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ABSTRACT

Memory leaks have significant impact on software availability, per-
formance, and security. Static analysis has been widely used to
find memory leaks in C/C++ programs. Although a static analysis
is able to find all potential leaks in a program, it often reports a
great number of false warnings. Manually validating these warn-
ings is a daunting task, which significantly limits the practicality
of the analysis. In this paper, we develop a novel dynamic tech-
nique that automatically validates and categorizes such warnings
to unleash the power of static memory leak detectors. Our tech-
nique analyzes each warning that contains information regarding
the leaking allocation site and the leaking path, generates test cases
to cover the leaking path, and tracks objects created by the leaking
allocation site. Eventually, warnings are classified into four cate-
gories: MUST-LEAK, LIKELY-NOT-LEAK, BLOAT, and MAY-
LEAK. Warnings in MUST-LEAK are guaranteed by our analysis
to be true leaks. Warnings in LIKELY-NOT-LEAK are highly likely
to be false warnings. Although we cannot provide any formal guar-
antee that they are not leaks, we have high confidence that this is the
case. Warnings in BLOAT are also not likely to be leaks but they
should be fixed to improve performance. Using our approach, the
developer’s manual validation effort needs to be focused only on
warnings in the category MAY-LEAK, which is often much smaller
than the original set.

Categories and Subject Descriptors

D.2.4 [Software Engineering]: Software/Program Verification—
Reliability; D.2.5 [Software Engineering]: Testing and Debug-
ging—Debugging aids

General Terms

Performance, Reliability, Experimentation
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1. INTRODUCTION
Memory leaks are an important source of severe memory errors

that can significantly reduce the availability, performance, and se-
curity of real-world programs. According to the US-CERT Vul-
nerability Notes Database [3], 39% of all reported vulnerabilities
since 1991 were caused by memory leaks or memory corruption.
In an unmanaged language such as C/C++, memory allocation and
deallocation needs to be managed explicitly and manually by devel-
opers, which can easily lead to memory errors and vulnerabilities.
A memory leak is a common memory error that occurs when a dy-
namically allocated object becomes unreachable. For example, if
a developer creates an object (e.g., using malloc) but forgets to
release it (e.g., using free) after it is no longer needed, the mem-
ory space consumed by the object cannot be reclaimed and reused,
leading to reduced memory resource and diminished program per-
formance.

Research Problem Both static [52, 44, 32, 31, 15] and dy-
namic program analysis [28, 40, 45, 43, 16] techniques have been
attempted to find memory leaks in C/C++ programs. A static anal-
ysis often formulates memory leak detection as a source-sink prob-
lem, where object allocation sites and their corresponding dealloca-
tion sites are considered as the sources and the sinks, respectively.
Because a memory leak exists only in certain control flow paths,
most static leak detectors are path-sensitive—among all paths that
pass an allocation site, those that do not contain its corresponding
deallocation site are identified and reported. When such paths are
executed, the object(s) created by the allocation site may not be
freed, and thus memory leaks may result. A sound static analysis is
able to detect all potential memory leaks in a program; in addition,
the analysis needs not run the program and thus does not introduce
any execution overhead. Due to these desirable properties, static
memory leak detectors have gained much popularity in both aca-
demic research and real-world software development. Commercial
static analysis tools that can detect memory leaks include, for ex-
ample, HP Fortify [7], Klocwork [2], and Coverity [5]. These tools
have been widely used to help real-world developers find leaks and
other memory errors.

However, a highly precise static analysis usually cannot scale to
large code base. To find an appropriate balance point, analysis accu-
racy is often sacrificed for scalability, leading to imprecise model-
ing of many important program properties such as heap objects and
path information. In addition, due to the complex pointer arithmetic
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Figure 1: Priority comparisons among the four categories.

operations used widely in C/C++ and the extremely large number of
paths in a real-world program, a static analysis often ends up report-
ing a sea of likely warnings with true problems being buried among
them, which significantly limits its real-world usefulness [10]. Our
experience shows that even a commercial (and mature) static mem-
ory leak detector like HP Fortify [7] can report a great number of
warnings for a moderate-sized program. Manually inspecting all
of the warnings to find true leaks is a daunting task that can be
extremely tedious, labor-intensive, and time-consuming.

Our Proposal In this paper, we propose a novel approach that
reduces the human validation effort by dynamically classifying stat-
ically generated memory leak warnings. This proposed approach
takes a report produced by a static leak detector as input and auto-
matically generates test cases (using concolic testing [23, 48])) to
validate each warning in the report. Our approach works for any
static memory leak detector that reports the following three pieces
of information: (1) an allocation site a, (2) a control flow path frag-
ment p (i.e., a set of branches) on which a is located, and (3) a
program point e on p (often a function return point) such that a
run-time object created by a may become unreachable when the
execution passes e. The basic idea of our approach is to use path

information p to direct the concolic testing engine to generate test

cases to cover p and then dynamically track each object created

by a in the test runs to validate whether it leaks. Given the fact
that almost all existing (path-sensitive) static leak analyses produce
these three pieces of information, our approach can be used imme-
diately to improve the usefulness of dozens of off-the-shelf static
memory leak detection tools. In this paper, we use HP Fortify as
an example frontend. Fortify is a commercial tool used widely in
industrial software development. The effectiveness of our approach
on Fortify demonstrates its broad applicability in other (research or
industrial, prior or future) static leak detectors.

Particularly, the proposed dynamic approach classifies static mem-
ory leak warnings into four categories: MUST-LEAK, LIKELY-
NOT-LEAK, BLOAT, and MAY-LEAK. A warning is labeled MUST-
LEAK if we can generate a test case that triggers the leak; If the
leak cannot be found in any generated test runs, we have a high con-
fidence that the warning is a false warning (while we cannot provide
any guarantee), and thus, we label it LIKELY-NOT-LEAK. If the
dynamic analysis finds that the reported object is released in the end
(i.e., not a leak) but it is not used for a long time (i.e., stale), we label
it BLOAT. Finally, the warnings that could not be classified in any
of these three categories are labeled MAY-LEAK; for these warn-
ings, our approach could not provide any useful information and the
developer has to manually validate them. Figure 1 shows compar-
isons of the leak fixing priority and the validation priority among
these four categories. It is easy to see that MUST-LEAK warnings
need to be immediately fixed while MAY-LEAK warnings need to
be carefully validated. During our experiments, we found MAY-
LEAK is often a very small set and validating them may only need
a very small amount of manual work. While our technique is de-
signed to validate memory leak warnings, it can be easily adapted
to save validation effort for a variety of path-sensitive static analy-
ses.

MAY-LEAK = 

(T U F) Ú (BLOAT U 

MUST-LEAK U 

LIKELY-NOT-LEAK)

BLOAT (Cb)T (C1) F ( C1)

MUST-LEAK (Cw)

LIKELY-NOT-LEAK 

(Cs)

Figure 2: A graphical illustration of the four categories.

Section 2 gives an overview of our technique using concrete
examples. Section 3 and Section 4 present, respectively, a for-
mal model of our analysis that explains what our analysis com-
putes exactly and our detailed analysis algorithms. Our experimen-
tal results are shown in Section 5. We have run our analysis on
the warnings generated by Fortify for 11 programs from various
benchmark suites. Among a total of 246 warnings, our analysis is
able to automatically classify that 112 are MUST-LEAK warnings,
38 are LIKELY-NOT-LEAK warnings, 38 are BLOAT warnings,
and 58 are MAY-LEAK warnings. The number of warnings that
need manual validation has been reduced from 246 to 58. Our re-
sults also demonstrate, empirically, that warnings labeled LIKELY-
NOT-LEAK are highly unlikely to be leaks—we have manually in-
spected all the LIKELY-NOT-LEAK warnings and have not found
any true leak among them.

The major contributions of this paper are as follows:

• A novel classification system for validating static memory
leak warnings;

• a novel dynamic analysis algorithm that achieves the classifi-
cation by combining the path-guided concolic testing and the
object-based state tracking;

• an implementation of this technique that uses HP Fortify as
the frontend static analysis and the modified CREST con-
colic testing engine [6] as the test case generation tool;

• a comprehensive evaluation on a set of 11 programs. Our
approach has successfully reduced the number of warnings
that need to be manually validated by 76.4%. These promis-
ing initial results strongly indicate that this technique can be
used in practice to improve the usefulness of real-world static
leak detection tools.

2. OVERVIEW
This section presents an overview of the proposed approach. We

first discuss the general idea of the technique and then use a simple
example to illustrate how this technique works.

2.1 Basic Idea
Ideally, the goal of our work is to classify each warning as either

a true warning or a false warning, so that the manual validation ef-
fort can be completely saved. In this ideal situation, all static warn-
ings can be clearly divided into the true set (denoted by T) and
the false set (denoted by F). The F set can be directly discarded
while the T set can be sent back to the developers for inspection
and fixes. Given a warning with allocation site information a, path
information p, and program point e, the warning is a true warn-
ing if, in some execution, we can find an object created by a that
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1 char* foo(int size){

2 char* result;

3 if(size>0){

4 result=(char*)malloc(

size*sizeof(char)); // a

5      }

6 if(size>10){

7          return NULL; // e

8      }

9 return result;

10}

11 int main() { 

12    int i;

13    char *ptr;

14    scanf("%d",&i);

15    ptr = foo(i);

16    if(i > 0 && ptr) {

17        … //use ptr

18        free(ptr);

19    }           

20}

Fortify Output:

a: line 4;  p: 3T  4  6T  7; e: line 7 

(a) MUST-LEAK

1 char* ptrArr[256]; // global array

2 unsigned int index = 0; //current index

3 void addToGlobal(char * p) { ptrArr[index++] = p; }

4 void foo(int len) {

5     char *p, fastbuf[10];

6     if (len <= 10) 

7         p = fastbuf;

8     else{

9        p = (char *)malloc(len);       //  a

10       addToGlobal(p);                 // add p to ptrArr

11   } 

12   return; //  e

13}

(b) LIKELY-NOT-LEAK

14 int main() {

15 int len, i, j;

16 scanf("%d",&len);

17    for (j = 0; j < 10; j++)  addToGlobal(...);

18    foo(len);

19    for(i = 0; i < index; i++) {

20 write(ptrArr[i]); //use site

21    }   

22    freePtrArr();     //free all Objects in ptrArr

23 }

Fortify Output:   a: line 9;  p: 6F  9  12; e: line 12

14 int main(){

15 int len,i, j;

16 scanf("%d",&len);

17    for (j = 0; j < 10; j++) addToGlobal(...);

18    foo(len);

19    for(i = 0; i < 10; i++) {

20 write(ptrArr[i]);

21    }   

22    freePtrArr(); //free all objects ptrArr

23 }

(c) BLOAT

Figure 3: Code examples, Fortify warnings, and our classifications.

does not have any incoming reference right after e (i.e., condition
C1). Conversely, the warning is a false warning if, in all possible
executions, all objects created by a have incoming references after
e (i.e., condition ¬C1). However, it can be extremely difficult to
precisely distinguish true warnings from false warnings—the unre-
stricted type conversions and the heavy use of pointer arithmetic
in C/C++ make it particularly difficult to understand exactly the
number of incoming references for a run-time object. For example,
LeakPoint [16] employs a complicated case analysis to propagate
reference information for different kinds of arithmetic operations.
Doing this requires expensive whole-program instrumentation and
data flow tracking. Using the approach to validate hundreds of
static analysis warnings may take a considerable amount of time
(because the validation of each warning often needs many test runs),
leading to reduced usefulness and practicality.

To solve the problem, we relax the requirement (of tracking pointer
reference counts). Instead of verifying condition C1, we use a new
condition to approximate T. This condition is weaker than C1 but is
much easier to check. Particularly, for a warning, we check whether
there exists a test execution in which an object created by the re-
ported leaking allocation site a is not reclaimed (freed) at the end

of the execution (i.e., condition Cw). This condition is easier to
check because the expensive pointer-based reference tracking is re-
duced to the object-based state tracking. Tracking object state is
much more efficient because, for each warning, there is often a very
small number of objects created by its reported leaking allocation
site. Only these objects need to be tracked for verifying Cw, while
verifying C1 requires instrumenting all stack/heap read/write state-
ments, and tracking pointer propagation throughout the execution.
If Cw holds for the warning, we are certain that the warning is a
true leak, although the object may not necessarily lose all its refer-
ences at point e. This warning is then classified into the category
MUST-LEAK.

If Cw does not hold for a warning, it does not necessarily mean
that it is a false warning. This is because we may not have suffi-
cient test cases to cover certain control flow paths during validation
and a leak may occur on such a path. While the concolic testing

engine we employ can achieve a high path coverage, there is no
guarantee that all paths containing fragment p can be executed, es-
pecially in large programs whose inputs are pointers and memory
graphs. It is often challenging for concolic testing to generate such
non-trivial program inputs. As a result, it can be very difficult to
tell, definitively, whether a warning is a false warning. In order to
help the developer further reduce her validation effort, we create a
category called LIKELY-NOT-LEAK, based on an important obser-
vation that there is often a large set of warnings for which no leaks
can be seen in all tests executed during our automated validation.
While we cannot provide any guarantee that they are not leaks, we
are highly confident that this is the case. In other words, we want
to use LIKELY-NOT-LEAK to approximate F.

We use directed concolic testing to generate as many test cases
to cover p as possible. More precisely, for a particular warning,
if, in all tests executed, all objects created by the reported leaking
allocation site a are reclaimed at the end of the execution, we have
confidence that the warning is a false warning. To further increase
our confidence, an even stronger condition is used for identifying
LIKELY-NOT-LEAK warnings, that is, all objects created by a in
all our tests (1) are accessed after point e and (2) are reclaimed
in the end (i.e., condition Cs). Warnings that satisfy Cs indicate
that the reported objects are actually used after the reported leaking
points and thus they are highly unlikely to be leaks. Hence, for the
developer, the priority of manually validating LIKELY-NOT-LEAK
warnings is very low.

Certain warnings do not satisfy part (1) of Cs. For these warn-
ings, all objects created by a are reclaimed at the end of the execu-
tion, but some of them are never used after point e (i.e., condition
Cb). Although these objects are not leaking, they are stale and
should be reclaimed earlier for improved performance. Such warn-
ings are classified into the category BLOAT. Inspecting and fixing
problems in BLOAT is not urgent. It can be done only when clear
performance degradation is seen.

If no test case can be generated to cover p (e.g., the path con-
straints are too difficult to solve), the warning is put into the cate-
gory MAY-LEAK. We neither can prove it is a leak nor have confi-
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dence that it is not a leak. The developer’s validation priority should
be given to these warnings in order to fully understand them. Our
experience shows that this set is often very small and, therefore, the
developer’s validation effort can be significantly reduced. A graph-
ical illustration of these categories is given in Figure 2. Sets T and
F are separated by a dash line. MAY-LEAK is represented by the
area not included in any of the three categories. Note that different
categories may have intersections. Details about these intersections
will be explained later in Section 3.

2.2 Example
Figure 3 shows three code examples, their warnings generated

from Fortify, and our classifications. Function foo in Figure 3 (a)
creates an object at line 4. Fortify reports that this allocation site
may create a leaking object. The path fragment p in the warning is
3T → 4 → 6T → 7 and the leaking point e is line 7. To validate
this warning, we first instrument the program by inserting code at
line 4, line 7, and the end of main to track the usage of the object(s)
created by a. Particularly, for each such object, we create a piece of
tracking data, which records the run-time state of the object. It is
updated once an important event (e.g., allocated, used, or released)
occurs to the object. Detailed discussion of the state update can
be found in Section 4. The tracking data for each tracked object is
inspected at the end of the execution to identify whether the object
is released and whether it is used after the leaking point.

We modify CREST, a concolic testing engine for C, to gener-
ate tests for the validation. Path information p is used to direct
CREST to efficiently generate tests to cover p. In particular, using
an interprocedural control-dependence analysis, we pre-compute a
path reachability table that contains, for each control-flow branch
in the program, a boolean flag indicating whether p can be poten-
tially reached from this branch. During the test generation, we do
not generate (and solve) constraints for a branch if its flag is false.
Hence, only relevant test cases that can drive the execution to p are
generated and run, leading to increased efficiency in both test case
generation and test executions. For our example in Figure 3 (a), a
test input len = 11 is generated. During the execution of the test,
the object created at line 4 is tracked. At the end of the execution,
we find that the object is not released. We therefore conclude that
this warning is a MUST-LEAK warning because a leaking evidence
has been found.

Figure 3 (b) and (c) show a LIKELY-NOT-LEAK warning and a
BLOAT warning, respectively. The two code examples differ only
in the loop variable at line 19. Fortify reports the same warning
for both programs. The warning suggests that the leak may occur
in function foo: the object created at line 9 is added into a global
array (declared in line 1), which makes Fortify determine that the
references of the object will be lost after foo returns. However, in
the end, all objects in the global array are freed (at line 23). Note
that such an object usage is very common, because a real-world pro-
gram often makes heavy use of user-defined data structures (such
as lists and maps). The imprecise handling of such data structures
can significantly limit the usefulness of Fortify (and other similar
static leak detectors).

Similarly, CREST generates a test input len = 11 to exercise
the reported path. The object created at line 9 is tracked during
the test execution. Note that when the object is added to the array
ptrArr at line 10, ptrArr already contains 10 elements (due
to the call at line 17). Hence, the object’s index in ptrArr is
10. In Figure 3 (b), the object is retrieved from the array and ac-
cessed at line 20, because the loop (at line 19) traverses the entire
array. The tracking data of the object is updated to a special state
(“Used”) upon the access of the object at line 20 and then updated

to “FreedAfterUsed” when it is freed at line 22. At the end of the
execution, we see that the object is used after the leaking point (line
12) and is eventually released, and thus, we put it into the category
LIKELY-NOT-LEAK.

If the loop variable in line 19 is changed to 10 (shown in Fig-
ure 3 (c)), the warning will be classified as BLOAT. Although the
object created at line 9 is released in the end, it is never used after
the execution passes line 12. This is because the loop (at line 19)
traverses only the first 10 elements in the array and thus this object
is not accessed. While this warning is not a leak, it points to an inef-
ficient implementation: if an object is no longer needed after a cer-
tain point, it should be freed right away. Warnings labeled BLOAT
in our work essentially correspond to memory leaks in managed
languages [56, 19, 41, 11, 33, 46, 29, 12, 13, 51, 55]—although
the virtual machine guarantees that such objects will be eventually
reclaimed, the accumulation of these objects can cause severe per-
formance degradation and even program crashes. If the SAT solver
determines that p is an infeasible path, we classify the warning also
as LIKELY-NOT-LEAK. Only warnings for which no test case can
be generated are classified into the category MAY-LEAK.

3. FORMAL DESCRIPTION
This section presents a lightweight formalism to define the four

categories and explains how warnings are classified by our analysis.
We first define a simple imperative language (a core subset of C) for
the formal development:

Variables u, v ∈ V

Labels l ∈ L

Integers n ∈ I

Predicates φ ∈ Φ

Statements e ∈ E

e ::= u =l v | u =l malloc(n) | u =l ∗v | ∗u =l v
lfree(u) | e ; e | if (φ) thenlT e elselF e

This language contains all important features of C that are nec-
essary for us to validate a memory leak warning. Each statement
e has a label l ∈ L that is used to identify e. For simplicity of the
presentation, function calls are not included in this language. They
can be thought of as being completely inlined into main. Based on
this language, we first give the definition of static leak warning as
follows:

Definition 1 (Static Leak Warning) A static warning w is a triple

(a, p = 〈lb11 , l
b2
2 , . . . , lbn

n 〉, e) where a, e, l1, l2, . . . , ln ∈ L, and

bi ∈ {T, F}. a and e are labels for a malloc statement and

for a statement at which an object created at a is considered to

lose all its references by the static analysis, respectively. Labels

〈lb11 , l
b2
2 , . . . , lbn

n 〉 identify a chain of branches, forming a path frag-

ment containing a and e.

In most cases, 〈lb11 , l
b2
2 , . . . , lbn

n 〉 represents a path fragment that
begins at a and ends at e. Using φi to denote the predicate that
guards li, the leak validation test suite is defined as:

Definition 2 (Leak Validation Test Suite) Given a warning w =

(a, p = 〈lb11 , l
b2
2 , . . . , lbn

n 〉, e), a leak validation test suite Sw for w

contains a set of test cases (t1, t2, . . . , tn) such that the execution

of each test case ti satisfies the path constraint ϕ1 ∧ϕ2 ∧ . . .∧ϕn,

where ϕi = φi if bi = T; ϕi = ¬φi otherwise.

We say a leak validation test suite S is complete if for each pos-
sible CFG path that contains fragment p, there exists a test case
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Figure 4: An overview of our tool.

t ∈ S whose execution can cover the path. We use concolic testing
to generate as many test cases as possible to achieve high coverage.
However, there is no guarantee that S can be complete.

We use Oa,t to represent the set of run-time objects created by
the allocation site labeled a under test t. For each object o ∈
Oa,t, auxiliary boolean functions hasIR(o, e), isUsed(o, e), and
isFreed(o) return, respectively, whether the object has incoming
references right after the leaking point e, whether the object is used
after e, and whether it is finally reclaimed. A static leak warning w

(= (a, p, e)) is a true warning if we can generate a test suite Sw for
w such that the following condition (C1) holds.

∃t ∈ Sw: ∃o ∈ Oa,t: ¬hasIR (o, e) (C1)

As described earlier in Section 2.1, it can be very difficult to
precisely compute hasIR for each object, and thus, we use the fol-
lowing (weaker) condition (Cw) to approximate:

∃t ∈ Sw: ∃o ∈ Oa,t: ¬isFreed (o) (Cw)

Definition 3 (MUST-LEAK) A warning w is a MUST-LEAK warn-

ing if its test suite Sw satisfies Cw.

Because Cw is weaker than C1, MUST-LEAK (determined by
Cw) may contain false warnings. For such a warning (∈ MUST-
LEAK ∩ F in Figure 2), its reported object is indeed leaking, but
the point at which it loses its references is later than the reported
leaking point e. Fixing these warnings is necessary: they are true
leaks even if the reported path information and leaking point are
problematic.

It is important to note that if Sw is a complete test suite for w,
we would not even need to actively look for false warnings—w is
guaranteed to be a false warning if w does not satisfy Cw. How-
ever, all-paths test generation for general programs with aliases has
been shown to be NP-hard [36], and it is also impossible to know
whether Sw is complete if p involves complex program structures
such as loops and recursion. To approximate F, we use the follow-
ing condition (Cs) to find likely false warnings:

∀t ∈ Sw: ∀o ∈ Oa,t: isUsed (o, e) ∧ isFreed (o) (Cs)

Definition 4 (LIKELY-NOT-LEAK) A warning w is a LIKELY-NOT-

LEAK warning if (1) the path constraint ϕ1∧ϕ2∧ . . .∧ϕn ≡ false

or (2) its test suite Sw satisfies Cs.

First, if the path constraint generated for p is guaranteed to result
in false (which indicates that p is an infeasible path), w must be
a false report and, therefore, the warning is classified as LIKELY-
NOT-LEAK. w can also be classified as LIKELY-NOT-LEAK if,
in all test runs generated for the warning, all objects created by
the reported allocation site are used after the reported leaking point
and are eventually freed. A small portion of LIKELY-NOT-LEAK
warnings may be true leaks (i.e., LIKELY-NOT-LEAK ∩ T in Fig-
ure 2), because these warnings may exhibit leaks in certain paths
that have not been covered by our tests. However, we have not
found any warnings in this intersection in our experiments, either.
On the other hand, a false warning may not be classified as LIKELY-
NOT-LEAK if the reported object is freed before the reported leak-
ing point e (and hence it is never used after e). This situation is
also very rare, because a static analysis is often conservative and
e should always be the earliest program point at which the static
analysis determines that the object may lose all its references. The
following condition (Cb) defines the category BLOAT:

∀t ∈ Sw: (∀o ∈ Oa,t: isFreed (o)) ∧
(∃o ∈ Oa,t: ¬isUsed (o, e)) (Cb)

Definition 5 (BLOAT) A warning w is a BLOAT warning if its test

suite Sw satisfies Cb.

Similarly, BLOAT may contain true warnings (i.e., BLOAT ∩ T

in Figure 2) due to the insufficient path coverage.

Definition 6 (MAY-LEAK) A warning w is a MAY-LEAK warning

if (1) the path constraint ϕ1 ∧ϕ2 ∧ . . .∧ϕn 6≡ false and (2) Sw =

∅.

MAY-LEAK contains all the warnings such that their leaking
path p may be feasible but no test case can be generated to exer-
cise it. These warnings cannot be classified into any of the pre-
vious three categories and careful manual inspection needs to be
performed to validate them. For each warning w in LIKELY-NOT-
LEAK, it is clear to see that the higher path coverage the test suite
Sw can achieve, the more confident we are that w is not a leak.
Hence, an interesting further step would be to rank warnings in
LIKELY-NOT-LEAK based on the quality (e.g., coverage) of their
test suites Sw. In our work, however, we do not see a strong motiva-
tion to do so, because we have not found any true warnings that are
mistakenly classified as LIKELY-NOT-LEAK in our experiments.
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Figure 5: A test generation example; each circle represents a

conditional; the highlighted circles form the path fragment p

and the highlighted lines show the paths that we intend to gen-

erate tests to cover.

4. ANALYSIS ALGORITHMS
Tool Overview Figure 4 shows an overview of our tool. Given

a static leak warning w = (a, p, e), two pre-processing phases are
performed prior to the test case generation. In the first phase, the
target program is instrumented. The inserted code serves two ma-
jor purposes: (1) it declares symbolic variables and marks the path
fragment p in the source code for the subsequent path-directed con-
colic testing; (2) it tracks the usage of each run-time object created
by the reported allocation site a and updates its tracking data. The
second phase consists of a path reachability analysis, which is per-
formed on the CFG of the program to determine, for each control
flow branch, whether an execution following the branch could po-
tentially reach each branch on p. This analysis is straightforward: it
combines an intraprocedural control-dependence analysis with an
interprocedural call graph traversal. The concolic testing engine is
then modified to be aware of this reachability information so that
the test case generation is guided to explore only the paths that may
reach p, leading to a reduced search space in the symbolic execu-
tion. The tracking data for each tracked object is inspected at the
end of the execution to classify the warning.

Path-Guided Concolic Testing Algorithm 1 shows the algo-
rithm for the path-guided test generation. The algorithm is imple-
mented by modifying CREST [6], an existing concolic testing tool
for C. The input of the algorithm is the path fragment p of a warning
and a reachability map m (pre-computed by the reachability analy-
sis). The basic idea of the algorithm is to use m to direct CREST to
generate only the tests that can execute p. A graphical illustration
of the paths we want to generate tests to cover is given in Figure 5.

p is essentially a list of branch labels l0, l1, . . . , lk−1 reported
by the static analysis (i.e., Fortify). m maps each branch t in the
program to a reachability vector 〈b0, b1, . . . , bk−1〉. Each bi is a
boolean flag indicating whether t may reach branch li on p at run
time. Note that if t can reach branch li on p, it must also reach
all its following branches li+1, li+2, . . . , lk−1 (assuming that p is
a feasible path). We first run the target program with an initial set
of test cases (lines 3–5). The concolic execution of the program
(line 5) records all the branches that have been covered during the
run in B. For each branch label in B, the concolic testing engine
also records its corresponding predicate (expressed in terms of the
input symbolic variables) in C. The conjunction of the symbolic
predicates in C forms the path constraint for the current execution.
The original concolic testing algorithm (e.g., proposed in [48, 23])
generates new path constraints by negating the symbolic predicate
for each branch in the current execution. These new constraints are
solved to generate test cases to cover the alternative paths. While a

Algorithm 1 Path-Guided Test Input Generation

Input:
The path fragment p : 〈l0, l1, . . . , lk−1〉
Map m : 〈l, 〈b0, b1, . . . , bk−1〉〉 // computed by the reachability anal-
ysis

1: Array B ← {} //A branch label list
2: Array C ← {} //A symbolic predicate list
3: I ← InitTestInputs()
4: /*concolic execution of the program with an initial test suite I*/
5: Run(I, &B, &C)
6: PathGuidedSearch (B, C) //search for new test inputs
7:
8: Procedure PathGuidedSearch (Array B, Array C)
9: int count← 0

10: bool reachable ← TRUE
11: int n← length(B) - 1
12: for i← 0 to n do
13: if count < k then
14: reachable ← m(B[i])[count ]
15: end if
16: if reachable or count = k then
17: I

′

← solve(C[1] ∧ C[2] ∧ ... ∧C[i− 1] ∧ ¬C[i])

18: B
′

← {}

19: C
′

← {}

20: Run(I
′

,&B
′

, &C
′

)

21: PathGuidedSearch (B
′

, C
′

)
22: end if
23: if B[i] = lcount then
24: count ← count + 1
25: end if
26: end for

similar approach is employed in our work, we generate constraints
only for paths that may reach p.

Using lists B and C, procedure PathGuidedSearch in line 6 gen-
erates and solves new path constraints. Each iteration of the main
loop (lines 12–26) inspects a branch label B[i], and attempts to

generate test cases to cover its alternative branch (denoted as B[i]).
This is done by consulting with map m (line 14). We use a variable
count to track how many branches on p have already been reached
on the current execution path (lines 23–25). The initial value of
count is 0 (line 9). Before the first branch l0 is reached, we al-
ways check whether branch B[i] can reach l0 (line 14). Note that

the expression m(B[i])[count ] returns a boolean value indicating

whether B[i] can reach the count -th branch on p (i.e., lcount). If it
can, we negate its corresponding symbolic predicate C[i] to form
a new path constraint (line 17). This constraint is sent to a SAT
solver (i.e., Yices [4] in our work) in order to generate test inputs

to cover B[i].
If B[i] and l0 are the same label, count is incremented (line 24),

and hence, from the next iteration of the loop, we will check if

branch B[i + 1] can reach (the next) branch l1 on p. If, in a certain
iteration j of the loop, we find that all the branches l0, l1, . . . , lk−1

on p have been reached in the current execution (i.e., count = k),
all the subsequent iterations of the loop will no longer check branch

reachability. All branches B[h] and B[h] (h > j) will be reachable
from p, and thus, we will generate test cases to cover all of them to
track the reported objects after the leaking point e.

Update Tracking Data A piece of tracking data is maintained
for each object created by the reported allocation site. There are
multiple ways to maintain tracking data. For example, a shadow
heap [54, 42, 53] can be created so that each heap location has a
corresponding shadow location to store its tracking data. An al-
ternative approach [8] is to use a hash map to store tracking data
for each tracked object. We employ the hash-map-based approach
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Figure 6: The state machine of a tracked object.

in this work, because only a small number of objects need to be
tracked and it is thus not worth shadowing the entire heap.

The tracking data of each tracked object records the state of the
object. Figure 6 shows the state machine. The initial state of each
object is “Created”, and it transitions to “LP” when the execution
reaches the reported leaking point e. Upon the use of the object
(after e), its state becomes “UseAfterLP”. There are three “Freed”
states. The object reaches “Freed1” if it is freed before point e.
As described in Section 3, this case is extremely rare because the
static analysis is unlikely to report such warnings. State “Freed2”
is reached if a free call is executed on an object in state “LP”.
Objects in this state are likely to be bloat—the free call should
be made earlier to free them (immediately after they are no longer
used). The object will reach “Freed3” if it is used after the leak-
ing point and eventually freed. At the end of the execution, the
instrumentation code inspects tracking data for all tracked objects
to determine the results of auxiliary functions isUsed and isFreed.
isFreed(o) returns true if o is in any of the three “Freed” states.
isUsed(o, e) returns true if o’s tracking data is either “UseAfterLP”
or “Freed3”. These functions are then used to classify warnings (as
described in Section 3).

5. EVALUATION
Implementation Our instrumentation was performed using the

CIL1 instrumentation framework. The CREST [6] concolic testing
engine was modified to perform the path-guided test case gener-
ation. The static memory leak detector used in our experiments
was HP Fortify version 3.2. All experiments were executed on a
quad-core machine with an Intel Core (TM) i5-3360M 2.80GHz
processor, running Linux 3.2.0.

We performed two experiments to evaluate the effectiveness of
our validation approach. The first experiment is designed to assess
the precision of the classification technique and the second experi-
ment is designed to understand whether our approach can scale to
large applications. The goal of these experiments is to answer the
following four research questions:

• RQ1: How accurate is our classification system?

• RQ2: How much effort can a developer save by validating
static memory leak warnings using our technique?

• RQ3: How efficient is our technique?

1http://sourceforge.net/projects/cil/.

• RQ4: How does our technique perform on large-scale, real-
world applications?

Experimental Subjects We perform our first experiment using a
set of programs from the Siemens [27] (i.e., replace–tcas in Table 1)
and the coreutils [1] benchmark suites (i.e., the rest of the programs
in the table). These programs are relatively small and it is thus
easy for us to understand their implementation logic to manually
validate our classification results. To increase the number of static
analysis warnings for each program, we manually injected both true
and false leaks. The second experiment includes a case study on the
use of our tool to validate leaks for a large-scale application (i.e.,
texinfo-4.33). No leak injection was done for this application.

5.1 Experiment 1: Classification Accuracy and
Efficiency

For each program in Table 1, both true and false leaks were in-
jected. Injecting true leaks was done by randomly removing calls
to free. It is much more difficult to inject false leaks, because
whether or not the injected code can be detected as a leak depends
on the precision of the static analysis. As we did not have access
to Fortify’s implementation, we attempted a few different coding
patterns and ended up finding one pattern that could direct Fortify
to report false warnings. Particularly, we declared a global map
and added dynamically-allocated objects into the map. The entire
map is released at the end of execution (e.g., an example has been
shown in Figure 3). We inserted this code pattern at random places
in each program. To create BLOAT cases, we added code to re-
trieve a random number of elements in a global map before it is
released. If an object in the map is visited in the traversal, it should
be labeled LIKELY-NOT-LEAK; otherwise, it should be labeled
BLOAT. Manual injection of true/false leaks makes it easier for us
to assess the accuracy of our classification system—leak warnings
are created purposefully for different categories, and it is immedi-
ately clear whether or not our tool does the appropriate classifica-
tion by inspecting the classification results.

All the experimental data for these 10 programs is reported in
Table 1. Section (a) shows, for each program, the number of lines
of code (#LOC), the number of static analysis warnings Fortify
outputs (#W), and the number of test cases generated by our path-
guided test generation approach (#S). Section (b) shows our classi-
fication results (i.e., #Must for MUST-LEAK, #LNL for LIKELY-
NOT-LEAK, #B for BLOAT, and #May for MAY-LEAK). Section
(c) reports the numbers of warnings in the intersections between
various sets. Set T represents the set of true leaks including those
that exist in the original program and those that are injected by
ourselves. Hence, #(LNL ∩ T) and #(B ∩ T) represent, respec-
tively, the numbers of true leaks that are mistakenly classified into
LIKELY-NOT-LEAK and BLOAT. Section (d) reports our time and
space overhead measurements. T0 and T1 show, for each program,
the running times of executing all the tests without and with the
object state tracking, respectively. Similarly, Sp0 and Sp1 show the
peak memory consumptions without and with the object state track-
ing, respectively.

Our first observation is that, for each program, both (LNL ∩ T)
and (B ∩ T) are empty sets. This indicates that our approach has
not falsely classified any true leak and is thus highly precise. Our
detailed studies of the warnings suggest that the leaky behavior of a
true leak usually manifests quickly when its path fragment p is ex-
ercised in a test. Very often, a small number of test cases generated
to cover p are sufficient to reveal whether or not the warning is a
true leak. This observation confirms our assumption that if no leaky
behavior is seen in all tests generated for a warning, we have strong

For Research Only



Table 1: Categorized warnings: reported in Section (a) are lines of code (#LOC), numbers of warnings reported by Fortify (#W),

and execution frequencies of the leaking paths during path-guided concolic testing (#S); Section (b) reports numbers of warnings in

each of the four categories: MUST-LEAK (#Must), LIKELY-NOT-LEAK (#LNL), BLOAT (#B), and MAY-LEAK (#May); Section

(c) reports numbers of true leaks falsely classified into LIKELY-NOT-LEAK (LNL ∩ T) and BLOAT (B ∩ T), respectively; Section

(d) reports our overhead measurements including running times (T0 and T1) and peak memory consumptions (Sp0 and Sp1).
Program (a) General Info (b) Categorized Warnings (c) False Classifications (d) Performance

#LOC #W #S #Must #LNL #B #May #(LNL ∩ T) #(B ∩ T) T0 (s) T1 (s) Sp0 (Mb) Sp1 (Mb)

replace 563 18 3444 5 3 4 6 0 0 3.82 3.95 16.4 20.4
print_tokens 726 22 17383 8 4 6 4 0 0 3.7 5.0 16.9 20.6
print_tokens2 569 29 16943 8 7 9 5 0 0 4.2 4.7 22.1 22.2
tcas 173 8 54 1 4 1 2 0 0 0.06 0.07 15.6 19.8
wc 802 8 6000 2 2 2 2 0 0 10.5 15.5 17.1 22.8
cat 785 8 4002 2 1 2 3 0 0 16.9 26.2 15.7 19.9
head 1063 18 5007 4 6 2 6 0 0 12.2 17.4 16.3 20.5
tr 1949 32 37281 11 8 8 5 0 0 21.2 26.5 16.8 21.2
expand 433 6 3854 1 1 2 2 0 0 22.3 26.9 21.8 25.9
unexpand 535 6 3996 1 1 2 2 0 0 25.7 26.2 23.1 27.2

confidence that the warning is a false warning. As such, the devel-
oper does not need to put much effort in inspecting leaks classified
as LIKELY-NOT-LEAK and BLOAT.

Our second observation is that the MAY-LEAK category (shown
in column #May) is often very small. Our tool has successfully
reduced the number of warnings that need to be manually validated
by 76.1% (from 155 to 37). We have also inspected all the MAY-
LEAK warnings. We found that many warnings are classified into
this category because the injected code patterns causing them are in
control-flow regions that can only be executed by very complicated
test inputs. Generating test cases that trigger these regions is clearly
beyond the capabilities of the existing concolic testing techniques.
Among these 37 MAY-LEAK warnings, 13 warnings are true leaks.
These leaks can only be found by manual validation.

Our third observation is that the proposed technique (that com-
bines path-guided concolic testing and state-based object tracking)
is efficient. The execution of thousands of test cases for each pro-
gram takes only a very small amount of time and memory space.
The overall running time and space overheads incurred by the ob-
ject state tracking are 24.8% and 21.4%, respectively. Note that
these low overheads result primarily from the use of condition Cw

to approximate C1 —had the pointer-based reference tracking been
employed, the overhead would have increased to more than 100×
(e.g., the pointer-tracking approach used in LeakPoint [16] incurs a
100–300× time overhead).

5.2 Experiment 2: Scaling to a Large-Scale
Application

The second experiment evaluates the scalability of our technique.
We focus on a large-scale C program, called texinfo2, version 4.13.
texinfo is a text format transformation system that uses a single
source file to produce output in a number of formats, both online
and printed (dvi, html, info, pdf, xml, etc.). It has a total of 46493
lines of code. The input of this application has two components: a
file component that specifies the source file, and a command line
component that specifies ways to transform the file to generate out-
put. It can be extremely difficult for concolic testing to automat-
ically generate the file input. To solve the problem, we manually
wrote a source file for each acceptable input format, and let CREST,
our concolic testing engine, automatically generate the command
line input that chooses from this set of files to test the program.
It took us about 1.5 weeks to write these input files. Although
this work was done manually, it is not a major limitation of our
approach. This is because this need to manually write test cases

2http://www.gnu.org/software/texinfo/.

is due to the inability of concolic testing, which is not our contri-
bution; one can think of this set of inputs as the initial test cases
needed to drive concolic testing. In addition, typical real-world
programs often contain such inputs (used by their own developers),
which can be directly used to run our tool. In fact, we found that
this test generation approach combines the advantages of concolic
testing and manual test development. On one hand, it uses the de-
veloper’s insight to overcome the difficulty of the concolic testing
engine in generating tests with complicated structures, such as texts
with specific formats. On the other hand, it exploits concolic test-
ing’s path exploration to achieve high coverage for the command
line input, which can often be difficult for human developers to
achieve manually.

Fortify reports a total of 91 warnings for texinfo. Our analysis
has successfully classified 70 of them. For the rest (21) of the warn-
ings, no test case can be generated by CREST to exercise their re-
ported path fragments and thus they are classified as MAY-LEAK.
This is primarily because the path constraints for these warnings are
too complicated to solve. We expect that the size of this set will sig-
nificantly decrease in the future as more powerful solvers become
available. Among the 70 warnings that are precisely classified, the
numbers of warnings in MUST-LEAK, LIKELY-NOT-LEAK, and
BLOAT are, respectively, 69, 1, and 0. We have carefully inspected
all the MUST-LEAK warnings and found that, among the 69 warn-
ings, 59 were true leaks and the remaining 10 warnings were due
to the use of global pointers. These objects are referenced in global
data structures and are never freed during the program execution.
According to condition C1 , the path information contained in these
warnings is imprecise because the reported objects still have refer-
ences after the execution passes the leaking points. However, such
warnings reveal inefficiencies in the program that need to be fixed
for better performance—the accumulation of a large number of un-
necessarilly cached objects can easily lead to performance degra-
dation and even program crashes; developers should reclaim them
immediately after their last use.

We manually verified that the only LIKELY-NOT-LEAK warn-
ing is not a leak. Despite the many limitations of the concolic
testing engine we use, the proposed technique has successfully re-
duced the number of warnings that need to be manually validated
by 76.9%. The time and space overheads for running this applica-
tion are 77.5% (from 10.7s to 19.0s) and 26.4% (from 15.9Mb to
20.1Mb), respectively.
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5.3 Discussion
This subsection presents a discussion of our studies in order to

draw more general conclusions. In general, we found that our tech-
nique is useful in reducing the amount of manual effort to validate
static analysis warnings. When examining the results from Exper-
iment 1, we found that for all programs in our benchmark set, our
technique could accurately classify their static analysis warnings
as long as the path fragments in these warnings are exercised in
concolic testing. Furthermore, only a small number of warnings
could not be automatically validated. As such, for RQ1 and RQ2,
we assess that our classification system is accurate and significant

manual effort could be saved by validating static leak warnings us-

ing our approach.

In terms of analysis efficiency, we collected performance mea-
surements before and after our technique was used. When compar-
ing these measurements, we found that our technique incurs very
small time and space overheads. As such, for RQ3, we assess that

our technique is efficient and our approximations are effective. The

proposed approximations have led to a significantly more efficient

implementation and yet have not introduced any mistreatment and

imprecision.

In terms of analysis scalability, we evaluated our technique on
texinfo, a large, real-world application. We found that our tech-
nique could precisely classify most of static leak warnings and the
manual validation of all classified warnings shows that no true leak
has been falsely classified. As such, for RQ 4, we assess that our

technique can scale to large applications. Its scalability and the

effectiveness may further increase with the future advancement of

the SAT technology.

In summary, our experimental results suggest that the use of our
dynamic technique to classify static leak warnings provides an ef-
fective way to automatically valid these warnings in order to make
static memory leak detection more feasible and powerful for real-
world use.

Threats to Validity Threats to external validity arise when the
results of the experiment are unable to be generalized to other sit-
uations. In this experiment, we evaluated the accuracy of our clas-
sification system on a limited set of programs, and thus we are un-
able to definitively state that our technique will be accurate for real-
world programs in general. However, we are confident that these
results are indicative of the impacts of using the technique to vali-
date warnings for various kinds of real-world C/C++ programs.

Threats to construct validity arise when the metrics used for eval-
uation do not accurately capture the concepts that they are meant to
evaluate. Our experiments measured the reduction in manual vali-
dation effort only in terms of the size of the MAY-LEAK category.
Although these results give an indication of numbers of warnings
that do not need to be manually validated, they do not actually show
how these numbers will affect either the developer time or the dif-
ficulty of manually validating these warnings. Further studies that
involve users with different levels of programming skills and expe-
rience will be needed to understand the actual developer time saved
by using our automated validation system.

6. RELATED WORK
In this section, we focus our discussion on three major types of

techniques that are closely related to the proposed work: static and
dynamic memory leak detection, directed test case generation, and
techniques for ranking and pruning static leak warnings.

6.1 Static Memory Leak Detection
Static analysis has been widely used to find memory errors such

as double frees and missing frees for C/C++ programs. Work from

[15] reduces the memory leak analysis to a reachability problem on
the program’s guarded value flow graph, and detects leaks by identi-
fying value flows from the source (malloc) to the sink (free). Saturn
[52], taking another perspective, reduces the problem of memory
leak detection to a boolean satisfiability problem, and uses a SAT-
solver to identify potential bugs. Dor et al. [21] propose a shape
analysis based on 3-valued logic, to prove the absence of memory
leaks in several list manipulation functions. Hackett and Rugina
[26] use a shape analysis that tracks single heap cells to identify
memory leaks. Orlovich and Rugina [44] propose an approach that
starts by assuming the presence of errors, and performs a backward
dataflow analysis to disprove their feasibility. Clouseau [31] is a
leak detection tool that uses pointer ownership to describe variables
responsible for freeing heap cells and formulates the analysis as an
ownership constraint system. Work [32] proposes a type system to
describe the object ownership for polymorphic containers and uses
type inference to detect constraint violations. Recent work [49]
uses a full-sparse value-flow static analysis for leak detection. In
addition to the effort in the research community, commercial tools
such as Coverity [5], Fortify [7], and Klocwork [2] have gained
popularity in the real-world software development. However, it is
well-known that all static approaches are limited by the lack of gen-
eral, scalable, and precise reference/heap modeling. Despite a large
body of work on such modeling, it remains an open problem for
analysis of large real-world systems. Our technique is orthogonal
to all existing static detection techniques—it is designed to prune
static analysis warnings to improve the usefulness of (existing or
future) static memory leak detectors.

6.2 Dynamic Memory Leak Detection
Purify [28] pioneers the work of dynamic memory leak detec-

tion. Other dynamic memory leak detectors for C/C++ programs
include SafeMem [45], LeakPoint [16], and Omega [40]. SafeMem
is a low-overhead technique that detects memory leaks and memory
corruption on-the-fly by exploiting the ECC memory. LeakPoint
uses a taint-based approach to track object usage in order to pre-
cisely locate the location where an object loses it references and
its last use site. Omega (that is similar in spirit to the technique
proposed in [39]) also maintains a pointer count for each area of al-
located memory. Unlike LeakPoint that tracking the reference flow,
Omega intercepts all writes to memory to identify pointers and up-
date the pointer count for each object. Our technique is fundamen-
tally different from these dynamic analysis techniques in the fol-
lowing two important aspects. First, the goal of our technique is to
use dynamic analysis to validate a static analysis warning, instead
of running the program to find leaks. Thus, there exists clear tar-
get information that can be exploited in our analysis while existing
dynamic analyses do not have such information. Second, because
we are interested in only a very small number of objects for each
warning, it is not worth doing whole-program instrumentation and
dataflow tracking. Our tool adopts novel approaches that can effi-
ciently track object usage and yet achieve high precision in classify-
ing static analysis warnings. Dynamic techniques are widely used
to detect memory leaks in managed languages, such as Java [56,
19, 41, 11, 33, 46, 29, 12, 13, 51, 55]. As described in Section 2,
Java memory leaks correspond to the category of BLOAT in this
work. Although our tool can also validate such leaks, there does
not exist any practical static analysis that can find leaks in managed
languages. This is primarily because finding bloat requires precise
liveness analysis, which often cannot scale to real-world applica-
tions.
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6.3 Directed Test Generation
The Synergy algorithm [24] combines model-checking and DART

[23] to attempt to cover all abstract states of a program. Our tool is
not intended to achieve high coverage, but instead it exploits con-
colic testing as a component of the classification system. DSD-
Crasher [17] is a tool that performs dynamic, static, and dynamic
analysis in sequence to find bugs, while our technique automati-
cally generates test cases to validate memory leak warnings. Zhang
et al. [57] propose a combined static and dynamic approach to auto-
matically generate legal and diverse method call sequences for unit
testing. Babić et al. [9] propose a technique that uses static analysis
to guide dynamic automated test generation for binary programs.
Taneja et al. [50] use path-based test generation to produce effi-
cient regression tests. Cui et al. [18] propose a rule-directed sym-
bolic execution technique to efficiently check systems rules. Ge et
al. [22] develop DyTa, a tool that combines static verification and
dynamic test generation to reduce false positives and achieves effi-
ciency. While the core algorithms of these techniques are similar in
spirit to the path exploration algorithm in our work, test case gen-
eration is just one building block of our approach, and our major
contribution is a new classification system that can automatically
validate memory leak warnings.

6.4 Ranking Static Analysis Warnings
A practical problem challenging the use of static analysis tools

is that it reports a large number of false positives. Many tech-
niques have been developed to address this problem. Ruthruff et
al. [47] develop statistical models to predict the foregoing types of
warnings from signals in the warnings and implicated code. Heck-
man et al. [30] propose a false positive mitigation technique and a
benchmark, FAULTBENCH, to evaluate the technique. Kim and
Ernst classify warnings by analyzing multiple versions of the soft-
ware [35]. FEEDBACK-RANK, proposed by Kremenek and En-
gler, is a probabilistic ranking technique that exploits the correla-
tion among reports to reduce numbers of false positives [37]. Z-
Ranking prioritizes warnings using the frequency of review results [38].
Boogerd and Moonen employ an execution likelihood analysis to
rank warnings [14]. By exploiting the relationship between warn-
ings and bug fixes in the software change history, Kim and Ernst
propose a history-based warning prioritization (HWP) algorithm,
which ranks warnings using previous warning fix history [34]. Dil-
lig et al. propose an algorithm based on abductive inference to
compute the smallest and most general abductions. It can be used
to identify the information missed by static analysis to diagnose the
reported errors [20]. Clarify is a tool [25] created to improve the
error reporting by learning the behaviors of an application based on
the summary of its execution history.

Note that all these existing techniques except [20] classify warn-
ings based solely on the information contained in the warnings.
They do not automatically validate them using the actual program
executions. Work from [20] has a different goal, which is to iden-
tify the missing information that can help a developer make better
sense of a warning. Despite this large body of work, validating
whether a warning is a true or a false warning remains to be a task
performed manually by developers. Our approach is designed to
bridge this gap—it can be used together with these existing rank-
ing algorithms to not only classify warnings but also validate them.

7. CONCLUSIONS
Static analysis has been widely used to find memory-related prob-

lems in the real-world software development. While it can find all
potential bugs in a program, a static analysis often reports a great

number of false warnings that have to be manually validated by hu-
man experts. Validating these warnings is an often a daunting task,
which can be extremely time-consuming and labor-intensive. This
paper presents a novel dynamic technique that can automatically
validate static memory leak warnings for C/C++ programs. Warn-
ings are classified into four categories: MUST-LEAK, LIKELY-
NOT-LEAK, BLOAT, and MAY-LEAK. MUST-LEAK warnings
point to true leaks; LIKELY-NOT-LEAK contains warnings that are
highly unlikely to be leaks; warnings in BLOAT are also unlikely
to be leaks but should be fixed to improve performance; manual val-
idation only needs to be focused on MAY-LEAK warnings which
cannot be validated by our tool, leading to significantly reduced
human effort and improved productivity. The proposed technique
is efficient: it employs (1) path-directed test case generation—the
path information in a warning is used to direct concolic testing to
generate test cases covering only the reported path; and (2) object-
based state tracking (as apposed to pointer-based reference track-
ing) to efficiently track the status of the allocated memory. Our ini-
tial experimental results demonstrate that the technique is promis-
ing and can be useful in improving the usefulness of (existing and
future) static leak detectors. We plan to incorporate more large,
real-world applications in the future studies of the technique. It is
also worth investigating whether and how the technique can be ex-
tended to validate static analysis warnings for other types of bugs
(e.g., buffer overflow) and security vulnerabilities.
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