

Software Engineering Group
Department of Computer Science
Nanjing University
http://seg.nju.edu.cn

Technical Report No. NJU-SEG-2013-IJ-003

Verifying Aspect-Oriented Models Against Crosscutting

Properties.

Zhanqi Cui Linzhang Wang Xi Liu Lei Bu Jianhua Zhao Xuandong Li

Postprint Version. In International Journal of Software Engineering and

Knowledge Engineering, Vol. 23, No. 05, World Scientific, 2013, pp.

655-676.

Most of the papers available from this document appear in print, and the corresponding copyright is held by the

publisher. While the papers can be used for personal use, redistribution or reprinting for commercial purposes is

prohibited.

http://seg.nju.edu.cn/

VERIFYING ASPECT-ORIENTED MODELS AGAINST

CROSSCUTTING PROPERTIES

ZHANQI CUI*,†,‡, LINZHANG WANG*,§,
XI LIU*, LEI BU*, JIANHUA ZHAO*

and XUANDONG LI*

*State Key Laboratory of Novel Software Technology

Department of Computer Science and Technology

Nanjing University

Nanjing, 210046, China
†Key Laboratory of Optical Fiber Sensing

and Communications, Ministry of Education

School of Communication and Information Engineering
University of Electronic Science and Technology of China

Chengdu, 611731, China
‡zqcui@seg.nju.edu.cn
§lzwang@nju.edu.cn

Dealing with crosscutting concerns has been a critical problem in software development
processes. To facilitate handling crosscutting concerns at design phases, we proposed an as-

pect-oriented modeling and integration approach with UML activity diagrams. The primary

concerns are depicted with UML activity diagrams as primary models, whereas crosscutting

concerns are described with aspectual extended activity diagrams as aspect models. Aspect
models can be integrated into primary models automatically. The AOM approach can reduce

the complexity of design models. However, potential faults that violate desired properties of

the software system might still be introduced during the modeling or integration processes.

The veri¯cation technique is well-known for its ability to assure the correctness of models and
uncover design problems before implementation. We propose a framework to verify aspect-

oriented UML activity diagrams based on Petri net veri¯cation techniques. For veri¯cation

purpose, we transform the integrated activity diagrams into Petri nets and prove the con-
sistency of the transformation. Then, crosscutting concerns in system requirements are re¯ned

to properties in the form of CTL formulas. Finally, the Petri nets are veri¯ed against the

formalized properties to report whether the aspect-oriented design models satis¯es the

requirements. Furthermore, we implement a tool named Jasmine-AOV to support the veri-
¯cation process. Case studies are conducted to evaluate the e®ectiveness of the proposed

approach.

Keywords: Aspect-oriented modeling; veri¯cation; model checking; activity diagram;

Petri net.

International Journal of Software Engineering

and Knowledge Engineering

Vol. 23, No. 5 (2013) 655�676

#.c World Scienti¯c Publishing Company
DOI: 10.1142/S0218194013400123

655

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
01

3.
23

:6
55

-6
76

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 N
A

N
JI

N
G

 U
N

IV
E

R
SI

T
Y

 o
n

10
/2

3/
13

. F
or

 p
er

so
na

l u
se

 o
nl

y.

For Research Only

http://dx.doi.org/10.1142/S0218194013400123

1. Introduction

Dealing with crosscutting concerns has been a critical problem during software de-

velopment life cycles. Aspect-oriented programming (AOP) [1] provides a viable

programming level solution by modularizing crosscutting concerns into aspects.

Aspect-oriented modeling (AOM) handles crosscutting concerns by providing a

higher level of abstraction to alleviate software complexity in the design phase. In

particular, earlier awareness of cross-cutting concerns in the model-centric design can

guide the subsequent implementation and validation activities.

To facilitate handling crosscutting concerns at earlier software development

phases, in our previous work, we proposed an AOM approach based on UML activity

diagrams [2]. The approach shifts aspect-oriented techniques [1] from a code-centric

to a model-centric, which is employed to handle the crosscutting concerns during

design phases. Thus, it alleviates software complexity in a more abstract level. The

primary functional concerns are modeled with activity diagrams, and crosscutting

concerns are modeled with aspectual activity diagrams, respectively. Then the

overall system design model, which is also an activity diagram, is integrated by

weaving aspect models into primary models.

However, aspect-oriented modeling techniques cannot guarantee the correctness of

produced design models. For instance, wrong weaving sequences may cause the in-

tegrated models to violate system crosscutting requirements. Design models are widely

used as a basis of subsequent implementation [3, 4] and testing [5�7] processes. As a

result, it is costly if defects in design models are discovered at later implementation

and testing stages. Therefore, assuring the correctness of the aspect-oriented design

models is vitally important. So far, the applicable approach is manual review, which is

time consuming and depends on reviewers' expertise. However, existing automatic

veri¯cation tools cannot deal with aspect-oriented activity diagrams directly.

In order to ensure that crosscutting concerns are correctly modeled, we propose a

rigorous approach to automatically verify aspect-oriented models (activity dia-

grams) by using Petri net based veri¯cation techniques. Firstly, the integrated ac-

tivity diagrams are translated into Petri nets. Then, crosscutting concerns in system

requirements are re¯ned to properties in the form of CTL formulas. Finally, the Petri

nets are veri¯ed against the formalized properties.

The rest of this paper is organized as follows. Section 2 presents backgrounds of

activity diagrams, Petri nets, and a running example. Section 3 discusses the veri-

¯cation of aspect-oriented activity diagrams. Section 4 presents two case studies and

evaluations of our approach. Section 5 reviews the related work. Finally, Sec. 6

concludes the paper and discusses the future work.

2. Background

In this section, we brie°y introduce UML activity diagrams, Petri nets, and a running

example that will be employed to demonstrate our approach in the following sections.

656 Z. Cui et al.

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
01

3.
23

:6
55

-6
76

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 N
A

N
JI

N
G

 U
N

IV
E

R
SI

T
Y

 o
n

10
/2

3/
13

. F
or

 p
er

so
na

l u
se

 o
nl

y.

For Research Only

2.1. Activity diagrams and Petri nets

The UML activity diagram is a powerful tool to describe control °ow based program

logic at di®erent levels of abstraction. Designers commonly use activity diagrams to

describe the sequence of behaviors between classes in a software system. Nodes and

edges are two kinds of elements in activity diagrams. Nodes in activity diagrams are

connected by edges. We formally de¯ne activity diagrams as follows.

De¯nition 1. (Activity Diagram). An activity diagram AD is a 3-tuple (N;E;F),

where:

. N ¼ fn1;n2; . . . ;nig is a ¯nite set of nodes, which contains action, initial/¯nal,

decision/merge and fork/join nodes, nI 2 N is the initial activity state, NF � N

is a set of ¯nal activity states, Na is the subset of action nodes in N , that Na ¼
fni jni 2 N and ni is an action nodeg;

. E ¼ fe1; e2; . . . ; ejg is a ¯nite set of edges;

. F � ðN � EÞ [ðE �NÞ is the °ow relation between nodes and edges.

We call ep ¼ N0 �!
E0

N1 � � � �!
Ek�1

Nk �!
Ek � � � �!En�1

Nn is a path in AD, where Nk � N and

Ek � E, Nkþ1 ¼ ðNk � fnkgÞ [fnkþ1 j ðnk; ekÞ 2 F ^ ðek;nkþ1Þ 2 F ^ ek 2 Ekg. The

action node sequence of ep is denoted as ASðepÞ¼Na0!Na1!���!Nak � � �!Nan,

which is the projection of ep on action node setNa, whereNak¼fni jni 2Na^ni 2Nkg.
By removing all the empty set Nak in AS (ep), we can get the action trail �(ep) of

AS(ep).

Due to the nature of UML is semi-formal and UML diagrams are design-oriented

models, translating activity diagrams into formal veri¯cation-oriented models is

necessary before veri¯cation. In this approach, we translate activity diagrams into

Petri nets, because in UML 2, the semantics of activity diagrams is explained in

terms of Petri net notations [8], like tokens, °ows, etc. The Petri net is a formal

speci¯cation language that is widely used to model software behaviors. A Petri net

consists of places, transitions, and arcs. Like UML activity diagrams, Petri nets

o®er a graphical notation for stepwise processes that include choice, iteration, and

concurrent execution. On the other hand, Petri nets have a precise mathematical

de¯nition of their execution semantics, with a well-developed mathematical theory

for process analysis. A Petri net is formally de¯ned as follows.

De¯nition 2. (Petri net) A Petri net [9] is a 4-tuple PN ¼ fP ;T ;A;M0g, where
. P is a ¯nite set of places and T is a ¯nite set of transitions, and P and T are

disjoint;

. A is a ¯nite set of arcs connect between places and transitions, where

A � ðP � T [T � P Þ;
. M0 is the initial marking.

A marking M of PN is any subset of P . For any transition t; �t ¼ fpi j ðpi; tÞ 2 Ag is

the incoming places of t, t� ¼ fpi j ðt; piÞ 2 Ag is the outgoing places of t. A transition

Verifying Aspect-Oriented Models Against Crosscutting Properties 657

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
01

3.
23

:6
55

-6
76

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 N
A

N
JI

N
G

 U
N

IV
E

R
SI

T
Y

 o
n

10
/2

3/
13

. F
or

 p
er

so
na

l u
se

 o
nl

y.

For Research Only

t is enabled in a marking M if �t � M , otherwise, it is disabled. Let enabled(M) be

the set of transitions enabled in M .

We say pnp ¼ M0 �!
t0

M1 � � � �!
tk�1

Mk �!
tk � � � is a path in PN, where MK � P ,

tk � T , �tk � Mk, and Mkþ1 ¼ fMk � �tkg [tk
�. Given a path pnp ¼ M0 �!

t0
M1 � � �

�!tk�1
Mk �!

tk � � � in PN, the corresponding transition sequence of pnp is TSðpnpÞ ¼
enabledðM0Þ ! enabledðM1Þ ! � � � ! enabledðMkÞ � � � .

Places, transitions and arcs in Petri nets are drawn as circles, boxes and arrows,

respectively. We do not consider weights of arcs in this paper for simpli¯cation.

2.2. Aspectual extensions for activity diagrams

The aspect-oriented modeling technique is adapted from our previous work in [2]. In

this subsection, we brie°y introduce aspectual extensions into the activity diagram to

model crosscutting concerns.

For modeling crosscutting concerns, we follow such terms like \joinpoint",

\pointcut", and \advice" from the terminology of AspectJ [10] into the UML activity

diagram with similar meanings. Join points are elements in a primary model that are

appropriate to insert advice models before or after. A pointcut model is used to ¯lter

join points in primary models to which the corresponding advices should be applied.

An advice model is used to specify additional enhancements or mitigations for a

crosscutting concern.

As described in Table 1, in order to model aspects, 7 stereotypes and 3 tagged

values are added to the activity diagram. Extensive explanations and discussions

about these extensions are beyond the scope of this paper and can be found in [2].

Table 1. Extensions for modeling aspects.

Extension Type Applies to Description

�Pointcut� Stereotype Diagram Indicate an activity diagram is a pointcut model.
advice Tagged Value �Pointcut� Indicate the corresponding advice model of the

pointcut model.

�Joinpoint� Stereotype Element Denote the position of the join point element in a

pointcut model.
�Argument� Stereotype Element Indicate elements that serve as actual arguments

for related formal parameters in the corre-

sponding advice model.

parameter Tagged Value �Argument� Denote the name of the element in the advice model
which are related to the�Argument� element.

�Advice� Stereotype Diagram Indicate an activity diagram is an advice model.

type Tagged Value �Advice� Indicate the type of the advice model; \type" is

either \Before" or \After".
�Entry� Stereotype Node Denote where tokens °ow in an advice model from

primary models.

�Exit� Stereotype Node Denote where tokens °ow out an advice model to
primary models.

�Parameter� Stereotype Element Indicate elements that serve as formal parameters

in an advice model.

658 Z. Cui et al.

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
01

3.
23

:6
55

-6
76

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 N
A

N
JI

N
G

 U
N

IV
E

R
SI

T
Y

 o
n

10
/2

3/
13

. F
or

 p
er

so
na

l u
se

 o
nl

y.

For Research Only

In Table 1, the \Extension" column is the name of the extension, and the \Type"

column indicates the type of the extension that can be either a stereotype or a tagged

value. The \Applies to" column speci¯es the type of objects that the extension can be

applied to. The \Description" column gives a brief introduction about the extension.

2.3. CTL and LoLA

Computation tree logic (CTL) [11] is a kind of branch time logic which can reason

about many execution paths at one time. CTL provides two path quanti¯ers: uni-

versal (A) and existential (E) in combination with four temporal operators: X(next

time), F(eventually), G(globally), and U(until). In a CTL formula, every temporal

operator is preceded by a path quanti¯er. The syntax of CTL formula would be

de¯ned as:

Assume AP is the underlying set of atomic propositions, then

. p, q 2 AP are CTL formulas;

. true j false j : p j p ^ q j p _ q are CTL formulas;

. �, are CTL formulas, then AX� jAF� jAG� j�AU jEX� jEF� jEG� j
�EU are CTL formulas.

LoLA (a Low Level Petri Net Analyzer) [12] has been implemented for the vali-

dation of reduction techniques for place/transition net state spaces. LoLA can verify

various properties, such as reachability of a given state or state predicate, bound-

edness of the net or a place, deadlocks, dead transitions, reversibility, and CTL

formulas. In LoLA, the path quanti¯ers A, E and temporal operators X, F, G, U

are replaced by ALLPATH, EXPATH, NEXTSTEP, EVENTUALLY,

ALWAYS,UNTIL, respectively. The veri¯cation task is inputted by a \.task" ¯le

in which a CTL formula is announced by the keywords of LoLA.

2.4. Running example

We adapt the order processing scenario from [8] as a running example to demonstrate

our approach. The requirements of this scenario are described in Fig. 1. As Fig. 1

shows, there are 4 crosscutting concerns related to this scenario: authentication,

validation, logging, and informing.

Figure 2 is the primary model of the order processing scenario, which consists of

3 main steps: ¯ll order, ship order, and close order. Based on the requirements in

Fig. 1 and our previous aspect-oriented modeling approach [2], the crosscutting

concerns of the running example are modeled in Fig. 3.

In order to understand how crosscutting concerns will a®ect primary function-

alities, aspect models are integrated with primary models to generate an overall

system design model. Di®erent weaving sequences would produce di®erent integrated

models. For example, we add an authorization aspect in the running example, which

describes the logged-in user need to be checked whether she/he has the permission to

Verifying Aspect-Oriented Models Against Crosscutting Properties 659

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
01

3.
23

:6
55

-6
76

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 N
A

N
JI

N
G

 U
N

IV
E

R
SI

T
Y

 o
n

10
/2

3/
13

. F
or

 p
er

so
na

l u
se

 o
nl

y.

For Research Only

Fill Order Ship Order Close Order

Fig. 2. The primary model of the order processing scenario.

In the order processing scenario, the client fills an order first, then the
order is shipped, finally, the order is closed after shipment.

The payment in cheque needs to be validated in order to avoid
dishonoured cheque. The validation should be finished by ship order.

The user needs to be checked whether she/he is legal user before
filling orders. If the password inputted is validate, the user can
continue the process to fill orders. Otherwise, is the user input an
incorrect pin, the process will be terminated.

The information about the order, like: order date, customer info etc.
are logged after the order is closed.

Informing the user about the trace number of the order with an email,
an the user can trace their order with the number when the order is
on its way. The informing is started by the ship order.

Primary
Concern

Logging
Concern

Authentication
Concern

Informing
Concern

Validation
Concern

Fig. 1. The requirements of the order processing scenario.

<<Joinpoint>>
Fill_Order

<<Pointcut>>
{advice:=Advice1}

<<Entry>>

Input_Pin

<<Exit>>

Validated

[yes]

[no]

<<Advice>>
{type:=Before}

Pointcut Model Advice Model

(a) Pointcut and advice model of authentication

Ship_Order

*

<<Joinpoint>>

<<Pointcut>>
{advice:=Advice2}

<<Entry>>

<<Exit>>

<<Advice>>
{type:=After}

Receive_
Cheque

Validate_Cheque

Pointcut Model Advice Model

(b) Pointcut and advice model of check payment

<<Joinpoint>>
Close_Order

<<Pointcut>>
{advice:=Advice3}

<<Entry>>

Log_Order

<<Exit>>

<<Advice>>
{type:=Before}

Pointcut Model Advice Model

(c) Pointcut and advice model of logging

Ship_Order

*

<<Joinpoint>>

<<Pointcut>>
{advice:=Advice4}

<<Entry>>

<<Exit>> Send_Email

<<Advice>>
{type:=After}

Pointcut Model Advice Model

(d) Pointcut and advice model of informing

Fig. 3. Pointcut and advice models of the order processing scenario.

660 Z. Cui et al.

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
01

3.
23

:6
55

-6
76

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 N
A

N
JI

N
G

 U
N

IV
E

R
SI

T
Y

 o
n

10
/2

3/
13

. F
or

 p
er

so
na

l u
se

 o
nl

y.

For Research Only

¯ll orders. If the authorization aspect is woven before authentication, then the result

of integration is shown in Fig. 4(a). Otherwise, if the authentication aspect is woven

before authorization, then the result of integration is shown in Fig. 4(b). As we know,

the legal user has to be logged-in before being checked whether the corresponding

permission is granted or not. As a result, the authentication aspect should be woven

¯rstly, and Fig. 4(b) is the correct integration result we expected. Extensive expla-

nations and algorithms about the integration approach can be also found in our

previous paper [2].

3. Verifying Aspect-Oriented Models

In our previous work [2], aspect-oriented models, including primary models, aspect

models, as well as integrated models, were all depicted with UML activity diagrams.

Since the correctness of the integration process cannot be guaranteed, how to ensure

the consistence between the integrated activity diagrams and crosscutting require-

ments becomes a critical research problem. In UML 2, the semantics of activity

diagrams is explained in terms of Petri nets. There are also various automatic tools,

i.e. LoLA [12], verifying Petri nets against speci¯ed properties. As a result, if we can

translate activity diagrams into Petri nets, we could verify the activity diagram

models by verifying corresponding Petri net models for speci¯c properties. In this

section, we ¯rst discuss transformation from activity diagrams to Petri nets, and

then present the veri¯cation against crosscutting concerns.

3.1. Transforming from activity diagrams to Petri nets

We adapt the mapping semantics of control-°ows in UML 2 activities in [13] to

convert activity diagrams into Petri nets. Basically, action nodes and fork/join nodes

are translated to net transitions, control nodes (initial, ¯nal, decision, and merge

nodes) become net places, and edges are transformed to net arcs. Auxiliary transi-

tions or places are added when the ends of an arc both are transitions or both are

places. For simpli¯cation, were strict an activity diagram only consists of action

Authorization Authentication

Validation

Fill Order
Ship Order Close Order

Logging

Informing

(a) Weaving authorization before authentication

Authentication Authorization

Validation

Fill Order
Ship Order Close Order

Logging

Informing

(b) Weaving authentication before authorization

Fig. 4. Two di®erent integrated models of the order processing scenario.

Verifying Aspect-Oriented Models Against Crosscutting Properties 661

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
01

3.
23

:6
55

-6
76

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 N
A

N
JI

N
G

 U
N

IV
E

R
SI

T
Y

 o
n

10
/2

3/
13

. F
or

 p
er

so
na

l u
se

 o
nl

y.

For Research Only

nodes, control nodes, and control °ows in this approach. For bridging Petri nets and

UML activity diagrams smoothly, we de¯ne a Petri net corresponding to a UML

activity diagram by extending De¯nition 2.

De¯nition 3. (PN4AD) A Petri net transformed from an activity diagram

AD ¼ ðN ;E;F Þ, is a tuple PN4AD ¼ ðP ;T ;TA;A;M0Þ, where ðP ;T ;A;M0Þ is a

PN, and TA � T is a ¯nite set of transitions which are transformed from action nodes

NA of AD.

Based on the mapping rules in [13], we construct an algorithm to transform

activity diagrams to Petri nets. The algorithm is described in Algorithm 1. With the

algorithm, the activity diagram of the running example in Fig. 4(b) is converted to

the Petri net in Fig. 5. The transformation of more complex activity diagrams

(containing data °ows, exceptions, and expansions etc.) is straightforward based on

transformation rules in [14].

662 Z. Cui et al.

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
01

3.
23

:6
55

-6
76

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 N
A

N
JI

N
G

 U
N

IV
E

R
SI

T
Y

 o
n

10
/2

3/
13

. F
or

 p
er

so
na

l u
se

 o
nl

y.

For Research Only

For a PN4AD, given a path pnp ¼ M0 �!
t0

M1 � � � �!
tk�1

Mk �!
tk

in PN, and the cor-

responding transition sequence of pnp is TSðpnpÞ ¼ enabledðM0Þ ! enabledðM1Þ !
� � � ! enabledðMkÞ. The action transition sequence of TS(pnp) is ATSðpnpÞ ¼
A0 ! A1 � � � ! Ak, where Ai ¼ fti;j j ti;j 2 enabledðMiÞ and ti;j 2 TAg. By removing

all the empty Ai in ATS(pnp), we can get the action trail �(php) of ATS(php).

In order to ensure the conformance of the transformation, we de¯ne a theorem as

follows. The proof of the theorem is in Appendix A.

Theorem 1. Given an Activity Diagram AD ¼ ðN ;E;F Þ, and the corresponding

PN4AD ¼ ðP ;T ;TA;A;M0Þ, for any path ep of AD, there must be a path pnp of

PN4AD, and the action trail �(ep) is equivalent with the action trail �(pnp), vice versa.

Since the transformed Petri net shares the same action trail with the activity

diagram, we can achieve the veri¯cation of the activity diagram by verifying the

equivalent Petri net against same system properties de¯ned on the sequence of action

nodes.

3.2. Verifying Petri nets

Crosscutting concerns describe the running sequences between advices and primary

behaviors in all paths of integrated models. These properties can be described in the

form of CTL formulas [11] naturally. CTL formulas cannot be generated from aspect

models by synthesizing conditions of join points speci¯ed by pointcut models and

checking the corresponding advice models appears at right places. This is because

that the context speci¯ed by a pointcut model would be changed after integration,

and the join points matched by the pointcut model could no longer exist. In this

approach, the properties to be checked are directly re¯ned from crosscutting

requirements.

3.2.1. Properties speci¯ed from the requirement

Based on the Petri net generated, we can easily analyze reachability, safety, liveness,

and fairness properties [9]. In this approach, we only focus on checking properties

that are closely related to crosscutting concerns. We categorize crosscutting concerns

A
ut

he
nt

ic
at

io
n

V
al

id
at

io
n

A
ut

ho
ri

za
ti

on

F
ill

 O
rd

er

C
lo

se
 O

rd
er

F
or

k

Jo
in

Sh
ip

 O
rd

er L
og

gi
ng

In
fo

rm
in

g

Fig. 5. The Petri net transformed from the order processing scenario.

Verifying Aspect-Oriented Models Against Crosscutting Properties 663

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
01

3.
23

:6
55

-6
76

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 N
A

N
JI

N
G

 U
N

IV
E

R
SI

T
Y

 o
n

10
/2

3/
13

. F
or

 p
er

so
na

l u
se

 o
nl

y.

For Research Only

from two facets. Firstly, according to the execution sequence between actions in

advice models and join points, a crosscutting concern can be either executing before

or after join points. Secondly, the execution of a crosscutting concern is either se-

quential or parallel with the primary behaviors. Sequential crosscutting concerns are

synchronous features that their running positions are restricted by the join points.

Parallel crosscutting concerns are asynchronous features that are running concur-

rently with primary actions and they are ¯nished or started by the join points.

(1) Before-crosscutting concerns

A before-crosscutting concern speci¯es some extra behaviors must be performed

before matched join points. A before aspect would be either sequential or parallel

with respect to the °ows of primary models.

If it's a sequential aspect, the behaviors speci¯ed by the aspect model are executed

before the join point node. The keyword of sequential before crosscutting concerns in

requirements level is \before". In the integrated model, actions speci¯ed by the

aspect model are executed between the join point node and the predecessor node of

the join point in the primary model.

Otherwise, if it's a parallel aspect, the behaviors in the aspect model must be

¯nished at the join point edge. The keyword of parallel before crosscutting concerns

in requirements is \be ¯nished by". In the integrated model, the actions of the

crosscutting concern are running concurrently with the primary behaviors, and then

synchronized at the join node which replaced the join point edge.

In corresponding Petri nets, assume jp is the transition transformed from one of

the join point,ad is the transition transformed from the structured activity node that

represents the advice model. The requirement of a before aspect can be represented in

the form of the CTL formula as:AG:ððad^EXð:ad^:jpÞÞ_ðð:ad^:jpÞ^EXjpÞÞ.

(2) After-crosscutting concerns

An after-crosscutting concern speci¯es some actions must be performed after

matched join points. An after-crosscutting concern can also be either a sequential or

a parallel aspect with respect to the °ows of primary models.

If it's a sequential aspect, the behaviors speci¯ed by the aspect model are executed

after the join point node. The keyword of sequential after crosscutting concerns in

requirements level is \after". In the integrated model, actions speci¯ed by the aspect

model are executed between the join point node and the successor node of the join

point node in the primary model.

Otherwise, if it's a parallel aspect, the behaviors in the aspect model must be

started by the join point edge. The keyword of parallel before crosscutting concerns

in requirements is \be started by". In the integrated model, the actions of the

crosscutting concern are enabled by the fork node, which replaced the join point

edge, and then running concurrently with primary behaviors.

664 Z. Cui et al.

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
01

3.
23

:6
55

-6
76

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 N
A

N
JI

N
G

 U
N

IV
E

R
SI

T
Y

 o
n

10
/2

3/
13

. F
or

 p
er

so
na

l u
se

 o
nl

y.

For Research Only

In corresponding Petri nets, assume jp is the net transition transformed from the

join point, ad is the net transition transformed from the structured activity node that

represents the advice model. The requirement of an after aspect can be represented in

the form of the CTL formula as:AG:ððjp^EXð:jp^:adÞÞ_ðð:jp^:adÞ^EXadÞÞ.

3.2.2. Con°icts of multiple crosscutting concerns

The CTL formula need to be adjusted if more than one crosscutting concerns (which

are all \before" aspects or are all \after" aspects) match a same join point. Because

the running sequence between one aspect and a join point can be a®ected by other

aspects of the same before/after kind, which match the same join point. For instance,

in the running example, the authentication and authorization concerns are con-

°icting because they both are before-crosscutting aspects and they have same join

point, the \Fill Order" action. The running sequence of the authentication aspect

and the \Fill Order" operation will be changed from \Authentication ! Fill Order"

to \Authentication!Authorization!Fill Order" after the weaving of the autho-

rization aspect.

(1) Con°icts between two before-crosscutting concerns

For a before-crosscutting concern cc1 with advice model ad1 and join point jp1,

if any other before aspect, which matches the same join point jp1 and weaves after

cc1, then some extra actions are performed after ad1 and before jp1. Assume it's a

before-crosscutting concern cc2 with advice ad2 weaves after cc1, then jp1 should be

replaced by ad2 in the CTL formula of cc1 as: AG: ððad1 ^ EXð:ad1 ^ :ad2ÞÞ _
ðð:ad1^ :ad2Þ ^ EXad2ÞÞ.

(2) Con°icts between two after-crosscutting concerns

For a after-crosscutting concern cc1 with advice model ad1 and join point jp1,

if any other after aspect, which matches the same join point jp1 and weaves after cc1,

then some extra actions are performed after jp1 and before ad1. Assume it's a

after-crosscutting concern cc2 with advice ad2 weaves after cc1, then jp1 should be

replaced by ad2 in the CTL formula of cc1 as: AG:ððad2 ^ EXð:ad2 ^ :ad1ÞÞ_
ðð:ad2 ^ :ad1Þ ^ EXad1ÞÞ.

In the running example, the authentication and authorization aspects are con-

°icting, because they match the same join point: \Fill Order". Suppose the

authentication aspect was weaved before authorization aspect. Base on above con-

°icts solving rules, the crosscutting requirements of authorization aspect remain

unchanged as:

AG: ððAuthorization ^ EXð:Authorization ^ :Fill OrderÞÞ_
ðð:Authorization ^ :Fill OrderÞ ^ EXFill OrderÞÞ ð1Þ

Verifying Aspect-Oriented Models Against Crosscutting Properties 665

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
01

3.
23

:6
55

-6
76

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 N
A

N
JI

N
G

 U
N

IV
E

R
SI

T
Y

 o
n

10
/2

3/
13

. F
or

 p
er

so
na

l u
se

 o
nl

y.

For Research Only

and the crosscutting requirements of authentication aspect need to be changed from:

AG: ððAuthentication ^EXð:Authentication ^ :Fill OrderÞÞ_
ðð:Authentication ^ :Fill OrderÞ ^EXFill OrderÞÞ ð2Þ

to:

AG: ððAuthentication ^EXð:Authentication ^ :AuthorizationÞÞ_
ðð:Authentication ^ :AuthorizationÞ ^ EXAuthorizationÞÞ ð3Þ

3.2.3. Veri¯cation

After the system crosscutting properties are re¯ned as a set of CTL formulas. We can

verify the Petri net against speci¯ed CTL formulas generated. If the veri¯cation is

passed, it means the model satis¯es the corresponding crosscutting requirements.

Otherwise, the model violates the corresponding crosscutting requirements to some

extent, which means further revision about the model is needed.

In the running example, the integrated model in Figs. 4(a) and 4(b) are both

veri¯ed against the crosscutting requirements of authentication, authorization,

validation, logging, and informing. First, the integrated models are transformed to

Petri nets. Then the 5 crosscutting requirements are re¯ned to 5 CTL formulas.

Finally, Petri net analyzer LoLA is employed to verify the two Petri nets against the

formalized crosscutting requirements, respectively.

The Petri net transformed from the model in Fig. 4(b) passes the veri¯cation

process and output \result: true" for all the 5 CTL formulas. While the Petri net

transformed from the model in Fig. 4(a) fails when verifying against the 2 CTL

formulas generated from authentication and authorization requirements, and passes

the veri¯cation against the other 3 CTL formulas. In the Petri net transformed from

the model in Fig. 4(a), the ¯re of transition \Authentication" will enable transition

\Fill Order", which violates CTL formula (3). And the ¯re of transition

\Authorization" will enable transition \Authentication", which violates CTL for-

mula (1). This veri¯cation results show that the crosscutting requirements of au-

thentication and authorization are not hold in the aspect-oriented model. After

correcting the weaving preference fault and integrating the aspect model again, the

new integrated model passes the veri¯cation process.

3.3. Tool Implementation

We implemented a tool named Jasmine-AOVa based on Topcasedb and LoLA.c As

Fig. 6 shows, this tool is composed of 4 main parts: Model Transformer, Crosscutting

Concern Manager, CTL Generator, and Model Checker. The Model Transformer

converts an activity diagram to a Petri net automatically. The inputs of Model

aJasmine-AOV, http://seg.nju.edu.cn/	zqcui/Jasmine-AOV
bTopcased, http://www.topcased.org/
cLoLA, http://www.informatik.uni-rostock.de/tpp/lola/

666 Z. Cui et al.

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
01

3.
23

:6
55

-6
76

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 N
A

N
JI

N
G

 U
N

IV
E

R
SI

T
Y

 o
n

10
/2

3/
13

. F
or

 p
er

so
na

l u
se

 o
nl

y.

For Research Only

Transformer are UML diagrams designed by Topcased in the form of XML ¯les and

the outputs of the tool are Petri net ¯les which are readable for LoLA to perform

veri¯cation tasks. The Crosscutting Concern Manager is used to manage mapping

relations between crosscutting concerns in requirements and elements in corre-

sponding activity diagrams. It provides an assistant for mapping textual crosscutting

requirements to design activity diagrams. The CTL Generator can automatically

generate CTL formulas from crosscutting requirements that are mapped to design

models. The CTL Generator also supports users to input CTL formulas manually.

Model Checker is implemented by directly wrapped an existing checker: LoLA. It can

verify the Petri net against crosscutting properties in the format of CTL formulas

and report the result.

The screenshot of Jasmine-AOV is in Fig. 7. The \Crosscutting concerns" area

manages the crosscutting requirements which are mapped to design models. The

\New Crosscutting Concern"dialog provides a wizard for mapping textual crosscut-

ting requirements to design activity diagrams. The \Petri net" area displays the Petri

net transformed from the corresponding activity diagram. The \CTL Formulas" area

lists the formulas re¯ned from crosscutting concerns in the \Crosscutting concerns"

area automatically or wrote by users manually. The \Veri¯cation Results" area

outputs the results of verifying the Petri net in the \Petri net" area against the CTL

formulas in the \CTL Formulas" area by LoLA.

Writing complex CTL formulas is not easy for a software engineer without proper

training about formal methods. To tackle this problem, we implement the CTL

Generator to assist generating CTL formulas automatically. As Fig. 7 shows, the

user only need to select actions which is the advice, the join points, and the rela-

tionship between the advice and the join points, based on the textual description of

the crosscutting concern. After this information is inputted, the CTL Generator

generates a CTL formula for the crosscutting concern and adjusts CTL formulas if

there is more than one aspect of the same before/after type apply on a same join

point.

Model
Checker

Verification
Results

Model
Transformer Petri-Net

Crosscutting
Concern
Manager

CTL
Formulas

Crosscutting
Requirements

Aspect-Oriented
Models

CTL
Generator

Crosscutting
Concern in

Design Models

Jasmine-AOVTopcased

LoLA

Fig. 6. The framework of Jasmine-AOV.

Verifying Aspect-Oriented Models Against Crosscutting Properties 667

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
01

3.
23

:6
55

-6
76

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 N
A

N
JI

N
G

 U
N

IV
E

R
SI

T
Y

 o
n

10
/2

3/
13

. F
or

 p
er

so
na

l u
se

 o
nl

y.

For Research Only

4. Evaluation and Case Suites

To evaluate the e®ectiveness of our approach, we have applied our approach to the

design models adapted from the Ship Order example in [8] and the Telecom System.d

The Ship Order example contains 5 crosscutting concerns and the Telecom System

contains 6 crosscutting concerns. For both case studies, we transformed the inte-

grated models to Petri nets, and mapped crosscutting requirements to the design

models with the help of the tool. Then, corresponding CTL formulas of veri¯cation

tasks are generated automatically. Finally, the Petri nets are checked against the

CTL formulas generated.

The faults of aspect-oriented models, which can be caused by design defects or

incorrect integration processes, are categorized as follows:

1. Aspect model faults

(a) Incorrect weaving preference. The priorities of aspect models are in-

correctly assigned. This kind of faults will lead to match join pints faults or

running sequence changed unexpected.

Fig. 7. The screenshot of Jasmine-AOV.

dAJDT Toolkit: http://www.eclipse.org/ajdt

668 Z. Cui et al.

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
01

3.
23

:6
55

-6
76

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 N
A

N
JI

N
G

 U
N

IV
E

R
SI

T
Y

 o
n

10
/2

3/
13

. F
or

 p
er

so
na

l u
se

 o
nl

y.

For Research Only

(b) Incorrect binding between pointcut model and advice model. The

pointcut model is incorrectly mapped to an unrelated advice model. This

kind of faults will result in improper advice models apply at some join points.

2. Pointcut model faults

(a) Overmatch/Mismatch join points. The pointcut model matches extra

join points or miss some join points should be matched. The consequence of

this kind of faults is that extra advices are performed at unexpected join

points or desired advices are not going to be performed at join points.

(b) Incorrect position of join points. The element which serves as a join point

in the pointcut model is incorrectly appointed. The phenomenon of this kind of

faults is that advices are applied at incorrect points of the primary model.

3. Advice model faults

(a) Incorrect type of advice models. The type of the advice model is declared

incorrectly. This kind of faults will cause the running sequence between the

advice model and the primary model change unexpectedly.

To further evaluate the ability of our approach to detect the faults of aspect-

oriented models, mutated models are created based on preceding category of aspect

model faults. 26 and 28 model mutants are constructed for the 2 case studies, re-

spectively. 22 out of 26 mutants for ship order case study and all mutants for telecom

system case study are killed because they violate the crosscutting requirements from

various ways and these violations are detected by the veri¯cation process. The 4 alive

mutants of the ship order case study are manually checked, and turn out to be

equivalent mutants. This result illustrates the ability of our approach to ¯nd the

faults in aspect-oriented models and to improve the quality of design models. Table 2

classi¯es all these model mutants by their fault types and the veri¯cation results.

5. Related Work

There are many research projects on bringing aspect-oriented ideas to software re-

quirement engineering from di®erent perspectives. Whittle and Araujo [15] focus on

Table 2. Model mutants of the 2 case studies.

Fault types Ship order Telecom system

Aspect model faults Incorrect weaving preference 1 1

Incorrect binding 5 3

Pointcut model faults Overmatch join points 5 6
Mismatch join points 5 6

Incorrect position of join point 5 6

Advice model faults In correct type of advice models 5 6

Number of model mutants in total 26 28
Mutants killed 22 28

Equivalent mutants 4 0

Verifying Aspect-Oriented Models Against Crosscutting Properties 669

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
01

3.
23

:6
55

-6
76

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 N
A

N
JI

N
G

 U
N

IV
E

R
SI

T
Y

 o
n

10
/2

3/
13

. F
or

 p
er

so
na

l u
se

 o
nl

y.

For Research Only

scenario-based requirements and composing them with aspects to generate a set of

state machines that represent the composed behaviors from both aspectual and non-

aspectual scenarios. In contrast, our approach is carried out at the design level

instead of requirement level. However, our approach can be enhanced with the aspect

mining tool at requirements level, like EA-Miner [16], by inputting crosscutting

concerns detected by these tools to our Jasmine-AOV tool for veri¯cation.

There is also a large body of research on aspect-oriented modeling. But most of

them do not concern about the correctness of the integrated model and provides

veri¯cation supports. In addition to supporting aspect-oriented modeling and inte-

gration, our approach also formally checks whether crosscutting concerns in

requirements are correctly designed. Xu et al. proposed to model and compose

aspects with ¯nite state machines, and then transformed to FSP processes and

cheeked by LTSA model checker against all system requirements [17]. Whereas our

approach is carried out on activity diagrams and only focuses on checking cross-

cutting concerns instead of general system requirements. Furthermore, we categorize

4 kinds of crosscutting concerns and generate CTL formulas automatically from

crosscutting concern speci¯cations, which bridges the gaps between crosscutting

requirements and aspect-oriented design models. We also provide a solution for the

con°icts between crosscutting concerns.

Several model checking techniques have been presented for aspect-oriented pro-

grams. Denaro et al. ¯rst reported a preliminary experience on verifying deadlock

freedom of a concurrent aspect [18]. They ¯rst derived PROMELA process templates

from aspect-oriented units, and then analysis the aspect-oriented program with

SPIN. Ubayashi and Tamai [19] proposed to apply model checking techniques to

verify whether the result of weaving classes and aspects contained unexpected

behaviors like deadlocks. These approaches can ¯nd realistic defects in the aspect-

oriented programs. In contrast, the approach in this paper is carried out at the model

level other than the program level. As a result, our approach can identify system

faults at an earlier stage, and save costs to revise programs when detecting design

faults at implementation or maintenance phase.

6. Conclusions and Future Work

This paper presents a framework to verify aspect-oriented UML activity diagrams by

using Petri net based veri¯cation techniques. We add lightweight extensions to

standard activity diagrams with stereotypes and tagged values to support the

modeling of aspects. Then the aspect models are integrated with primary models. For

veri¯cation purpose, we transform the integrated activity diagrams into Petri nets.

Then, crosscutting properties of the system are re¯ned as a set of CTL formulas.

Last, the Petri nets are veri¯ed against the re¯ned CTL formulas. The veri¯cation

results report whether the Petri net satisfy the requirements or not. Thus, we can

reason whether the integrated activity diagram meets the requirement since they are

equivalent. In other words, we can claim that the aspect-oriented modeling is correct

670 Z. Cui et al.

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
01

3.
23

:6
55

-6
76

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 N
A

N
JI

N
G

 U
N

IV
E

R
SI

T
Y

 o
n

10
/2

3/
13

. F
or

 p
er

so
na

l u
se

 o
nl

y.

For Research Only

with respect to speci¯ed crosscutting requirements. Two case studies have been

carried out to demonstrate the feasibility and e®ectiveness of our approach. Con-

cerning the future work, we will focus on testing system implementations against

aspect-oriented models have been veri¯ed.

Acknowledgments

We would like to thank Professor Karsten Wolf at University Bamberg, who is the

author of LoLA, for his help in dealing with problems encountered when integrating

LoLA into our tool Jasmine-AOV. This work is supported by the National Natural

Science Foundation of China (Nos. 91118007, 61021062, 61170066), and by the

National 863 High-Tech Program of China (No. 2012AA011205). The preliminary

version of this paper is published in SEKE 2012 [20].

Appendix A. Proof of Theorem 1

Theorem 1. Given an Activity Diagram AD ¼ ðN ;E;F Þ, and the corresponding

PN4AD ¼ ðP ;T ;TA;A;M0Þ, for any path ep of AD, there must be a path pnp of

PN4AD, and the action trail �(ep) is equivalent with the action trail �(pnp), vice versa.

To prove this theorem, on one hand, we need to prove for any path in AD, ep ¼
N0 �!

E0
N1 �!

E1 � � � �!Em�1
Nm inAD, there is a legal path pnp ¼ M0 �!

t0
M1 �!

t1 � � � �!tn�1
Mn

in PN4AD which shares the same action trail with ep.

Proof. (by induction on the number of °ow edges in ep)

Basis: m ¼ 0; ep has only one node set N0, which contains nodes without any

incoming edges (initial and receive signal nodes), according to the transformation

rules, for each of the node in N0, we have initial marking M0 � PN4AD.P , and since

the place in M0 doesn't have incoming arcs, then it holds a token. Therefore, pnp ¼
M0 is a legal path in PN4AD. Clearly, their action trails are the same.

Induction Hypothesis: Assume this argument holds for all the pre¯x paths

epk ¼ N0 �!
E0

N1 �!
E1 � � � �!Ek�1

Nk in ep with number of °ow edges smaller than k, where

m > k
 0.

Induction Step: Let epkþ1 ¼ N0 �!
E0

N1 �!
E1 � � �Nk �!

Ek
Nkþ1 be the pre¯x of ep

with kþ 1 °ow edges. As Nk �!
Ek

Nkþ1, and Nkþ1 ¼ fNkfnkgg [fnkþ1 j ðnk; ekÞ 2
F ^ ðek;nkþ1Þ 2 F ^ ek 2 Ekg, we will discuss di®erent kinds of nk accordingly.

. Obviously, if nk is a ¯nal node, then the argument holds.

. If nk is a decision node or merge node, there is a corresponding place pj inPN4AD.P ,

as there is a path pnpjþ1 ¼ M0 �!
t0

M1 �!
t1 � � � �!tj�1

Mj �!
tj

Mjþ1 in PN4AD equiva-

lent with ep, pj must holds a token and pj 2 Mj.

W If nkþ1 is a decision node or merge node or ¯nal node, there is a corresponding

place pjþ1 in PN4AD. According to the transformation rule, one transition tj

Verifying Aspect-Oriented Models Against Crosscutting Properties 671

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
01

3.
23

:6
55

-6
76

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 N
A

N
JI

N
G

 U
N

IV
E

R
SI

T
Y

 o
n

10
/2

3/
13

. F
or

 p
er

so
na

l u
se

 o
nl

y.

For Research Only

and two arcs will be added into PN4AD.T and PN4AD.A to connect pj and

pjþ1, as pj holds a token, then tj is enabled. So we can ¯re transition tj in

PN4AD and get a new marking Mjþ1, which is Mj � fpjg þ fpjþ1g, so we can

get a path pnpjþ1 ¼ M0 �!
t0

M1 �!
t1 � � � �!tj�1

Mj �!
tj

Mjþ1 in PN4AD. As epk and

pnpj shares the same action trail, and during the kþ 1th step in ep and jþ 1th

step in pnp, there is no action node related behavior, the corresponding action

trails both remain the same. Note, we do not consider the potential impact of

the successor of pnpjþ1 to enabled Mkþ1 here, as it is still unseen so far.

W If nkþ1 is an action node, fork node or join node, there is a corresponding tran-

sition tjþ1 in PN4AD:T . nkþ1 is ¯reable means all predecessor nodes of nkþ1 are

contained in Nk. So for the corresponding transition tjþ1 in PN4AD.T , all pre-

decessor places of tjþ1 are contained in Mj. As a result, transition tjþ1 after Mj,

which is generated from nkþ1, is the next transition to be ¯red for pnpj inPN4AD.

� If nkþ1 is a fork or join node, similar with above proof, nothing is related with

action node. Thus, the action trails keep the same and still equivalent with

each other.

� If nkþ1 is an action node, nkþ1 will appear in the end of �(epkþ1Þ. On the other

side, as tjþ1 is added after pnpj,Mj will be updated with tjþ1. Therefore, both

the action trail of epk and pnpj will be updated with nkþ1, and thus still keeps

the same.

. If nk is an action node or join node, there is a corresponding transition tj in

PN4AD.T . As pnpj is a legal path in PN4AD, tj is enabled.

W If nkþ1 is a decision node or merge node or ¯nal node, there is a corresponding

place pjþ1 inPN4AD. According to transformation rule, an arc will be add from tj

to pjþ1, so pnpjþ1 ¼ M0 �!
t0

M1 �!
t1 � � � �!tj�1

Mj �!
tj

Mjþ1, (Mjþ1 ¼ Mj � �tj þ
fpjþ1gÞ, is a legal path inPN4AD. As bothnk and tj are dismissed from the current

action trail, the action trail of epkþ1 and pnpjþ1 keeps the same. Similarly,

the potential impact of the transitions enabled by Mjþ1 is not considered here.

W If nkþ1 is an action node, fork node, or join node, there is a corresponding

transition tjþ1 in PN4AD.T . According to the rule, a place pjþ1 and two arcs

will be added to connect tj and tjþ1. The ¯re of tj makes pjþ1 contains a

token. As a result, tjþ1 is enabled in PN4AD, and the path pnpjþ1 ¼ M0 �!
t0

M1 �!
t1 � � � �!tj�1

Mj �!
tj

Mjþ1, (Mjþ1 ¼ Mj � �tj þ pjþ1Þ, is a legal path in

PN4AD.

� If nkþ1 is a fork or join node, similar with above proof, only nk is dismissed

from both action trails. Thus, the action trails keep the same and still

equivalent with each other.

� If nkþ1 is an action node, nk will be dismissed while nkþ1 will appear in the

end of �(epkþ1Þ. On the other side, as tjþ1 is added after pnpj, Mj will be

updated with tjþ1. Therefore, both the action trail of epk and pnpj will be

updated with nk and nkþ1, and thus still keeps the same.

672 Z. Cui et al.

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
01

3.
23

:6
55

-6
76

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 N
A

N
JI

N
G

 U
N

IV
E

R
SI

T
Y

 o
n

10
/2

3/
13

. F
or

 p
er

so
na

l u
se

 o
nl

y.

For Research Only

. If nk is a fork node, there is a corresponding transition tj in PN4AD.T . As pnpj is

a legal path in PN4AD, tj is enabled as well. For any fnkþ1;i j ðnk; ekÞ 2 F ^
ðek;nkþ1;iÞ 2 F , where ek 2 Ekg
W If nkþ1;i is a decision node or merge node or ¯nal node, there is a corresponding

place pjþ1;i in PN4AD. According to transformation rule, an arc will be

added from tj to pjþ1;i. After Ek is ¯red, tj will be ¯red in PN4AD and pjþ1;i will

holds a token. So the path pnpjþ1 ¼ M0 �!
t0

M1 �!
t1 � � � �!tj�1

Mj �!
tj

Mjþ1,

ðpjþ1;i 2 Mjþ1Þ, is a legal path in PN4AD. Similar with above, as nothing re-

lated to action nodes is performed in the above step, and the potential impact of

the so far invisible transitions after pnpjþ1 is not considered, the action trail

keeps the same with each other.

W If nkþ1;i is an action node, fork node, or join node, there is a corresponding

transition tjþ1;i in PN4AD.T . According to the rule, an place pjþ1;i and two arcs

will be added to connect tj and tjþ1;i. After Ek is ¯red, tj will be ¯red in PN4AD,

pjþ1;i will hold a token, and tjþ1;i is enabled. So the path pnpjþ1 ¼ M0 �!
t0

M1 �!
t1 � � � �!tj�1

Mj �!
tj

Mjþ1, ðpjþ1;i 2 Mjþ1Þ, is a legal path in PN4AD.

� If nkþ1;i is a fork or join node, the above step has nothing to do with action

nodes. Thus, the action trails keep the same and still equivalent with each

other.

� If nkþ1;i is an action node, nkþ1;i will appear in the end of �(epkþ1Þ. On the

other side, as tjþ1;i is added after pnpj, Mj will be updated with tjþ1;i.

Therefore, both the action trail of epk and pnpj will be updated with nkþ1;i,

and thus still keeps the same.

Above all, given any path ep in AD, there is a corresponding path pnp in PN4AD

shares the same action trail with ep.

The other direction of the theorem is that given any path in the generated

PN4AD, pnp ¼ M0 �!
t0

M1 �!
t1 � � � �!tn�1

Mn in PN4AD, there is a legal path ep ¼
N0 �!

E0
N1 �!

E1 � � � �!Em�1
Nm in AD which shares the same action trail with pnp.

Proof. (by induction on the number of transitions in pnp)

Basis: n ¼ 0, pnp ¼ M0,M0 � PN4AD:P is the initial marking in PN4AD.M0 is

the place set transformed from a node set N0 of AD. According to the transformation

rules, for each place inM0 is generated form a node without any incoming edges inN0

(initial and receive signal nodes). Clearly, the action trails are the same.

Induction Hypothesis: Assume this argument holds for all the pre¯x paths

pnp ¼ M0 �!
t0

M1 �!
t1 � � � �!tj�1

Mj in pnp with number of transitions smaller than j,

where m > j
 0.

Induction Step: Let pnpjþ1 ¼ M0 �!
t0

M1 �!
t1 � � � �!tj�1

Mj �!
tj

Mjþ1 be the pre¯x

of pnp with jþ 1 transitions. As Mj �!
tj

Mjþ1, and Mjþ1 ¼ Mj � �tj þ tj
�. We will

Verifying Aspect-Oriented Models Against Crosscutting Properties 673

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
01

3.
23

:6
55

-6
76

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 N
A

N
JI

N
G

 U
N

IV
E

R
SI

T
Y

 o
n

10
/2

3/
13

. F
or

 p
er

so
na

l u
se

 o
nl

y.

For Research Only

discuss di®erent kinds of tj accordingly.

. If tj is an auxiliary transition. According to the transformation rules, �tj ¼ fpjg,
tj

� ¼ fpjþ1g, pj, pjþ1 are two places transformed from nk and nkþ1, respectively.

And in AD, nk and nkþ1 are two initial, ¯nal, decision, or merge nodes, the aux-

iliary transition tj and two arcs are transformed form ek, which start from nk to

nkþ1, to connect pj and pjþ1. Therefore, epkþ1 ¼ N0 �!
E0

N1 �!
E1 � � �Nk �!

Ek
Nkþ1,

ðNkþ1 ¼ fNk � fnkgg [fnkþ1 j ðnk; ekÞ 2 F ^ ðek, nkþ1Þ 2 F ^ ek 2 EkgÞ, is a legal

path in AD. As there is no action node related behavior, the action trails of pnpjþ1

and epkþ1 keeps the same. The potential impact of the successor nkþ1 is not con-

sidered here, as it is still unseen so far.

. If tj is not an auxiliary transition, then tj is a transition transformed from nkþ1 in

AD, which is an action, fork or join node. For any pj;i 2 �tj
W If pj;i is an auxiliary place. Assume fpj;ig � tj�1

�, according to the transfor-

mation rule, tj�1, tj are two transitions transformed from nk and nkþ1, re-

spectively. And in AD, nk is also an action, fork, or join node, the auxiliary

place and two arcs are transformed form ek, which start from nk to nkþ1,

to connect tj�1 and tj.Therefore,epkþ1 ¼ N0 �!
E0

N1 �!
E1 � � �Nk �!

Ek
Nkþ1, ðNkþ1 ¼

fNk � fnkgg [fnkþ1 j ðnk; ekÞ 2 F ^ ðek, nkþ1Þ 2 F ^ ek 2 EkgÞ, is a legal path

in AD.

� If nkþ1 is a fork or join node, similar with above proof, nothing is related with

action node. Thus, the action trails keep the same and still equivalent with

each other.

� If nkþ1 is an action node, nkþ1 will appear in the end of �(epkþ1Þ. On the

other side, as tj is added after pnpjþ1, Mj will be updated with tj. Therefore,

both the action trail of epk and pnpj will be updated with tj, which is

transformed form nkþ1, and thus still keeps the same.

W If pj;i is not an auxiliary place, then pj;i is a place transformed from nk.

In AD, nk is an initial, ¯nal, decision, or merge node, an arc is transformed

form ek, which start from nk to nkþ1, to connect pj;i and tj. Therefore,

epkþ1 ¼ N0 �!
E0

N1 �!
E1 � � �Nk �!

Ek
Nkþ1ðNkþ1 ¼ fNk � fnkgg[fnkþ1 j ðnk; ekÞ 2

F ^ ðek;nkþ1Þ 2 F ^ ek 2 EkgÞ, is a legal path in AD.

� If nkþ1 is a fork or join node, similar with above proof, nothing is related with

action node. Thus, the action trails keep the same and still equivalent with

each other.

� If nkþ1 is an action node, nkþ1 will appear in the end of �ðepkþ1Þ. On the other

side, as tj is added after pnpjþ1, Mj will be updated with tj. Therefore, both

the action trail of epk and pnpj will be updated with tj, which is transformed

form nkþ1, and thus still keeps the same.

Above all, given any path pnp in PN4AD, there is a corresponding path ep in AD

shares the same action trail with pnp.

674 Z. Cui et al.

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
01

3.
23

:6
55

-6
76

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 N
A

N
JI

N
G

 U
N

IV
E

R
SI

T
Y

 o
n

10
/2

3/
13

. F
or

 p
er

so
na

l u
se

 o
nl

y.

For Research Only

Therefore, for any path ep of AD, there must be a path pnp of PN4AD, and the

action trail �(ep) is equivalent with the action trail �(pnp), vice versa.

References

1. G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. V. Lopes, J.-M. Loingtier and
J. Irwin, Aspect-oriented programming, in Proceedings of the Annual European Con-
ference on Object-Oriented Programming, 1997, pp. 220�242.

2. Z. Cui, L. Wang, X. Li and D. Xu. Modeling and integrating aspects with UML activity
diagrams, in Proceedings of the ACM Symposium on Applied Computing, 2009, pp.
430�437.

3. X. Li, Z. Liu, J. He and Q. Long, Generating a prototype from a UML models of system
requirements, in Distributed Computing and Internet Technology, LNCS, Vol. 3347, 2005,
pp. 135�154.

4. A. Fischer, Mapping UML designs to java, in Proceedings of the 15th ACM SIGPLAN
Conference on Object-Oriented Programming, Systems, Languages, and Applications,
2000, pp. 178�187.

5. L. Wang, J. Yuan, X. Yu, J. Hu, X. Li and G. Zheng, Generating test cases from UML
activity diagram based on gray-box method, in Proceedings of the 11th Asia-Paci¯c
Software Engineering Conference, 2004, pp. 284�291.

6. C. Nebut, F. Fleurey, Y. L. Traon and J. Jezequel, Automatic test generation: A use case
driven approach, IEEE Transactions on Software Engineering 32(3) (2006) 140�155.

7. M. Chen, X. Qiu, W. Xu, L. Wang, J. Zhao and X. Li, UML activity diagram based
automatic test case generation for java programs, The Computer Journal 52(5) (2009)
545�556.

8. OMG, UML Superstructure v2.1, http://www.omg.org/technology/documents/formal/
uml.htm.

9. T. Murata, Petri nets: Properties, analysis and applications, in Proceedings of the IEEE,
Vol. 77, No. 4 Apr 1989, pp. 541�580.

10. G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm and W. G. Griswold,
An overview of AspectJ, in Proceedings of the Annual European Conference on Object-
Oriented Programming, 2001, pp. 327�353.

11. E. M. Clarke and E. A. Emerson, Design and synthesis of synchronization skeletons using
branching-time temporallogic, in Proceedings of Logic of Programs, 1981, pp. 52�71.

12. K. Schmidt, LoLA: A low level analyser, in Proceedings of the Application and Theory of
Petri Nets, 2000, pp. 465�474.

13. H. St€orrle, Semantics of control-°ow in UML 2.0 activities, in Proceedings of the IEEE
Symposium on Visual Languages ��� Human Centric Computing, 2004, pp. 235�242.

14. H. St€orrle, Structured nodes in UML 2.0 activities, Nordic Journal of Computing 11(3)
(2004) 279�302.

15. J. Whittle and J. Araujo, Scenario modelling with aspects, in IEEE Software 151(4)
(2004) 157�172.

16. A. Sampaio, A. Rashid, R. Chitchyan and P. Rayson, EA-Miner: Towards automation in
aspect-oriented requirements engineering, Transactions on Aspect-Oriented Software
Development III, LNCS, Vol. 4620, pp. 4�39.

17. D. Xu, O. E. Ariss, W. Xu and L. Wang, Aspect-oriented modeling and veri¯cation with
¯nite state machines, Journal of Computer Science and Technology 24(5) (2009) 949�961.

18. G. Denaro and M. Monga, An experience on veri¯cation of aspect properties, in Pro-
ceedings of the 4th International Workshop on Principles of Software Evolution, 2001, pp.
186�189.

Verifying Aspect-Oriented Models Against Crosscutting Properties 675

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
01

3.
23

:6
55

-6
76

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 N
A

N
JI

N
G

 U
N

IV
E

R
SI

T
Y

 o
n

10
/2

3/
13

. F
or

 p
er

so
na

l u
se

 o
nl

y.

For Research Only

19. N. Ubayashi and T. Tamai, Aspect-oriented programming with model checking,
in Proceedings of the 1st International Conference on Aspect-Oriented Software Devel-
opment, 2002, pp. 148�154.

20. Z. Cui, L. Wang, X. Liu, L. Bu, J. Zhao and X. Li, Verifying aspect-oriented activity
diagrams against crosscutting properties with Petri net analyzer, in Proceedings of the
24th International Conference on Software Engineering and Knowledge Engineering,
2012, pp. 369�374.

676 Z. Cui et al.

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
01

3.
23

:6
55

-6
76

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 N
A

N
JI

N
G

 U
N

IV
E

R
SI

T
Y

 o
n

10
/2

3/
13

. F
or

 p
er

so
na

l u
se

 o
nl

y.

For Research Only

