
Preservation of Integrity Constraints by Workflow:

Online Appendix

Xi Liu1,2,3⋆, Jianwen Su3⋆⋆, and Jian Yang4

1 State Key Laboratory for Novel Software Technology, Nanjing University, China
2 Department of Computer Science and Technology, Nanjing University, China

3 Department of Computer Science, University of California at Santa Barbara, USA
4 Department of Computing, Macquarie University, Australia

liux@seg.nju.edu.cn, su@cs.ucsb.edu, jian.yang@mq.edu.au

This is an online appendix to our paper [3] (referred to as the conference paper in the

following). The online appendix includes the complete formalism for transition system

semantics of GSM partially and informally given the conference paper. This semantics

is then compared with existing operational semantics of GSM. The proof to the main

theorem in the paper the conference paper is also provided. Finally, the constraints and

injections of full case study of EzMart is given.

1 Operation schema

The action requesting ASC to send a message m is denoted by !m.
Given a GSMworkflowmodel AP, the executionmodel of AP is a transition system,

denoted by TSAP. The state space is a set of all “snapshots” of artifacts. It is specified

by the construct STATE in Z notation, where the set of all artifact classes in AP is

A = {αi | i ∈ 1 . . n}; each artifact class αi is represented in state space as a table

consisting the artifact ID, the data attribute value, and stage and milestone status. XOp

is the finite set of signatures of possible next operations, where OPSIG is the type of

operation signatures; eq and cq are two queues of external events and control events,

resp., where ExtEv and IntEv are respectively the type of external events and control

(internal) events; het and hct is the finite set of operations triggered by the head event

in eq and cq, resp.

Full state space schema:

⋆ Supported in part by National Natural Science Foundation of China (No.90818022 and

No.61021062) and a grant from China Scholarship Council.
⋆⋆ Supported in part by NSF grant IIS-0812578 and a grant from IBM.



2 X. Liu, and J. Su, J. Yang

STATE

α1(ID, x, y, . . . ) : ArtifactClass
α2(. . . , , s,m, . . . ) : ArtifactClass
...

αn(. . . ) : ArtifactClass
XOp : FOPSIG

eq : seqExtEv
cq : seq IntEv
het, hct : FOPER

Given a stage s and a milestone m, we use s.sentry to denote the guard sentry of s

and m+.sentry (resp. m−.sentry) to denote the achieving (resp. invalidating) sentry of

the m, s.MS to denote the milestones associated with s, s.Body to denote the defined

actions in the body of s, s.creatInst : B to indicate whether the stage s is for creating

a new artifact instance, CEv(s.sentry) and EEv(s.sentry) to denote respectively the set

of control event and external event used in s.sentry (the similar notation applies to

milestones), and action SKIP to be the short form for x := x, denoting no change to

any state observables. And given a GSM specification AP, Ev(AP) denotes the set of all
events used in the workflow schema.

Given a artifact class α and artifact instance ID aid, α(aid) is short for the selec-
tion σid=aidα, and α(aid).x denote the projection onto x. Given a stage s or milestone

m, s+, m+, s− and m− denote control event of s.open(), m.achieved(), s.closed()
and m.invalidated(). And s+(α, aid) denotes the constructor of the control event with
artifact class and artifact ID.

We assume to have function newid() : ID generating a new unique id by some

id-generator, and function sequence(T) : seq T takes a finite set T and returns a se-

quence consisting of all elements in T without repetition with arbitrary order. And in

Z notation, symbol 〈i, t, e, . . . 〉 denotes sequences of items i, t, e, . . . and sa q denotes

concatenation of two sequence s and q.

init

(αi = empty table | 1 ≤ i ≤ n); iq = 〈 〉; cq = 〈 〉
XOp = {op : Open(s) | s ∈ S ∧ creatInst(s) = TRUE}
het = ∅; hct = ∅

In TSAP, each operation is identified by its signature which is the operation name

and two arguments: stage or milestone name and an optional artifact ID (can omit only

for Open operation of a create-instance stage, see below). There are three areas in op-

eration specifications, separated by horizontal lines. The first area is for local variable

declaration. The second area is the operation guard which is a vertical list of first order

formulas. These formulas are connected in conjunction to specify the enabling condi-

tion of the transition, i.e. the operation guard. Given an operation op, its guard is denoted

by guard(op). The third area is the operation actions for state changes. The changes are
given in the form of assignments. Any state variable, artifact attributes and status of



Preservation of Integrity Constraints by Workflow: Online Appendix 3

stages and milestones not listed in the actions keep unchanged from the current state to

the next state. We then explain the six operation types in detail in below.

Open(s : S)

α : Awhere s ∈ S(α)

new : αwhere

new.id = newid() ∧ new.s = TRUE ∧

(∀ st : S(α)− {s} � new.st = FALSE) ∧

(∀ms : M(α) � new.ms = FALSE)

cqs = if s+ ∈ Ev(AP) then 〈s+(α, aid)〉

else 〈 〉

s.creatInst = TRUE

Open(s) ∈ XOp

∀ id : ID � α(id).s 6∈ het ∪ hct

∀β : A; id : β.ID; t : S(β)�

β(id).t = FALSE

s.sentry(A, eq, cq)

α := α ∪ {new}

XOp := (XOp− {Open(s)})∪

{Body(s, new.id)}

cq := cq a cqs

het := if EEv(s.sentry) = ∅

then het ∪ {new.s} else het

hct := if CEv(s.sentry) = ∅

then hct ∪ {new.s} else hct

Open(s : S, aid : ID)

α : Awhere s ∈ S(α)

mce = { m−(α, aid) | m ∈ s.MS ∧

m− ∈ Ev(AP) ∧ α(aid).m = TRUE}

cqm = sequence(mce)

cqs = if s+ ∈ Ev(AP) then 〈s+(α, aid)〉

else 〈 〉

s.creatInst = FALSE

Open(s, aid) ∈ XOp

α(aid).s 6∈ het ∪ hct

∀ β : A; id : β.ID; t : S(β)�

β(id).t = FALSE

s.sentry(A, eq, cq)

α(aid).s := TRUE

∀m : s.MS � α(aid).m := FALSE

XOp := (XOp− {Open(s)})∪

{Body(s, aid)}

cq := cqa cqs

het := if EEv(s.sentry) = ∅

then het ∪ {α(aid).s} else het

hct := if CEv(s.sentry) = ∅

then hct ∪ {α(aid).s} else hct

Fig. 1: Operations: Part 1 – stage open with or without instance creation

Here we fist give the informal description of operations:

– Open is responsible to handling stage opening. Given a stage s, the guard of the

operation requires: the operation signature is in XOp; the same external event or

control event can only be used to open each s once; there is only one stage being

open at the same time, and the sentry of the stage guard evaluates true under cur-

rent artifact attribute valuations and events in eq and cq. When the operation guard

is satisfied, the stage is open and all of its milestones are invalidated. Status and

control event queues are updated accordingly. And if the stage is triggered by some

external or control event heads in the corresponding queue, such stage is added into

het or hct, resp. Also the Body of the stage is put in XOp, and the current operation

is removed from XOp.

– AchieveClose specifies how a milestone is achieved and thus close the stage. Given

a milestone m and its belonging stage s, the operation guard is satisfied when the

operation signature is in XOp, milestonem and stage s of the artifact is not achieved



4 X. Liu, and J. Su, J. Yang

AchieveClose(m, aid)

α : Awherem ∈ M(α)

s : S(α)wherem ∈ s.MS

cqm = if m+ ∈ Ev(AP) then 〈m+(α, aid)〉 else 〈 〉

cqs = if s− ∈ Ev(AP) then 〈s−(α, aid)〉 else 〈 〉

AchieveClose(m, aid) ∈ XOp

α(aid).m = FALSE

α(aid).s = TRUE

α(aid).m 6∈ het ∪ hct

m+.sentry(A, eq, cq)

α(aid).m := TRUE

α(aid).s := FALSE

XOp := (XOp− {AchieveClose(m, aid)})∪

if s.creatInst then {Invalid(m, aid),Open(s)}

else {Invalid(m, aid),Open(s, aid)}

cq := cqa cqm a cqs

if EEv(m+.sentry) 6= ∅ ∧ m uses the event to set x

then α(aid).x := head eq else SKIP

het := if EEv(m+.sentry) = ∅

then het ∪ {α(aid).m} else het

hct := if CEv(m+.sentry) = ∅

then hct ∪ {α(aid).m} else hct

Invalid(m, aid)

α : Awherem ∈ M(α)

s : S(α)wherem ∈ s.MS

cqm = if m− ∈ Ev(AP)

then 〈m−(α, aid)〉 else 〈 〉

Invalid(m, aid) ∈ XOp

α(aid).m = TRUE

α(aid).m 6∈ het ∪ hct

m−.sentry(A, eq, cq)

α(aid).m := FALSE

XOp := XOp− {Invalid(m, aid)}

cq := cq a cqm

het := if EEv(m−.sentry) = ∅

then het ∪ {α(aid).m}

else het

hct := if CEv(m−.sentry) = ∅

then hct ∪ {α(aid).m}

else hct

Fig. 2: Operations: Part 2 – milestone achieving (with stage close) and invalidating

and open, resp., current external and control events are not used to achieve or invali-

date the milestone, and the milestone sentry is evaluated true under current artifacts

and events in eq and cq. When the operation guard is satisfied, m is marked as

achieved and s is closed. Event queues and hct and het are updated accordingly

(like in Open). The Open operation of the belonging stage and Invalid operation of

this milestone is added to XOp and the current operation is removed from XOp.

– Invalid specifies the operation to invalidate a milestone. Given a milestone m, the

operation guard is satisfied when the operation signature is in XOp, milestone m

is already achieved, current external and control events are not used to achieve

or invalidate the milestone, and the milestone sentry is evaluated true under current

artifacts and events in eq and cq. When the operation guard is satisfied, m is marked

as not achieved. Event queues and hct and het are updated accordingly (like in

Open). The current operation is removed from XOp and no new operation is added.

– Body takes action according to the definition of the stage body. As for the guard, it

requires the corresponding stage to be open, and the milestone to be not achieved.

Other than following the stage body, this operation also put AchieveClose of the

milestones of the stage in XOp while the current operation is removed.

– OperationDeEQ andDeCQ specifies how events are removed from eq and cq, resp.

These operations do not require to be exists in XOp but can only be enabled when



Preservation of Integrity Constraints by Workflow: Online Appendix 5

Body(s, aid)

α : Awhere s ∈ S(α)

Body(s, aid) ∈ XOp

α(aid).s = TRUE

∀m : s.MS � ¬ α(aid).m

if s.body is sending msg

then msg! else SKIP

if s.body is assigning x by exp

then ∀ xi : x � α(aid).xi = expi

else SKIP

XOp := (XOp− {Body(s, aid)})∪

{AchievClose(m.aid) | m ∈ s.MS}

DeCQ

∀ op : XOp � ¬ guard(op)

cq 6= 〈 〉

hct 6= ∅

cq := tail cq

hct := ∅

DeEQ

∀ op : XOp ∪ {DeCQ} � ¬ guard(op)

eq 6= 〈 〉

eq := tail eq

het := ∅

Fig. 3: Operations: Part 3 – stage body and dequeue

all operations in XOp cannot be enabled. Furthermore, the head control event can

only be removed when it is used to trigger some stage or milestone; and DeEQ can

only be enabled when DeCQ cannot be enabled.

For operation Open, see Figure 1; for AchieveClose and Invalid, see Figure 2; and for

Body, DeEQ and DeCQ, see Figure 3.

2 Comparison with existing semantics

The execution model given in [3] is analogous to the incremental semantics in [2].

Althoughwe do not rigidly follow their semantics using PAC rules and B-steps (see [2]),

we follow their intuitions; and a sequence of execution between two immediate external

even dequeue operations (DeEQ) has the same effect as a macro-B-step (sequence of B-

steps between handling two incoming events, see [2]). While [1] and [2] focus on GSM

itself and equivalence among different semantic models, we detail the management of

event queues, operation enabling conditions (guard) and state updates. In out model,

enabling of one operation depends only on the current state. Our model is more suitable

in analysis and control of the execution. As a result the transition system introduced in

this section can help better in understanding when and where the integrity constraints

can be violated, and how to prevent such violation.

Focusing on the the fundamental structure of GSM and problem of ensuring data

integrity, we overlook some complex features of GSM models and assume all GSM

specifications studied in this paper satisfy the following properties.

1. Only atomic stages are used because only such stages are responsible for task in-

vocation and artifact value update.

2. Each sentry is defined using only the artifact attributes with at most one external

and control event. That is, stage and milestone status is not used in sentries. This

saves us from building and following dependency graphs as in [2].



6 X. Liu, and J. Su, J. Yang

3. The event takes its immediate effect (on attribute value) only when it is used as a

triggering reply event of a milestone. Triggering event of stages are instead used in

the assignments in the stage body.

The execution model introduced can be extended to support the GSM model without

these assumptions. But the extension is out of the scope of this paper.

3 Notations in SUB and proof of Theorem 1 in [3]

Some notations used in the function SUB in Section 4.2 of [3] to make it more concise.

Here we give their definitions:

– When the stage writes attributes of another artifact, say β(bid), then the constraint
on β.x is only required to hold on artifacts of β reference by attribute α(aid).bid.
Therefore such reference dependencies should be added into the premises by func-

tion explicitref (κ) under the following procedure.
For each v ∈ WriteSet(s) of the form β1(· · · (βk−1(βk(bidk).bidk−1). · · · ).bid1).x
where βk = α, bidk = aid, and β1.x ∈ CA(κ), add all bidi and other free attributes
of βi (1 ≤ i ≤ k) as ∀-quantified variable, and connect βi(bidi, bidi−1, . . . ) in

conjunction with the premises (the dots represents all other attributes of βi1 ).

– Notation con[exp/α(id).x] denotes using each exp in exp s.t. x := exp (x is in x)

appears in the body of the stage to substitute simultaneously in con for

• every ∀-quantified variable y that appears in the column of α.x in the relation

atom α identified by id, and remove such y from the ∀-quantified variable list

of con;

• every ∃-quantified variable z in the column of α.x in the relation atom α iden-

tified by id (which must be in the consequent), and remove such z from the

∃-quantified variable list of con; and
• if a constant c appears in the column of α.x in the relation atom α identified by

id in the premises (resp. consequent), conjunct c = exp withe premises (resp.

consequent).

– Similar notation con[e/x] in the if-clause denotes the substitution of e for x in con,

and: if x is an ID, remove it from the ∀-quantified variable list of con; if x is an

artifact relation, remove all variables appear in it from the ∀-quantified variable list
of con.

Proof sketch of Theorem 1 in [3].

Theorem. Given GSM specification AP and the set of integrity constraintsK, the tran-

sition system with injection, InjTSAP, is both sound and conservative complete.

Proof (Sketch) The soundness can be proved as following. Because TSAP and InjTSAP
share the same initial state and no artifact exists on the initial state, no constraints are

violated on the initial state. Assume an arbitrary constraint κ holds on an arbitrary state

s of a run ρ′ of InjTSAP. If there is a transition of Open following s, then the injection



Preservation of Integrity Constraints by Workflow: Online Appendix 7

(w.r.t. stage action) is also satisfied. Therefore, on the next state and the second next

state (the state after the stage body operation) in ρ′, κ is also satisfied.

The conservative completeness is proved by contradiction. Assume there is a con-

servative run ρ in TSAP that is not a run of InjTSAP. Then in case the sk = s′k and tk = t′k
but sk+1 6= s′k+1 in runs of TSAP and InjTSAP, resp. Because all operations are deter-

ministic, therefore it has to be sk+1 = s′k+1. In case otherwise, (there is a state sk in

ρ s.t. all of the transitions enabled by the state cannot be enabled by the same state in

InjTSAP), it is proved that for any stage body of the stage s that tk is open stage opera-

tion of s, if tk cannot be enabled in InjTSAP by sk, ρ is either not sound or uses the reply
event to update critical variables. In both cases, contradiction are witnessed. Therefore,

conservative completeness is proved. 2

Proof

Safeness We prove injection safeness by induction. Let ρ′ = s′0 t
′

0 . . . t′n−1 s
′

n be a

complete run of InjTSAP, and without loosing generality, consider an arbitrary κ in K.

Because in the initial state of InjTSAP is the same as the initial state of TSAP, the set of

artifacts are empty, and in Equation (1) in [3], there is at least one artifact relation atoms

in the premises of κ, therefore κ holds on s′0. As induction hypothesis, suppose κ holds

on state s′k (0 ≤ k < n). Only operations Body of some stage s and AchievClose of some

milestone m can change the attribute value. If t′k is not one of these two operations, then

all constraints also hold on sk+1. In case that t
′

k is a Body operation of some stage s, since

there can be at most one stage being active, SUB(κ, s [, aid]) must hold on sk, then after

the assignment of s.Body, κ also hold on s′k+1. If t
′

k is an AchievClose operation, then by

Algorithm 1 in [3], it does not change the value of attributes in CA(κ) (otherwise, there
will be no such t′k), therefore, κ also holds on s′k+1. Therefore, safeness is established.

Completeness Assume there is a conservative run ρ that has no identical run ρ′

in InjTSAP, we prove contradiction. Because runs of TSAP and InjTSAP share the same

initial state, without loosing generality, suppose run ρ′ is the run of InjTSAP that shares
the longest common prefix with ρ, and let the maximal common prefix be s0t0 . . . tk−1sk,

where k ≥ 0. Then there are the following cases for the operations and states following
sk:

1. either there is no t′k that can be enabled on sk, or for any operations t′k enabled by

sk in InjTSAP, t
′

k and tk are not of the same operation (with and without injection

resp.): Because the injection is only made on Open operations, then such operation

of tk must be an Open(s [, aid]) operation for some stage s and optionally artifact

id aid. Thus,
– if the body of s is assignments, because ρ is safe, then tk+1 is operationBody(s, aid),
and constraints inK hold on state sk+1. The injection on s, Inj(s), is a conjunc-
tion of SUB(κ, s [, aid]) for every constraint in K, then guard(tk) ∧ Inj(s) holds
on sk, which leads to a contradiction that Open(s [, aid]) with injection is en-

abled on sk in InjTSAP;

– if the body of s is sending a one-way invocation or a reply, then operation

Open(s [, aid]) is not injected, and therefore Open(s [, aid]) with injection is

enabled on sk in InjTSAP;

– if the body of s is sending a two-way invocation, there must be a milestone

triggered by the response. In case the milestone dose not use the response to set



8 X. Liu, and J. Su, J. Yang

any attributes inCA(κ) for any constraint κ ∈ K, thenOpen(s [, aid]) operation
is not injected and thus is enabled on state sk. Otherwise, it is injected with

FALSE and cannot be enabled. Thus ρ cannot be conservative.

Therefore, we witness contradictions.

2. t′k and tk are of the same operation (with and without injection resp.) but s′k+1 6=
sk+1: Because ρ and ρ′ share sk, and all operations produces deterministic effect,

then sk must be the same of s′k. We witness a contradiction.

In all of the cases we witness a contradiction. Therefore, for each conservative run

ρ of TSAP, there is be a complete run ρ′ of InjTSAP s.t. ρ and ρ′ are identical.
2

4 Constraints and injection on EzMart

In this appendix section, we give the constraint formulas and the injection. Note that in

the substitutions, id ◦ newid() is further replaced by FALSE for any id unless ◦ is 6= .;

and x ◦null is further replaced by FALSE for any unless x is null or ◦ is 6= . Except these

trivial replacements, no reduction is made on the injection.

Attribute constraint

In Customer:

∀ custid, email, . . . � Customer(custid, email) → email 6= ‘’

The injection on Open(register) is

TRUE → regreq.email 6= ‘’

In Order:

∀ ordid, custid, invid, qty, . . . �
Order(ordid, custid, invid, . . . , qty, . . . ) → custid 6= null ∧ invid 6= null ∧ qty > 0

The injection on Open(create) is

∀ ordid, custid, invid, qty, . . . � TRUE →
(head cq).custid 6= null ∧ (head cq).invid 6= null ∧ (head cq).qty > 0



Preservation of Integrity Constraints by Workflow: Online Appendix 9

In Ship:

∀ shipid, ordid, addr, name, from, ship stat�

Ship(shipid, ordid, addr, name, from, ship stat) →
ordid 6= null ∧ addr 6= null ∧ name 6= null ∧ from 6= null ∧ addr 6= from

The injection on Open(prepare) is

∀ shipid, ordid, addr, name, from, ship stat�

TRUE → (head cq).ordid 6= null ∧
Cutomer(Order((head cq).ordid).custid).addr 6= null ∧

Cutomer(Order((head cq).ordid).custid).name 6= null ∧
Inventory(Order((head cq).ordid).invid).loc 6= null ∧
Cutomer(Order((head cq).ordid).custid).addr 6=

Inventory(Order((head cq).ordid).invid).loc

where head cq is a control event of paid
+
.

In Inventory:

∀ invid, loc, . . . � Inventory(invid, . . . , avail qty, . . . ) → loc 6= null

The injection on Open(inv initiate) is

TRUE → (head eq).loc 6= null

where head eq is a invInit event.

Candidate key constraint
The constraint formula is:

∀ custid, email, custid′, . . . �
Customer(custid, email, . . . ) ∧ Customer(custid′, email, . . . ) → custid = custid′

The injection on Open(register) is

∀ custid′, . . . � Customer(custid′, (head eq).email, . . . ) → FALSE

where head eq is a regreq event.

Foreign key constraint

There is foreign key reference from Order to Customer, Order to Ship, Order to

Inventory and Ship to Order.

In Order:

∀ ordid, custid, invid, . . . � Order(ordid, custid, invid, . . . ) →
∃ . . . � Customer(custid, . . . ) ∧ Inventory(invid, . . . )

∀ ordid, shipid, . . . � Order(ordid, . . . , shipid, . . . ) ∧ shipid 6= null →
∃ . . . � Ship(shipid, . . . )



10 X. Liu, and J. Su, J. Yang

The injection on Open(create) is

TRUE → ∃ . . . � Customer((head eq).custid, . . . ) ∧ Inventory((head eq).invid, . . . )

where head eq is a checkout event.
The injection on Open(ship, shipid) is (shipid of Order is set in ship of Ship)

∀ ordid, . . . � Ship(shipid, ordid, . . . ) ∧ Order(ordid, shipid, . . . ) ∧ shipid 6= null →
∃ . . . � Ship(shipid, . . . )

Obviously, this results in TRUE.

In Ship:

∀ shipid, ordid, . . . � Ship(shipid, ordid, . . . ) → ∃ . . . � Order(ordid, . . . )

The injection on Open(prepare) is

TRUE → ∃ . . . � Order((head cq).getid(), . . . )

where head cq is a paid+
event.

Ship-order reference circle
It is actually two constraints:

∀ ordid1, ordid2, shipid, . . . �
Order(ordid1, . . . , shipid, . . . ) ∧ Ship(shipid, ordid2, . . . ) → ordid1 = ordid2

∀ shipid1, shipid2, ordid, . . . �
Order(ordid, . . . , shipid1, . . . ) ∧ Ship(shipid2, ordid, . . . ) → shipid1 = shipid2

The injection on Open(create) is

∀ ordid2, . . . � Ship(null, ordid2, . . . ) → FALSE

∀ shipid2 � FALSE → null = shipid2

The injection on Open(prepare) is

∀ ordid1, shipid, . . . � Order(ordid1 , . . . , shipid, . . . ) → ordid1 = (head cq).getid()
∀ shipid1, shipid2, ordid, . . . � Order(ordid, . . . , shipid1, . . . ) → FALSE

where head cq is a paid
+
event.

The injection on Open(ship, shipid) is

∀ ordid1, ordid2, shipid, . . . �
Order(ordid1, . . . , shipid, . . . ) ∧ Ship(shipid, ordid2, . . . ) ∧ Ship(shipid, ordid1, . . . ) →

ordid1 = ordid2

∀ shipid1, shipid2, ordid, . . . �
Order(ordid, . . . , shipid1, . . . ) ∧ Ship(shipid, ordid, . . . ) → shipid1 = shipid



Preservation of Integrity Constraints by Workflow: Online Appendix 11

Address-name constraint
The constraint is

∀ ordid, custid, shipid, addrc, namec, addrs, names . . . � Order(ordid, custid, shipid, . . . ) ∧
Customer(custid, . . . , addrc, namec, . . . ) ∧ Ship(shipid, ordid, addrs, names) →

addrc = addrs ∧ namec = names

The injection on Openregister is

∀ shipid, addrs, names . . . � FALSE ∧ Ship(shipid, ordid, addrs, names) →
regreq.addr = addrs ∧ regreq.name = names

The injection on Open(create) is

∀ addrc, namec, addrs, names . . . �
Customer((head cq).custid, . . . , addrc, namec, . . . ) ∧ FALSE →

addrc = addrs ∧ namec = names

The injection on Open(prepare) is

∀ ordid, custid, addrc, namec, . . . � FALSE ∧
Customer(custid, ordid, addrc, namec, . . . ) →

addrc = Customer(Order((head cq).getid()).custid).addr ∧
namec = Customer(Order((head cq).getid()).custid).name

The injection on Open(ship, shipid) is

∀ ordid, custid, addrc, namec, addrs, names . . . � Order(ordid, custid, shipid, . . . ) ∧
Customer(custid, . . . , addrc, namec, . . . ) ∧ Ship(shipid, ordid, addrs, names) →

addrc = addrs ∧ namec = names

Ship-from constraint
The constraint formula is

∀ ordid, shipid, invid, loc, from, . . . � Order(ordid, . . . , invid, shipid, . . . ) ∧
Ship(shipid, . . . , from, . . . ) ∧ Inventory(invid, . . . , loc, . . . ) →

loc = from

The injection on Open(create) is

∀ from, loc . . . �
FALSE ∧ Inventory((head cq).invid, . . . , loc, . . . ) →

loc = from

The injection on Open(prepare) is

∀ ordid, invid, loc, . . . � FALSE ∧
Ship(shipid, . . . , Inventorty(Order((head cq).getid()).invid).loc, . . . ) ∧
Inventory(invid, . . . , loc, . . . ) →

loc = Inventorty(Order((head cq).getid()).invid).loc



12 X. Liu, and J. Su, J. Yang

The injection on Open(ship, shipid) is

∀ ordid, invid, loc, from, . . . � Order(ordid, . . . , invid, shipid, . . . ) ∧
Ship(shipid, ordid, from, . . . ) ∧ Inventory(invid, . . . , loc, . . . ) →

loc = from

Status constraint
The constraint formula is

∀ ordid, shipid, ord stat, ship stat � Order(ordid, . . . , shipid, . . . , ord stat) ∧
Ship(shipid, ordid, . . . , ship stat) ∧ ship stat 6= FINISH ∧ ship stat 6= FAILED →

ord stat 6= RETURN ∧ ord stat 6= CANCEL

The injection on Open(create) is

∀ ship stat � FALSE ∧ ship stat 6= FINISH ∧ ship stat 6= FAILED →
CREATE 6= RETURN ∧ CREATE 6= CANCEL

The injection on Open(prepare) is

∀ ordid, ord stat, ship stat � FALSE ∧
PREPAR 6= FINISH ∧ PREPAR 6= FAILED →

ord stat 6= RETURN ∧ ord stat 6= CANCEL

The injection on Open(ship, shipid) is

∀ ord stat, ship stat � Order(ordid, . . . , shipid, . . . , ord stat) ∧
Ship(shipid, ordid, . . . , ship stat) ∧ SHIPIN 6= FINISH ∧ SHIPIN 6= FAILED →

ord stat 6= RETURN ∧ ord stat 6= CANCEL

The injection on Open(sell, invid) is

∀ ordid, shipid, ship stat � Order(ordid, . . . , invid, , shipid, . . . , ord stat) ∧
Ship(shipid, ordid, . . . , ship stat) ∧ ship stat 6= FINISH ∧ ship stat 6= FAILED ∧
Inventory(invid, . . . ) →

INVUPD 6= RETURN ∧ INVUPD 6= CANCEL

The injection on Open(further action) is FALSE.

References

1. E. Damaggio, R. Hull, and R. Vaculin. On the equivalence of incremental and fixpoint seman-

tics for business entities with guard-stage-milestone lifecycles. In Proc. Int. Conf. on Business

Process Management (BPM), 2011.

2. R. Hull, E. Damaggio, R. D. Masellis, F. Fournier, M. Gupta, F. Heath III, S. Hobson, M. Line-

han, S. Maradugu, A. Nigam, P. Sukaviriya, and R. Vaculı́n. Business artifacts with guard-

stage-milestone lifecycles: Managing artifact interactions with conditions and events. In Proc.

ACM Int. Conf. on Distributed Event-Based Systems (DEBS), 2011.

3. X. Liu, J. Su, and J. Yang. Preservation of Integrity Constraints by Workflow. In Proc. Int.

Conf. on Cooperative Information Systems (CoopIS), 2011. (to appear).


