Software Engineering Group
Department of Computer Science
Nanjing University
http://%eg.nju.edu.cn

NJU Software
Engineering Group

Technical Report No. NJU-SEG-2012-1C-006

Regression Test Cases Generation Based on

Automatic Model Revision

Nan Ye, Xin Chen, Wenxu Ding,
Peng Jiang, Lei Bu and Xuandong Li

Postprint Version. Originally Published in:
International Symposium on
Theoretical Aspects of Software Engineering 2012
Page(s): 127 - 134

Most of the papers available from this document appear in print, and the corresponding copyright is held by the

publisher. While the papers can be used for personal use, redistribution or reprinting for commercial purposes is
prohibited.

http://seg.nju.edu.cn/

2012 IEEE Sixth International Symposium on Theoretical Aspects of Software Engineering

Regression Test Cases Generation Based on Automatic Model Revision

Nan Ye, Xin Chen*’ Wenxu Ding, Peng Jiang, Lei Bu and Xuandong Li

State Key Laboratory for Novel Software Technology, Nanjing University
Department of Computer Science and Technology, Nanjing University
Nanjing, Jiangsu 210093, PR. China
yenan@seg.nj chenxin@nju.edu.cn, {dingwx1987, jiangpeng}@seg.nju.edu.cn, {bulei, Ixd} @nju.edu.cn

Abstract—Regression tésting is a wide] ed way to assure in software development, UML models, such as activity dia-
the quality of modified software. It reg ecuting a suite grams, can be used to describe the dynamic behavior of soft-
of test cases to ensure that modificaioh§ do noflintroduce any ;o Therefore, identifying the modifications in software
negative impact to software beha . be taken b . diff. . f UML
the suite that can reveal modifications, can be taken by cc.)mparmg two different versions o
software must be compared carefully. models. Our previous work[5] presented an approach to

identifying modifications in software by comparing different
identify differences, are expensive. In the p er; versions of activity diagrams and generating regression test
cases to cover these modifications. To adopt this approach,
traces and revising old activity diagrams, the appr, act1V}ty d}agrams for bth versions of software need to be
constructs new activity diagrams that can reveal ovided in advance. Besides the laborious work, as the scale

behavior changes. Then, both affected paths and new paths d complexity of software grow up quickly, manual model
in activity diagrams are identified. Finally, an executign- ance becomes harder and harder.

based approach is applied to generate regression test case design model, an activity diagram can represent the
whose execution can cover these paths. Experiments show the . L .
¢ bghavior of its related software. For any execution

effectiveness of our approach.
ft , s matching path can be found in the activ-
Keyworz?s-regression testing, generation, automatic, model- ity difram ifying software may bring inconsistency
based testing between it§/ curre ior and its out-of-date behavior
models. I e, acti diagram is out-of-date, execution
I. INTRODUCTION traces may muspa@ch a@hivity paths in the diagram. As
modifications made to géftware usually affect limited aspects
h the matehing relationship does not
exist between a complete e 4
activity path, it still exists b,

In the life cycle of software, regression testing is an
important assurance for the quality of modified software.
After modifications are made to software, a suite of re-
gression test cases should be executed to ensure that these
modifications did not introduce any negative impact to
software behavior. As the software systems evolve with their
scale and complexity, the amount of test cases becomes
larger and larger. It is very costly and time-consuming to
execute all the cases during the regression testing process.
To improve the efficiency in regression testing, test cases
selection techniques are used to select a subset of test cases
that reveal modifications in the software [6].

To select modification-revealing test cases, one question
should be answered first: how to identify the modifications
in software? As model-centric approaches are widely used

the diagram on the base of pa
fit the trace. That means, by revisin
cording to execution traces, new up-
constructed automatically without manu

In this paper, we present an automat
regression test cases generation based on activity diagrams
revision. Here, activity diagrams play the role as the behavior
models of the software under test. Path coverage in activity
diagrams is chosen as the test adequacy criteria in regression

. . testing. In this approach, firstly, a certain amount of test

Corresponding author.

TThis work is supported by Research Fund for the Doctoral Program cases are executed on th? evolved software. Our approach
of Higher Education of China (No.20110091120058), the National demands that the executions of these test cases cover all
Natural Science Foundation of China (No.61100036, No.61021062), behaviors in current software. The selection strategy of test

National Grand Fundamental Research 973 Program of China b d is di d in Secti 4. Then based
(N0.2009CB320702), and by the National 863 High-Tech Programme of ~ CaseS t0 be executed 1s discussed 1n Section 4. Then base

China (No.2011AA010103). on the execution traces and the old activity diagram, a
978-0-7695-4751-0/12 $26.00 © 2012 IEEE 127 cohE']EpEuter

DOI 10.1109/TASE.2012.31 soclety

new activity diagram representing the behavior of modified
software is constructed automatically. Affected paths and
new paths are identified as well. Finally, an execution-based
approach is used to generate regression test cases for these
paths. These test cases make up the regression testing suite.

The rest of the paper is organized as follows: Section 2
introduces the background of model-based regression testing
techniques. Secti describes the underlying idea of this
s technical details on how to revise
based on execution traces of modified
explains how to build the regression

software.
test suite on the ba
in section 6 to s
Related works are
the conclusion.

are usually
sfies some test
i software

selected from a prepared pool
adequacy criteria. It’s assumed that the
has been tested adequately for the criferi
scale of pool is very large, and executing

revealing techniques are widely used, which sugges
those test cases that can reveal modifications
software are selected to execute in regression testing.

The adoption of model-based development provides
portunities for model-based testing. As the abstraction o
software, models can be used to represent the modifications
in software. By comparing different versions of models,
those test cases related to changed parts in models are
selected out as regression test cases, since they can reveal
the effects of software modifications.

Activity diagrams are widely used as design models, since
they are able to describe the internal behavior of software,
i.e. a workflow of actions. Each activity in workflows is
interpreted as the execution of a specific method call in
software. As execution traces are composed of method calls,
their corresponding covered paths can be found in activity
diagrams by analyzing the execution traces[2]. Revealed
from different versions of activity diagrams, their differences
represent the behavior variation deriving from modifications.
Our work [5] presents such an approach that identifies
the behavior variation in software by comparing different
versions of activity diagrams.

To adopt these model-comparison techniques, we need to
construct models for each version of software under test.
Unfortunately, in practical software development processes,
model updating usually lags behind software changes since it
relies on manual manipulations. Manual revision for models
is laborious and lowers the availability of these techniques.

III. ESSENTIALS OF OUR APPROACH

Modifications made to software result in software behav-
ior variation. As a result, the behavior variation may not

b. Adapt the activity diagram for the
behavior in the execution trace.

a. Inconsistency occurs between the
activity diagram and the execution trace.

Figure 1. The revision of activity diagram.

conform to the original activity diagram any more. The out-
of-date diagram cannot be used as the correct abstraction for
software any more. If the execution of a test case involves
behavior variation in software, inconsistency may occur.
That is, its execution trace cannot be accepted by the original
activity diagram or cover its former related path in the
diagram. As shown in Figure 1a, an unexpected method call
a5’ occurs in the execution trace, which cannot be accepted

n by current activity diagram.

Each execution trace reflects the associated dynamic be-
vior of a test case executed on modified software. So the

actl diagram can be revised according to the information

from execution traces. As shown in Figure 1b, if

ue ...a1, a4, Gk, ag...) occurs in the trace, it can be
infegre;

128

at a new activity af should be added between the

activity ay aghAccording to the inference, the original
activity diggram evised to fit behavior in execution
traces.

ise activity diagrams according to
i diagram, a trace and

unmatched part, the revision ope
the adding and removing of activiti

in Figure 1b, after the revision is taken, beSides the path
(...a1,a4,0af,a6,a7...), there are still other 5 additional
paths required to be covered, e.g., (...az, a4, ak,ag,ar...)
and (...as,ay,ar,ag,as...). Those paths that contain new
activities or new transitions are of high possibility not to be
covered by the original test cases. To meet the path coverage
criteria, new test cases need to be created to cover these
paths.

The overview of our approach is shown in Figure 2. It con-

Automatic Model Update
test cases pool
T execute test .
———m execution traces
e cases
original activity [l
am

automatic model)
revision

new activity
diagram

regression test suite

o Wlect related test :
cases from the pool/ ™

!

te new test
cover new |
‘ hs

retestable test case

newly generated test cases

"

Figure 2. The workflow o eneration based on

automatic model revision.

egression test c

tains 2 phases. First, original activity digg@rams are revised in
accordance with current software behagor ically. A
certain amount of test cases are selected ffom repared
pool of test cases and executed on the n d

software. Then the activity diagram is revised gaccQrdi
to unmatched parts between each execution tracgand) t
diagram. The revised diagram can accept the executi
traces which it could not accept previously. Second,
regression test suite is built on the base of the revis
diagram. The regression test suite is composed of two parts:
test cases selected from the pool which cover those affected
paths in the activity diagram, and newly generated test cases
which cover new paths in the diagram.

€

IV. AUTOMATIC ACTIVITY DIAGRAM REVISION

In this section, we present the automatic approach to
revise the original activity diagram in accordance with
execution traces from the modified software. To illustrate
the approach, we employ the formal definitions of activity
diagrams in [2].

Definition 1. activity diagram

An activity diagram is a tuple, (A, T, F,ar,ar), where

1) A={a1,a9,...,an} is a finite set of activity states;

2) T = {t1,to,....,tn} is a finite set of completion
transitions;

3) FC(AxT)U(T x A) is the flow relation;

4) ay € A is the initial activity state, and ap € A is
the final activity state; there is only one transition
t such that (ar,t) € F, and Vt; € T o (t;,a1) ¢
F ANap,t;) ¢ F.

As Figure 3 shows, the automatic revision process consists
of four steps: identifying matched subsequences, adding
new activities for unmatched method calls, connecting the
discrete slices in the diagram, and removing out-of-date
behaviors.

129

ave execution
traces?

the execution trace

the activity diagram .

the final revised activity

diagram

Figure 3. The process of automatic activity diagram revision.

As the revision of activity diagrams is based on execution
aces, a suite of test cases need to be executed to explore
rrent software behavior. Software behavior need to be cov-

erel sufficiently as possible. These test cases are selected
ajpool of test cases. As the traceability between test

t ool and paths in the original activity diagram

ha§ibe uilt, for each path, a certain count (in our case,
the c@unt is test cases are selected for execution on
purpose. oughyth ceability may have been out-of-
date in evo oft it still can provide more confidence

for behavior cov

ecution trace and
detecting matched
is a sequence of

Treating an
activity diagram as an design model, tipf’between
activities in the diagram and methods in
built. The mapping ac from method calls in
its related activity sequence represents the correl
ac(c;) represents the related activity of th

The matched subsequence is defined as follows.

Definition 2. matched subsequence

Let AD (A,T,F,ar,ar) be an activity diagram,
s ={c1,¢a,...,cn) be a method call sequence and ac maps
each element in s to its related activity in AD to form the
related activity sequence. A subsequence ms of s, of the form
ms = {(¢j,Cjt1, ., cm)(1 < j < m < n), is a matched
subsequence with respect to AD, if the following condition

el e

X

thread parallel relation in activity diagrams.

holds:

Viejm—ledtecTe ci), t) c FA (t, aC(Cerl)) cF Figure 5. The local matches between the trace and the activity diagram.

its elements. 2) for any successive elements (ck,py) and (Ci4+1, Pk+1)

For convenience, given a matched subsgqUigfice m.s, we use in s, their counterpart (ay,d,,) and (apy1,dy,.,,) in

AS(ms) to denote its matched slice,fhat (ms) = AD satisfy:

ac(ci),ac(civ1),---,ac(cy)). The maXim d sub-

§eqb(tejn)ce o§ ;Jlrs i)ts longe(st n)litched subsequignce. to (3t € Te(ar, 1) € FA(E akt1) € F)V(dry, iy,

see that if an execution trace can be accepte the a€ti Algorithm 1 shows the process of identifying the maxi-

diagram without any mismatches, its maximurii magghe mum matched subsequence of a method call sequence on

subsequence will be itself. activity diagram. In the algorithm, for a sequence seq,
The above definition only considers the sequential (Be- e function seq[i] returns the i-th element in seq(the index

haviors in the activity diagram. The activity diagrams
contain parallel threads to describe concurrent behavior in
software. The thread parallel relation represents the relation and M IN (s) return the maximum element and
between two parallel control flows in the activity diagram. mv¥element of s respectively.
As Figure 4 shows, the thread rd2 and td3 are parallel Fof'each d execution trace s, its matched sub-
threads, so, activities belonging to #d2 and #d3 interleaved sequences fare se ecursively: identify its maximum
with each other in execution traces. Because the parallel matched ue s as Algorithm 1 at first, and
relation doesn’t exist between td/ and td2 or tdl and td3, then repeat the
such interleaved execution traces will not appear. and subsequent “subs nce of ms in s, until no more
The following definition for matched subsequence handles matched subsequencés’detected. Wegean identify all matched
the concurrent behaviors: subsequences in execution trg

pends the element a to the sequence seq. For a set

Definition 3. matched subsequence B. add new activities in AD

Let AD = (A, T, F,ar,ap) be an activity diagram, s = Modifications made to s0 introduce new
((c1,p1), (c2,02).-, (cn,pn)) be a method call sequence, method calls, which don’t have relate i s in griginal
where c; and p; represents the i-th method call and its thread activity diagrams, like al3 in Fig

id respectively. The map acp maps each element (c;,p;) in method calls don’t belong to any mat
s to its related activity a; in the thread d,, € D in AD to We call them wnmatched method calls.

Sform the related activity sequence. D = {dy,ds...d;} is the To handle unmatched method calls in execu s,
set of all th.reads in AD. PR C (D x D) is the parallel a new corresponding activity in the diagr cated for
thread relation. A subsequence ms of s, of the form ms = each unmatched method call. As shown in Figure 6a, a new

((cj,pi), (€41, Pj41); ooy (Cms)Y (1 S j <m < n), is a activity al3 is created to relate the method call al3. As
matched subsequence with respect to AD, if the following the new created activity does not have its thread parallel
two conditions hold: relations like other existing activities, for each unmatched
1) for any successive elements (ck,,py) and (c,,p.) of method call, we search its preceding or following method
the same thread p, in s, their counterpart (ag,,d) and calls with the same thread id in the execution trace, that

(a,,d) in AD satisfy: is its sibling method calls. We assume that the thread
parallel relation of its corresponding activity is consistent
Jt €T o (ak,,t) € FA(tak,)) € F with the corresponding activities of its sibling method calls.

p g g

130

) € PR

Algorithm 1 identify the maximum matched subsequence
of a given method call sequence

Input:

Out;

o I U R S R

22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:
39:
40:

An activity diagram AD = (A, T, F,ar,ar)
A method call sequence s = (Cg,C1, ..y Cr—1)

TD is the set

The thread parallel relation TR C (T'D x TD)
is the thread of activity a € A
of activities correlating with the method

MSmaz, th

of threads in AD

maginum matched subsequence in s Figure 6. Revise the activity diagram to adapt the behavior in the execution
ASmaz, the tivity sequence of Mz trace.
MSmaz =) empty sequence}
Smaz = 4 sequence} .. S .
fori=0 ton-1 So the newly created activity will inherit the thread parallel

if act(s[i]) # "then
for all a;y,;, € act(s[i]) d

relations of the related activity of this sibling method call.
By this, unmatched method calls own their related ac-

let ms; = (s[i]); atched subse- tivities in the diagram. They can be treated as matched
quence} subsequences with the length of one.

let as; = (aump); {its relded actiyigyy sequence}

let pos =i + 1, C. connect slices in AD

while (pos < n) do After completing the previous steps, all the matched

if act(s[pos]) # 0 then
let at, = nil;
for all a, € act(s[pos| do

subsequences in the execution trace are identified and new

activities are created for all unmatched method calls. Then

let a; = act(s[pos]); e execution traces can be considered as a sequence of

if 3j € Netd(a,) = td(ac(ms,[j])) then atched subsequences.

{find the immediate preceding activit dapt the activity diagram for the execution trace,

a; on the same thread} es between the trace and the diagram should be
let jmaz = MAX({j € ismatches derive from modifications made to
N[td(ac(ms[j])) = td(at)}); ifications in software usually lead to two
if 3t € T o (ac(msi[jmazl),t) € F' A behavior variation, the disappearance

(t,a;) € I then the appearance of new behavior.
Aty = Qg
end if
else

let ay = act(ms;[#ms; —1]);

ctivities and transitions and the

appearance of n cluding those unmatched method

it 3t € T,j € Ne (ac(ms[j]),t) € calls, all matched subSequences_haye been identified from
F A (t,a) € F) or (td(ay),td(a;)) € the execution trace. The actiyi can be revised to
TR then adapt software behavior in t ace by connecting
Gy, = At} these behavior slices in the 3
en_d if For two immediate matchediyg
end if in an execution trace, neglecting con
end for e
if ay, % nil then clear that there are no transitions fr
fo 77 0] in AS(ps;) to the first activity aj in AS
ms; = ms; " m[pos]; . o
ase = as " as,; diagram, or else the two matched s.u.bsequ 1d join
else a larger one. Therefore, a new transition from a in
break; the diagram can help connect the two matc quences
end if together. Considering concurrent behavior, if an thread exists
else in both AS(ps1) and AS(psz), there should be a transition
break; to connect the last activity on the thread in AS(ps;) and
end if the first activity on the thread in AS(psz). If the transition
pos = pos + L doesn’t exist, a new one will be created. The corresponding
end while

if #ms; > #ms,q, then
MSmaz = MSt;
ASmax = AStmp>

end if

revision algorithm is proposed in Algorithm 2. For each
received execution trace, after the revision is completed, the
revised diagram can accept this complete execution trace, as
Figure 6 shown.

131

Algorithm 2 revise the activity diagram to fit the behavior
of a given execution trace
Input:
An activity diagram AD = (A, T, F,ar,ar)
An execution trace s = (msg, MS1, ..., MSk—1)
TD is the set of threads in AD
td(a) € TD ig the thread of activity a € A
i ion AS, AS(si]) is the related activity

the execution
1: fori=1tok

2: ASl = AS(

3: ASQ = AS(S[Z —+

4 find T = [tdy,tdq, ..., td,,] as mmon threads
between AS7 and ASs;

5: forj=1tomdo

6: let lyar = MAX ({1 € N|td(=td;})

7: let Ly = MIN({l € N|td(AS:]])

8: ifVt € Te(AS[ljmaz], t) € FV(t,) ¢ F

then {add a new transition to AD;

9: create a new transition t,,q,;

10: T =T U {tnew};

11: F= FU{(ASI [lmaz]7 tnew)y (tneun A n

12: end if

13: end for

14: end for

The algorithm above can treat most cases involving
multi-control-flow activity diagrams and multi-threading
programs. However, if the programs are modified to create
a new thread, remove an original thread or change the first
or last activity of a thread, the activity diagram can not be
revised by our approach correctly. Using sequence analysis
to identify the trace of an unknown thread is quite difficult,
since an unknown thread’s execution trace is interleaved with
traces of its parent thread and many other threads.

D. remove out-of-date behavior

The last three steps will be repeated for every received
execution trace. After all execution traces are received, new
behaviors are added to the diagram, that is new activities and
new transitions. The revised activity diagram can accept all
previous traces finally. We consider that the final revised ac-
tivity diagram can describe the behavior of evolved software
correctly.

It should be pointed out that modifications made to
software also may lead to disappearance of original behavior
in software. For the accuracy of the revised diagram, those
out-of-date parts need to be removed. We have executed
a set of test cases and assumed that these test cases have
covered all current software behavior, so, for those activities

132

or transitions which have not been traversed by any execu-
tion traces, we consider that their related behaviors have
disappeared in the current software version. Those activities
and transitions are removed from the diagram.

The precondition of the correctness of removing out-of-
date behaviors is that executed test cases have covered all
current software behavior. The selection strategy of executed
test cases must be taken into consideration to assure their
coverage.

V. REGRESSION TEST CASES GENERATION

After the revision of the activity diagram is completed,
the regression test suite is built on the base of the final
revised activity diagram for the following regression testing.
A certain count of test cases have been executed in the
process of revision. There are two reasons why we still need
to select test cases to build regression test suite and execute
them. First, the execution of test cases in the process of
activity diagrams revision is just used to explore the current
behavior of software. These affected parts in software still
need to be retested adequately by more test cases. And
because some paths in activity diagrams have changed, the
traceability between test cases and paths in diagrams should
be updated. Second, modification in software may result in

ew paths in the revised diagram(like Figure 1), which may

t have their corresponding covering test cases. New test
peed to be generated to cover these paths.

diagrams are built. Because all modifications
e detected in the process of revision, the

comp@rison n activity diagrams is not required. As
a path in #he re gram traverses any activities or
transitions Which ar ted or newly created in the process

affected by modifications.

test case involves software vari-
e original diagram will
| diagram. For each
bme samples of its
to execute in the

approaches should be employed to gener
cover these paths.

The final regression test suite is composed of the retestable
test cases in the pool of test cases which cover affected paths
and newly generated test cases which cover new paths in the
activity diagram.

VI. CASE STUDY

We use an online stocking exchange system(OSES) and its
related activity diagram as the case study of this approach.

act StockSystem

stock broker

VerifyOrder

[valid order]

12|jinvalid order

-
SUCCESS
. S

trade_PARTEXE

_paRTEXE)

(. PARTEXE)
_parTexe)
s D
Figure 7. The activity diagram of OSES.

OSES is a JAVA program, reconstructed from an example in
[1]. It consists of 40 classes and 305 methods. The activity
diagram of OSES contains 25 activity nodes, 6 decision
nodes and 18 paths totally(as Figure 7 shown). And OSES
contains multi-thread behavior. We have proposed a pool of
test cases which contains 1000 test cases to cover the 17
available paths in the diagram.

To show the effectiveness of the approach, 5 cases are
designed to make modifications to OSES. These cases cover
conditions of the addition and removal of method calls,
the occurrence of new paths and the behavior variation in
subthreads. The 5 cases are as following:

1) Add a new method call checkMarketOrder after the
call tradeMarketOrderBuy and add a new method call
checkLimitOrder after the call tradeLimitOrderBuy in
the program. Execution traces involving modifications
will appear like (..., tradeMarketOrderBuy, check-
MarketOrder, getOrderResult,...) or (..., tradeLimi-
tOrderBuy, checkLimitOrder, getOrderResult,...). Two
new activities checkMarketOrder and checkLimitOrder
should be added to the diagram.

Remove the addOrderToList call. Execution traces
involving modifications will appear like (verifyOrder,
addNewOrder,...). The activity addOrderToList should

2)

133

be removed from the diagram.

Add a new IF clause containing the method call
logout after the displayOrderErrorInfo call. Execu-
tion traces involving modifications will appear like
(verifyOrder, displayOrderErrorInfo) or (verifyOrder,
logout, displayOrderErrorInfo). A new decision node
should be added to the diagram, and a new activity
logout should be in one branch from the decision node.
Add a new IF clause containing the method call
setMarketCode and its corresponding ELSE clause
containing the method call setDefaultMarketCode
in front of the tradeMarketOrderSale call and the
tradeMarketOrderBuy. Execution traces involving
modifications will appear like (..., getNewOrder,

3)

4)

setMarketCode, tradeMarketOrderSale,...),
(ees getNewOrder, setDefaultMarketCode,
tradeMarketOrderSale,...), (ees getNewOrder,
setMarketCode, tradeMarketOrderBuy,...), or
(- getNewOrder, setDefaultMarketCode,

tradeMarketOrderBuy,...). A new decision node
should be added to the diagram, and two new
activities setMarketCode and setDefaultMarketCode
should be respectively in two branches of the decision
node.
Add a new method call checkInconsistency between
the call settleTrade and the call updateStockHold-
B_SUCCESS. All of three method calls are in
e subthread of the program. Execution traces in-
odifications will appear like (..., update-
rDB_SUCCESS,..., checkInconsistency,...,
new activity checklnconsistency
etween the activity checklnconsis-
ity settleTrade in the diagram.

as expected. The retestable
are given, as shown in Table

and uncovered paths
he column affected
18 paths in the

cover these affected paths; uncovere
revised diagram which are not covered
traces in the process of revision; the col
presents the count of paths of the revised
that because only 17 of 18 paths are availa
activity diagram, there are always at least one uncovered
paths in the revised diagram.

VII. RELATED WORK

Model-based regression test selection(RTS) techniques
receive growing interest in the area of regression testing
([6]). In the techniques, architecture or behavior models are
introduced as the representations of software. By comparing
different versions of models, modifications to software are

Table I automatically. Based on this, our approach can propose an
THE RESULT OF THE ABOVE 5 CASES automatic solution for regression test selection.

ID | affected paths(ori.) | retest cases | uncovered paths | total paths VIII. CONCLUSION

1 8 338 1 18

2 16 963 I 18 This paper proposed an approach for regression test cases
i ; 73073 ; ;2 generation based on automatic activity diagrams revision.
3 7 730 I 18 In the approach, behaviors of evolved software can be built

from the execution traces , and the out-of-date activity
diagrams can be revised to accept the behavior variation
. introduced in evolved software. With the evolved software
located. THen teSfgases related with those changed elements
. and the out-of-date activity diagram which describes the
are picked out as T¢ ble ones. There have been some . .. :
. .. behavior of original unmodified software proposed, the new
works [4],[5],[7] agel'[8] ptésenting this ideal. Undoubtedly,
up-to-date diagram can be built whereby revision according
before those meth (. .
to evolved software behavior. The regression test cases
of the software necd .o .
. . generation is done on the base of revision.
practice, model-updatin

. . . Compared with other modification-revealing approaches
modification. It requires software devel®p 0 . .
. 4 based on the comparison of models, this approach automates
manual efforts on updating mod %
updating models for modified software

the whole process of identifying changed parts, selecting
reused test cases and generating new test cases for testing
new behaviors. It raises the availability of model-based

models by revising those out-of-date . .
regression testing.

cution traces. It enables testers independ
regression testing without the involvement O
can save a lot of manual efforts.

To achieve model-based regression test

REFERENCES

[1] M. Blaha, and J. Rumbaugh, Object-oriented modeling and
design with UML. Pearson Education, 2005.

modification-revealing test cases need to be selected inf@c- 2] M. Chen, X. Qiu, W. Xu, L. Wang, J. Zhao, and X. Li. UML
cordance with modifications. Thus, the traceability betw: tivity Diagram-Based Automatic Test Case Generation For
models and test cases is necessary. In [7], a technique of RT Jaya Programs. The Computer Journal, 2007.

based on activity diagrams is proposed. The technique maps hea, N. Ye, P. Jiang, L. Bu, and X. Li. Feedback-Directed

Generation Based on UML Activity Diagrams.
ing of 5Sth International Conference on Secure
Reliability Improvement Companion

the activity diagram to the model used for regression test
analysis, then selects test cases from existing test suites that

traverse the different paths in the class behavior model ex- (SSIR 0p.9-10.
tracted .from the act1v1.ty diagram. The wc.>rk in [8] automgtes [4] L. Nas d D.J. Richardson. MbSRT?2: Model-
regression test selection based on architecture and design sion Testing with Traceability. In
information represented with UML and traceability informa- Proceeding ternational Conference on Software
tion linking the design to test cases. It performs regression Testing, Verificatigyand Validation (ICST 2010), 2010, pp.89-
test selection on the base of design change information, and 98. .
can tackle the regression selection problem at the design [5] N. Ye, X. Chen, P. Jiang,
- - gression Test Selection BaSed on Act

level. The two approaches don’t involve the traceability ceeding of Sth Internation
betwgen models and test cases Qeﬁnitely. The work in .[4] Integration & Reliability Imp¥
contributes an approach for selective model-based regression 2011), 2011, pp.166-171.
testing whereby traceability relationships between model [6] S. Yoo, M. Harman. Regression testing
elements and test cases traversing such elements are stored. tion and prioritization: a survey. In S
Explicit fine-grain relationships from entities in models to fication and Reliability, Wiley InterScienc
abstract test cases persisted into a traceability infrastructure online:]_)OI: 10.1002/ Stvr.'4.30 .
throughout the test generation process. The relationships (7] E. Martins and V. G. Vieira. Regression
are used to locate abstract test cases covering software testable classes. In Proceedings of the 5th European Depend-

. . . . g able Computing Conference(EDCC 2005), Springer, 2005,
modifications for regression testing. The selected abstract pp.453-470.
test cases need to be further transformed into concrete ﬁest [8] L. C. Briand, Y. Labiche, and G. Soccar, Automating impact
cases. As these techniques depend on external traceability analysis and regression test selection based on UML designs,
between models and test cases or corresponding relation In Proceedings of the 18th International Conference on
between abstract and concrete test cases, regression test Software Maintenance(ICSM 2002), IEEE Computer Society

selection cannot be done automatically. By employing the Press, 2002, pp. 252-261.

approach in [3], we can get the covered paths for test cases
by analyzing their execution traces and build the traceability

134

