
AppTestMigrator: A Tool for Automated
Test Migration for Android Apps∗

Farnaz Behrang
behrang@gatech.edu

Georgia Institute of Technology
Atlanta, GA, USA

Alessandro Orso
orso@cc.gatech.edu

Georgia Institute of Technology
Atlanta, GA, USA

ABSTRACT

The use of mobile apps is increasingly widespread, and much effort
is put into testing these apps to make sure they behave as intended.
In this demo, we present AppTestMigrator, a technique and tool
for migrating test cases between apps with similar functionality.
The intuition behind AppTestMigrator is that many apps share
similarities in their functionality, and these similarities often result
in conceptually similar user interfaces (through which that func-
tionality is accessed). AppTestMigrator attempts to automatically
transform the sequence of events and oracles in a test case for an
app (source app) to events and oracles for another app (target app).
The results of our preliminary evaluation show the effectiveness
of AppTestMigrator in migrating test cases between mobile apps
with similar functionality.
Video URL: https://youtu.be/WQnfEcwYqa4

CCS CONCEPTS

• Software and its engineering → Software testing and debug-
ging.
KEYWORDS

GUI testing, test migration, mobile apps
ACM Reference Format:

Farnaz Behrang and Alessandro Orso. 2020. AppTestMigrator: A Tool for
Automated Test Migration for Android Apps. In 42nd International Con-
ference on Software Engineering Companion (ICSE ’20 Companion), May
23–29, 2020, Seoul, Republic of Korea. ACM, New York, NY, USA, 4 pages.
https://doi.org/10.1145/3377812.3382149

1 INTRODUCTION

Most of the software systems we use every day provide a graphical
user interface (GUI) through which users can access the different
features provided by the underlying software. Although unit and in-
tegration testing may directly target this underlying software, test-
ing of GUI-based applications is usually performed mainly through
their GUIs. This is particularly true for web and mobile apps, where
the GUI represents a fundamental part of the system. It is therefore
important to thoroughly test these apps to gain confidence that
they behave as intended when used in the field. However, manually
∗This demo describes the implementation of a technique we presented at ASE 2019 [7].

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ICSE ’20 Companion, May 23–29, 2020, Seoul, Republic of Korea
© 2020 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-7122-3/20/05.
https://doi.org/10.1145/3377812.3382149

developing test cases for an app tends to be extremely expensive,
as it involves considerable human effort.

The technique and tool described in this paper are motivated by
the observation that, although GUIs for different apps can differ
dramatically, there are many cases in which the apps share simi-
larities that result in conceptually similar GUIs. A typical example
of this situation is apps that belong to the same category, such as
banking applications, which share much of their functionality and
may provide GUIs that are inherently similar. In this case, we be-
lieve it is possible to decrease the amount of effort involved in GUI
testing by leveraging and adapting, when performing GUI testing
of a given app, existing GUI tests for other similar apps.

This paper summarizes our technique for migrating test cases
between apps that share part of their functionality, which we de-
fined in previous work [7] and presents AppTestMigrator, a tool
that implements our technique. AppTestMigrator takes as input a
source app, a test case for the source app (source test), and a target
app, and produces as output the source test migrated to the target
app (target test). To do so, it (1) records both the sequence of (GUI)
events generated and the assertions checked by the source test, (2)
migrates events and assertions to the target app using a similarity
metric based on a combination of techniques, and (3) generates a
target test case based on the migrated events and assertions.

To evaluate AppTestMigrator, we used our tool to migrate test
cases for apps in four categories: Shopping List,Note Taking, Expense
Tracking, andWeather. Specifically, we selected four apps within
each category and applied AppTestMigrator to these apps and 158
test cases by considering each app in a category as the source app
and the remaining apps as target apps. We then manually inspected
the migrated test cases. Overall, AppTestMigrator fully migrated
48% and partially migrated 34% of the tests considered. For 42%
of the fully migrated tests, AppTestMigrator also fully migrated
their oracles.

This paper is organized as follows. Section 2 describes AppTest-
Migrator and summarizes the technique behind it. Section 3 presents
details of our tool’s implementation. The evaluation of AppTestMi-
grator and related work are presented in Sections 4 and 5. Finally,
we conclude in Section 6.

2 APPTESTMIGRATOR TECHNIQUE

Fig. 1 shows an overview of AppTestMigrator’s workflow and
architecture. As the figure shows, AppTestMigrator takes as input
the source app, the source tests (a set of tests for the source app),
the target app, and a set of user guides for various mobile apps in
different categories. (A user guide contains a set of instructions that
users must perform to cover different user scenarios in a given app).
As output, AppTestMigrator produces the target tests (the source

17

2020 IEEE/ACM 42nd International Conference on Software Engineering: Companion Proceedings (ICSE-Companion)

https://doi.org/10.1145/3377812.3382149
https://doi.org/10.1145/3377812.3382149


ICSE ’20 Companion, May 23–29, 2020, Seoul, Republic of Korea Farnaz Behrang and Alessandro Orso

Instrumenter Test runner 
and recorder

…

Instrumented 
source tests

1 2 3 … n

Sequence of
GUI events

and assertions

…

 Source tests

…

 Target tests

Migrated GUI events
and assertions

1

2
…

1

2
…

Source app Target app

Test encoder

Static 
analyzer

Dynamic 
analyzer

Graph
Database

Word2vec 
model

Event and assertion 
migrator

Word2vec 
model generator

Figure 1: Overview and Architecture of AppTestMigrator.

tests migrated to the target app). AppTestMigrator consists of
four main modules: Instrumenter, Test runner and recorder, Event and
assertion migrator, and Test encoder. First, Instrumenter instruments
the source tests so that Test runner and recorder can record both
the sequence of events generated and the assertions (i.e., oracles)
checked by the tests. Event and assertion migrator then migrates the
events and assertions from the source app to the target app. Finally,
given the migrated events and assertions, Test encoder generates
actual test cases for the target app. In the rest of this section, we
discuss each of AppTestMigrator’s modules in more detail.

Instrumenter. Testing frameworks provide APIs that let users
write test cases by generating events and assertions. The Instru-
menter module instruments these APIs to collect information about
GUI interactions.

Test Runner and Recorder. The Test runner and recorder module
runs the instrumented source tests to record the sequence of events
they generate and the assertions they check. For each event, it logs
the performed action, the element that is the target of the action,
and the input value used by the action, if any.

Event and Assertion Migrator. Given a sequence of source events
extracted from a source test and a target app, this module tries to
migrate the source events and assertions to the target app. To do
so, it processes the events and assertions in the order in which they
appear and tries to match them one at a time with corresponding
events in target appTA, while dynamically crawlingTA. The match-
ing is performed based on the textual attributes of the widgets that
are the targets of the events (e.g., the label of a button).

To allow more effective matching, AppTestMigrator creates an
ontology for mobile apps based on word embeddings it generates
using the Word2Vec [13] methodology. In addition, AppTestMi-
grator takes advantage of a statically computed state-flow graph
to (1) prune the search space and (2) account for the possible future
states of the app when selecting which events to trigger.

When the Event and Assertion Migrator cannot find a direct
match for an event or assertion, it searches for other states inTA in
which a match may be possible by generating extra events. These
extra events are selected randomly, among all the possible events
for TA in its current state, and are considered only if they modify
TA’s state. This process continues until either a match is found, and
thus AppTestMigrator can continue with the next event, or no
match can be found, and AppTestMigrator backtracks to earlier
matches and tries to look for alternative matches.

Test Encoder. Once AppTestMigrator has processed all source
events and assertions, the Test encoder generates actual test cases
for the target app based on the migrated events and assertions. If
successful inmatching all events and assertions, AppTestMigrator
generates a complete target test. Otherwise, it produces a partial
target test, that is, a test that contains only a subsequence of the
events and assertions.

3 APPTESTMIGRATOR IMPLEMENTATION

Our implementation of AppTestMigrator supports Android apps
and tests written using the Espresso testing framework [3]. We
chose Android because it is one of the major platforms in the mo-
bile app market. We chose Espresso for several reasons, including
the fact that it is widely used and is actively maintained by Google,
provides easy access to a more complete GUI state, is integrated
with Android Studio’s Espresso Test Recorder, and supports asyn-
chronous tasks. Note, however, that our general approach is not
specific to Android and Espresso and could be ported to other mo-
bile platforms and testing frameworks. In the rest of this section, we
discuss the tool implementation for each of the modules in figure 1.

3.1 Instrumenter and Test Runner and

Recorder

We modified the Espresso framework and instrumented the APIs
relevant to GUI interactions such that, when the tests are executed,

18



AppTestMigrator ICSE ’20 Companion, May 23–29, 2020, Seoul, Republic of Korea

AppTestMigrator can collect information about GUI events and as-
sertions. For GUI events, AppTestMigrator collects the action that
corresponds to the event (e.g., click), the target of the action (e.g.,
a button), and input values (e.g., data for a text-input box), if any.
The targets of the actions are GUI elements that are represented by
a set of properties (e.g., text) and values that are associated with the
properties. More specifically, we instrumented the following APIs
in the Espresso testing framework: perform, check,matches, doesNo-
tExist, withId, withText, withContentDescription, withHint, withSpin-
nerText, isDisplayed, isCompletelyDisplayed, isEnabled, isClickable,
isChecked, withParent, withChild, hasDescendant, isDescendantOfA,
and hasSibling.

3.2 Word2Vec Model Generator

Given a set of randomly selected user guides in PDF format for
mobile apps in different categories, the Word2Vec model genera-
tor uses PDF2TEXT [1] to convert PDF documents into plain text
files. It then preprocesses the raw text by tokenizing it and remov-
ing stop-words and special-characters using NLTK [10], which is
an open-source Python library for Natural Language Processing.
Given the preprocessed text corpus, the model generator learns
a word embedding—a model that maps each word in the vocab-
ulary to a numeric vector. Intuitively, the distance between two
vectors that represents two words represent the semantic distance
between those two words. In other words, the closer two words are
in the vector space corresponding to the word embedding, the more
likely they are to have similar meaning. To generate the Word2Vec
model, our current implementation of the Word2Vec Model Gen-
erator uses Genism [19], an open-source vector space and topic
modeling toolkit implemented in Python. In order to serve the pre-
trained Word2Vec model as a service, we built a REST API using
Flask [4].

3.3 Static Analyzer

To perform static analysis of the apps, the Static Analyzer lever-
ages gator [22], a static analysis tool that creates a model of the
GUI-related behavior of an Android app. Specifically, the Static
Analyzer leverages gator to compute aWindow Transition Graph
(WTG) for the target app—a statically-computed graph in which
nodes represent windows (i.e., activities, menus, and dialogs) and
edges represent transitions between windows, triggered by call-
backs executed in the UI thread [2]. The Static Analyzer extracts
the WTG for the target app as a JSON file and uses Neo4j [15], a
graph database management system, to store it. Using Neo4j allows
for an easier interaction between the Dynamic Analyzer and the
static model.

3.4 Dynamic Analyzer

The Dynamic Analyzer leverages the Espresso testing framework
to explore target apps dynamically. During dynamic exploration,
the Dynamic Analyzer extracts, for each screen, the GUI state of
the app, represented as a set of GUI elements. To compute the
similarity score between two GUI elements, the Dynamic Analyzer
uses Stanford’s CoreNLP library [11], which allows it to preprocess
the textual information associated with the GUI elements, namely,
tokenization and lemmatization.

48% 

34% 

18% 

Tests

Fully	migrated
Partially	migrated
Not	migrated

54% 

24% 

17% 

5% 

GUI	events

True	positives True	negatives

False	negatives False	positives

47% 

29% 

13% 

11% 

Oracles

True	positives True	negatives

False	negatives False	positives

Figure 2: Results of migrating test cases using AppTestMigrator.

In order to retrieve data from the graph database, the Dynamic
Analyzer queries graph data using Cypher [14], which is Neo4j’s
graph query language. Cypher is a declarative, SQL-inspired lan-
guage for describing visual patterns in graphs and allows the user
to state what to select, insert, update, or delete from the graph data.
Finally, the Dynamic Analyzer uses OkHttp [20], an HTTP client
library, to perform REST calls to both the Word2Vec model and the
graph database.

3.5 Test Encoder

To generate actual test cases for the target app, the Test Encoder
identifies the most suitable type of selector for every migrated GUI
element. To do so, it checks whether the element has properties
“resource ID” and “Text” and whether it is possible to select the
element using one or both of them. If so, the Test Encoder creates a
corresponding selector. Otherwise, it generates a selector of type
XPath [21], that is, a path expression that identifies a specific el-
ement in the GUI state. It is worth noting that we extended the
Espresso APIs to include the notion of XPath selector. It is also
worth noting that, since selectors that use “resource ID” or “Text”
are more readable compared to an XPath selector, they are consid-
ered first when generating the selectors.

4 EVALUATION

In this section, we summarize our evaluation of AppTestMigra-
tor. For further details, please refer to the paper that presents the
AppTestMigrator technique in detail [7]. To evaluate AppTestMi-
grator, we identified four app categories in the Google Play Store:
Shopping List, Note Taking, Expense Tracking, and Weather apps.
We then selected four apps within each category. For each app,
we considered the test cases contained in the apps and also asked
students not involved in this research but familiar with testing to
write more test cases for all the apps (158 test cases in total). We
applied AppTestMigrator to these apps and test cases by consid-
ering each app in a category as the source app and the remaining
apps as target apps.

19



ICSE ’20 Companion, May 23–29, 2020, Seoul, Republic of Korea Farnaz Behrang and Alessandro Orso

Figure 2 shows the results of the study, which we validated
through manual inspection of all the migrated test cases. The bar
on the left-hand side of the figure shows the percentage of test cases
for which the technique generated fully and partially migrated test
cases, along with the percentage of test cases that AppTestMigra-
tor was not able to migrate. The bars in the middle and on the
right-hand side of the figure show the percentage of individual
events (resp., oracles) in the source tests that AppTestMigrator
correctly matched (true positives), could not match to a correspond-
ing event (resp., oracle) in the target app because they did not
actually have a counterpart in that app (true negatives), did not
migrate to an existing corresponding event (resp., oracle) in the
target app (false negatives), and mapped to the wrong events (resp.,
oracles) in the target app (false positives).

Overall, AppTestMigrator fully migrated 48% and partially
migrated 34% of the tests considered. For 42% of the fully migrated
tests, AppTestMigrator also fully migrated their oracles. In terms
of individual events and oracles, on average, the true positives, true
negatives, false positives, and false negatives were 54%, 24%, 17%,
and 5% for the individual events, and 47%, 29%, 13%, and 11% for
the individual oracles.

5 RELATEDWORK

AppTestMigrator builds on the vision and ideas that we proposed
in earlier work [5, 6] and implements the technique we presented
in [7]. CraftDroid [9] was developed concurrently to [7] and also
aims to migrate tests, including oracles, across mobile apps that
share part of their functionality.

Rau, Hotzkow, and Zeller proposed a technique for generating
more effective GUI tests by transferring tests across web applica-
tions [17, 18]. Besides targeting mobile instead of web apps, our
technique is different from theirs in terms of event-matching ap-
proach and underlying analysis. Also, unlike AppTestMigrator,
their approach does not migrate oracles.

TestMig [16] is a technique for migrating GUI tests between iOS
and Android apps. The goal of their work is different, as AppTest-
Migrator migrates GUI test cases between similar apps, whereas
TestMig migrates GUI test cases for apps meant to have the same
functionality across different platforms (iOS to Android).

Recently, several approaches have also been proposed that share
similar intuitions with AppTestMigrator and propose approaches
for exploiting commonalities in the functionality of different apps
to improve GUI test generation (e.g., [8, 12]).

6 CONCLUSION

We presented AppTestMigrator, a tool for migrating test cases
between mobile apps that share part of their functionality. We used
AppTestMigrator to migrate test cases between 16 randomly
selected apps in 4 different app categories. Our evaluation shows
that AppTestMigrator can be effective in migrating both test
inputs and oracles. Our demo illustrates AppTestMigrator by
showing its performance on an example.

ACKNOWLEDGMENTS

We thank the students who helped with our empirical evaluation for
their time. This work was partially supported by the National Sci-
ence Foundation under grants CCF-1161821 and 1548856, DARPA,
under contracts FA8650-15-C-7556 and FA8650-16-C-7620, and gifts
from Google, IBM Research, and Microsoft Research.

REFERENCES

[1] AKS-Labs. 2020. PDF2TEXT. https://www.pdf2txt.com/.
[2] Android Open Source Project. 2020. Communicate with the UI thread. https:

//developer.android.com/training/multiple-threads/communicate-ui.
[3] Android Open Source Project. 2020. Espresso. https://developer.android.com/

training/testing/espresso/.
[4] Armin Ronacher. 2020. Flask. https://palletsprojects.com/p/flask/.
[5] Farnaz Behrang and Alessandro Orso. 2018. Automated Test Migration for Mobile

Apps. In Proceedings of the 40th International Conference on Software Engineering:
Companion Proceeedings (ICSE ’18). ACM, New York, NY, USA, 384–385.

[6] Farnaz Behrang and Alessandro Orso. 2018. Test Migration for Efficient Large-
scale Assessment of Mobile App Coding Assignments. In Proceedings of the 27th
ACM SIGSOFT International Symposium on Software Testing and Analysis (ISSTA
’18). ACM, New York, NY, USA, 164–175.

[7] Farnaz Behrang and Alessandro Orso. 2019. Test Migration Between Mobile Apps
with Similar Functionality. In Proceedings of the 34th ACM/IEEE International
Conference on Automated Software Engineering (ASE ’19). ACM, New York, NY,
USA, 54–65.

[8] Gang Hu, Linjie Zhu, and Junfeng Yang. 2018. AppFlow: Using Machine Learning
to Synthesize Robust, Reusable UI Tests. In Proceedings of the 26th ACM Joint
Meeting on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering (ESEC/FSE ’18). ACM, New York, NY, USA,
269–282.

[9] Jun-Wei Lin, Reyhaneh Jabbarvand, and Sam Malek. 2019. Test Transfer Across
Mobile Apps Through Semantic Mapping. In Proceedings of the 34th ACM/IEEE
International Conference on Automated Software Engineering (ASE ’19). ACM, New
York, NY, USA, 42–53.

[10] Edward Loper and Steven Bird. 2002. NLTK: The Natural Language Toolkit.
In Proceedings of the ACL-02 Workshop on Effective Tools and Methodologies for
Teaching Natural Language Processing and Computational Linguistics - Volume
1 (ETMTNLP ’02). Association for Computational Linguistics, Stroudsburg, PA,
USA, 63–70.

[11] Christopher D. Manning, Mihai Surdeanu, John Bauer, Jenny Finkel, Steven J.
Bethard, and David McClosky. 2014. The Stanford CoreNLP Natural Language
Processing Toolkit. In Association for Computational Linguistics (ACL) System
Demonstrations. Association for Computational Linguistics, Stroudsburg, PA,
USA, 55–60.

[12] Leonardo Mariani, Mauro Pezzè, and Daniele Zuddas. 2018. Augusto: Exploiting
Popular Functionalities for the Generation of Semantic GUI Tests with Oracles.
In Proceedings of the 40th International Conference on Software Engineering (ICSE
’18). ACM, New York, NY, USA, 280–290.

[13] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013. Efficient
Estimation of Word Representations in Vector Space. CoRR abs/1301.3781 (2013),
1–10.

[14] Neo4j, Inc. 2020. Cypher Query Language. https://neo4j.com/developer/cypher-
query-language/.

[15] Neo4j, Inc. 2020. Neo4j. https://neo4j.com.
[16] Xue Qin, Hao Zhong, and Xiaoyin Wang. 2019. TestMig: Migrating GUI Test

Cases from iOS to Android. In Proceedings of the 28th ACM SIGSOFT International
Symposium on Software Testing and Analysis (ISSTA 2019). ACM, New York, NY,
USA, 284–295.

[17] Andreas Rau, Jenny Hotzkow, and Andreas Zeller. 2018. Efficient GUI Test
Generation by Learning from Tests of Other Apps. In Proceedings of the 40th
International Conference on Software Engineering: Companion Proceeedings (ICSE
’18). ACM, New York, NY, USA, 370–371.

[18] Andreas Rau, Jenny Hotzkow, and Andreas Zeller. 2018. Transferring Tests
Across Web Applications. In Web Engineering, Tommi Mikkonen, Ralf Klamma,
and Juan Hernández (Eds.). Springer International Publishing, Cham, 50–64.

[19] Radim Řehůřek and Petr Sojka. 2010. Software Framework for Topic Modelling
with Large Corpora. In Proceedings of the LREC Workshop on New Challenges for
NLP Frameworks. ELRA, Valletta, Malta, 45–50.

[20] Square, Inc. 2020. OkHttp. https://square.github.io/okhttp/.
[21] W3C. 2020. XML Path Language. https://www.w3.org/TR/xpath-30/.
[22] S. Yang, H. Zhang, H. Wu, Y. Wang, D. Yan, and A. Rountev. 2015. Static Window

Transition Graphs for Android. In Proceedings of the 30th IEEE/ACM International
Conference on Automated Software Engineering (ASE ’15). IEEE, New York, 658–
668.

20

https://www.pdf2txt.com/
https://developer.android.com/training/multiple-threads/communicate-ui
https://developer.android.com/training/multiple-threads/communicate-ui
https://developer.android.com/training/testing/espresso/
https://developer.android.com/training/testing/espresso/
https://palletsprojects.com/p/flask/
https://neo4j.com/developer/cypher-query-language/
https://neo4j.com/developer/cypher-query-language/
https://neo4j.com
https://square.github.io/okhttp/
https://www.w3.org/TR/xpath-30/

