requirements and composing them with aspects to generate a set of

state machines that represent the composed behaviors from both aspectual and non-
ctual scenarios. In contrast, our approach is carried out at the design level

t oncern about the correctness of the integrated model and provides
verificatigh supports. In addition to supporting aspect-oriented modeling and inte-

gration,” our approa

designed. Xu et al. proposed to model and compose
achines, and then transformed to FSP processes and
cheeked by LTSA mgdel checker against all system requirements [17]. Whereas our
approach is carried ity diagrams and only focuses on checking cross-
cutting concerns instead
4 kinds of crosscutting
crosscutting concern specific
requirements and aspect-orient

| system requirements. Furthermore, we categorize
enerate CTL formulas automatically from
ich bridges the gaps between crosscutting
els. We also provide a solution for the
conflicts between crosscutting conce
be esented for aspect-oriented pro-
grams. Denaro et al. first reported a preli perience on verifying deadlock
freedom of a concurrent aspect [18]. They fir e MELA process templates
from aspect-oriented units, and then analysi

SPIN. Ubayashi and Tamai [19] proposed to apply
verify whether the result of weaving classes and

level other than the program level. As a result, our approac
faults at an earlier stage, and save costs to revise programs when detg@ffing deSign
faults at implementation or maintenance phase.

6. Conclusions and Future Work

This paper presents a framework to verify aspect-oriented UML activity diagrams

using Petri net based verification techniques. We add lightweight extensions to
standard activity diagrams with stereotypes and tagged values to support the
modeling of aspects. Then the aspect models are integrated with primary models. For
verification purpose, we transform the integrated activity diagrams into Petri nets.
Then, crosscutting properties of the system are refined as a set of CTL formulas.
Last, the Petri nets are verified against the refined CTL formulas. The verification
results report whether the Petri net satisfy the requirements or not. Thus, we can
reason whether the integrated activity diagram meets the requirement since they are
equivalent. In other words, we can claim that the aspect-oriented modeling is correct

Int. J. Soft. Eng. Knowl. Eng. 2013.23:655-676. Downloaded from www.worldscientific.com
by NANJING UNIVERSITY on 10/23/13. For personal use only.

Verifying Aspect-Oriented Models Against Crosscutting Properties 671

with respect to specified crosscutting requirements. Two case studies have been
carried out to demonstrate the feasibility and effectiveness of our approach. Con-

ing the future work, we will focus on testing system implementations against
aspeéet-oriented models have been verified.

edgments

d like to thank Professor Karsten Wolf at University Bamberg, who is the
author ﬁ, for his help in dealing with problems encountered when integrating
LoLA fito our tool J@inine-AOV. This work is supported by the National Natural
Science Foundat;i ina (Nos. 91118007, 61021062, 61170066), and by the

National 863 ogram of China (No. 2012AA011205). The preliminary
version of this papegis published in SEKE 2012 [20].

Appendix A. Proof of Theor, 1

Theorem 1. Giwen an Actiflity Wiagram AD = (N, E,F), and the corresponding

PN4AD = (P, T, Ty, A, M), of AD, there must be a path pnp of
PN/AD, and the action trail T(ep) is @qu t with the action trail o(pnp), vice versa.
To prove this theorem, on one ha € neédWo prove for any path in AD, ep =

E, E E,
Ny— N, —--- 25N, 1nADtherelsal D _M0_>M1_> EM

in PN/AD which shares the same action tral Wi h

Proof. (by induction on the number of flow edges i

Basis: m = 0, ep has only one node set V,, whicli contai odes without any
incoming edges (initial and receive signal nodes), acco
rules, for each of the node in N, we have initial marking C PMJAD.P, and since
the place in M, doesn’t have incoming arcs, then it holds a tolén. Therefosempnp =
M is a legal path in PN/AD. Clearly, their action trails are the samg

Induction HypothesiS° Assume this argument holds for all th

E,_
epr, = Ny o, N, A, 5 N, in ep with number of flow edges smaller t

m > k> 0. - . -
Induction Step: Let ep, 1 = Ny — N; —= - -- N, —> N1 be the prefix of e

with £+ 1 flow edges. As N, iNkH, and Ny = {Ne{ng}} U {ng1 | (ng, er) €
F A (e, np41) € F ANey, € Ep}, we will discuss different kinds of n;, accordingly.

e Obviously, if n;, is a final node, then the argument holds.
e If ny is a decision node or merge node, there is a corresponding place p; in PNJAD.P,

t; t;
as there is a path pnp; ; = M, R M, TN M; 4 M;,, in PN4AD equiva-
lent with ep, p; must holds a token and p; € M].

O If n;,q is a decision node or merge node or final node, there is a corresponding
place p;;; in PNJAD. According to the transformation rule, one transition ;

Int. J. Soft. Eng. Knowl. Eng. 2013.23:655-676. Downloaded from www.worl dscientific.com
by NANJING UNIVERSITY on 10/23/13. For personal use only.

672 Z. Cui et al.

and two arcs will be added into PNJAD.T and PN4AD.A to connect p; and
Dj+1, as p; holds a token, then ¢; is enabled. So we can fire transition ¢; in
PN/AD and get a new marking M i+1, which is M; — {p;} 4+ {p;41}, so we can
t a path pnp; , = M, &, M, IR M; R M;,, in PN{AD. As ep;, and
pnp; shares the same action trail, and during the k + 1th step in ep and j + 1th
in pnp, there is no action node related behavior, the corresponding action
both remain the same. Note, we do not consider the potential impact of
or of pnp;,; to enabled M;, here, as it is still unseen so far.
node, fork node or join node, there is a corresponding tran-
7 @ D.T. ny,q is fireable means all predecessor nodes of n;, ; are
decessor places g are contained in M;. As a result, transition ¢;,, after M
which is generatéd fro; 1,18 the next transition to be fired for pnp; in PN4AD.
e, similar with above proof, nothing is related with

O If gy’ | is an actig

sition ;.1 in

contained i the corresponding transition ¢, in PN4AD.T, all pre-

* Ifn;,isafo

action node. Thitg, th&lactien trails keep the same and still equivalent with
each other.

x If ;. is an action nod@n, W wi ear in the end of 7(ep;,1). On the other
side, as t,, is added after 1 be updated with #;,,. Therefore, both

the action trail of ep;, and pnpg wi updated with n 1, and thus still keeps
the same.

e If n; is an action node or join node, §fa. cgrresponding transition ¢; in

ere is a corresponding
1l be add from ¢;

1= Mj—*t;+

om the current

O If nyyq is a decision node or merge node or
placepj , in PN4AD. Accordmg to transformatlo ule, agyar:

to pji1, so pnpj = My —>M1 - —>M n
{pj+1}),isalegal pathin PN4AD. Asbothny and t; are
action trail, the action trail of ep,,; and pnp; ., keeps

transition t;,; in PN4AD.T. According to the rule, a place p;;
will be added to connect ¢; and t;.;. The fire of ¢{; makes p;,; ©

token. As a result, ¢;,, is enabled in PN/AD, and the path pnp;,; = —

M S, (g

PN4AD.

* If n;,; is a fork or join node, similar with above proof, only n; is dismissed
from both action trails. Thus, the action trails keep the same and still
equivalent with each other.

* If ng 1 is an action node, n; will be dismissed while n;,; will appear in the
end of 7(epyi1). On the other side, as ¢, is added after pnp;, M; will be
updated with ¢;,,. Therefore, both the action trail of ep, and pnp; will be
updated with n; and n;,, and thus still keeps the same.

41 =M;—"*t;+p;.1), is a legal path

Int. J. Soft. Eng. Knowl. Eng. 2013.23:655-676. Downloaded from www.worldscientific.com
by NANJING UNIVERSITY on 10/23/13. For personal use only.

Verifying Aspect-Oriented Models Against Crosscutting Properties 673

e If ny is a fork node, there is a corresponding transition ¢; in PNJAD.T. As pnp, is

a legal path in PN4AD, t; is enabled as well. For any {n;|(n,e;) € FA
e, Nyy1,) € F, where e, € Ey}

f nyy1, is a decision node or merge node or final node, there is a corresponding

place p,;1; in PN4AD. According to transformation rule, an arc will be

dded from t; to p;q ;. After Ej, is fired, ¢; will be fired in PN4AD and pj,; will

t " t. £
token. So the path pnp]+1:M0—0>Ml—l’]—l)M]—]>M]+l,

i+1), is a legal path in PNJ/AD. Similar with above, as nothing re-

ach other.

node, fork node, or join node, there is a corresponding
transition ¢, @in T'. According to the rule, an place p, 1 ; and two arcs
will be added to coine nd ¢, ;. After Ej is fired, t; will be fired in PN/AD,

O If nyyq; is an

pj+1.,’i will hold a to

t;_ t;
M1L>~~~]—1>Mj—]>Mj
* If nyyq; is a fork or join no ove step has nothing to do with action
nodes. Thus, the action trai thi e and still equivalent with each

other.

* If g, is an action node, nyq; ea; e end of 7(ep;,1). On the
other side, as t;,1, is added after php; ; will be updated with 2;,,;.
Therefore, both the action trail of ep;, and p
and thus still keeps the same.

Above all, given any path ep in AD, there is a correspon
shares the same action trail with ep.

The other direction of the theorem is that given any pdth in the ated
PNAD, pnp = My~ M, 2 ... "L M, in PNJAD, there is a leg -

E E,._
Ny — N, —5 .- 3 N,, in AD which shares the same action trail with

Proof. (by induction on the number of transitions in pnp)

Basis: n =0, pnp = M, My C PN/AD.P is the initial marking in PN/AD. M, i
the place set transformed from a node set Ny of AD. According to the transformation
rules, for each place in M) is generated form a node without any incoming edges in N,
(initial and receive signal nodes). Clearly, the action trails are the same.

Induction Hypothesis: Assume this argument holds for all the prefix paths

t t t;
pnp = My — M; — - = M; in pnp with number of transitions smaller than j,

where m > j > 0.
t t; t;
Induction Step: Let pnp;.; = M, — M, BTN M; — M, be the prefix

¢,
of pnp with j + 1 transitions. As M; —J>Mj+1, and M; , = M; — *t; +t;*. We will

Int. J. Soft. Eng. Knowl. Eng. 2013.23:655-676. Downloaded from www.worl dscientific.com
by NANJING UNIVERSITY on 10/23/13. For personal use only.

674 Z. Cui et al.

discuss different kinds of ¢; accordingly.

f t; is an auxiliary transition. According to the transformation rules, *t; = {p;},
= {pj11}, pj, Pj+1 are two places transformed from n; and ny,,, respectively.

in AD, n;, and n;,; are two initial, final, decision, or merge nodes, the aux-

ia;

E E E
@ connect p; and p,,. Therefore, ep;.; = Ny 4N, Ny — Nii1,
N1 = — {d U | (g, e) € F A (e, nypa) € F ey, € Ei}), is alegal
path w7 D. As there is no action node related behavior, the action trails of pnp,,

transition ¢; and two arcs are transformed form e, which start from n;, to

e. The potential impact of the successor n;; is not con-

nseen so far.

ansition, then ¢; is a transition transformed from ny, in
or join node For any p]Z € °t;

O If p;; is an audlia ‘ Assume {p;;} Ct; +°, according to the transfor-

mation rule, ¢, ;, § y ansitions transformed from n; and n;,q, re-
spectively. And in AD, an action, fork, or join node, the auxiliary
place and two arcs are form ek, Wthh start from n; to mngyq,
toconnect t;_; andt;. Therefore, 0 o, N, A, -+ Ny, B, Niy1, (Npyy =
{N, — {nk}} U {nkH | (ng,, €z) s € F Ne, € EL}), is a legal path
in AD.
* If ny 1 is a fork or join node, similar of nothing is related with
action node. Thus, the action trails ke same and still equivalent with
each other.
* If nj 1 is an action node, ny,; will appear in{the e T(eppy1). On the
other side, as t; is added after pnp;,;, M; will b d t;. Therefore,

both the action trail of ep, and pnp; will be updated h t;, which is
transformed form n; ., and thus still keeps the same.

0 If p;; is not an auxiliary place, then p;, is a place transfor
In AD, n; is an initial, final, decision, or merge node, an arc is
form ej, which start from ny to my;, to connect p;; and ¢

epr1 = Ny BN BN N1 (N = {N, = {ni} YU {nia | (s g

FA (e, ny.1) € F ANep € EL}), is a legal path in AD.

* If ny, 1 is a fork or join node, similar with above proof, nothing is related wi
action node. Thus, the action trails keep the same and still equivalent with
each other.

* If nj, is an action node, n;; will appear in the end of 7(ep;,). On the other
side, as t; is added after pnp;,;, M; will be updated with ¢;. Therefore, both
the action trail of epy, and pnp; will be updated with ¢;, which is transformed
form n;, 1, and thus still keeps the same.

Above all, given any path pnp in PN/AD, there is a corresponding path ep in AD
shares the same action trail with pnp.

Int. J. Soft. Eng. Knowl. Eng. 2013.23:655-676. Downloaded from www.worldscientific.com
by NANJING UNIVERSITY on 10/23/13. For personal use only.

Verifying Aspect-Oriented Models Against Crosscutting Properties 675

Therefore, for any path ep of AD, there must be a path pnp of PN/AD, and the

action trail 7(ep) is equivalent with the action trail o(pnp), vice versa. O

Re nces

10.

11.

12.

13.

14.

15.

16.

17.

18.

iczales, J. Lamping, A. Mendhekar, C. Maeda, C. V. Lopes, J.-M. Loingtier and
in, Aspect-oriented programming, in Proceedings of the Annual European Con-
e opn Object-Oriented Programming, 1997, pp. 220—242.

i ang, X. Li and D. Xu. Modeling and integrating aspects with UML activity

430=437.

X. Li, Z. Liu, (). Long, Generating a prototype from a UML models of system
requiremen ed Computing and Internet Technology, LNCS, Vol. 3347, 2005,
pp. 135—154.

A. Fischer, Mappihg UM esigns to java, in Proceedings of the 15th ACM SIGPLAN

Conference on Obje
2000, pp. 178—187.

L. Wang, J. Yuan, X.
activity diagram based on

@ d Programming, Systems, Languages, and Applications,

i and G. Zheng, Generating test cases from UML

ethod, in Proceedings of the 11th Asia-Pacific
p. 284—291.

zéquel, Automatic test generation: A use case

§oftware Engineering 32(3) (2006) 140—155.

. Li, UML activity diagram based

he Computer Journal 52(5) (2009)

C. Nebut, F. Fleurey, Y. L. Traon a
driven approach, IEEE Transactiofs
M. Chen, X. Qiu, W. Xu, L. Wang, ¥
automatic test case generation for java p;
545—556.

OMG, UML Superstructure v2.1, http://ww
uml.htm.

T. Murata, Petri nets: Properties, analysis and applicafions, i
Vol. 77, No. 4 Apr 1989, pp. 541—580.

G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten,

An overview of AspectlJ, in Proceedings of the Annual Eur
Oriented Programming, 2001, pp. 327—353.

g/technology /documents/formal/

Petri Nets, 2000, pp. 465—474.
H. Storrle, Semantics of control-flow in UML 2.0 activities, in Proceedings o
Symposium on Visual Languages — Human Centric Computing, 2004, pp. 235—

H. Storrle, Structured nodes in UML 2.0 activities, Nordic Journal of Computing 11(
(2004) 279—302.

J. Whittle and J. Araujo, Scenario modelling with aspects, in IEEE Software 151(4)
(2004) 157—172.

A. Sampaio, A. Rashid, R. Chitchyan and P. Rayson, EA-Miner: Towards automation in
aspect-oriented requirements engineering, Transactions on Aspect-Oriented Software
Development III, LNCS, Vol. 4620, pp. 4—39.

D. Xu, O. E. Ariss, W. Xu and L. Wang, Aspect-oriented modeling and verification with
finite state machines, Journal of Computer Science and Technology 24(5) (2009) 949—961.
G. Denaro and M. Monga, An experience on verification of aspect properties, in Pro-
ceedings of the 4th International Workshop on Principles of Software Evolution, 2001, pp.
186—189.

Int. J. Soft. Eng. Knowl. Eng. 2013.23:655-676. Downloaded from www.worl dscientific.com
by NANJING UNIVERSITY on 10/23/13. For personal use only.

676 Z. Cui et al.

19. N. Ubayashi and T. Tamai, Aspect-oriented programming with model checking,
in Proceedings of the 1st International Conference on Aspect-Oriented Software Devel-
opment, 2002, pp. 148—154.

0. Cui, L. Wang, X. Liu, L. Bu, J. Zhao and X. Li, Verifying aspect-oriented activity
rams against crosscutting properties with Petri net analyzer, in Proceedings of the
24th International Conference on Software Engineering and Knowledge FEngineering,

p. 369—374.

