

Software Engineering Group
Department of Computer Science
Nanjing University
http://seg.nju.edu.cn

Technical Report No. NJU-SEG-2012-IC-006

Regression Test Cases Generation Based on

Automatic Model Revision

Nan Ye, Xin Chen, Wenxu Ding,

Peng Jiang, Lei Bu and Xuandong Li

Postprint Version. Originally Published in:

International Symposium on

Theoretical Aspects of Software Engineering 2012

Page(s): 127 - 134

Most of the papers available from this document appear in print, and the corresponding copyright is held by the

publisher. While the papers can be used for personal use, redistribution or reprinting for commercial purposes is

prohibited.

http://seg.nju.edu.cn/

Regression Test Cases Generation Based on Automatic Model Revision

Nan Ye, Xin Chen∗† Wenxu Ding, Peng Jiang, Lei Bu and Xuandong Li

State Key Laboratory for Novel Software Technology, Nanjing University
Department of Computer Science and Technology, Nanjing University

Nanjing, Jiangsu 210093, P.R. China
yenan@seg.nju.edu.cn, chenxin@nju.edu.cn, {dingwx1987, jiangpeng}@seg.nju.edu.cn, {bulei, lxd}@nju.edu.cn

Abstract—Regression testing is a widely used way to assure
the quality of modified software. It requires executing a suite
of test cases to ensure that modifications do not introduce any
negative impact to software behavior. To collect test cases in
the suite that can reveal modifications, different versions of
software must be compared carefully. Existing approaches,
relying on manual examination on programs or models to
identify differences, are expensive. In the paper, we present a
fully automatic approach to generating regression test cases
based on activity diagram revision. By collecting execution
traces and revising old activity diagrams, the approach firstly
constructs new activity diagrams that can reveal software
behavior changes. Then, both affected paths and new paths
in activity diagrams are identified. Finally, an execution-
based approach is applied to generate regression test cases
whose execution can cover these paths. Experiments show the
effectiveness of our approach.

Keywords-regression testing, generation, automatic, model-
based testing

I. INTRODUCTION

In the life cycle of software, regression testing is an

important assurance for the quality of modified software.

After modifications are made to software, a suite of re-

gression test cases should be executed to ensure that these

modifications did not introduce any negative impact to

software behavior. As the software systems evolve with their

scale and complexity, the amount of test cases becomes

larger and larger. It is very costly and time-consuming to

execute all the cases during the regression testing process.

To improve the efficiency in regression testing, test cases

selection techniques are used to select a subset of test cases

that reveal modifications in the software [6].

To select modification-revealing test cases, one question

should be answered first: how to identify the modifications

in software? As model-centric approaches are widely used

∗Corresponding author.
†This work is supported by Research Fund for the Doctoral Program

of Higher Education of China (No.20110091120058), the National
Natural Science Foundation of China (No.61100036, No.61021062),
National Grand Fundamental Research 973 Program of China
(No.2009CB320702), and by the National 863 High-Tech Programme of
China (No.2011AA010103).

in software development, UML models, such as activity dia-

grams, can be used to describe the dynamic behavior of soft-

ware. Therefore, identifying the modifications in software

can be taken by comparing two different versions of UML

models. Our previous work[5] presented an approach to

identifying modifications in software by comparing different

versions of activity diagrams and generating regression test

cases to cover these modifications. To adopt this approach,

activity diagrams for both versions of software need to be

provided in advance. Besides the laborious work, as the scale

and complexity of software grow up quickly, manual model

maintenance becomes harder and harder.

As the design model, an activity diagram can represent the

dynamic behavior of its related software. For any execution

in software, its matching path can be found in the activ-

ity diagram. Modifying software may bring inconsistency

between its current behavior and its out-of-date behavior

models. If the activity diagram is out-of-date, execution

traces may mismatch activity paths in the diagram. As

modifications made to software usually affect limited aspects

in software, even though the matching relationship does not

exist between a complete execution trace and a complete

activity path, it still exists between the subsequences of the

trace and sub-paths in the activity diagram. We can revise

the diagram on the base of partly-matching relationships to

fit the trace. That means, by revising activity diagrams ac-

cording to execution traces, new up-to-date diagrams can be

constructed automatically without manual intervention. This

is the approach deployed in the paper to construct activity

diagrams according to execution traces automatically.

In this paper, we present an automatic approach for

regression test cases generation based on activity diagrams

revision. Here, activity diagrams play the role as the behavior

models of the software under test. Path coverage in activity

diagrams is chosen as the test adequacy criteria in regression

testing. In this approach, firstly, a certain amount of test

cases are executed on the evolved software. Our approach

demands that the executions of these test cases cover all

behaviors in current software. The selection strategy of test

cases to be executed is discussed in Section 4. Then based

on the execution traces and the old activity diagram, a

2012 IEEE Sixth International Symposium on Theoretical Aspects of Software Engineering

978-0-7695-4751-0/12 $26.00 © 2012 IEEE

DOI 10.1109/TASE.2012.31

127

For Research Only

new activity diagram representing the behavior of modified

software is constructed automatically. Affected paths and

new paths are identified as well. Finally, an execution-based

approach is used to generate regression test cases for these

paths. These test cases make up the regression testing suite.
The rest of the paper is organized as follows: Section 2

introduces the background of model-based regression testing

techniques. Section 3 describes the underlying idea of this

approach. Section 4 gives technical details on how to revise

an activity diagram based on execution traces of modified

software. Section 5 explains how to build the regression

test suite on the base of revision. The case study is taken

in section 6 to show the effectiveness of our approach.

Related works are discussed in section 7. Section 8 gives

the conclusion.

II. BACKGROUND

In regression testing, regression test cases are usually

selected from a prepared pool which satisfies some test

adequacy criteria. It’s assumed that the original software

has been tested adequately for the criteria. Generally, the

scale of pool is very large, and executing all the test cases

will costly and time-consuming. In practice, modification-

revealing techniques are widely used, which suggest only

those test cases that can reveal modifications made to

software are selected to execute in regression testing.
The adoption of model-based development provides op-

portunities for model-based testing. As the abstraction of

software, models can be used to represent the modifications

in software. By comparing different versions of models,

those test cases related to changed parts in models are

selected out as regression test cases, since they can reveal

the effects of software modifications.
Activity diagrams are widely used as design models, since

they are able to describe the internal behavior of software,

i.e. a workflow of actions. Each activity in workflows is

interpreted as the execution of a specific method call in

software. As execution traces are composed of method calls,

their corresponding covered paths can be found in activity

diagrams by analyzing the execution traces[2]. Revealed

from different versions of activity diagrams, their differences

represent the behavior variation deriving from modifications.

Our work [5] presents such an approach that identifies

the behavior variation in software by comparing different

versions of activity diagrams.
To adopt these model-comparison techniques, we need to

construct models for each version of software under test.

Unfortunately, in practical software development processes,

model updating usually lags behind software changes since it

relies on manual manipulations. Manual revision for models

is laborious and lowers the availability of these techniques.

III. ESSENTIALS OF OUR APPROACH

Modifications made to software result in software behav-

ior variation. As a result, the behavior variation may not

Figure 1. The revision of activity diagram.

conform to the original activity diagram any more. The out-

of-date diagram cannot be used as the correct abstraction for

software any more. If the execution of a test case involves

behavior variation in software, inconsistency may occur.

That is, its execution trace cannot be accepted by the original

activity diagram or cover its former related path in the

diagram. As shown in Figure 1a, an unexpected method call

a5’ occurs in the execution trace, which cannot be accepted

by current activity diagram.

Each execution trace reflects the associated dynamic be-

havior of a test case executed on modified software. So the

activity diagram can be revised according to the information

extracted from execution traces. As shown in Figure 1b, if

the sequence 〈...a1, a4, a
′
5, a6...〉 occurs in the trace, it can be

inferred that a new activity a′
5 should be added between the

activity a4 and a6. According to the inference, the original

activity diagram can be revised to fit behavior in execution

traces.

The small example in Figure 1b gives some clues on

how to automatically revise activity diagrams according to

execution traces. Given an activity diagram, a trace and

a mapping between activities in the diagram and method

calls in the sequence, we can mark both matched parts and

unmatched parts between traces and the diagram. For each

unmatched part, the revision operation is taken, including

the adding and removing of activities and transitions. After

the revision is completed, the trace can be accepted by the

diagram.

Note that the revision may lead to the emergence of

new paths in the activity diagram. Considering the example

in Figure 1b, after the revision is taken, besides the path

〈...a1, a4, a
′
5, a6, a7...〉, there are still other 5 additional

paths required to be covered, e.g., 〈...a2, a4, a
′
5, a6, a7...〉

and 〈...a3, a4, a
′
5, a6, a8...〉. Those paths that contain new

activities or new transitions are of high possibility not to be

covered by the original test cases. To meet the path coverage

criteria, new test cases need to be created to cover these

paths.

The overview of our approach is shown in Figure 2. It con-

128

For Research Only

Figure 2. The workflow of regression test cases generation based on
automatic model revision.

tains 2 phases. First, original activity diagrams are revised in

accordance with current software behavior automatically. A

certain amount of test cases are selected from the prepared

pool of test cases and executed on the current evolved

software. Then the activity diagram is revised according

to unmatched parts between each execution trace and the

diagram. The revised diagram can accept the execution

traces which it could not accept previously. Second, the

regression test suite is built on the base of the revised

diagram. The regression test suite is composed of two parts:

test cases selected from the pool which cover those affected

paths in the activity diagram, and newly generated test cases

which cover new paths in the diagram.

IV. AUTOMATIC ACTIVITY DIAGRAM REVISION

In this section, we present the automatic approach to

revise the original activity diagram in accordance with

execution traces from the modified software. To illustrate

the approach, we employ the formal definitions of activity

diagrams in [2].

Definition 1. activity diagram
An activity diagram is a tuple, (A, T, F, aI , aF), where
1) A = {a1, a2, ..., am} is a finite set of activity states;
2) T = {t1, t2, ..., tn} is a finite set of completion

transitions;
3) F ⊂ (A × T)

⋃
(T × A) is the flow relation;

4) aI ∈ A is the initial activity state, and aF ∈ A is
the final activity state; there is only one transition
t such that (aI , t) ∈ F , and ∀ti ∈ T • (ti, aI) /∈
F

∧
(aF , ti) /∈ F .

As Figure 3 shows, the automatic revision process consists

of four steps: identifying matched subsequences, adding

new activities for unmatched method calls, connecting the

discrete slices in the diagram, and removing out-of-date

behaviors.

Figure 3. The process of automatic activity diagram revision.

As the revision of activity diagrams is based on execution

traces, a suite of test cases need to be executed to explore

current software behavior. Software behavior need to be cov-

ered as sufficiently as possible. These test cases are selected

from a pool of test cases. As the traceability between test

cases in the pool and paths in the original activity diagram

has been built, for each path, a certain count (in our case,

the count is 5.) of test cases are selected for execution on

purpose. Although the traceability may have been out-of-

date in evolved software, it still can provide more confidence

for behavior coverage than random selection.

A. match subsequences with slices in AD

The partly matching between an execution trace and

an activity diagram is carried out by detecting matched
subsequences. Here, an execution trace is a sequence of

method calls s, represented as s = 〈c1, c2, ..., cn〉, where ci

represents the i-th method call in the sequence. Treating an

activity diagram as an design model, the correlation between

activities in the diagram and methods in the program can be

built. The mapping ac from method calls in s to activities in

its related activity sequence represents the correlation. Thus,

ac(ci) represents the related activity of the method call ci.

The matched subsequence is defined as follows.

Definition 2. matched subsequence
Let AD = (A, T, F, aI , aF) be an activity diagram,

s = 〈c1, c2, ..., cn〉 be a method call sequence and ac maps
each element in s to its related activity in AD to form the
related activity sequence. A subsequence ms of s, of the form
ms = 〈cj , cj+1, ..., cm〉(1 ≤ j < m ≤ n), is a matched
subsequence with respect to AD, if the following condition

129

For Research Only

Figure 4. The thread parallel relation in activity diagrams.

holds:

∀i ∈ j..m− 1 • ∃t ∈ T • (ac(ci), t) ∈ F ∧ (t, ac(ci+1)) ∈ F

By definition, a matched subsequence can find its matched

slice in AD by applying the mapping ac to all its elements.

For convenience, given a matched subsequence ms, we use

AS(ms) to denote its matched slice, that is AS(ms) =
〈ac(cj), ac(cj+1), ..., ac(cm)〉. The maximum matched sub-
sequence of s is its longest matched subsequence. It’s easy to

see that if an execution trace can be accepted by the activity

diagram without any mismatches, its maximum matched

subsequence will be itself.

The above definition only considers the sequential be-

haviors in the activity diagram. The activity diagrams may

contain parallel threads to describe concurrent behavior in

software. The thread parallel relation represents the relation

between two parallel control flows in the activity diagram.

As Figure 4 shows, the thread td2 and td3 are parallel

threads, so, activities belonging to td2 and td3 interleaved

with each other in execution traces. Because the parallel

relation doesn’t exist between td1 and td2 or td1 and td3,

such interleaved execution traces will not appear.

The following definition for matched subsequence handles

the concurrent behaviors:

Definition 3. matched subsequence
Let AD = (A, T, F, aI , aF) be an activity diagram, s =

〈(c1, p1), (c2, p2)..., (cn, pn)〉 be a method call sequence,
where ci and pi represents the i-th method call and its thread
id respectively. The map acp maps each element (ci, pi) in
s to its related activity ai in the thread dri

∈ D in AD to
form the related activity sequence. D = {d1, d2...dl} is the
set of all threads in AD. PR ⊂ (D × D) is the parallel
thread relation. A subsequence ms of s, of the form ms =
〈(cj , pj), (cj+1, pj+1), ..., (cm, pm)〉(1 ≤ j < m ≤ n), is a
matched subsequence with respect to AD, if the following
two conditions hold:

1) for any successive elements (ck0 , pr) and (ck1 , pr) of
the same thread pr in s, their counterpart (ak0 , d) and
(ak1 , d) in AD satisfy:

∃t ∈ T • (ak0 , t) ∈ F ∧ (t, ak1)) ∈ F

Figure 5. The local matches between the trace and the activity diagram.

2) for any successive elements (ck, pk) and (ck+1, pk+1)
in s, their counterpart (ak, drk

) and (ak+1, drk+1) in
AD satisfy:

(∃t ∈ T•(ak, t) ∈ F∧(t, ak+1) ∈ F)∨(drk
, drk+1) ∈ PR

Algorithm 1 shows the process of identifying the maxi-

mum matched subsequence of a method call sequence on

an activity diagram. In the algorithm, for a sequence seq,

the function seq[i] returns the i-th element in seq(the index

starts from 0), #seq returns the length of seq. The operation

seqˆa appends the element a to the sequence seq. For a set

s, MAX(s) and MIN(s) return the maximum element and

the minimum element of s respectively.

For each received execution trace s, its matched sub-

sequences are searched recursively: identify its maximum

matched subsequence ms as Algorithm 1 at first, and

then repeat the process for the antecedent subsequence

and subsequent subsequence of ms in s, until no more

matched subsequences detected. We can identify all matched

subsequences in execution traces, as shown in Figure 5.

B. add new activities in AD

Modifications made to software may introduce new

method calls, which don’t have related activities in original

activity diagrams, like a13 in Figure 5. Obviously these

method calls don’t belong to any matched subsequences.

We call them unmatched method calls.

To handle unmatched method calls in execution traces,

a new corresponding activity in the diagram is created for

each unmatched method call. As shown in Figure 6a, a new

activity a13 is created to relate the method call a13. As

the new created activity does not have its thread parallel

relations like other existing activities, for each unmatched

method call, we search its preceding or following method

calls with the same thread id in the execution trace, that

is its sibling method calls. We assume that the thread

parallel relation of its corresponding activity is consistent

with the corresponding activities of its sibling method calls.

130

For Research Only

Algorithm 1 identify the maximum matched subsequence

of a given method call sequence

Input:
An activity diagram AD = (A, T, F, aI , aF)
A method call sequence s = 〈c0, c1, ..., cn−1〉
TD is the set of threads in AD
The thread parallel relation TR ⊂ (TD × TD)
td(a) ∈ TD is the thread of activity a ∈ A
act is the set of activities correlating with the method

of ci in s
Output:

msmax, the maximum matched subsequence in s
asmax, the related activity sequence of msmax

1: msmax = 〈〉; {initial empty sequence}
2: asmax = 〈〉; {initial empty sequence}
3: for i = 0 to n-1 do
4: if act(s[i]) �= ∅ then
5: for all atmp ∈ act(s[i]) do
6: let mst = 〈s[i]〉; {the temp matched subse-

quence}
7: let ast = 〈atmp〉; {its related activity sequence}
8: let pos = i + 1;

9: while (pos < n) do
10: if act(s[pos]) �= ∅ then
11: let at0 = nil;
12: for all at ∈ act(s[pos] do
13: let at = act(s[pos]);
14: if ∃j ∈ N•td(at) = td(ac(mst[j])) then

{find the immediate preceding activity of

at on the same thread}
15: let jmax = MAX({j ∈

N|td(ac(mst[j])) = td(at)});
16: if ∃t ∈ T • (ac(mst[jmax]), t) ∈ F ∧

(t, at) ∈ F then
17: at0 = at;

18: end if
19: else
20: let af = act(mst[#mst − 1]);
21: if (∃t ∈ T, j ∈ N • (ac(mst[j]), t) ∈

F ∧ (t, at) ∈ F) or (td(af), td(at)) ∈
TR then

22: at0 = at;

23: end if
24: end if
25: end for
26: if at0 �= nil then
27: mst = mstˆm[pos];
28: ast = astˆat0 ;

29: else
30: break;

31: end if
32: else
33: break;

34: end if
35: pos = pos + 1;

36: end while
37: if #mst > #msmax then
38: msmax = mst;

39: asmax = astmp;

40: end if

Figure 6. Revise the activity diagram to adapt the behavior in the execution
trace.

So the newly created activity will inherit the thread parallel

relations of the related activity of this sibling method call.

By this, unmatched method calls own their related ac-

tivities in the diagram. They can be treated as matched

subsequences with the length of one.

C. connect slices in AD

After completing the previous steps, all the matched

subsequences in the execution trace are identified and new

activities are created for all unmatched method calls. Then

the execution traces can be considered as a sequence of

matched subsequences.

To adapt the activity diagram for the execution trace,

mismatches between the trace and the diagram should be

amended. Mismatches derive from modifications made to

software. Modifications in software usually lead to two

kinds of software behavior variation, the disappearance

of original behavior and the appearance of new behavior.

In activity diagrams, these variations are reflected as the

disappearance of original activities and transitions and the

appearance of new ones. Including those unmatched method

calls, all matched subsequences have been identified from

the execution trace. The activity diagram can be revised to

adapt software behavior in the execution trace by connecting

these behavior slices in the activity diagram.

For two immediate matched subsequences ps1 and ps2

in an execution trace, neglecting concurrent behavior, it is

clear that there are no transitions from the last activity am1

in AS(ps1) to the first activity ak2 in AS(ps2) in the activity

diagram, or else the two matched subsequences would join

a larger one. Therefore, a new transition from am1 to ak2 in

the diagram can help connect the two matched subsequences

together. Considering concurrent behavior, if an thread exists

in both AS(ps1) and AS(ps2), there should be a transition

to connect the last activity on the thread in AS(ps1) and

the first activity on the thread in AS(ps2). If the transition

doesn’t exist, a new one will be created. The corresponding

revision algorithm is proposed in Algorithm 2. For each

received execution trace, after the revision is completed, the

revised diagram can accept this complete execution trace, as

Figure 6 shown.

131

For Research Only

Algorithm 2 revise the activity diagram to fit the behavior

of a given execution trace

Input:
An activity diagram AD = (A, T, F, aI , aF)
An execution trace s = 〈ms0,ms1, ..., msk−1〉
TD is the set of threads in AD
td(a) ∈ TD is the thread of activity a ∈ A
A mapping relation AS, AS(s[i]) is the related activity

sequence of s[i]
Output:

The revised activity diagram AD which can accepted

the execution trace s
1: for i = 1 to k - 1 do
2: AS1 = AS(s[i]);
3: AS2 = AS(s[i + 1]);
4: find T = [td1, td2, ..., tdm] as the common threads

between AS1 and AS2;

5: for j = 1 to m do
6: let lmax = MAX({l ∈ N|td(AS1[l]) = tdj})
7: let lmin = MIN({l ∈ N|td(AS2[l]) = tdj})
8: if ∀t ∈ T •(AS1[lmax], t) �∈ F∨(t, AS2[lmin]) �∈ F

then {add a new transition to AD;}
9: create a new transition tnew;

10: T = T
⋃{tnew};

11: F = F
⋃{(AS1[lmax], tnew), (tnew, AS2[lmin])};

12: end if
13: end for
14: end for

The algorithm above can treat most cases involving

multi-control-flow activity diagrams and multi-threading

programs. However, if the programs are modified to create

a new thread, remove an original thread or change the first

or last activity of a thread, the activity diagram can not be

revised by our approach correctly. Using sequence analysis

to identify the trace of an unknown thread is quite difficult,

since an unknown thread’s execution trace is interleaved with

traces of its parent thread and many other threads.

D. remove out-of-date behavior

The last three steps will be repeated for every received

execution trace. After all execution traces are received, new

behaviors are added to the diagram, that is new activities and

new transitions. The revised activity diagram can accept all

previous traces finally. We consider that the final revised ac-

tivity diagram can describe the behavior of evolved software

correctly.

It should be pointed out that modifications made to

software also may lead to disappearance of original behavior

in software. For the accuracy of the revised diagram, those

out-of-date parts need to be removed. We have executed

a set of test cases and assumed that these test cases have

covered all current software behavior, so, for those activities

or transitions which have not been traversed by any execu-

tion traces, we consider that their related behaviors have

disappeared in the current software version. Those activities

and transitions are removed from the diagram.
The precondition of the correctness of removing out-of-

date behaviors is that executed test cases have covered all

current software behavior. The selection strategy of executed

test cases must be taken into consideration to assure their

coverage.

V. REGRESSION TEST CASES GENERATION

After the revision of the activity diagram is completed,

the regression test suite is built on the base of the final

revised activity diagram for the following regression testing.

A certain count of test cases have been executed in the

process of revision. There are two reasons why we still need

to select test cases to build regression test suite and execute

them. First, the execution of test cases in the process of

activity diagrams revision is just used to explore the current

behavior of software. These affected parts in software still

need to be retested adequately by more test cases. And

because some paths in activity diagrams have changed, the

traceability between test cases and paths in diagrams should

be updated. Second, modification in software may result in

new paths in the revised diagram(like Figure 1), which may

not have their corresponding covering test cases. New test

cases need to be generated to cover these paths.
By applying automatic activity diagrams revision, up-to-

date activity diagrams are built. Because all modifications

in software are detected in the process of revision, the

comparison between activity diagrams is not required. As

a path in the revised diagram traverses any activities or

transitions which are updated or newly created in the process

of revision, it is considered affected by modifications.
If the execution of any test case involves software vari-

ation, its related covered path in the original diagram will

be different from the one in the revised diagram. For each

path in the activity diagram, we select some samples of its

corresponding test cases from the pool to execute in the

process of revision. If any of these test cases cover different

paths in the final revised diagram, we consider behavior in

the path is affected. All of its corresponding test cases in

the pool are retestable in regression testing.
Besides, modifications made to software may result in new

paths in the activity diagram. Some test cases generation

approaches should be employed to generate test cases to

cover these paths.
The final regression test suite is composed of the retestable

test cases in the pool of test cases which cover affected paths

and newly generated test cases which cover new paths in the

activity diagram.

VI. CASE STUDY

We use an online stocking exchange system(OSES) and its

related activity diagram as the case study of this approach.

132

For Research Only

Figure 7. The activity diagram of OSES.

OSES is a JAVA program, reconstructed from an example in

[1]. It consists of 40 classes and 305 methods. The activity

diagram of OSES contains 25 activity nodes, 6 decision

nodes and 18 paths totally(as Figure 7 shown). And OSES

contains multi-thread behavior. We have proposed a pool of

test cases which contains 1000 test cases to cover the 17

available paths in the diagram.

To show the effectiveness of the approach, 5 cases are

designed to make modifications to OSES. These cases cover

conditions of the addition and removal of method calls,

the occurrence of new paths and the behavior variation in

subthreads. The 5 cases are as following:

1) Add a new method call checkMarketOrder after the

call tradeMarketOrderBuy and add a new method call

checkLimitOrder after the call tradeLimitOrderBuy in

the program. Execution traces involving modifications

will appear like 〈..., tradeMarketOrderBuy, check-

MarketOrder, getOrderResult,...〉 or 〈..., tradeLimi-

tOrderBuy, checkLimitOrder, getOrderResult,...〉. Two

new activities checkMarketOrder and checkLimitOrder
should be added to the diagram.

2) Remove the addOrderToList call. Execution traces

involving modifications will appear like 〈verifyOrder,

addNewOrder,...〉. The activity addOrderToList should

be removed from the diagram.

3) Add a new IF clause containing the method call

logout after the displayOrderErrorInfo call. Execu-

tion traces involving modifications will appear like

〈verifyOrder, displayOrderErrorInfo〉 or 〈verifyOrder,

logout, displayOrderErrorInfo〉. A new decision node

should be added to the diagram, and a new activity

logout should be in one branch from the decision node.

4) Add a new IF clause containing the method call

setMarketCode and its corresponding ELSE clause

containing the method call setDefaultMarketCode
in front of the tradeMarketOrderSale call and the

tradeMarketOrderBuy. Execution traces involving

modifications will appear like 〈..., getNewOrder,

setMarketCode, tradeMarketOrderSale,...〉,
〈..., getNewOrder, setDefaultMarketCode,

tradeMarketOrderSale,...〉, 〈..., getNewOrder,

setMarketCode, tradeMarketOrderBuy,...〉, or

〈..., getNewOrder, setDefaultMarketCode,

tradeMarketOrderBuy,...〉. A new decision node

should be added to the diagram, and two new

activities setMarketCode and setDefaultMarketCode
should be respectively in two branches of the decision

node.

5) Add a new method call checkInconsistency between

the call settleTrade and the call updateStockHold-
erDB SUCCESS. All of three method calls are in

one subthread of the program. Execution traces in-

volving modifications will appear like 〈 ..., update-

StockHolderDB SUCCESS,..., checkInconsistency,...,

settleTrade,...〉. A new activity checkInconsistency
should be added between the activity checkInconsis-
tency and the activity settleTrade in the diagram.

In the case study, for each path in the original diagram, 5

test cases are executed to collect execution traces. For each

case, the revised activity diagram presents evolved behavior

as expected. The retestable test cases and uncovered paths

are given, as shown in Table I. In Table I, the column affected
paths(ori.) presents the affected paths of the 18 paths in the

original diagram; retest cases are test cases in the pool which

cover these affected paths; uncovered paths are paths in the

revised diagram which are not covered by any execution

traces in the process of revision; the column total paths
presents the count of paths of the revised diagram. Notice

that because only 17 of 18 paths are available in the original

activity diagram, there are always at least one uncovered

paths in the revised diagram.

VII. RELATED WORK

Model-based regression test selection(RTS) techniques

receive growing interest in the area of regression testing

([6]). In the techniques, architecture or behavior models are

introduced as the representations of software. By comparing

different versions of models, modifications to software are

133

For Research Only

Table I
THE RESULT OF THE ABOVE 5 CASES

ID affected paths(ori.) retest cases uncovered paths total paths
1 8 338 1 18
2 16 963 1 18
3 1 37 1 19
4 7 703 5 26
5 4 230 1 18

located. Then test cases related with those changed elements

are picked out as retestable ones. There have been some

works [4],[5],[7] and [8] presenting this ideal. Undoubtedly,

before those methods are adopted, models for each version

of the software need to be constructed in advance. In

practice, model-updating usually lags behind the software-

modification. It requires software developers to make heavily

manual efforts on updating models. Rather than manually

updating models for modified software in those works, our

approach can automatically generate the up-to-date behavior

models by revising those out-of-date ones based on exe-

cution traces. It enables testers independently to perform

regression testing without the involvement of developers. It

can save a lot of manual efforts.

To achieve model-based regression test selection,

modification-revealing test cases need to be selected in ac-

cordance with modifications. Thus, the traceability between

models and test cases is necessary. In [7], a technique of RTS

based on activity diagrams is proposed. The technique maps

the activity diagram to the model used for regression test

analysis, then selects test cases from existing test suites that

traverse the different paths in the class behavior model ex-

tracted from the activity diagram. The work in [8] automates

regression test selection based on architecture and design

information represented with UML and traceability informa-

tion linking the design to test cases. It performs regression

test selection on the base of design change information, and

can tackle the regression selection problem at the design

level. The two approaches don’t involve the traceability

between models and test cases definitely. The work in [4]

contributes an approach for selective model-based regression

testing whereby traceability relationships between model

elements and test cases traversing such elements are stored.

Explicit fine-grain relationships from entities in models to

abstract test cases persisted into a traceability infrastructure

throughout the test generation process. The relationships

are used to locate abstract test cases covering software

modifications for regression testing. The selected abstract

test cases need to be further transformed into concrete test

cases. As these techniques depend on external traceability

between models and test cases or corresponding relation

between abstract and concrete test cases, regression test

selection cannot be done automatically. By employing the

approach in [3], we can get the covered paths for test cases

by analyzing their execution traces and build the traceability

automatically. Based on this, our approach can propose an

automatic solution for regression test selection.

VIII. CONCLUSION

This paper proposed an approach for regression test cases

generation based on automatic activity diagrams revision.

In the approach, behaviors of evolved software can be built

from the execution traces , and the out-of-date activity

diagrams can be revised to accept the behavior variation

introduced in evolved software. With the evolved software

and the out-of-date activity diagram which describes the

behavior of original unmodified software proposed, the new

up-to-date diagram can be built whereby revision according

to evolved software behavior. The regression test cases

generation is done on the base of revision.

Compared with other modification-revealing approaches

based on the comparison of models, this approach automates

the whole process of identifying changed parts, selecting

reused test cases and generating new test cases for testing

new behaviors. It raises the availability of model-based

regression testing.

REFERENCES

[1] M. Blaha, and J. Rumbaugh, Object-oriented modeling and
design with UML. Pearson Education, 2005.

[2] M. Chen, X. Qiu, W. Xu, L. Wang, J. Zhao, and X. Li. UML
Activity Diagram-Based Automatic Test Case Generation For
Java Programs. The Computer Journal, 2007.

[3] X. Chen, N. Ye, P. Jiang, L. Bu, and X. Li. Feedback-Directed
Test Case Generation Based on UML Activity Diagrams.
In Proceeding of 5th International Conference on Secure
Software Integration & Reliability Improvement Companion
(SSIRI-C 2011), 2011, pp.9-10.

[4] L. Naslavsky, H. Ziv, and D.J. Richardson. MbSRT2: Model-
Based Selective Regression Testing with Traceability. In
Proceeding of Third International Conference on Software
Testing, Verification and Validation (ICST 2010), 2010, pp.89-
98.

[5] N. Ye, X. Chen, P. Jiang, W. Ding, and X. Li. Automatic Re-
gression Test Selection Based on Activity Diagrams. In Pro-
ceeding of 5th International Conference on Secure Software
Integration & Reliability Improvement Companion (SSIRI-C
2011), 2011, pp.166-171.

[6] S. Yoo, M. Harman. Regression testing minimization, selec-
tion and prioritization: a survey. In Software Testing, Veri-
fication and Reliability, Wiley InterScience, 2010, Published
online: DOI: 10.1002/stvr.430

[7] E. Martins and V. G. Vieira. Regression test selection for
testable classes. In Proceedings of the 5th European Depend-
able Computing Conference(EDCC 2005), Springer, 2005,
pp.453-470.

[8] L. C. Briand, Y. Labiche, and G. Soccar, Automating impact
analysis and regression test selection based on UML designs,
In Proceedings of the 18th International Conference on
Software Maintenance(ICSM 2002), IEEE Computer Society
Press, 2002, pp. 252-261.

134

For Research Only

