
Semantic Matching of GUI Events for Test Reuse:
Are We There Yet?

Leonardo Mariani
University of Milano - Bicocca

Milan, Italy
leonardo.mariani@unimib.it

Ali Mohebbi
USI Università della Svizzera italiana

Lugano, Switzerland
ali.mohebbi@usi.ch

Mauro Pezzè
USI Università della Svizzera italiana

Lugano, Switzerland
SIT Schaffhausen Institute of Technology

Schaffhausen, Switzerland
mauro.pezze@usi.ch

Valerio Terragni
The University of Auckland
Auckland, New Zealand

v.terragni@auckland.ac.nz

ABSTRACT

GUI testing is an important but expensive activity. Recently, re-

search on test reuse approaches for Android applications produced

interesting results. Test reuse approaches automatically migrate

human-designed GUI tests from a source app to a target app that

shares similar functionalities. They achieve this by exploiting se-

mantic similarity among textual information of GUI widgets. Se-

mantic matching of GUI events plays a crucial role in these ap-

proaches. In this paper, we present the first empirical study on

semantic matching of GUI events. Our study involves 253 config-

urations of the semantic matching, 337 unique queries, and 8,099

distinct GUI events. We report several key findings that indicate

how to improve semantic matching of test reuse approaches, pro-

pose SemFinder a novel semantic matching algorithm that outper-

forms existing solutions, and identify several interesting research

directions.

CCS CONCEPTS

· Software and its engineering → Software testing and de-

bugging; · Human-centered computing→Mobile phones; ·

Computing methodologies→ Natural language processing.

KEYWORDS

GUI testing, test reuse, mobile testing, Android applications, word

embedding, NLP

ACM Reference Format:

Leonardo Mariani, Ali Mohebbi, Mauro Pezzè, and Valerio Terragni. 2021.

Semantic Matching of GUI Events for Test Reuse: Are We There Yet?. In

Proceedings of the 30th ACM SIGSOFT International Symposium on Software

Testing and Analysis (ISSTA ’21), July 11ś17, 2021, Virtual, Denmark. ACM,

New York, NY, USA, 14 pages. https://doi.org/10.1145/3460319.3464827

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or
a fee. Request permissions from permissions@acm.org.

ISSTA ’21, July 11ś17, 2021, Virtual, Denmark

© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8459-9/21/07. . . $15.00
https://doi.org/10.1145/3460319.3464827

1 INTRODUCTION

Automatically generating test cases for GUI applications (GUI tests)

is an active research topic [3, 4, 26, 28, 31, 32, 49, 51, 64]. A GUI test

consists of (i) a sequence of events that interact with the GUI, and

(ii) one or more assertion oracles that predicate on the GUI state.

Current GUI test generators suffer from two main limitations [21].

First, they often generate semantically meaningless GUI tests that

miss many relevant behaviors of the application under test. As

such, they likely miss the GUI event sequences that properly ex-

ercise functionalities and reveal faults. Second, current GUI test

generators rely mostly on implicit oracles [56, 65, 94] that reveal

system crashes and exceptions, while missing many failures related

to the semantics of the app under test.

A recent research thread explores the reuse of GUI tests across

similar applications as an alternative way to automatically gener-

ate GUI tests [13, 15, 16, 45, 72, 75, 76]. GUI test reuse approaches

generate new tests for a target app by migrating tests designed

for a source app, an application that shares similar functionalities

with the target app. Figure 1 shows an example of test migration

between two Android apps. When test migration succeeds, GUI

test reuse approaches (i) generate semantically meaningful GUI

tests that properly exercise the functionalities of the target app,

and (ii) adapt semantically relevant oracle assertions to the target

app [15, 45], thus addressing the main limitations of GUI test gen-

erators.

GUI test reuse approaches exploit the fact that many GUI appli-

cations share semantically similar functionalities [34, 54, 75]. Hu

et al. report that 196 (63.4%) of the top 309 non-game mobile apps

in the Google Play Store can be clustered into 15 groups each shar-

ing many common functionalities [34]. GUI test reuse is grounded

on the observation that different apps expose common functional-

ities via semantically similar GUI events [93]. As such, automatic

approaches try to migrate GUI tests across apps by mapping se-

mantically similar GUI events.

In this paper, we target test reuse forAndroid applications. The

current test reuse approaches for Android apps are ATM [15] and

CraftDroid [45]. These two approaches successfully migrate non-

trivial test cases, showcasing the potential of test reuse.

ATM andCraftDroid combine semantic matching of GUI events

with test generation. Semantic matching of GUI events identifies

177

https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://doi.org/10.1145/3460319.3464827
https://doi.org/10.1145/3460319.3464827

ISSTA ’21, July 11–17, 2021, Virtual, Denmark Leonardo Mariani, Ali Mohebbi, Mauro Pezzè, and Valerio Terragni

!e
s

1
= click

�es

4
= fill

�es

3
= fill�es

2
= fill

�es

5
= fill

�os

1
= exist(SM)

�es

6
= fill

�et

1
= click

�ot

1
= exist(SM)

�et

3
= fill

�et

2
= click

�et

4
= fill

�et

5
= click

�et

6
= fill �et

7
= fill

�et

8
= click

�et

9
= click

(A) Source test case � for Rainbow appt
s

(B) Target test case � for Yelp appt
t

Figure 1: Test reuse example, the target test cases (B) is obtained by migrating the source test case (A)

semantically similar events across source and target apps, by apply-

ing word embedding techniques [61] to the textual descriptors of

events in the GUI widgets. Test generation exploits the similarities

identified with semantic matching to migrate GUI tests from the

source to the target app.

The overall effectiveness of test reuse strongly depends on the

effectiveness of semantic matching of GUI events. Indeed, the se-

mantic matching is what drives the matching of the events between

the source and the target test. Recently, Zhao et al. acknowledge the

importance of reusing GUI tests, and propose the Fruiter frame-

work [93] to comparatively evaluate test reuse techniques. Fruiter

compares test reuse techniques as a whole, but does not support

the evaluation of semantic matching in isolation.

In this paper,we present the first study on the semanticmatching

of GUI events for GUI test reuse/generation techniques. We iden-

tify four main components of the semantic matching, as illustrated

in Figure 2: Corpus of Documents (Component 1), Word Embed-

ding (Component 2), Event Descriptor Extractor (Component 3),

and Semantic Matching Algorithm (Component 4). We then com-

paratively evaluate the impact of different choices for each com-

ponent on the effectiveness of the semantic matching. Our study

involves 253 configurations of these four components, 337 unique

semantic matching queries, and 8,099 distinct GUI events, obtained

from 30 Android apps. Our configurations include the two config-

urations of ATM and CraftDroid and many other configurations

that have not been investigated in the context of test reuse yet.

We also propose a new semantic matching algorithm (SemFinder)

and a new corpus of documents (GooglePlay) based on 900,805 app

descriptions.

Our study discloses some relevant findings that both help iden-

tify a better matching algorithm and offer important insights for

future research on test reuse. The most important findings are:

(i) the Semantic Matching Algorithm (Component 4 in Figure 2) is

the component that impacts the most on the overall effectiveness

of semantic matching, and our proposed algorithm (SemFinder)

outperforms the algorithms of ATM and CraftDroid; (ii) sen-

tence level word embedding techniques (such as, Word Movers

distance [39]) perform much better than world level ones (such

as,Word2vec [60], used by both ATM and CraftDroid); (iii) con-

sidering certain widget attribute types as textual descriptors of GUI

events can negatively affect the results; (iv) training word embed-

ding models with corpora of documents specific to the mobile app

domain lead to better results.

In summary, this paper

• develops the first framework to automatically evaluate the se-

mantic matching of GUI events;

• identifies and extracts the core components of the semanticmatch-

ing exploited in current test reuse approaches;

• evaluates 253 configurations of the semantic matching, and re-

veals important insights;

• proposes a new semantic matching algorithm (SemFinder) and

a corpus of documents that outperform existing ones;

• makes our framework implementation and all data publicly avail-

able, for future research in this area [53].

178

Semantic Matching of GUI Events for Test Reuse: Are We There Yet? ISSTA ’21, July 11–17, 2021, Virtual, Denmark

2 TEST REUSE ACROSS SIMILAR GUI APPS

This section gives the preliminaries of this paper and introduces

the GUI test reuse problem with an example.

Preliminaries: This paper targets Graphical User Interface (GUI)

applications for the Android platform. A GUI is a forest of hier-

archical windows where only a window is active at any time [59].

Windows host widgets, which are atomic GUI elements character-

ized by attributes (such as, text and resource-id). At any time, the

active window has a state S that encompasses the attribute val-

ues of the displayed widgets. Some widgets expose user-actionable

events to let users interact with the app [25]. An event is an atomic

interaction on a widget. For instance, users can click on widgets of

type Button, or can fill widgets of type EditText. Following previous

test reuse approaches, we abstract the implemented widget type

and group events into two types: clickable and fillable. AGUI test t

is an ordered sequence of events ⟨𝑒1, ..., 𝑒𝑛⟩ on widgets of the active

windows. A test execution induces a sequence of state transitions

𝑆0
𝑒1
−−→ 𝑆1

𝑒2
−−→ 𝑆2 . . .

𝑒𝑛
−−→ 𝑆𝑛 , where 𝑆𝑖−1 and 𝑆𝑖 denote the states of

the active window before and after the execution of 𝑒𝑖 , respectively.

A GUI test can have one or more assertion oracles that check

the correctness of the state 𝑆𝑖 obtained after the execution of an

event 𝑒𝑖 [10]. For example, by checking for the absence or presence

of widgets with specific attributes values.

Test reuse approaches for GUI applications [93] automatically

migrate GUI tests (including oracles) across apps that share similar

functionalities. More formally, given two apps 𝐴𝑠 (source) and 𝐴𝑡

(target), and a łsourcež test 𝑡𝑠 for𝐴𝑠 , test reuse approaches generate

łtargetž test 𝑡𝑡 that tests𝐴𝑡 as 𝑡𝑠 tests𝐴𝑠 . They create 𝑡𝑡 by searching

𝐴𝑡 for events that are semantically similar to events in 𝑡𝑠 .

Figure 1 shows an example of a migration from a test designed

for the source app Rainbow (A) to the target app Yelp (B). The two

tests verify the same feature, namely the creation of a new user.

The example is taken from the experiments of CraftDroid [45].

The migration process exploits a semantic similarity relation ∼

to determine corresponding events of different apps. In the example

we have that 𝑒𝑠
1
∼ 𝑒𝑡

1
, 𝑒𝑠
2
∼ 𝑒𝑡

6
, 𝑒𝑠
3
∼ 𝑒𝑡

7
, 𝑒𝑠
4
∼ 𝑒𝑡

3
, 𝑒𝑠
5
∼ 𝑒𝑡

4
, and 𝑒𝑠

6
∼

𝑒𝑡
9
. Current test reuse approaches define such a relation as a one-

to-one mapping between a source and a target event. The notion

of semantic similarity of GUI events largely influences the ability

of test reuse techniques to recognize corresponding events, thus

impacting on the whole migration process.

3 SEMANTIC MATCHING OF GUI EVENTS

Test reuse approaches need tomatch semantically similarGUI events

across apps. Such a semantic matching should capture the event se-

mantics, while abstracting the implementation details. Indeed, two

different apps might implement the same logical action with differ-

ent widgets (for instance, a button in one case and an image button

in another). Intuitively, test reuse approaches aim to generate tests

for the target app that maximize the number of semantically similar

events, possibly in the order prescribed by the source test.

Current approaches characterize the semantics of events by re-

lying on the textual attributes found in the GUI. In particular, they

associate each eventwith its descriptor that encompasses the textual

attributes of the widget associated with the event. For instance, the

attributes text of events 𝑒𝑠
1
and 𝑒𝑡

1
in Figure 1 are łjoinž and łsign upž,

𝐸			
# 	

{𝑒&
, 𝑒(

#,	….	𝑒)
}

candidate	target	
events

{𝐷&
#,	𝐷(

#,	….	𝐷)
}

SEMANTIC	MATCHING	OF	GUI	EVENTS
outputinput

𝑒,

source	event Event	

Descriptor	

Extractor	

(Component	3)

𝐷,

descriptors	of	the	
candidate	target	events

descriptor	of	the	
source	event

Semantic

Matching	

Algorithm

(Component	4)

	𝐸			
# sorted	

according	to	
the	semantic	
score	between	
𝑒, and	𝑒-

#

Word	

Embedding

(Component	2)

𝑡𝑥𝑡, 𝑡𝑥𝑡#
score

(𝑡𝑥𝑡, 𝑡𝑥𝑡#)

Corpus	of	

Documents	

(Component	1)

Word	

Embedding	

Model

𝐸			
# 	

< 𝑒1
, 𝑒2

#,	….	𝑒3
>

Figure 2: Logical workflow of the semantic matching

respectively. They then identify similar semantics by querying a

word embedding model that recognizes words or sentences that

express similar concepts. For instance, a word embedding model

would recognize that łjoinž and łsign upž are semantically similar.

Figure 2 shows the logical workflow among the core components

of the semantic matching of GUI events, which is shared by all test

reuse approaches that rely on word embedding. Given a source

event 𝑒𝑠 and a set of candidate target events 𝐸𝑡 = {𝑒𝑡
0
, 𝑒𝑡
1
, · · · 𝑒𝑡𝑛},

for each event in 𝑒𝑡𝑖 ∈ 𝐸
𝑡 the semantic matching computes a similar-

ity score that expresses the degree of semantic similarity between

𝑒𝑡𝑖 and 𝑒𝑠 . The semantic matching computes the score by aggre-

gating the scores returned by the word embedding model for each

pair of attributes in their descriptors (score(txt𝑠 , txt4𝑡) in Figure 2).

Different semantic matching algorithms use different aggregation

functions [15, 45]. Then, test reuse approaches can consider the

event(s) with the highest scores [45] and/or ignore all events that

are below a predefined threshold [15]. The semantic matching of

GUI events can thus be divided into four main components:

C1) Corpus of Documents that the approaches use to build a

word embedding model.

C2) Word Embedding that relies on the corpus of documents to

create a word embedding model that defines the semantic space of

words/sentences in the corpus.

C3) Event Descriptor Extractor that extracts information from a

source event𝑒𝑠 and a set candidate target events𝐸𝑡 = {𝑒𝑡
0
, 𝑒𝑡
1
, · · · 𝑒𝑡𝑛}.

This component extracts the (textual) descriptors 𝐷 = {⟨𝑎𝑖 , 𝑣𝑖 ⟩} of

each event, both dynamically from the GUI states and statically

from the GUI layout files. In a descriptor 𝐷 , 𝑎𝑖 is an attribute type

(such as, text) and 𝑣𝑖 is its value (such as, łpress okž). Note that,

the textual value of an attribute might be a full sentence, as in this

example. For convenience of notation, we use 𝐷 [𝑎𝑖] to refer to the

value 𝑣𝑖 of the attribute 𝑎𝑖 of descriptor 𝐷 .

C4) Semantic Matching Algorithm that returns a list of 𝐸𝑡 el-

ements sorted according to the similarity score computed from

the descriptor of the source event (𝐷𝑠) and the descriptors of the

candidate target events ({𝐷𝑡
0
, 𝐷𝑡

1
, · · ·𝐷𝑡

𝑛}). Internally, the semantic

matching algorithm computes the similarity score between events

by aggregating the similarity scores of corresponding attributes

in the descriptors of the source and target events: 𝑠𝑖𝑚(𝑒𝑠 , 𝑒𝑡𝑖) =

𝑠𝑖𝑚(𝐷𝑠 , 𝐷𝑡
𝑖) = 𝑎𝑔𝑔 𝑗 {𝑠𝑖𝑚(𝐷

𝑠 [𝑎 𝑗], 𝐷
𝑡
𝑖 [𝑎 𝑗])}.

179

ISSTA ’21, July 11–17, 2021, Virtual, Denmark Leonardo Mariani, Ali Mohebbi, Mauro Pezzè, and Valerio Terragni

We now describe the component type implementations that we

consider in our study. We refer to a specific implementation of a

component as an instance. We include all the component instances

of ATM and CraftDroid andmany other instances, which were not

investigated in the context of semantic matching of GUI events, yet.

3.1 Corpus of Documents

Our study considers three corpora of English documents:

Blog Authorship Corpus (Blogs) [79] that consists of 681,288

posts from 19,320 bloggers. This is a well-known corpus often used

by the NLP and information science communities [1, 80].

User Manuals of Android apps (Manuals) [15] that consists of

the user manuals of 500 Android applications. This corpus was

built by the authors of ATM [15], who used it to train aWord2vec

word embedding model for running ATM.

Apps Descriptions (Google-play) that consists of the English

descriptions of 900,805 Android apps in the Google Play Store. We

constructed this corpus by crawling the list of similar apps of each

crawled page. We used as seeds of the crawler the pages of the apps

returned by searching random words in the Google Play search bar.

The corpus of documents plays an important role in the semantic

matching. Indeed, the quality of a word embedding model depends

on the corpus of documents used to train the model.

There are two important characteristics that the corpus of docu-

ments should have to obtain an effective word embedding model.

First, the corpus should include as many distinct words as possi-

ble, as the model cannot compute similarity scores of words not rep-

resented in the vector space (Out-of-Vocabulary issue [18]). More-

over, the words contained in the corpus should be words that are

often found in the GUI of Android applications.

Second, the corpus should reflect the same word usage that mo-

bile apps commonly adopt. In fact, a word can have a different

meaning depending on the context of usage. Word embedding mod-

els trained with domain-specific corpora often outperform those

trained with general corpora [42]. To study and quantify the impor-

tance of the context of usage, we considered both general (Blogs)

and mobile apps specific corpora (Manuals and Google-play).

3.2 Word Embedding

Word embedding [60] is a class of unsupervised language modeling

and feature learning techniques that map words or sentences from

a corpus of documents to vectors of real numbers [85].

A word embedding assigns each unique word in the corpus to a

corresponding vector in the space. Word vectors are positioned in

the vector space such that words that share common contexts in

the corpus are close to one another. The resulting vector space is a

word embeddingmodel,which test reuse approaches use to identify

semantically similar, although syntactically different words (the so-

called synonym problem). In the context of test reuse, the synonym

problem is a key issue, because we cannot expect that independent

developers use the same words to express the same concepts.

Our study considers the following word embedding techniques:

Word2vec [60]: one of the most popular word embedding tech-

niques developed in 2013 in Google. It implements a shallow (two-

layer) neural network that is trained to reconstruct linguistic con-

texts of words. Both ATM and CraftDroid rely on models built

withWord2vec [15, 45].

GlobalVectors (Glove) [70]: a probabilistic technique that learns

vectors or words from their co-occurrence information (how fre-

quently they appear together in the corpus).

WordMover’s distance (WM) [39]: a word embedding technique

based on the observation that semantic relationships are often pre-

served in vector operations on Word2vec models. For instance,

vector(London) - vector(England) + vector(Germany) is close

to vector(Berlin). WM exploits this property by finding the min-

imum traveling distance between sentences [39]. As such, WM con-

siders distance between sentences (one ormore words) [85] and not

only among pairs of words like the distances based on Word2vec

or Glove [85]. In the context of test reuse this could be useful, be-

cause event descriptors often contain multiple words [15, 45]. WM

returns an integer greater than zero, that we normalize from 0 to

1, with a standard normalization 1/(1+WM(txt𝑠 ,txt𝑡)).

Fast Text (Fast) [18]: an extension of Word2vec developed in

Facebook. While Word2vec treats words as the smallest unit to

train on, Fast learns vectors for the n-grams that are found within

each word. Fast computes the vector of a word as the sum of

its n-grams. For example, the word łaquariumž has the n-grams:

łaqu/qua/uar/ari/riu/iumž. Fast is designed to alleviate the Out-of-

Vocabulary issue [18]. In fact, even if the word łaquariusž is not

present in the corpus, Fastwould embed łaquariusž near to łaquar-

iumž because they share seven n-grams.

Bidirectional Encoder Representations from Transformers

(BERT) [24]: a context-sensitive word embedding technique that

infers the meaning of a word from its surroundings, by learning

how to predict 15% of masked words in a sentence.

Neural Network Language Model (NNLM) [8]: a family of neu-

ral network techniques that learn word embedding models jointly

with the language model. In our study we consider the NNLM tech-

nique proposed by Google [35].

Universal Sentence Encoder (USE) [19]: a state-of-the-art

context-sensitive word embedding technique proposed by Google.

3.3 Event Descriptor Extractor

This component collects the descriptors of the source event 𝑒𝑠 and

of the candidate target events ⟨𝑒𝑡
0
, 𝑒𝑡
1
, · · · 𝑒𝑡𝑛, ⟩. An event descriptor

𝐷 is a set of textual attributes {𝑎1, 𝑎2 · · ·𝑎𝑚} extracted from the

GUI states. Each attribute is defined as a ⟨𝑡𝑦𝑝𝑒, 𝑣𝑎𝑙𝑢𝑒⟩ pair. Our

study considers all the attribute types used in current test reuse

approaches for Android (ATM and CraftDroid) [15, 45] as part

of the descriptors. The attributes can be classified as primitive and

derived. Primitive attributes are directly associated with the widget

of the event under consideration. Derived attributes are obtained

from primitive attributes of other widgets in the GUI state that

contains the event under consideration.

The primitive attributes of a widget𝑤 are:

text, the visible label associatedwith𝑤 (xml attribute android:text).

180

Semantic Matching of GUI Events for Test Reuse: Are We There Yet? ISSTA ’21, July 11–17, 2021, Virtual, Denmark

Table 1: Groups of event descriptors

attribute attribute ATM Craftdroid intersection union

category type A C A ∩ C A ∪ C

primitive

text ✓ ✓ ✓ ✓

resource-id ✓ ✓ ✓ ✓

content-desc ✓ ✓ ✓ ✓

hint ✓ ✓ ✓ ✓

file-name ✓ ✓

activity-name ✓ ✓

derived

neighbor-text ✓ ✓

parent-text ✓ ✓

sibling-text ✓ ✓

content-description, a textual description of𝑤 that is not visible

in the GUI. It is often used by Android Accessibility APIs as alter-

nate text for describing the widget to visually impaired users (xml

attribute android:contentDescription).

hint, a textual description of𝑤 that is used in editable widgets to

help the user to fill the correct content (xml attribute android:hint).

resource-id, the unique identifier of 𝑤 that developers assign to

eachwidget to reference them in the code (xml attribute android:id).

file-name, the name of the file associated with𝑤 . For example, the

name of the image file associated with a widget.

activity-name, the name of the Android activity of the widget𝑤 .

Sometimes the textual information that describes a widget is

not found in the widget itself but in near widgets [11]. For instance,

the widget associated with 𝑒𝑠
2
in Figure 1 (A) does not have any

visible textual attribute, but there is a neighbor widget with text

attribute "First Name" that describes the semantic of the widget

of 𝑒𝑠
2
. ATM defines derived attributes from the spatial positions of

the widgets [15]. CraftDroid defines derived attributes from the

hierarchical structure of the Android GUI states [45], in which

widgets have a parent-child-sibling relationship. The element that

directly precedes another element in the hierarchy is the parent of

the element below it, and the element below the parent is the child.

Two elements at the same hierarchical level are siblings.

The derived attributes of a widget𝑤 are:

parent-text, the text attribute of the parent widget of𝑤 .

sibling-text, the text attribute of the sibling widget immediately

before𝑤 in the hierarchical structure.

neighbor-text, the text attribute of the closest widget from 𝑤

within a certain distance.

Some attributes of a widget can be undefined (empty). For exam-

ple, most widgets lack the hint or content-desc attributes.

In our experiments we did not consider each attribute individu-

ally, as the semantic matching algorithms require a set of attributes

to be effective. Table 1 shows the four groups of attributes that we

considered in our study, where "A" and "C" indicate the attributes

used by ATM and CraftDroid, respectively. The "intersection"

group (A ∩ C) are attributes used by both ATM and CraftDroid.

We consider this group to evaluate the impact of the attributes used

by only one approach. For example, we can evaluate the impact of

the descriptors neighbor-text and file-name, by comparing the re-

sults of the groups "A" and "A ∩ C". The "union" group (A ∪ C) are

attributes used by ATM, CraftDroid or both.

Algorithm 1: Semantic Similarity Calculator

Input: two sentences txt𝑠 and txt𝑡 , a word embedding modelM,
aggregrator aggr ∈ {avg, sum}

Output: similarity score between txt𝑠 and txt𝑡

1 function getSimScore

2 ⟨txt𝑠 , txt𝑡 ⟩ ← preprocessing(txt𝑠 , txt𝑡)

3 switchM do
4 case model at "word" level (Word2vec, Glove, FastText) do
5 score[][]← ∅

6 for each word wd1 ∈ txt
𝑠 do

7 for each word wd2 ∈ txt
𝑡 do

8 score[wd1][wd2]← cosineSim(M(wd1),M(wd2))

9 mappedScores← getMatchedWords(score[][])

10 return aggr{mappedScores}

11 case model at "sentence" level (WMD, BERT, NNLM, USE) do
12 return sim(M(txt𝑠),M(txt𝑡))

3.4 Semantic Matching Algorithm

Test reuse approaches decide how to generate the target test case

by analyzing the lists of target events sorted according to the simi-

larity score computed for each event in the source test case. More

specifically, the algorithm takes in input the descriptor 𝐷𝑠 of the

source event 𝑒𝑠 and the set of descriptors {𝐷𝑡
0
, 𝐷𝑡

1
, · · ·𝐷𝑡

𝑛} of the

candidate target events 𝐸𝑡 , and returns a sorted list of 𝐸𝑡 based on

the similarity scores computed between 𝐷𝑠 and each of the target

descriptors 𝐷𝑡
𝑖 , where 𝐷

𝑡
𝑖 denotes the descriptor of event 𝑒

𝑡
𝑖 .

We now describe the three semantic matching algorithms of our

study: the one used in ATM, the one used in CraftDroid, and

SemFinder, a new algorithm that we propose in this paper.

All the three algorithms rely on a word embedding model (M) to

compute the semantic similarity scores among the attribute values

of the source and target descriptors. Algorithm 1 illustrates the

function that the three algorithms share (Function getSimScore).

The function computes the similarity scores between two sentences

txt𝑠 and txt𝑡 obtained from the values of the textual attributes of

the source and target descriptors, respectively. More specifically,

the function takes in input two sentences txt𝑠 , txt𝑡 , a modelM, and

an aggregator function (average or sum), and returns a real number

that expresses the similarity score between txt𝑠 and txt𝑡 .

A pre-processing phase removes stop words, performs lemmati-

zation, and splits words in the case of camel case notation (line 2).

If the modelM is at word level, the algorithm computes the cosine

similarity of vector(𝑤𝑑1) and vector(𝑤𝑑2) for all possible pairs

of words of the two sentences ⟨𝑤𝑑1 ∈ txt𝑠 ,𝑤𝑑2 ∈ txt𝑡 ⟩ (lines 6ś

8). Then it identifies the best match among the pairs as (i) the pair

with the highest cosine similarity, where (ii) every word is matched

only once (line 9). It finally returns the similarity score using the

aggregation function passed as an input (line 10). ATM uses sum as

an aggregation function, while CraftDroid and SemFinder use

average. If the model is at sentence level the algorithm does not

consider each word individually, but queries the model M with

the sentences as a whole. Notably, both ATM and CraftDroid use

models at word level, we add lines 10 and 12 to make the algorithm

compatible with the sentence level word embedding models that

we considered in our study.

We now describe the three algorithms and their key differences.

181

ISSTA ’21, July 11–17, 2021, Virtual, Denmark Leonardo Mariani, Ali Mohebbi, Mauro Pezzè, and Valerio Terragni

Algorithm 2: Semantic Matching Algorithms

Input: source descriptor 𝐷𝑠 , set of target descriptors {𝐷𝑡

0
, 𝐷𝑡

1
, · · ·𝐷𝑡

𝑛
}

Output: sorting of 𝐸𝑡 based on the semantic similarity with 𝑒𝑠

13 function ATM
14 descScores[]← ∅

15 label𝑠
1
← getFirstDef(𝐷𝑠 [neighbor-text], 𝐷𝑠 [resource-id] +

𝐷𝑠 [file-name])

16 label𝑠
2
← getFirstDef(𝐷𝑠 [text], 𝐷𝑠 [content-desc], 𝐷𝑠 [hint])

17 for each i from 1 to n do
18 if type(𝑒𝑠) = type(𝑒𝑡

𝑖
) then

19 label𝑡
1
← getFirstDef(𝐷𝑡

𝑖
[neighbor-text], 𝐷𝑡

𝑖
[resourse-id] +

𝐷𝑠 [file name])

20 label𝑡
2
← getFirstDef(𝐷𝑡

𝑖
[text], 𝐷𝑡

𝑖
[content-desc] or 𝐷𝑡

𝑖
[hint])

21 scores← ∅

22 for each label𝑠 ∈ {label𝑠1, label
𝑠

2 } do
23 for each label𝑡 ∈ {label𝑡1, label

𝑡

2 } do
24 add getSimScore(label𝑠 , label𝑡 ,M, "sum") to scores

25 descScores[𝐷𝑡

𝑖
]← max{ scores }

26 return 𝐸𝑡 sorted by descScore

27 function CraftDroid

28 descScores[]← ∅

29 for each i from 1 to n do
30 if type(𝑒𝑠) = type(𝑒𝑡

𝑖
) then

31 scores← ∅

32 for each 𝑎𝑖 ∈{ text ∪ hint, resource-id, content-desc, actitivty-name,

parent-text, sibiling-text} do
33 add getSimScore(D𝑠 [𝑎𝑖], D

𝑡

𝑖
[𝑎𝑖],M, "avg") to scores

34 descScores[𝐷𝑡

𝑖
]← avg{ scores }

35 return 𝐸𝑡 sorted by descScore

36 function SemFinder

37 descScores[]← ∅

38 for each i from 1 to n do
39 if type(𝑒𝑠) = type(𝑒𝑡

𝑖
) then

40 ⟨txt𝑠 , txt𝑡 ⟩ ← ⟨∅,∅⟩

41 for each 𝑎𝑖 ∈{ text, resource-id, content-desc, hint, file-name,

neighbour-text} do
42 txt𝑠 ← txt𝑠 ∪𝐷𝑠 [𝑎𝑖]

43 txt𝑡 ← txt𝑡 ∪𝐷𝑡 [𝑎𝑖]

44 descScores[𝐷𝑡

𝑖
]← getSimScore(txt𝑠 , txt𝑡 ,M, "avg")

45 return 𝐸𝑡 sorted by descScore

Semantic Matching of ATM [15] Lines 13 to 26 of Algorithm 2

encode the semantic matching algorithm of ATM. The algorithm

starts by collecting two textual representations of the source event:

label𝑠
1
(line 15) and label𝑠

2
(line 16). label𝑠

1
is the first defined at-

tribute among ⟨neighbor-text, resource-id ∪ file-name⟩ in 𝐷𝑠 . If all

of such attributes are undefined, label𝑠
1
is the empty string. Notably,

ATM extracts the neighbor-text attribute only for filling events, for

clicking events the attribute is always undefined. label𝑠
2
is the first

defined attribute among ⟨text, content-desc, hint⟩ in 𝐷𝑠 (line 16).

For each event 𝑒𝑡𝑖 ∈ 𝐸𝑡 that has the same type of 𝑒𝑠 (either

both filling or both clicking events), the algorithm collects label𝑡
1

and label𝑡
2
in the same way it collects label𝑠

1
and label𝑠

2
, respec-

tively. Then, the algorithm invokes Function getSimScore (Al-

gorithm 1) for each combination of ⟨ label𝑠 ∈ {label𝑠1, label
𝑠
2}, la-

bel𝑡 ∈ {label𝑡1, label
𝑡
2}⟩, using "sum" as aggregation function. The

algorithm assigns the highest returned value to the score of the cur-

rent target event (score[𝐷𝑡
𝑖] line 25). After the algorithm analyses

each target event, it sorts 𝐸𝑡 based on the final scores (line 26).

SemanticMatching of CraftDroid [45] Lines 27 to 35 of Algo-

rithm 2 encode the semantic matching algorithm of CraftDroid.

For each target event 𝑒𝑡𝑖 of the same type of 𝑒𝑠 (either both filling

or both clicking events), CraftDroid gets the similarity scores of

their descriptor attributes (line 32) and adds them to List scores.

The algorithm only compares corresponding attributes. For exam-

ple, resource-id of the source descriptor is compared to resource-id

of the target descriptor. CraftDroid assigns the average of List

scores to the final score of the current target descriptor (line 34).

SemFinder Lines 36 to 45 of Algorithm 2 encode the semantic

matching algorithm SemFinder that we propose in this paper. For

each event 𝑒𝑡𝑖 ∈ 𝐸
𝑡 that has the same type of 𝑒𝑠 (either both filling

or both clicking events), SemFinder builds two sentences txt𝑠 and

txt𝑡 . It builds txt𝑠 by concatenating all the values of the attributes of

𝐷𝑠 (separated with a space), and txt𝑡 with the values in 𝐷𝑡
𝑖 . It then

removes words that are repeated in the same sentence. It finally

aggregates the similarity score between txt𝑠 and txt𝑡 using aver-

age, and assigns the result to the final score of the current target

descriptor (line 44).

Key differences While sharing the same general idea, the three

algorithms differ in three important aspects1:

I. The attributes of source and target descriptors that they compare.

Both ATM and CraftDroid compute the semantic similarity only

between certain types of source and target attributes. CraftDroid

computes the semantic similarity only between attributes of the

same type. However, there is no guarantee that across different apps

the relevant semantic information is always contained in the same

attribute type. Indeed, a typical test reuse scenario involves source

and target apps implemented by different developers, who might

follow different software development styles and standards. ATM

allows some flexibility on the attribute types, for instance, it con-

siders the pair 𝐷𝑠 [text] and 𝐷𝑡 [resource-id], but it is still restricted

to some combinations. For example, given a source event 𝑒𝑠 with

𝐷𝑠 [text] = "address", and target event 𝑒𝑡𝑖 with 𝐷𝑡
𝑖 [neighbor-text] =

"find" and𝐷𝑡
𝑖 [resource-id] = "location", bothATM andCraftDroid

would not consider the pair of attributes ⟨𝐷𝑠 [text], 𝐷𝑡
𝑖 [resource-

id]⟩, thus missing the semantic similarity of "address" and "loca-

tion". ATMmisses this pair of attributes because the first not empty

attribute at Line 20 of Algorithm 2 is 𝐷𝑠 [text], and thus will only

consider the pair ⟨𝐷𝑠 [text], 𝐷𝑡
𝑖 [neighbor-text]⟩.

SemFinder computes the semantic similarity scores among all

attributes, regardless of their type. Our intuition is that the relevant

semantic information can be in any of the considered attribute

types. As such, SemFinder merges all source attribute values into

a single sentence, all target attribute values into another sentence,

and computes the semantic similarity of the two sentences.

II. The way they aggregate the similarity scores of multiple pairs

of attribute types. ATM uses themaximum (line 25 of Algorithm 2),

while CraftDroid uses the average (line 34 of Algorithm 2) to ag-

gregate the similarity score ofmultiple pairs of attribute types. Both

aggregation functions have their pros and cons [15, 45]. SemFinder

does not consider attributes separately, but it groups them into sen-

tences, thus does not need to combine the similarity scores of multi-

ple pairs of attribute types. By comparing sentences, SemFinder to

1we exclude the difference of attribute types, which is considered individually by C3.

182

Semantic Matching of GUI Events for Test Reuse: Are We There Yet? ISSTA ’21, July 11–17, 2021, Virtual, Denmark

Table 2: Subjects of our experiment

subject from category app id # of DL subject from category app id # of DL

ATM

Expense Tracker

EasyBudget [17] 100k

CraftDroid

To-Do List

Minimal [78] -

Expenses [48] 1K Clear List [27] -

Daily Budget [40] 50K Todo List [82] -

Open Money [89] 1K Simply Do [38] -

Note Taking

Swiftnotes [2] - Shop. List [37] -

Writely Pro [71] -
Shopping

Rainbow [73] 0.5M

Pocket Note [77] - Yelp [90] 50M

Shopping List

Shop.List1 [5] -

Mail Client

Mail.ru[50] 50M

Shop.List2 [86] 100K myMail [67] 10M

Shop.List3 [81] 5K AnyMail [22] 10M

OI Shop. List [68] 1M

Tip Calculator

TipCalculator

CraftDroid Browser

Lightning [6] 10K TipCalc [7] 500

Privacy [83] 1K Simple Tip [84] 1K

FOSS [30] - TipCalc.Plus [91] 500

FirefoxFocus [66] 5M FreeTipCalc. [36] 1K

leverage the full capacity of sentence level embedding techniques.

Sentence level techniques can handle semantic relation of words

when they appear together.

III. The way they aggregate the similarity scores in case of word-

level word embedding models. ATM aggregates the similarity scores

of different words in the same sentence (Lines 4 to 10 of Algo-

rithm 1) with the sum (line 24 of Algorithm 2), while CraftDroid

with the average (line 33 of Algorithm 2). Even if SemFinder com-

bines all attribute types in single sentences, it also needs to ag-

gregate scores of words for word-level word embedding models

(Lines 4 to 10 of Algorithm 1). SemFinder aggregates the similarity

scores with the average (Line 44 of Algorithm 2), like CraftDroid,

since the average often works better than sum (used in ATM). This

is because the sum privileges (assign high score to) sentences with

many words, as there is always a positive score between two words,

if both words are represented in the model. Thus, two attributes

with many unrelated words usually get a higher score than two

attributes with fewer highly related (semantically similar) words.

4 EXPERIMENT

In this paper, we study the effectiveness and limitations of the se-

mantic matching of GUI events for test reuse approaches. We con-

ducted a set of experiments involving 253 different configurations

of the semantic matching (Figure 3), aiming to answer three re-

search questions:

RQ1 Baseline Comparison: Do semantic approaches based on

word embedding outperform syntactic and random approaches?

RQ2 Component Effectiveness: What are the most effective in-

stances of each component?

RQ3 ImpactAnalysis:Which component type(s) have the greatest

impact on the semantic matching of GUI events?

RQ1 checks whether the use of semantic approaches is justified,

by comparing the effectiveness of semantic approaches to both syn-

tactic (edit-distance and Jaccard similarity) and random approaches.

RQ2 identifies which instances achieve the best performance. RQ3

studies which component type has the largest impact on the effec-

tiveness of semantic matching, thus suggesting where the research

community should focus its effort.

4.1 Implementation

We implemented a fully automated tool in Python that runs the dif-

ferent configurations of the four component types on a set of source

and target events. The tool represents a framework to evaluate the

semantic matching of GUI events, which can be easily extended to

add new component instances.

The source code of ATM and CraftDroid is publicly available,

ATM is written in Java [12], while CraftDroid in Python [44].

We re-implemented the semantic matching algorithm of ATM in

Python referring to the original Java implementation [12]. For the

algorithm of CraftDroid, we reused the original Python code as

much as possible [44]. It is important to mention that the semantic

matching algorithms of ATM and CraftDroid are internal algo-

rithms of test reuse tools and can be hardly executed in isolation. As

such, one of the contributions of this work is a framework for com-

paring different component instances of the semantic matching,

similar to what Fruiter achieved in the context of test reuse [93].

We implemented the Event Descriptor Extractor instances with

a tool that executes the source and target tests and extracts from the

GUI states the values of the nine widget attributes considered in our

study (Table 1). We used the framework Appium (1.1.13) to read the

GUI states at runtime. We implemented our own extractor, rather

than rely on the implementations of ATM or CraftDroid, to have

a common tool to collect all the descriptors. Our event extractor

considers all types of click and fill events used by state-of-the-art

test reuse approaches (ATM and CraftDroid). In particular, click

events include simple click, swipe and long click, and are applicable

to a wide range of Android widget types such as Button, ListView,

Dialog, and ImageButton. Fill events insert a text into an EditText

widget.

4.2 Subjects

We considered all the publicly available test migration scenarios

(pairs of source and target test cases ⟨𝑡𝑠 , 𝑡𝑡 ⟩) used in the experi-

ments of ATM and CraftDroid. Such scenarios involve test cases

from 41 Android apps. We considered all the test scenarios2 that

belong to the 30 Android apps that we could run. We could not

2ATM considers 10 test scenarios for each pair of source and target apps. However,
such scenarios cannot be considered in isolation, because the scenarios are dependent
on one another. For this reason, we consider only the first scenario.

183

ISSTA ’21, July 11–17, 2021, Virtual, Denmark Leonardo Mariani, Ali Mohebbi, Mauro Pezzè, and Valerio Terragni

3
Corpus of Documents (C1)

× 4
Word Embedding Technique (C2)

×

4

Event Descriptor Extractor (C3)

× 3

Semantic Matching Algorithm (C4) 



= 253

Manuals, Blogs, Google Play Word2vec, WMD, Glove, Fast

ATM (A), CraftDroid (C),

A ∩ C, A ∪ C

ATM, CraftDroid,

SemFinder

7
Pre-trained (standard) Word Embedding Models

×
Word2vec, WMD, Glove, Fast, BERT, USE, NNLM

2
Syntactic Approaches

×
edit-distance based similarity (ES), Jaccard Similarity (JS)

1 Random Baseline

Figure 3: The 253 configurations of components’ instances considered in our study

run five Android apps of ATM because we encountered various

errors when compiling their source code. Despite a lot of effort, we

could not provide the correct environment for these subjects. We

could not run six Android apps of CraftDroid because they re-

quire communication with a server, but the API or Security protocol

changed. Table 2 shows the 30 Android apps that we considered

in our study.

We consider all 139 pairs of source and target test cases ⟨𝑡𝑠 , 𝑡𝑡 ⟩

among the test migration scenarios provided by ATM and Craft-

Droid that involve these 30 apps. The 139 scenarios include a

ground-truth annotation from the ATM and CraftDroid authors

that specifies which events in the source test case match which

events in the target test case. Given a source event 𝑒𝑠 ∈ 𝑡𝑠 , we

use 𝑒𝑡𝑔𝑡 ∈ 𝑡𝑡 to denote the event that semantically matches 𝑒𝑠 as

annotated by the ground truth. Notably, not all events in source

test cases have an equivalent counterpart in the target app. Some

events (called ancillary events [93]) are specific to the source app

only, but are needed in the source test to reach certain app states

or windows. Since our goal is to evaluate the semantic matching

only, we removed them.

Because some source tests share the same app, the same event

could be repeated across multiple source tests. We remove redun-

dant events by considering two events 𝑒𝑎 and 𝑒𝑏 to be equivalent iff

all the nine event descriptors considered in our study are identical

across 𝑒𝑎 and 𝑒𝑏 . After removing all redundant events, we obtained

337 unique source events, and thus 337 unique queries.

There are multiple ways to define the set of candidate target

events 𝐸𝑡 = {𝑒𝑡
0
, 𝑒𝑡
1
, · · · 𝑒𝑡𝑛} for each 𝑒

𝑠 ∈ 𝑡𝑠 . We define 𝐸𝑡 as the set

of events that are actionable in all the GUI states traversed by the

target test 𝑡𝑡 . More formally,𝐸𝑡 = {𝑒𝑡 : ∃𝑆 ∈ S, 𝑒𝑡 is actionable in 𝑆},

where S is the sequence of state transitions obtained by executing 𝑡𝑡 .

Our definition of 𝐸𝑡 leads to semantic matching queries that are

coherent with test reuse, which match events across applications

considering target events that span multiple windows [15, 45]. Sim-

ply defining 𝐸𝑡 as the set of events actionable in the window of 𝑒𝑡𝑔𝑡
would create an artificial and unrealistic scenario. This is because

a test reuse technique cannot know in advance which window of

the target application should contain events semantically similar

to a given source event.

According to our definition, if multiple events in 𝑡𝑡 belong to

the same window, we can have many redundant events within the

same 𝐸𝑡 . We remove all of them by applying the equivalent relation

described above. The cardinality of resulting 𝐸𝑡 ranges from 5 to

80, with an average of 24.03 and median of 19 events.

4.3 Experimental Setup

Figure 3 shows the 253 configurations of the semantic matching

that we used in our experiment.

We considered the 12 pairwise combinations of the three corpora

of documents and four word embedding techniques: Word2vec,

WMD, Glove and Fast, building 12 word embedding models. Be-

fore running the word embedding techniques we used the same

pre-processing steps used at Line 2 of Algorithm 1.

For all seven word embedding techniques we considered the pre-

trained (standard) models provided by the authors of such tech-

niques. Notably, these pre-trained models are obtained using dif-

ferent corpora of documents (such as, different versions of Google

News and Twitter datasets), which are not publicly available. As

such, we were not able to consider such corpora as individual com-

ponents, like we did for Manuals, Blogs, and Google-play.

We decided not to build models with BERT, USE and NNLM

using the three corpora (Manuals, Blogs, and Google-play), and

thus relying only on the pre-computed models. This is because

these word embedding techniques require a non-trivial parameter

tuning that goes beyond the scope of this paper.

RQ1 considers two canonical syntactic approaches that compute

the syntactic similarity ofwords/sentences: edit-distance based sim-

ilarity (ES), and the Jaccard Similarity index (JS). Because both ES

and JS do not use the corpus of documents, we ignore the combi-

nations of ES and JS with the three corpora.

ES computes the (normalized) similarity of two words relying

on the "Levenshtein distance" [41] that quantifies the dissimilar-

ity of two words as the minimum number of operations (deletion,

insertion and substitution) required to transform a word into the

other. Given two words𝑤𝑑1 and𝑤𝑑2,

𝐸𝑆 (𝑤𝑑1,𝑤𝑑2) =
𝑚𝑎𝑥 (|𝑤𝑑1 |, |𝑤𝑑2 |) − 𝐿𝐷 (𝑤𝑑1,𝑤𝑑2)

𝑚𝑎𝑥 (|𝑤𝑑1 |, |𝑤𝑑2 |)
∈ [0; 1]

where LD(𝑤𝑑1 𝑤𝑑2) is the "Levenshtein distance" of𝑤𝑑1 and𝑤𝑑2.

ES returns 1 if the words are identical. ES operates at word level,

and thus replaces the query of the word embedding model at line

8 of Algorithm 1.

JS computes the similarity of two sets by dividing the number

of elements that are shared between both sets by the total number

of (unique) elements (both shared and not shared). In our context,

sets are sentences and the elements of the sets are words. Given

two sentences txt1 and txt2,

JS(txt1, txt2) =
|txt1 ∩ txt2 |

|txt1 ∪ txt2 |
∈ [0; 1]

JS returns 1 when txt1 and txt2 have all identical words, regardless

of their position in the sentences. JS operates at sentence level, and

184

Semantic Matching of GUI Events for Test Reuse: Are We There Yet? ISSTA ’21, July 11–17, 2021, Virtual, Denmark

Figure 4: Distribution of MRR (top) and TOP1 (bottom) for each component

thus replaces the interrogation of the word embedding model at

line 12 of Algorithm 1.

We experiment with the Event Descriptor Extractor instances

(Component 3) by combining the four groups of descriptors sum-

marized in Table 1 with all three Semantic Matching Algorithms

instances (Component 4). To distinguish the descriptors and algo-

rithms when they share the same name, we added the suffix "_d"

and "_a". For instance, ATM_d denotes the descriptor group and

ATM_a the algorithm of ATM.

An important design choice is how tomodify the semanticmatch-

ing algorithms to accept a group of descriptors that differs from the

groups used by the original algorithms. We modify the semantic

matching algorithms as follows: If the group of descriptors does not

contain an attribute 𝑎 that is considered in the original algorithm,

we remove 𝑎 from the algorithm. For instance, when combining

the "intersection" group to CraftDroid_a, we remove the activity-

name, parent-text and sibling-text from the set of attribute types

at Line 32 of Algorithm 2. If the group of descriptors contains an

attribute 𝑎 that is not considered in the original algorithm,we add 𝑎

to the algorithm by appending it at the end of the text attribute. For

instance, when combining the CraftDroid_d group with ATM_a,

we append the attribute types activity-name,parent-text and sibling-

text to the attribute text at Lines 16 and 20 of Algorithm 2. The ra-

tionale of using this approach is twofold: (i) ATM does not ignore

the new attributes, since ATM gives highest priority to the text,

and (ii) the choice corresponds to the way the original algorithm

of CraftDroid handles the hint attribute (line 32 of Algorithm 2).

Our last configuration is a random baseline that assigns a ran-

dom score between 0 and 1 to each pair of events. To cope with the

stochastic nature of the random baseline, we repeated this process

100 times and we report the median result.

4.4 Evaluation Metrics

In our study, a query 𝑞 is a pair of a source event and a set of candi-

date target events ⟨𝑒𝑠 , 𝐸𝑡 ⟩ that returns the list of events in 𝐸𝑡 sorted

by their final score. In our context, we have only one correct answer

(𝑒𝑡𝑔𝑡), and thus the rank of a query 𝑞𝑖 , denoted by 𝑟𝑎𝑛𝑘𝑖 , is the posi-

tion of 𝑒𝑡𝑔𝑡 in the list returned by the query 𝑞𝑖 . Following standard

practice, if multiple events have identical final scores, their rank is

the average of their positions. For instance, if the top three events

have identical final scores, their rank is equal to two (1+2+3/3 = 2).

We evaluate the semantic matching effectiveness of each of the

253 combinations using two metrics based on the ranks: (i) the

Mean Reciprocal Rank (MRR) [47], and (ii) the ratio of queries in

which the rank of the correct answer is one (TOP1).

The reciprocal rank of a query response is the multiplicative

inverse of the rank of the first correct answer: 1 for first place, 1/2

for second place, 1/3 for third place and so on. The mean reciprocal

rank is the average of the reciprocal ranks of our 337 queries 𝑄 .

MRR =

1

|𝑄 |

|𝑄 |∑︁

𝑖=1

1

rank𝑖
∈ (0; 1]

MRR is a standard statistical measure for evaluating any process

that produces a list of possible responses to a query 𝑞, sorted by

their probability of correctness. MRR is suitable in our context be-

cause it focuses on a single correct answer (𝑒𝑡𝑔𝑡), while othermetrics

like Mean Average Precision (MAP) and Normalized Discounted

Cumulative Gain (NDCG) focus on multiple correct answers [47].

Themetric TOP1 is the ratio of queries in which the ground truth

(𝑒𝑡𝑔𝑡) is at the first position of the returned list of events. TOP1 is

less informative than MRR, because it does not make any difference

whether a query returns the ground truth event at the second or last

position in the list. However, TOP1 remains an important metric to

evaluate the semantic matching of GUI events, as often test reuse

approaches choose the first event in the list.

TOP1 =

1

|𝑄 |

|𝑄 |∑︁

𝑖=1

{
1 if rank𝑖 = 1

0 otherwise

}

∈ [0; 1]

185

ISSTA ’21, July 11–17, 2021, Virtual, Denmark Leonardo Mariani, Ali Mohebbi, Mauro Pezzè, and Valerio Terragni

Table 3: Distributions of the 253 combinations sorted by

MRR and TOP1 based on the percentiles 1%, 5%, 10%. [1:x]

denotes the configurations from position 1 to x of the list of

253 configurations ordered by MRR or TOP1.

type instance
MRR TOP1

[1:3] [1:13] [1:26] [1:3] [1:13] [1:26]

blogs 0% 23% 12% 0% 15% 12%
C1 manuals 33% 15% 15% 0% 15% 12%

googleplay 33% 31% 23% 33% 15% 19%
w2v 0% 0% 4% 0% 0% 0%
glove 0% 0% 0% 0% 0% 0%
wm 100% 92% 62% 100% 69% 62%
fast 0% 0% 4% 0% 0% 4%

C2 bert 0% 0% 0% 0% 0% 0%
nnlm 0% 0% 12% 0% 15% 15%
use 0% 8% 19% 0% 15% 19%
js 0% 0% 0% 0% 0% 0%
es 0% 0% 0% 0% 0% 0%
atm_d 100% 46% 42% 67% 46% 42%

C3 craftdroid_d 0% 15% 19% 0% 8% 19%
intersection 0% 8% 12% 0% 0% 15%
union 0% 31% 27% 33% 46% 23%
atm_a 0% 8% 15% 0% 0% 15%

C4 craftdroid_a 0% 0% 0% 0% 0% 0%
semfinder_a 100% 92% 85% 100% 100% 85%

4.5 Results

We run our 337 queries for each of the 253 configurations, we thus

execute 85,261 semantic matching queries in total. MRR ranges

from 0.201 to 0.789 across all configurations with an average of

0.696. The quartiles of MRR are: Q1: 0.674, Q2: 0.702, Q3: 0.724. In

the set of the 253 configurations sorted according to theMRR values,

the original configuration of ATM [manuals (Component 1), w2v

(Component 2), ATM_d (Component 3), ATM_a (Component 4)] is

in position 184 (MRR = 0.677), while the original configuration of

CraftDroid [standard (Component 1),w2v (Component 2),Craft-

Droid_d (Component 3), CraftDroid_a (Component 4)] is in po-

sition 196 (MRR = 0.670).

TOP1 ranges from 0.065 to 0.671 across all configurations (Q1:

0.484, Q2: 0.522, Q3: 0.558), with an average of 0.518. In the set of

the 253 configurations sorted according to the TOP1 values, the

original configuration of ATM is in position 200 (TOP1 = 0.472),

while the original configuration of CraftDroid is in position 191

(TOP1 = 0.484).

For both metrics the best configuration is [googleplay (Compo-

nent 1),WMD (Component 2),ATM_d (Component 3),SemFinder_-

a (Component 4)] and the worst is random.

Figure 4 shows the distributions of MRR and TOP1 by instance.

For example, the box plot of SemFinder_a on the top right of Fig-

ure 4 shows the distribution of the MRR values of all the 84 config-

urations with SemFinder_a as the semantic matching algorithm.

The box plots of the same Component type are sorted by median.

Note that some instances among the same component type be-

long to less configurations than others. For instance,WM is present

in 48 configurations, while USE only in 12. This is because for WM

we considered the pre-computed standard model and three models

built from the three corpora of documents, while for BERT we only

considered the pre-computed model.

Table 3 shows the distributions of the various component in-

stances for three percentiles 1% (top 3 entries), 5% (top 13 entries),

and 10% (top 26 entries). The values in the cells indicate the percent-

age of entries in the selected percentile (column) that uses a given

component (row). For instance, every entry in the first percentile

(1%) uses WM in both the lists sorted by the MRR and TOP1 metric.

We tested for statistical significance using a parametric two-sided

t-test [74]: if p-value <= 0.05 we reject the null hypothesis that the

two distributions are the same. We used a parametric test as the nor-

mality D’Agostino’s K2 test [69] confirmed that most distributions

are normally distributed.

4.6 RQ1: Baseline Comparison

Random has the worst performance, much worse than the other

configurations, and this confirms our expectation. When the 253

configurations are ordered by MRR values, the second last configu-

ration has value 0.595, while random 0.201. When they are sorted

by TOP1 values, the second last configuration has value 0.359,while

random 0.065.

The syntactic based similarity metrics (ES and JS) generally per-

form significantly worse than word embedding models (see Fig-

ure 4). Indeed, none of the 24 configurations with either JS or ES

appear in the top 10% configurations sorted by either MRR or TOP1

values (see Table 3).

This result confirms the hypothesis that often different develop-

ers use different words to express the same logical GUI action [15,

45]. This result motivates the use of word embedding models that

help identify semantically similar albeit syntactically differentword-

s/sentences in widgets attributes.

4.7 RQ2: Component Effectiveness

Corpus of Documents (Component 1) Table 3 shows that the

googleplay corpus dominates the other two corpora for all per-

centiles (although the comparisons of the Component 1 distribu-

tions in Figure 4 are without statistical significance). Notably in

Table 3, the sum of the three percentages of blogs, manuals and

googleplay never reaches 100%. This is because the remaining con-

figurations involve multiple pre-computed models obtained with

different corpora of documents. In general the pre-computed mod-

els performed better, but we cannot draw generally valid conclu-

sions, because these models are obtained with different corpora of

documents.

Interestingly, the googleplay corpus suffers less from the Out Of

Vocabulary (OOV) issue than the other two corpora. OOV issues

occur when we ask the model to compute the similarity between

two words, out of which at least one does not belong to the corpus.

We considered all the 36 configurations that useWord2vec as word

embedding technique, and use blogs, manuals, or googleplay as

corpora of documents. We divided these 36 configurations into

three groups, according to the corpus of documents used. Then, we

counted the cumulative number ofOOV issues for each group. OOV

issues are easy to identify, becauseWord2vec returns 0.0 at Line 8

of Algorithm 1. The group of configurations that use googleplay

triggered 92,032 OOV issues, while the manuals and blogs corpora

279,370 and 163,036 issues, respectively.

186

Semantic Matching of GUI Events for Test Reuse: Are We There Yet? ISSTA ’21, July 11–17, 2021, Virtual, Denmark

Figure 5: impact analysis

WordEmbedding (Component 2)WM andUSE are the bestword

embedding techniques according to both MRR and TOP1 (see Fig-

ure 4). The difference betweenWM and USE with Fast,Word2vec,

Glove, BERT, JS, ES is always statistically significant (for bothMRR

and TOP1). Interestingly, WM dominates USE and all other tech-

niques according to the percentiles reported in Table 3. We observe

that sentence-level word embedding techniques perform statisti-

cally significant better than word-level ones. This result is sup-

ported by the observation that many GUI textual attributes have

multiple words.

Event Descriptor Extractor (Component 3) ATM_d and inter-

section performmuch better than union andCraftDroid_d, among

the four groups of event descriptors (the difference is statistically

significant). We root the poor performance of union and Craft-

Droid_d in the activity-name attribute (which is defined for each

event). In fact, in our experiments many source and target events

shared the same default activity-name (main.activity), and this

affects the final scores. This is because if an unrelated event hap-

pens to have the same activity name of the source event, this event

might yield a similarity score higher than the correct match (𝑒𝑡𝑔𝑡).

Semantic Matching Algorithm (Component 4) SemFinder_a

outperforms bothATM_a and CraftDroid_a (always with statisti-

cal significance). Indeed, theMRR andTOP1medians of SemFinder

are higher than the median of both ATM_a and CraftDroid_a

(Figure 4). Moreover, in the 10% percentiles of both MRR and TOP1,

85% of the entries use SemFinder_a as the semantic matching algo-

rithm (Table 3). Each of the 84 configurations with SemFinder_a

completed all 337 queries in 255 seconds on average, the configura-

tions with CraftDroid_a in 393 seconds, and the configurations

with ATM in 600 seconds. This suggests that combining attribute

values into a single sentence reduces runtime while improving the

results of semantic matching.

4.8 RQ3: Impact Analysis

We identified the component type with the highest impact on the

semantic matching of GUI events with a so-called "local" sensitiv-

ity analysis [23], which varies the instance of one component type

at a time while holding the others fixed [33]. For each of the four

component types (Component 1, Component 2, Component 3 and

Component 4), we clustered the 253 configurations, so that only the

component under consideration varies, while the instances of the

other three components are fixed. For example, if we consider Com-

ponent 2 and exclude the random baseline, we have nine possible

instances. Every time we fix the values for components Compo-

nent 1, Component 3, Component 4, we define a new cluster with

nine configurations (in which only Component 2 varies). Then, we

compute the standard deviation (SD) of the MRR values of these

nine configurations. This SD value represents the impact of Com-

ponent 2 in the cluster (if the choice of Component 2 has high

impact, the SD value is high, otherwise it is low) [33]. We repeated

this process 28 times for every possible combination of the values

of Component 1, Component 3, and Component 4, obtaining 28 SDs

that globally capture the impact of Component 2 on the semantic

matching. We ran this analysis for all four component types.

We computed the SDs for both the MRR and the TOP1 values.

Figure 5 shows the distributions of the SDs values for category type.

Semantic Matching Algorithm (Component 4) is the configuration

with the highest impact for bothMRR and TOP1 values, followed by

Event Descriptor Extractor (Component 3), Word Embedding Tech-

nique (Component 2), and Corpus of Documents (Component 1).

Researchers should consider this to prioritize their research effort

on the most relevant components.

4.9 Threats to Validity

External validity A possible threat to the external validity is that

our results may not generalize to otherAndroid apps and test cases.

We mitigated this threat by considering a large number of unique

queries (337). The number of test migration scenarios in our study

(139) is comparable with the scenarios used in the evaluation of test

reuse approaches [15, 45]. Moreover, we collected the subjects from

two benchmark datasets built by two independent teams, spanning

several app categories and functionalities (see Table 2).

Internal validity A possible threat to the internal validity is that

there might be errors in our framework that led to wrong results.

We mitigated this threat by manually validating the correctness of

the descriptors and metrics on a few queries. We manually scanned

337 queries and selected 30 queries with following characteristics:

having empty descriptors, abnormally high or low MRR and TOP1

values. For such queries, we manually inspect the GUI of the app to

check that the descriptors are correctly extracted. We also checked

if the embedding models return the computed similarity scores.

Moreover, we released our data and scripts and we welcome exter-

nal validation [53].

Construct validity A possible threat to the construct validity

is that we might not have faithfully re-implemented the semantic

matching algorithms of ATM and CraftDroid. We mitigated this

threat by referring to their original source code of the implementa-

tions provided by the authors of ATM and CraftDroid.

5 RELATED WORK

To the best of our knowledge, this paper is the first study on the se-

mantic matching of GUI events for test reuse approaches. Recently,

Zhao et al. propose the Fruiter framework [93] to comparatively

evaluate test reuse techniques. Fruiter compares test reuse tech-

niques as a whole, but does not support the evaluation and study of

semantic matching in isolation. Fruiter alone cannot tell whether

a test reuse technique works better than another because of a more

187

ISSTA ’21, July 11–17, 2021, Virtual, Denmark Leonardo Mariani, Ali Mohebbi, Mauro Pezzè, and Valerio Terragni

effective test generation or semantic matching of GUI events. In

principle, our framework could be combined with Fruiter, to eval-

uate and investigate different combinations of test generation and

semantic matching.

Techniques for reusing GUI tests are gaining popularity, as a

valid solution to generate semantically meaningful test cases [15,

45, 75, 76]. In this study, we considered the test reuse approaches

for Android applications: ATM [13, 15, 16] and CraftDroid [45].

We did not consider GUITestMigrator [14], because ATM is an

extension of GUITestMigrator, which focuses on migrating GUI

test cases of apps with the same specification. We also excluded test

reuse approaches for Web apps [75, 76], and for adapting GUI tests

across the Android and iOS versions of the same app [72]. We also

excluded the GUI test reuse AdaptDroid [55] that was published

after we conducted this study.

Some studies in the NLP community compared various word em-

bedding techniques [9, 42, 87]. Li et. al report that word embedding

techniques trained on domain specific corpora perform better on

the related specialized tasks [42]. Their conclusion is inline with

the results of this paper. Our study is the first one comparing word

embedding techniques in the context of GUI events matching.

6 CONCLUSIONS AND FUTUREWORK

This paper presents the first study on semantic matching of GUI

events forGUI test reuse/generation techniques. Our study involves

253 configurations of the semantic matching, 337 unique queries,

and 8,099 distinct GUI events. We now highlight some of our key

findings:

I. Sentence level word embedding techniques (WM, USE) per-

form generally much better than world level ones (Word2vec,

Glove, and Fast). This is because many widget attributes are com-

posed of multiple words (sentences). In fact, in our experiments, the

widget attributes that we extracted are described with on average

2.39 words.

II. All component types impact on the effectiveness of the se-

mantic matching. However, the semantic matching algorithm is

the component type that impacts the most. Researchers should

focus their effort in designing new and better algorithms. More-

over, SemFinder, the new algorithm proposed in this paper outper-

forms both the one of ATM [15] and the one of CraftDroid [45].

SemFinder consolidates both ATM and CraftDroid algorithms

addressing some of their limitations. Differently from both ATM

and CraftDroid, SemFinder is specifically designed for sentence-

level word embedding models, which performs much better than

word-level word embedding models for the semantic matching of

GUI events.

III. When considering which widget attribute types should be

used in the semantic matching of GUI events, the more is not al-

ways the better. Our experiments show that some attributes (such

as, activity-name) can negatively affect the results. Also, the config-

urations that consider the largest number of attributes (union) are

not the ones providing the best results. More research is needed to

understandwhichwidget attributes better describe the semantics of

widgets. This would be especially important for derived attributes,

as they could introduce meaningless and conflicting information.

In our study we did not investigate which derived attributes would

better describe a target widget, we followed the way both ATM

and CraftDroid select the derived attributes. Automatically rec-

ognizing and removing meaningless and conflict information is an

important future work.

IV. It might be preferable to train word embedding models with

a corpora of documents specific to the mobile app domain. In fact,

our proposed corpus of documents collected from the app descrip-

tions in Google Play is more effective than general purpose corpora

(although without statistical significance).

An important open research issue is related to the impact of

the semantic matching of GUI events on the overall effectiveness

of test reuse. This can be studied by combining our framework,

which compares the semantic matching step, with Fruiter [93],

which compares the whole test reuse activity (semantic matching +

test generation). It would also be interesting to study the semantic

matching of GUI events in other testing contexts that benefit from

semantic matching, like GUI pattern-based test generation [34, 46,

52, 54], and GUI test repair [29, 43, 57, 58, 62, 63, 92].

Current test reuse approaches define the semantic similarity re-

lations of GUI events as a one-to-one mapping between a source

and a target event. However, there could be cases of one-to-many

or many-to-one mappings, in which a source (or a target) event

matches multiple target (or source) events. Although, test reuse ap-

proaches may spontaneously create one-to-many or many-to-one

mapping during test generation because reaching a particular win-

dow or state requires the execution of auxiliary events [93]. Study-

ing one-to-many or many-to-one mappings of GUI events would

be an important future work.

Yet another promising research direction is the study of images

and graphical representations of widgets as semantic descriptors.

Indeed, images carry important semantic information about GUI

widgets [20, 34, 88]. One could rely on ML techniques to classify

images and graphical representations of widgets and convert them

into textual representations of widgets (to be used as additional

semantic descriptors). Also, one could leverage image analysis tech-

niques to identify thosewidgets across apps that have similar graph-

ical representations.

ACKNOWLEDGMENTS

This work is partially supported by the Swiss SNF project ASTERIx:

Automatic System TEsting of InteRactive software applications (SNF

200021_178742).

REFERENCES
[1] Ahmed Abbasi, Hsinchun Chen, and Arab Salem. 2008. Sentiment analysis in

multiple languages: Feature selection for opinion classification in web forums.
ACM Transactions on Information Systems (TOIS) 26, 3 (2008), 1ś34.

[2] Adrian Chifor. 2021. Swiftnotes. https://play.google.com/store/apps/details?id=
com.moonpi.swiftnotes. Last access: Jan 2021.

[3] Domenico Amalfitano, Anna Rita Fasolino, Porfirio Tramontana, Salvatore
De Carmine, and Atif M. Memon. 2012. Using GUI Ripping for Automated Test-
ing of Android Applications. In Proceedings of the International Conference on
Automated Software Engineering (ASE ’12). ACM, 258ś261.

[4] Saswat Anand, Mayur Naik, Mary Jean Harrold, and Hongseok Yang. 2012. Auto-
mated Concolic Testing of Smartphone Apps. In Proceedings of the ACM SIGSOFT
International Symposium on Foundations of Software Engineering (FSE ’12). ACM,
59:1ś59:11.

[5] Andrzej Grzyb. 2021. Shopping List. https://play.google.com/store/apps/details?
id=pl.com.andrzejgrzyb.shoppinglist. Last access: Jan 2021.

[6] Anthony Restaino. 2021. Lightning Browser. https://play.google.com/store/apps/
details?id=acr.browser.lightning. Last access: Jan 2021.

188

https://play.google.com/store/apps/details?id=com.moonpi.swiftnotes
https://play.google.com/store/apps/details?id=com.moonpi.swiftnotes
https://play.google.com/store/apps/details?id=pl.com.andrzejgrzyb.shoppinglist
https://play.google.com/store/apps/details?id=pl.com.andrzejgrzyb.shoppinglist
https://play.google.com/store/apps/details?id=acr.browser.lightning
https://play.google.com/store/apps/details?id=acr.browser.lightning

Semantic Matching of GUI Events for Test Reuse: Are We There Yet? ISSTA ’21, July 11–17, 2021, Virtual, Denmark

[7] Apps By Vir. 2021. Tip Calc. https://play.google.com/store/apps/details?id=com.
appsbyvir.tipcalculator. Last access: Jan 2021.

[8] Ebru Arisoy, Tara N Sainath, Brian Kingsbury, and Bhuvana Ramabhadran. 2012.
Deep neural network language models. In Proceedings of the NAACL-HLT 2012
Workshop: Will We Ever Really Replace the N-gram Model? On the Future of Lan-
guage Modeling for HLT. 20ś28.

[9] Marco Baroni, Georgiana Dinu, and Germán Kruszewski. 2014. Don’t count,
predict! a systematic comparison of context-counting vs. context-predicting se-
mantic vectors. In Proceedings of the 52nd Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers). 238ś247.

[10] Earl T. Barr,Mark Harman, Phil McMinn,Muzammil Shahbaz, and Shin Yoo. 2015.
The Oracle Problem in Software Testing: A Survey. IEEE Transactions on Software
Engineering 41, 5 (2015), 507ś525.

[11] Giovanni Becce, Leonardo Mariani, Oliviero Riganelli, and Mauro Santoro. 2012.
Extracting Widget Descriptions from GUIs. In Proceedings of the International
Conference on Fundamental Approaches to Software Engineering (FASE ’12).
Springer, 347ś361.

[12] Farnaz Behrang and Alessandro Orso. [n.d.]. ATM implementation. https://sites.
google.com/view/apptestmigrator.

[13] Farnaz Behrang and Alessandro Orso. 2018. Poster: Automated Test Migration
for Mobile Apps. In Proceedings of the International Conference on Software Engi-
neering (ICSE Poster ’18). ACM, 384ś385.

[14] Farnaz Behrang and Alessandro Orso. 2018. Test Migration for Efficient Large-
scale Assessment of Mobile App Coding Assignments. In Proceedings of the Inter-
national Symposium on Software Testing and Analysis (ISSTA ’18). ACM, 164ś175.

[15] Farnaz Behrang and Alessandro Orso. 2019. Test migration between mobile
apps with similar functionality. In Proceedings of the International Conference on
Automated Software Engineering (ASE’19). IEEE Computer Society, 54ś65.

[16] Farnaz Behrang and Alessandro Orso. 2020. AppTestMigrator: a tool for auto-
mated test migration for Android apps. In Proceedings of the International Con-
ference on Software Engineering (ICSE DEMO ’20). ACM, 17ś20.

[17] Benoit Letondor. 2021. EasyBudget. https://play.google.com/store/apps/details?
id=com.benoitletondor.easybudgetapp. Last access: Jan 2021.

[18] Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomas Mikolov. 2016. En-
richingWord Vectors with Subword Information. arXiv preprint arXiv:1607.04606
(2016).

[19] Daniel Cer, Yinfei Yang, Sheng yi Kong, Nan Hua, Nicole Limtiaco, Rhomni St.
John, Noah Constant, Mario Guajardo-Cespedes, Steve Yuan, Chris Tar, Yun-
Hsuan Sung, Brian Strope, and Ray Kurzweil. 2018. Universal Sentence Encoder.
arXiv:1803.11175 [cs.CL]

[20] Jieshan Chen, Chunyang Chen, Zhenchang Xing, Xiwei Xu, Liming Zhut, Guo-
qiang Li, and JinshuiWang. 2020. Unblind your apps: Predicting natural-language
labels for mobile GUI components by deep learning. In 2020 IEEE/ACM 42nd In-
ternational Conference on Software Engineering (ICSE). IEEE, 322ś334.

[21] Shauvik Roy Choudhary, Alessandra Gorla, and Alessandro Orso. 2015. Auto-
mated Test Input Generation for Android: Are We There Yet?. In Proceedings of
the International Conference on Automated Software Engineering (ASE ’16). IEEE
Computer Society, 429ś440.

[22] Craigpark Limited. 2021. Email App for Any Mail. https://play.google.com/store/
apps/details?id=park.outlook.sign.in.client. Last access: Jan 2021.

[23] MJ Crick and MD Hill. 1987. The role of sensitivity analysis in assessing uncer-
tainty. In Uncertainty analysis for performance assessments of radioactive waste
disposal systems.

[24] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert:
Pre-training of deep bidirectional transformers for language understanding.
arXiv preprint arXiv:1810.04805 (2018).

[25] Alan Dix. 2009. Human-computer interaction. In Encyclopedia of database sys-
tems. Springer, 1327ś1331.

[26] Zhen Dong, Marcel Böhme, Lucia Cojocaru, and Abhik Roychoudhury. 2020.
Time-travel testing of Android apps. In ICSE ’20: 42nd International Conference on
Software Engineering, Seoul, South Korea, 27 June - 19 July, 2020 (ICSE’20). ACM,
481ś492.

[27] douzifly. 2021. Clear List. https://f-droid.org/en/packages/douzifly.list/. Last
access: Jan 2021.

[28] Markus Ermuth and Michael Pradel. 2016. Monkey see, monkey do: Effective
generation of GUI tests with inferred macro events. In Proceedings of the Inter-
national Symposium on Software Testing and Analysis (ISSTA ’16). ACM, 82ś93.

[29] Z. Gao, Z. Chen, Y. Zou, and A. M. Memon. 2016. SITAR: GUI Test Script Repair.
IEEE Transactions on Software Engineering 42, 2 (2016), 170ś186.

[30] Gaukler Faun. 2021. FOSS Browser. https://f-droid.org/en/packages/de.baumann.
browser/. Last access: Jan 2021.

[31] Google. Accessed: 2017-08-12. Monkey Runner. http://developer.android.com/
tools/help/monkey.html.

[32] Tianxiao Gu, Chengnian Sun, Xiaoxing Ma, Chun Cao, Chang Xu, Yuan Yao,
Qirun Zhang, Jian Lu, and Zhendong Su. 2019. Practical GUI Testing of Android
Applications via Model Abstraction and Refinement. In Proceedings of the Inter-
national Conference on Software Engineering (ICSE ’19). IEEE Computer Society,
269ś280.

[33] DM Hamby. 1995. A comparison of sensitivity analysis techniques. Health
physics 68, 2 (1995), 195ś204.

[34] Gang Hu, Linjie Zhu, and Junfeng Yang. 2018. AppFlow: UsingMachine Learning
to Synthesize Robust, Reusable UI Tests. In Proceedings of the European Software
Engineering Conference held jointly with the ACM SIGSOFT International Sympo-
sium on Foundations of Software Engineering (ESEC/FSE ’18). ACM, 269ś282.

[35] Tensor Flow Hub. [n.d.]. Token based text embedding trained on English Google
News 200B corpus. https://tfhub.dev/google/nnlm-en-dim128/2. Last access:
2020-09-30.

[36] JPStudiosonline. 2021. Free Tip Calculator. https://play.google.com/store/apps/
details?id=com.jpstudiosonline.tipcalculator. Last access: Jan 2021.

[37] keith kildare. 2021. Shopping List. https://f-droid.org/en/packages/com.woefe.
shoppinglist/. Last access: Jan 2021.

[38] keith kildare. 2021. Simply Do. https://f-droid.org/en/packages/kdk.android.
simplydo/. Last access: Jan 2021.

[39] Matt J. Kusner, Yu Sun, Nicholas I. Kolkin, and Kilian Q. Weinberger. 2015. From
Word Embeddings to Document Distances. In Proceedings of the International
Conference on International Conference on Machine Learning (ICML ’15). 957ś966.

[40] Kvannli. 2021. Daily Budget. https://play.google.com/store/apps/details?id=com.
kvannli.simonkvannli.dailybudget. Last access: Jan 2021.

[41] Vladimir I. Levenshtein. 1966. Binary codes capable of correcting deletions, inser-
tions, and reversals. Technical Report 8. Soviet Physics Doklady. 707ś710 pages.

[42] Hongmin Li, Xukun Li, Doina Caragea, and Cornelia Caragea. 2018. Comparison
of word embeddings and sentence encodings as generalized representations for
crisis tweet classification tasks. Proceedings of ISCRAM Asia Pacific (2018).

[43] Xiao Li, Nana Chang, Yan Wang, Haohua Huang, Yu Pei, Linzhang Wang, and
Xuandong Li. 2017. ATOM: Automatic maintenance of GUI test scripts for evolv-
ing mobile applications. In Proceedings of the International Conference on Software
Testing, Verification and Validation (ICST ’17). IEEE Computer Society, 161ś171.

[44] Jun-Wei Lin, Reyhaneh Jabbarvand, and SamMalek. [n.d.]. Craftdroid implemen-
tation. https://github.com/seal-hub/CraftDroid.

[45] Jun-Wei Lin, Reyhaneh Jabbarvand, and Sam Malek. 2019. Test Transfer Across
Mobile Apps Through Semantic Mapping. In Proceedings of the International
Conference on Automated Software Engineering (ASE’34). IEEE Computer Society,
42ś53.

[46] Mario Linares-Vásquez, Martin White, Carlos Bernal-Cárdenas, Kevin Moran,
and Denys Poshyvanyk. 2015. Mining android app usages for generating action-
able gui-based execution scenarios. In Proceedings of the Working Conference on
Mining Software Repositories (MSR ’15). IEEE Computer Society, 111ś122.

[47] Tie-Yan Liu. 2011. Learning to rank for information retrieval. (2011).
[48] Luan Kevin Ferreira. 2021. Expenses. https://play.google.com/store/apps/details?

id=luankevinferreira.expenses. Last access: Jan 2021.
[49] Aravind Machiry, Rohan Tahiliani, and Mayur Naik. 2013. Dynodroid: An in-

put generation system for android apps. In Proceedings of the ACM SIGSOFT
International Symposium on Foundations of Software Engineering (FSE ’13). ACM,
224ś234.

[50] Mail.Ru Group. 2021. Mail.ru. https://play.google.com/store/apps/details?id=ru.
mail.mailapp. Last access: Jan 2021.

[51] Ke Mao, Mark Harman, and Yue Jia. 2016. Sapienz: multi-objective automated
testing for Android applications. In Proceedings of the International Symposium
on Software Testing and Analysis (ISSTA ’16). ACM, 94ś105.

[52] Ke Mao, Mark Harman, and Yue Jia. 2017. Crowd intelligence enhances auto-
matedmobile testing. In Proceedings of the International Conference on Automated
Software Engineering (ASE ’17). IEEE Computer Society, 16ś26.

[53] Leonardo Mariani, Ali Mohebbi, Mauro Pezzè, and Valerio Terragni. 2021. Se-
mantic Matching of GUI Events for Test Reuse: Are We There Yet? https://doi.org/
10.5281/zenodo.4725222

[54] Leonardo Mariani, Mauro Pezzè, and Daniele Zuddas. 2018. Augusto: Exploiting
Popular Functionalities for the Generation of Semantic GUI Tests with Oracles.
In Proceedings of the International Conference on Software Engineering (ICSE ’18).
280ś290.

[55] Leonardo Mariani, Mauro Pezzè, Valerio Terragni, and Daniele Zuddas. 2021.
An Evolutionary Approach to Adapt Tests Across Mobile Apps. In International
Conference on Automation of Software Test (AST ’21). 70ś79. https://doi.org/10.
1109/AST52587.2021.00016

[56] Atif Memon, Ishan Banerjee, and Adithya Nagarajan. 2003. What test oracle
should I use for effective GUI testing?. In Proceedings of the International Con-
ference on Automated Software Engineering (ASE ’03). IEEE Computer Society,
164ś173.

[57] Atif Memon, Adithya Nagarajan, and Qing Xie. 2005. Automating regression
testing for evolving GUI software. Journal of Software Maintenance and Evolution:
Research and Practice 17, 1 (2005), 27ś64.

[58] Atif M Memon. 2008. Automatically repairing event sequence-based GUI test
suites for regression testing. ACM Transactions on Software Engineering and
Methodology 18, 2 (2008), 4.

[59] Atif M. Memon, Ishan Banerjee, and Adithya Nagarajan. 2003. GUI Ripping:
Reverse Engineering of Graphical User Interfaces for Testing. In Proceedings
of The Working Conference on Reverse Engineering (WCRE ’03). IEEE Computer

189

https://play.google.com/store/apps/details?id=com.appsbyvir.tipcalculator
https://play.google.com/store/apps/details?id=com.appsbyvir.tipcalculator
https://sites.google.com/view/apptestmigrator
https://sites.google.com/view/apptestmigrator
https://play.google.com/store/apps/details?id=com.benoitletondor.easybudgetapp
https://play.google.com/store/apps/details?id=com.benoitletondor.easybudgetapp
https://arxiv.org/abs/1803.11175
https://play.google.com/store/apps/details?id=park.outlook.sign.in.client
https://play.google.com/store/apps/details?id=park.outlook.sign.in.client
https://f-droid.org/en/packages/douzifly.list/
https://f-droid.org/en/packages/de.baumann.browser/
https://f-droid.org/en/packages/de.baumann.browser/
http://developer.android.com/tools/help/monkey.html
http://developer.android.com/tools/help/monkey.html
https://play.google.com/store/apps/details?id=com.jpstudiosonline.tipcalculator
https://play.google.com/store/apps/details?id=com.jpstudiosonline.tipcalculator
https://f-droid.org/en/packages/com.woefe.shoppinglist/
https://f-droid.org/en/packages/com.woefe.shoppinglist/
https://f-droid.org/en/packages/kdk.android.simplydo/
https://f-droid.org/en/packages/kdk.android.simplydo/
https://play.google.com/store/apps/details?id=com.kvannli.simonkvannli.dailybudget
https://play.google.com/store/apps/details?id=com.kvannli.simonkvannli.dailybudget
https://github.com/seal-hub/CraftDroid
https://play.google.com/store/apps/details?id=luankevinferreira.expenses
https://play.google.com/store/apps/details?id=luankevinferreira.expenses
https://play.google.com/store/apps/details?id=ru.mail.mailapp
https://play.google.com/store/apps/details?id=ru.mail.mailapp
https://doi.org/10.5281/zenodo.4725222
https://doi.org/10.5281/zenodo.4725222
https://doi.org/10.1109/AST52587.2021.00016
https://doi.org/10.1109/AST52587.2021.00016

ISSTA ’21, July 11–17, 2021, Virtual, Denmark Leonardo Mariani, Ali Mohebbi, Mauro Pezzè, and Valerio Terragni

Society, 260ś269.
[60] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013. Efficient esti-

mation of word representations in vector space. arXiv preprint arXiv:1301.3781
(2013).

[61] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013.
Distributed Representations of Words and Phrases and Their Compositionality.
In Proceedings of the International Conference on Neural Information Processing
Systems (NIPS ’13). 3111ś3119.

[62] M. Mirzaaghaei, Fabrizio Pastore, and Mauro Pezzè. 2010. Automatically Repair-
ing Test Cases for Evolving Method Declarations. In ICSM‘10: Proceedings of 26th
IEEE International Conference on Software Maintenance.

[63] Mehdi Mirzaaghaei, Fabrizio Pastore, and Mauro Pezzè. 2012. Supporting Test
Suite Evolution through Test Case Adaptation. In Proceedings of the International
Conference on Software Testing, Verification and Validation (ICST ’12). IEEE Com-
puter Society, 231ś240.

[64] Nariman Mirzaei, Hamid Bagheri, Riyadh Mahmood, and Sam Malek. 2015. SIG-
Droid: Automated System Input Feneration for Android Applications. In Proceed-
ings of the International Symposium on Software Reliability Engineering (ISSRE ’15).
IEEE Computer Society, 461ś471.

[65] Kevin Moran, Mario Linares Vásquez, Carlos Bernal-Cárdenas, Christopher Ven-
dome, and Denys Poshyvanyk. 2016. Automatically Discovering, Reporting and
Reproducing Android Application Crashes. In Proceedings of the International
Conference on Software Testing, Verification and Validation (ICST ’16). IEEE Com-
puter Society, 33ś44.

[66] Mozilla. 2021. Firefox Focus. https://play.google.com/store/apps/details?id=org.
mozilla.focus. Last access: Jan 2021.

[67] My.com B.V. 2021. myMail. https://play.google.com/store/apps/details?id=ru.
mail.mailapp. Last access: Jan 2021.

[68] OpenIntents. 2021. OI Shopping list. https://play.google.com/store/apps/details?
id=org.openintents.shopping. Last access: Jan 2021.

[69] Egon S Pearson, Ralph B D ł’AGOSTINO, and Kimiko O Bowman. 1977. Tests
for departure from normality: Comparison of powers. Biometrika 64, 2 (1977),
231ś246.

[70] Jeffrey Pennington, Richard Socher, and Christopher D. Manning. 2014. GloVe:
Global Vectors for Word Representation. In Empirical Methods in Natural Lan-
guage Processing (EMNLP). 1532ś1543.

[71] plafu. 2021. Writeily Pro. https://f-droid.org/en/packages/me.writeily. Last
access: Jan 2021.

[72] Xue Qin, Hao Zhong, and Xiaoyin Wang. 2019. TestMig: Migrating GUI Test
Cases from iOS to Android. In Proceedings of the International Symposium on
Software Testing and Analysis (ISSTA ’19). ACM, 284ś295.

[73] rainbowshops. 2021. Rainbow. https://play.google.com/store/apps/details?id=
com.rainbowshops. Last access: Jan 2021.

[74] Dieter Rasch and Volker Guiard. 2004. The robustness of parametric statistical
methods. Psychology Science 46 (2004), 175ś208.

[75] Andreas Rau, Jenny Hotzkow, and Andreas Zeller. 2018. Efficient GUI test gen-
eration by learning from tests of other apps. In Proceedings of the International
Conference on Software Engineering (ICSE Poster ’18). ACM, 370ś371.

[76] Andreas Rau, Jenny Hotzkow, and Andreas Zeller. 2018. Transferring tests across
web applications. In International Conference on Web Engineering. Springer, 50ś
64.

[77] roxrook. 2021. Pocket Note. https://github.com/roxrook/pocket-note-android.
Last access: Jan 2021.

[78] Ruben Roy. 2021. Minimal. https://f-droid.org/en/packages/com.rubenroy.
minimaltodo/. Last access: Jan 2021.

[79] Jonathan Schler, Moshe Koppel, Shlomo Argamon, and James W Pennebaker.
2006. Effects of age and gender on blogging.. In AAAI spring symposium: Com-
putational approaches to analyzing weblogs, Vol. 6. 199ś205.

[80] H Andrew Schwartz, Johannes C Eichstaedt, Margaret L Kern, Lukasz Dziurzyn-
ski, Stephanie M Ramones, Megha Agrawal, Achal Shah, Michal Kosinski, David
Stillwell, Martin EP Seligman, et al. 2013. Personality, gender, and age in the
language of social media: The open-vocabulary approach. PloS one 8, 9 (2013),
e73791.

[81] SECUSO Research Group. 2021. Shopping List (Privacy Friendly).
https://play.google.com/store/apps/details?id=privacyfriendlyshoppinglist.
secuso.org.privacyfriendlyshoppinglist. Last access: Jan 2021.

[82] SECUSO Research Group. 2021. Todo List. https://f-droid.org/en/packages/
douzifly.list/. Last access: Jan 2021.

[83] Stoutner. 2021. Privacy Browser. https://play.google.com/store/apps/details?id=
com.stoutner.privacybrowser.standard. Last access: Jan 2021.

[84] TLe Apps. 2021. Simple Tip Calculator. https://play.google.com/store/apps/
details?id=com.tleapps.simpletipcalculator. Last access: Jan 2021.

[85] Joseph Turian, Lev Ratinov, and Yoshua Bengio. 2010. Word representations: a
simple and general method for semi-supervised learning. In Proceedings of the
48th annual meeting of the association for computational linguistics. Association
for Computational Linguistics, 384ś394.

[86] Vansuita. 2021. Shopping List. https://play.google.com/store/apps/details?id=br.
com.activity. Last access: Jan 2021.

[87] Yanshan Wang, Sijia Liu, Naveed Afzal, Majid Rastegar-Mojarad, Liwei Wang,
Feichen Shen, Paul Kingsbury, and Hongfang Liu. 2018. A comparison of word
embeddings for the biomedical natural language processing. Journal of biomedi-
cal informatics 87 (2018), 12ś20.

[88] Xusheng Xiao, Xiaoyin Wang, Zhihao Cao, Hanlin Wang, and Peng Gao. 2019.
Iconintent: automatic identification of sensitive ui widgets based on icon clas-
sification for android apps. In 2019 IEEE/ACM 41st International Conference on
Software Engineering (ICSE). IEEE, 257ś268.

[89] xorum. 2021. Open Money Tracker. https://play.google.com/store/apps/details?
id=com.blogspot.e_kanivets.moneytracker. Last access: Jan 2021.

[90] Yelp, Inc. 2021. Yelp. https://play.google.com/store/apps/details?id=com.yelp.
android. Last access: Jan 2021.

[91] ZaidiSoft. 2021. Tip Calculator Plus. https://play.google.com/store/apps/details?
id=com.zaidisoft.teninone. Last access: Jan 2021.

[92] Sai Zhang, Hao Lü, and Michael D Ernst. 2013. Automatically repairing bro-
ken workflows for evolving GUI applications. In Proceedings of the International
Symposium on Software Testing and Analysis (ISSTA ’13). ACM, 45ś55.

[93] Yixue Zhao, Justin Chen, Adriana Sejfia, Marcelo Schmitt Laser, Jie Zhang, Fed-
erica Sarro, Mark Harman, and Nenad Medvidovic. 2020. FrUITeR: a framework
for evaluating UI test reuse. In Proceedings of the Joint Meeting on Foundations of
Software Engineering (ESEC/FSE 20). 1190ś1201.

[94] Yu Zhao, Tingting Yu, Ting Su, Yang Liu, Wei Zheng, Jingzhi Zhang, andWilliam
G. J. Halfond. 2019. ReCDroid: Automatically Reproducing Android Applica-
tion Crashes from Bug Reports. In Proceedings of the International Conference on
Software Engineering (ICSE ’19). IEEE Computer Society, 128ś139.

190

https://play.google.com/store/apps/details?id=org.mozilla.focus
https://play.google.com/store/apps/details?id=org.mozilla.focus
https://play.google.com/store/apps/details?id=ru.mail.mailapp
https://play.google.com/store/apps/details?id=ru.mail.mailapp
https://play.google.com/store/apps/details?id=org.openintents.shopping
https://play.google.com/store/apps/details?id=org.openintents.shopping
https://f-droid.org/en/packages/me.writeily
https://play.google.com/store/apps/details?id=com.rainbowshops
https://play.google.com/store/apps/details?id=com.rainbowshops
https://github.com/roxrook/pocket-note-android
https://f-droid.org/en/packages/com.rubenroy.minimaltodo/
https://f-droid.org/en/packages/com.rubenroy.minimaltodo/
https://play.google.com/store/apps/details?id=privacyfriendlyshoppinglist.secuso.org.privacyfriendlyshoppinglist
https://play.google.com/store/apps/details?id=privacyfriendlyshoppinglist.secuso.org.privacyfriendlyshoppinglist
https://f-droid.org/en/packages/douzifly.list/
https://f-droid.org/en/packages/douzifly.list/
https://play.google.com/store/apps/details?id=com.stoutner.privacybrowser.standard
https://play.google.com/store/apps/details?id=com.stoutner.privacybrowser.standard
https://play.google.com/store/apps/details?id=com.tleapps.simpletipcalculator
https://play.google.com/store/apps/details?id=com.tleapps.simpletipcalculator
https://play.google.com/store/apps/details?id=br.com.activity
https://play.google.com/store/apps/details?id=br.com.activity
https://play.google.com/store/apps/details?id=com.blogspot.e_kanivets.moneytracker
https://play.google.com/store/apps/details?id=com.blogspot.e_kanivets.moneytracker
https://play.google.com/store/apps/details?id=com.yelp.android
https://play.google.com/store/apps/details?id=com.yelp.android
https://play.google.com/store/apps/details?id=com.zaidisoft.teninone
https://play.google.com/store/apps/details?id=com.zaidisoft.teninone

	Abstract
	1 introduction
	2 Test Reuse Across Similar GUI Apps
	3 Semantic Matching of GUI events
	3.1 Corpus of Documents
	3.2 Word Embedding
	3.3 Event Descriptor Extractor
	3.4 Semantic Matching Algorithm

	4 Experiment
	4.1 Implementation
	4.2 Subjects
	4.3 Experimental Setup
	4.4 Evaluation Metrics
	4.5 Results
	4.6 RQ1: Baseline Comparison
	4.7 RQ2: Component Effectiveness
	4.8 RQ3: Impact Analysis
	4.9 Threats to Validity

	5 Related Work
	6 Conclusions and Future Work
	References

