

Software Engineering Group
Department of Computer Science
Nanjing University
http://seg.nju.edu.cn

Technical Report No. NJU-SEG-2012-IJ-001

Timing analysis of MSC specifications

with asynchronous concatenation

Minxue Pan, Xuandong Li

Postprint Version. Originally Published in:

Software Tools Technology Transfer 2012

Int J Softw Tools Technol Transfer (2012) 14:639–651

Most of the papers available from this document appear in print, and the corresponding copyright is held by the

publisher. While the papers can be used for personal use, redistribution or reprinting for commercial purposes is

prohibited.

http://seg.nju.edu.cn/

Int J Softw Tools Technol Transfer (2012) 14:639–651
DOI 10.1007/s10009-012-0239-9

MTM

Timing analysis of MSC specifications with asynchronous
concatenation

Minxue Pan · Xuandong Li

Published online: 14 June 2012
© Springer-Verlag 2012

Abstract Message Sequence Chart (MSC) is a graphical
and textual language for describing the interactions between
system components, and MSC specifications (MSSs) are a
combination of a set of basic MSCs (bMSCs) and a High-
level MSC that describes potentially iterating and branch-
ing system behavior by specifying the compositions of basic
MSCs, which offer an intuitive and visual way of specify-
ing design requirements. With concurrent, timing, and asyn-
chronous properties, MSSs are amenable to errors, and their
analysis is important and difficult. This paper deals with tim-
ing analysis of MSC specifications with asynchronous con-
catenation. For an MSC specification, we require that for
any loop, its first node be flexible in execution time and its
any associated external timing constraint be enforced on the
entire loop. Such an MSC specification is called a flexible
loop-closed MSC specification (FLMSS). We show that for
FLMSSs, the reachability analysis and bounded delay analy-
sis problems can be solved efficiently by linear programming.
The solutions have been implemented into our tool TASS and
evaluated by experiments.

Keywords Message Sequence Charts · Asynchronous
concatenation · Timing consistency analysis

M. Pan · X. Li (B)
State Key Laboratory for Novel Software Technology,
Nanjing University, Nanjing, Jiangsu 210093,
People’s Republic of China
e-mail: lxd@nju.edu.cn

M. Pan
e-mail: panmx@seg.nju.edu.cn

M. Pan · X. Li
Department of Computer Science and Technology, Nanjing University,
Nanjing, Jiangsu 210093, People’s Republic of China

1 Introduction

Message Sequence Chart (MSC) [1] is a graphical and tex-
tual language for describing the interactions between system
components. MSC specifications (MSSs) are a combination
of a set of basic MSCs (bMSCs) and a High-level MSC
(HMSC). In an MSC specification, as illustrated in Fig. 1,
each bMSC focuses on the temporal order of message flows
and describes exactly one scenario without alternatives or
loops, and the HMSC describes sequential, iterating and non-
deterministic executions of scenarios depicted by bMSCs,
which focuses on the overview of more complicated system
behavior [1]. MSC specifications can describe systems in a
hierarchical fashion and therefore can make complicated sys-
tems more comprehensible, and offer an intuitive and visual
way of specifying design requirements. With concurrent, tim-
ing, and asynchronous properties, MSC specifications are
amenable to errors, and their analysis is important and diffi-
cult. Since MSC specifications may be used at early stages
of design, any error revealed during their analysis has a high
payoff. In this paper, we are focused on timing analysis of
MSC specifications.

For an MSC specification, its behavioral semantics
depends on the interpretation of bMSC concatenation. For
two bMSC B1 and B2, the synchronous concatenation of
B1 and B2 requires that any event in B2 happens after all
the events in B1, while the asynchronous concatenation has
no such restriction. While the synchronous concatenation is
easier to design and analyze, the asynchronous concatena-
tion is more natural to model practical systems. For tim-
ing analysis of MSC specifications, most existing work is
conducted on synchronous concatenation. The problems on
asynchronous concatenation are more difficult. Even for the
untimed MSC specifications, some analysis problems are
undecidable [2].

123

For Research Only

640 M. Pan, X. Li

(a)

(b)

Fig. 1 MSC specifications

In this paper, we consider timing analysis of MSC specifi-
cations with asynchronous concatenation, and focus on two
problems: the reachability analysis and the bounded delay
analysis. Reachability analysis is to check if a bMSC scenario
is reachable in the behavior of an MSC specification, which is
useful to assure the feasibility of the specification. Bounded
delay analysis is to check if all behavior of an MSC spec-
ification satisfies that the time distance between two given
events is within a given time interval, which is important for
real-time and distributed systems since many safety prop-
erties involve time bounds, and many scheduling methods
require information on time bounds, too. For MSC specifi-
cations with asynchronous concatenation, these two timing
analysis problems are difficult, and to our knowledge there is
no literature on them. In this paper, for giving efficient solu-
tions we focus on a class of MSC specifications. For an MSC
specification, we require that for any loop, its first node be
flexible in execution time and its any associated external tim-
ing constraint be enforced on the entire loop. Such an MSC
specification is called a flexible loop-closed MSC specifica-
tion (FLMSS). For FLMSSs, we first reduce the problems on
single finite behavior into linear programming problems, and

then investigate the finite behavior one by one, which forms
the efficient solutions for these two problems. The solutions
have been implemented into our tool TASS and evaluated by
experiments.

The paper is organized as follows. In the next section, we
define MSC specifications formally and introduce FLMSSs.
Section 3 gives the linear programming based solutions to
reachability analysis and bounded delay analysis problems.
Section 4 conducts a case study and evaluates the experiment
results. The last section discusses the related work and draws
the conclusion.

2 MSC specifications

The ITU Recommendation Z.120 advocates the use of struc-
tured design: to model a system, simple scenarios can be
described by bMSCs; while more complete specifications
can be formed by means of High-level MSCs which com-
bines bMSCs [1].

2.1 Basic MSCs and timing constraints

A bMSC describes the message flow between system
instances. In a bMSC, the vertical lines in the chart corre-
spond to instances, and messages exchanged between those
instances are represented by arrows. The sending and receiv-
ing of messages are corresponding to events, respectively.
Figure 1a depicts a bMSC example.

For specifying real-time systems, timing constraints are
introduced into MSC specifications, which specify the rela-
tions of time distances between events. In real-time systems,
various functions and mechanisms can become the causes
of the time distances, such as the network delay of trans-
mitting messages or the CPU time of processing messages.
It is common to abstract away these causes from the timing
constraints to achieve the succinctness of the specifications.
The timing constraints in ITU Recommendation Z.120 such
as time points and time intervals [1], and the mechanisms in
previous literature such as delays intervals [3,4] and timing
marks [5–8] are just suitable to describe simple timing con-
straints which are only related to one time distance between
a pair of events. For the elevator example [9] depicted in
Fig. 1, we can use time intervals to describe simple timing
constraints such as the elevator door should be kept open for
5–10 time units. However, in practical problems we often
need to describe more complex timing constraints which are
about the relation among multiple time distances between
events. Therefore, we employ more expressive timing con-
straints in this paper. We use event names to represent event
occurrence time, and linear inequalities on event names to
represent the timing constraints. A timing constraint is of
the form

123

For Research Only

Timing analysis of MSC specifications 641

a ≤ c0(e0 − e′
0) + c1(e1 − e′

1) + · · · + cn(en − e′
n) ≤ b

where ei and e′
i (0 ≤ i ≤ n) are event names which repre-

sent the occurrence time of ei and e′
i , a, b and c0, c1, . . . , cn

are real numbers (b may be ∞). For the elevator example,
to avoid the discomfort caused by sudden acceleration, we
require the time that the elevator speeds up or slows down
should take more than one-fourth of the whole time that the
elevator moves, which forms two timing constraints 0 ≤
4(e4−e2)−(e12−e2) ≤ ∞ and 0 ≤ 4(e12−e8)−(e12−e2) ≤
∞. It is clear that using the existing mechanisms in MSCs
we cannot describe such timing constraints.

The semantics of a bMSC essentially consists of the
sequences (traces) of the message sending and receiving
events. The order of events (i.e. message sending or receiv-
ing) in a trace is deduced from the visual partial order deter-
mined by the flow of control within each instance in the
bMSCs along with a causal dependency between the events of
sending and receiving a message. In accordance with [10,11],
without losing generality, we assume that for a pair of events
e and e′ in a bMSC, e precedes e′ (denoted by e ≺ e′) in the
following cases:

• Causality: A sending event e and its corresponding
receiving event e′.

• Controllability: The event e appears above the event e′
on the same instance axis, and e′ is a sending event.

• Fifo order: The receiving event e appears above the
receiving event e′ on the same instance axis, and the cor-
responding sending events e1 and e′

1 appear on a mutual
instance axis where e1 is above e′

1.

In accordance with [11], we formally define bMSCs as
follows.

Definition 1 A basic MSC B is a tuple B = (I, E, M,

L , V, C) where

• I is a finite set of instances.
• E is a finite set of events corresponding to sending a

message and receiving a message. There are two special
events ε and � in E which represent the start and end of
B, respectively.

• M is a finite set of messages whose elements are a pair
(e, e′) where e, e′ ∈ E are corresponding to the sending
and the receiving for a message, respectively.

• L : E → I is a labeling function which maps each
event e ∈ E to an instance L(e) ∈ I which is the sender
(receiver) while e corresponds to sending (receiving) a
message.

• V is a finite set whose elements are a pair (e, e′) (e, e′ ∈
E) such that e ≺ e′.

• C is a finite set of timing constraints. �	

We use event sequences to represent the traces of bMSCs
which are corresponding to the untimed behavior of bMSCs.
An event sequence is of the form e0 → e1 → · · · → em ,
which represents that ei+1 takes place after ei for any i (0 ≤
i ≤ m − 1).

Definition 2 Let B = (I, E, M, L , V, C) be a bMSC. An
event sequence e0 → e1 → · · · → em is a trace of B if and
only if the following conditions hold:

• e0 = ε and em = � .
• e0, e1, . . . , em is a permutation of the events in E .
• e0, e1, . . . , em satisfies the visual order defined by V , i.e.

for any ei and e j , if (ei , e j) ∈ V , then 0 ≤ i < j ≤ m.
�	

We use timed event sequences to represent the behavior
of bMSCs. A timed event sequence is of the form (e0, t0) →
(e1, t1) → · · · → (em, tm) where ei is an event and ti is a
nonnegative real numbers for any i (0 ≤ i ≤ m). Accord-
ing to Definition 2, e0 = ε, so let t0 be 0. The timed event
sequence describes that e1 takes place t1 time units after e0

takes place, then e2 takes place t2 time units after e1 takes
place, so on and so forth, at last em = � takes place tm time
units after em−1 takes place. It follows that for any i (0 ≤
i ≤ m), the occurrence time of ei is

∑i
j=0 t j .

Definition 3 Let B = (I, E, M, L , V, C) be a bMSC.
A timed event sequence σ = (e0, t0) → (e1, t1) → · · · →
(em, tm) is a behavior of B if and only if the following con-
ditions hold:

• e0 → e1 → · · · → em is a trace of B.
• t0, t1, . . . , tm satisfy the timing constraints in C , i.e. for

any timing constraint a ≤ ∑n
i=0 ci (fi − f ′

i) ≤ b in
C, a ≤ c0δ0 + c1δ1 + · · · + cnδn ≤ b where for each
i (0 ≤ i ≤ n), if fi = e j and f ′

i = ek , then

δi =
{

tk+1 + tk+2 + · · · + t j if j > k
−(t j+1 + t j+2 + · · · + tk) if j < k

Let L(B) denote the set of the timed event sequences repre-
senting the behavior of B. �	

2.2 Definition of MSC specifications

While a bMSC describes a simple scenario, an HMSC can
describe multiple scenarios and complete system specifica-
tions. An HMSC provides a means to graphically define how
a set of bMSCs can be combined to describe potentially iter-
ating and branching system behavior, which forms an MSC
specification.

123

For Research Only

642 M. Pan, X. Li

Definition 4 An MSC specification S = (U, N , succ, re f,
T) where

• U is a finite set of bMSCs satisfying that for any B =
(I, E, M, L , V, C) and B ′ = (I ′, E ′, M ′, L ′, V ′, C ′) in
U , if B
= B ′, then E ∩ E ′ = ∅.

• N = {} ∪ I M ∪ {⊥} is a finite set of nodes partitioned
into the three sets: the singleton-set of start node, the set
of intermediate nodes, and the singleton-set of end node,
respectively.

• succ ⊂ N × N is the relation which reflects the connec-
tivity of the nodes in N (it is required that any node in N
be reachable from the start node).

• re f : I M �→ U is a function that maps each intermedi-
ate node to a bMSC in U .

• T is a finite set of timing constraints of the form a ≤
e − e′ ≤ b where e and e′ occur in different bMSCs in U
and 0 ≤ a ≤ b (b may be ∞), which are used to describe
the timing constraints enforced between two events in
different bMSCs in U . �	

For an MSS S = (U, N , succ, re f, T), a path segment is a
sequence of intermediate nodes v0 → v1 → · · · → vn satis-
fying (vi−1, vi) ∈ succ for any i (0 < i ≤ n). A path is a path
segment v0 → v1 → · · · → vn such that (, v0) ∈ succ
and (vn,⊥) ∈ succ.

We interpret the timing constraints in an MSS by local
semantics: select one path at one time and analyze its timing
requirements, independently of other paths that may branch
out of the selected one. As advocated by the ITU Recommen-
dation Z.120 [1], the concatenation of bMSCs is interpreted
by asynchronous semantics. The asynchronous concatena-
tion of two bMSCs corresponds to concatenating two bMSCs
instance by instance, which produces a new bMSC.

Definition 5 Let B1 = (I1, E1, M1, L1, V1, C1) and B2 =
(I2, E2, M2, L2, V2, C2) be two bMSCs (E1 ∩ E2 = ∅).
The asynchronous concatenation of B1 and B2, denoted as
B1◦ B2, is a bMSC B = (I, E, M, L , V, C) which is defined
by

• I = I1 ∪ I2.
• E = E1 ∪ E2.
• M = M1 ∪ M2.
• For e ∈ E1, L(e) = L1(e), and for e ∈ E2, L(e) =

L2(e).
• V = V1 ∪ V2 ∪ V3 ∪ V4 where

V3 = {(e1, e2) | e1 ∈ E1, e2 ∈ E2, L1(e1) = L2(e2), e2

is a sending event},
V4 = {(e1, e2) | e1 ∈ E1, e2 ∈ E2, L1(e1) =
L2(e2), e1, e2 are receiving events whose corresponding
sending events appear on mutual instance axis.}.

• C = C1 ∪ C2 ∪ C3 where

C3 = {ε2 − �1 ≤ 0 |ε2 is the start event of B2,�1 is the
end event of B1}. �	

According to the above definition, every path in an MSS
corresponds to a bMSC, and thus the behavior of an MSS is
interpreted by the behavior of bMSCs.

Definition 6 Let S = (U, N , succ, re f, T) be an MSS. For
any path segment ρ = v0 → v1 → · · · → vm in S, let B be
the bMSC obtained by concatenating re f (vi) (0 ≤ i ≤ m)

one by one, and L(ρ) be the set of timed event sequences
which are in L(B) and satisfy the timing constraints in T .
A timed event sequence σ is a behavior of S if and only if
there is a path ρ in S such that σ ∈ L(ρ). �	

2.3 Flexible loop-closed MSC specifications

For timing analysis of MSC specifications with asynchro-
nous concatenation, the problems are difficult. It has been
known in [2] that even for the MSC specifications without
timing constraints, the model checking problem is undecid-
able. For giving efficient solutions, we enforce two restricting
conditions on MSC specifications. For describing these two
conditions, we first need to define loops in MSC specifica-
tions as follows.

For an MSS S = (U, N , succ, re f, T), a path segment is
called simple if all its nodes are distinct. Let v0 → v1 →
· · · → vn be a simple path segment in S such that (, v0) ∈
succ. If there is vi (0 ≤ i ≤ n) such that (vn, vi) ∈ succ,
then the sequence vi → vi+1 → · · · → vn → vi is a loop,
and vi is the loop-start node of the loop.

Then we introduce the loop-closed condition for MSC
specifications. For an MSS S = (U, N , succ, re f, T), let
ρ = v0 → v1 → · · · → vn be a path segment. For a timing
constraint a ≤ e − e′ ≤ b in T , if e occurs in re f (vi), e′
occurs in re f (v j) (0 ≤ j < i ≤ n), and e, e′ do not occur in
any re f (vk) (j < k < i), then we say this timing constraint
combines nodes vi and v j in ρ (in this case, the occurrence
time of e in re f (vi) and the occurrence time of e′ in re f (v j)

must satisfy this timing constraint). The loop-closed con-
dition requires that any timing constraint in T should not
combine any two nodes which are inside and outside of a
loop, respectively, i.e. any timing constraint in T of the form
a ≤ e − e′ ≤ b must satisfy:

• for any loop v0 → v1 → · · · → vm , if e occurs in
re f (vi) (0 ≤ i < m) and e′ does not occur in any
re f (v j) (0 ≤ j < i), then there is no simple path seg-
ment v′

0 → v′
1 → · · · → v′

n such that v′
n = v0, e′

occurs in re f (v′
0), and that e does not occur in any

re f (v′
k) (0 ≤ k ≤ n); and

• for any loop v0 → v1 → · · · → vm , if e′ occurs in
re f (vi) (0 ≤ i < m) and e does not occur in any

123

For Research Only

Timing analysis of MSC specifications 643

Fig. 2 An illustrative flexible loop-closed MSC specification

re f (v j) (i < j ≤ m), then there is no simple path
segment v′

0 → v′
1 → · · · → v′

n such that v′
0 = v0, e

occurs in re f (v′
n), and that e′ does not occur in any

re f (v′
k) (0 ≤ k ≤ n).

For example, in the MSS depicted in Fig. 2, for the loop
v2 → v3 → v4 → v2, the timing constraints 1, 2 and 3 sat-
isfy the loop-closed condition, while the timing constraints
4 and 5 do not satisfy the loop-closed condition because tim-
ing constraint 4 (0 ≤ e7 − e2 ≤ 5) combines node v4 (inside
the loop) and v1 (outside the loop), and timing constraint
5 (6 ≤ e9 − e6 ≤ 9) combines node v5 (outside the loop)
and v3 (inside the loop). The loop-closed condition implies
that if there is an external timing constraint associated with
a loop then it must be enforced on the entire loop, i.e. for
any loop, its any associated external timing constraint must
be enforced on the entire loop.

The other condition enforced on MSC specifications is the
flexible condition. For a bMSC B = (I, E, M, L , V, C), we
say B is flexible if its execution time is flexible, i.e. there is
no positive number z such that for any behavior of B of the
form (e0, t0) → (e1, t1) → · · · → (em, tm),

∑m
j=1 t j ≤ z.

For an MSS S = (U, N , succ, re f, T), the flexible condi-
tion requires that for any path ρ in S, for any loop-start node
v in ρ, re f (v) is a flexible bMSC. For example, the MSS
depicted in Fig. 2 satisfies the flexible condition because v2

is the loop-start node and the bMSC to which v2 refers is a
flexible bMSC. Note that for any loop in an MSS whose loop-
start node refers to a flexible bMSC, though the execution of
the loop-start node can take indeterminate amount of time,
the execution time of the whole loop can still be constrained
by enforcing timing constraints over the loop. For example,
in Fig. 2 timing constraint 3 combines two node before and
after the loop, and therefore constrains the execution time of
the loop.

Definition 7 An FLMSS is an MSS which satisfies the loop-
closed condition and the flexible condition. �	

The algorithm to check if an MSS is flexible loop-closed
is presented in the appendix. The loop-closed condition and
the flexible condition are rational for many real systems.

For example, in many control systems the repetition of a
control process often starts from the same control condi-
tions. Also in many cases, a repeated control process may
include several procedures which may take indeterminate
amounts of time, such as preparing the supplies or calibrat-
ing the machines, while the entire process is required to be
finished in a given time interval. These can be modeled by
flexible bMSCs and loops constrained by timing constraints,
which indicates the rationality of the flexible condition.

3 Timing analysis of MSC specifications

In this section, we give the solutions to reachability analysis
and bounded delay analysis problems for MSC specifica-
tions.

3.1 Reachability analysis

Reachability analysis is to check if a given node of an
MSS is reachable along a behavior of the MSS. Let S =
(U, N , succ, re f, T) be an MSS. For a given node v ∈ N ,
the reachability analysis checks if there is a path ρ passing
through v which is of the form v0 → v1 → · · · → vi →
· · · → vm such that vi = v (0 ≤ i ≤ m) and that L(ρ)
= ∅.

Let S = (U, N , succ, re f, T) be an MSS, and ρ be a path
in S of the form v0 → v1 → · · · → vm where re f (vi) =
(Ii , Ei , Mi , Li , Vi , Ci) for any i (0 ≤ i ≤ m). Since there
could be vi and v j (0 ≤ i < j ≤ m) such that re f (vi) =
re f (v j), by renaming, let Ei ∩ E j = ∅ for any i, j (0 ≤
i < j ≤ m). By concatenating re f (vi) (0 ≤ i ≤ m) one
by one, we can obtain a bMSC B = (I, E, M, L , V, C). Let
E = {e0, e1, . . . en}, and ti represent the occurrence time of
ei for any i (0 ≤ i ≤ n) in a timed event sequence in L(ρ).
Then a group of linear inequalities on t0, t1, . . . , tn , denoted
by lp(ρ), can be constructed as follows:

• for any ti and t j (0 ≤ i < j ≤ n), if (ei , e j) ∈ V , then
ti − t j ≤ 0, and

• t0, t1, . . . , tn must satisfy all the timing constraints in C
and T , and the corresponding linear inequalities are given
according to Definition 3.

Since L(ρ)
= ∅ if and only if lp(ρ) has a solution, we can
reduce the reachability analysis problem for a node v of S
into a linear programming problem as follows: check if there
is a path ρ in S passing through v such that lp(ρ)
= ∅. It is
clear that in the worst case, we need to check all the paths in
S which pass through v. Since the number of paths of S could
be infinite, and the length of a path of S could be infinite, we
attempt to solve the problem based on a finite set of the finite
paths of S.

123

For Research Only

644 M. Pan, X. Li

Let S = (U, N , succ, re f, T) be an MSS, and v be a
node in N . Let �(S, v) be a set of the paths in S of the
form v0 → v1 → · · · → vi → vi+1 → · · · → vm where
vi = v (0 ≤ i ≤ m), all v j (0 ≤ j ≤ i) are distinct, and all
vk (i ≤ k ≤ m) are distinct. Intuitively, the node v divides
each path in �(S, v) into two simple path segments, which
implies that �(S, v) is finite and each path in �(S, v) is
finite because N is finite. A path segment ρ in S is a pre-
fix for �(S, v) if it may be extended into a path which is in
�(S, v), i.e. there could be a path segment ρ1 in S such that
ρ → ρ1 is in �(S, v). The following theorem tells us that if
S is flexible loop-closed, we just need to check each path in
�(S, v) for reachability.

Theorem 1 Let S = (U, N , succ, re f, T) be an FLMSS,
and v be a node in N. Then, v is reachable if and only if
there is a path ρ ∈ �(S, v) such that L(ρ)
= ∅. �	

The proof of the theorem is presented in the appen-
dix. Based on the above theorem, we can develop an algo-
rithm to check if a node v in an MSS S is reachable
(cf. Fig. 3). In the algorithm, first we check if S is flexible
loop-closed, and assign the result to the boolean variable
f lexible_loop_closed. Then, the algorithm traverses the
state space of the nodes of S in a depth first manner starting
from the start node . The path in the state space that we have
so far traversed is stored in the list variable currentpath. For
each successive node node of the last node of currentpath,
we first check whether the path segment ρ corresponding to
the concatenation of currentpath and node is in �(S, v).
If yes, then we check if L(ρ)
= ∅ by linear programming,
and return true when L(ρ)
= ∅. If the path segment corre-
sponding to the concatenation of currentpath and node is a
prefix for �(S, v), then we add node to the current path and
start the search from it, otherwise we search the other succes-
sive nodes. The algorithm backtracks when all the successive
nodes of the last node of currentpath are explored. After
finishing the depth first search, we return false when S is
flexible loop-closed, and undecided when S is not flexible
loop-closed. Notice that the algorithm can answer true for
some MSSs which are not flexible loop-closed, but not all.
It is thus a decision procedure for the FLMSSs, and a semi-
decisions procedure for the general MSSs.

3.2 Bounded delay analysis

The bounded delay analysis is to check if the time distance
between the two given events in any behavior of an MSS
is not smaller or greater than a given real number, which is
called the minimal bounded delay analysis or the maximal
bounded delay analysis, respectively.

For an MSS S, a bounded delay specification consists of
two events e, e′ and a real number d (e and e′ occur in differ-
ent node of S), denoted by SB(e, e′, d), which can be a min-

Fig. 3 Algorithm for reachability analysis

imal (or maximal) bounded delay specification Sm
B (e, e′, d)

[or SM
B (e, e′, d)], and requires that the time distance between

e and e′ in any behavior of S is not smaller (or greater) than d.
Let S = (U, N , succ, re f, T) be an MSS, Sm

B (e, e′, d)

[or SM
B (e, e′, d)] be a bounded delay specification, and σ be

a behavior of S of the form

(e0, t0)→· · ·→(ei , ti)→ · · · → (e j , t j)→ · · · →(en, tn).

If for any i and j (0 ≤ i < j ≤ n) such that ei = e′
and e j = e, and that ek
= e ∧ ek
= e′ for any k (i <

k < j), ti+1 + ti+2 + · · · + t j ≥ (≤) d, then we say that
σ satisfies Sm

B (e, e′, d) [or SM
B (e, e′, d)]. We define that a

path ρ in S satisfies SB(e, e′, d) if any σ ∈ L(ρ) satisfies
SB(e, e′, d), and that S satisfies SB(e, e′, d) if any path in S
satisfies SB(e, e′, d).

Let S = (U, N , succ, re f, T) be an MSS, Sm
B (e, e′, d)

[or SM
B (e, e′, d)] be a bounded delay specification, and ρ

be a path in S of the form v0 → v1 → · · · → vm where
re f (vi) = (Ii , Ei , Mi , Li , Vi , Ci) for any i (0 ≤ i ≤ m).
Since there could be vi and v j (0 ≤ i < j ≤ m) such
that re f (vi) = re f (v j), by renaming, let Ei ∩ E j =
∅ for any i, j (0 ≤ i < j ≤ m). By concatenating
re f (vi) (0 ≤ i ≤ m) one by one, we can obtain a bMSC B =
(I, E, M, L , V, C). Let E = {e0, e1, . . . en}, and ti represent
the occurrence time of ei for any i (0 ≤ i ≤ n) in a timed
event sequence in L(ρ). By linear programming, we can
check ρ for Sm

B (e, e′, d) [or SM
B (e, e′, d)] as follows: for any

ei = e′ and e j = e (0 ≤ i, j ≤ n, i
= j), find the minimum
(or maximum) value of the function t j − ti subject to the
linear constraint lp(ρ) and t j − ti ≥ 0, and check whether
it is not smaller (or greater) than d and whether in the cor-
responding timed event sequence e and e′ do not occur in

123

For Research Only

Timing analysis of MSC specifications 645

between ei and e j . For all the paths in S, we attempt to solve
the problem based on a finite set of the finite paths in S.

Let S = (U, N , succ, re f, T) be an MSS, and SB(e, e′,
d) be a bounded delay specification. Let �(S,SB(e, e′, d))

be the set of the paths in S of the form

v0 → · · · → vi → vi+1 → · · · → v j → v j+1 → · · · → vm

where

• either e′ occurs in re f (vi) and e occurs in re f (v j), or e
occurs in re f (vi) and e′ occurs in re f (v j) (0 ≤ i ≤ j ≤
m); and

• all vl (0 ≤ l < i) are distinct, all vk (i < k < j) are
distinct, and all vp (j < p ≤ m) are distinct.

Intuitively, each path in �(S,SB(e, e′, d)) is separated by e′
and e into three simple path segments. For an MSS S, for a
bounded delay specification SB(e, e′, d), a path segment ρ in
S is a prefix for �(S,SB(e, e′, d)) if it may be extended into a
path which is in �(S,SB(e, e′, d)), i.e. there could be a path
segment ρ1 in S such that ρ → ρ1 is in �(S,SB(e, e′, d)).

For an FLMSS S, the problem of checking S for a bounded
delay specification SB(e, e′, d) can be solved by checking
each path in �(S,SB(e, e′, d)), which is supported by the
following theorem.

Theorem 2 Let S be an FLMSS, and SB(e, e′, d) be a
bounded delay specification. Then, S satisfies SB(e, e′, d)

if and only if any path in �(S,SB(e, e′, d)) satisfies
SB(e, e′, d). �	

The proof of the theorem is presented in the appendix.
Based on Theorem 2, we can develop an algorithm to check if
an MSS S satisfies a bounded delay specification (cf. Fig. 4).
The structure of the algorithm is similar to the algorithm
depicted in Fig. 3. Since the algorithm can answer false for
some MSSs which are not flexible loop-closed, but not all,
it is thus a decision procedure for the FLMSSs, and a semi-
decision procedure for the general MSSs.

3.3 Complexity of Algorithms

The complexity of the algorithms presented in this section
consists of two parts: one is from the searching the node
state space of an MSS, and the other includes the number
and size of the linear programs we need to solve in the algo-
rithms.

Let S = (U, N , succ, re f, T) be an MSS, and m be the
number of the nodes in S, i.e. m = |N |. For the node state
space search, the complexity is not greater than (m!)2 and
(m!)3 for the reachability analysis and the bounded delay
analysis, respectively. For the linear program solving, the
number of linear programs we need to solve is the number

Fig. 4 Algorithm for bounded delay analysis

of the paths in the sets �(G, v) or �(G,SB(e, e′, d)), which
is not greater than (m!)2 and (m!)3, respectively. It is known
that a linear program can be solved in polynomial time[12],
e.g. the algorithm in [12] requires O(n3.5L) arithmetic oper-
ations on O(L) bit numbers under the worst case, where n
is the number of variables and L is the number of bits in
the input. Therefore, the upper bounds of the algorithms are
O((m!)2 · p(n, L)) and O((m!)3 · p(n, L)) for the reach-
ability analysis and the bounded delay analysis, respectively,
where p(n, L) is in polynomial complexity which can vary
depending on the different polynomial linear programming
algorithms, and m, n and L have the same meanings as
above.

The complexity of the algorithms presented above are
based on the worst case, which rarely appears in practice.
First and foremost, for the number of the linear programs
which need solving to reach the numbers in the above anal-
ysis, the MSS, which is essentially a directed graph, must
be complete. In real world applications, this is hardly the
case. In practical use, most of the edges are one directional
and even the number of loops are relatively small, which
results in quite a small number of paths compared to the
one in the worst case. Secondly, since one event is corre-
sponding to one variable in the linear programs, the size of
the linear programs we need to solve in the algorithms is
proportional to the maximal number of the events occur-
ring in a path in the sets, and to the maximal bits which
encode the timing constraints in a path in the sets. As men-
tioned above, in our algorithms the size of the longest path is
only 2m for reachability analysis and 3m for bounded delay
analysis, which assures the size of the linear programs are
manageable.

123

For Research Only

646 M. Pan, X. Li

Fig. 5 MSC specifications for the ATM system

4 Implementation and evaluation

The solutions presented in the above section have been imple-
mented into our tool TASS [13]. TASS is a prototype tool
based on our previous work [11,13], which is a timing ana-
lyzer of scenario-based specifications expressed by UML
interaction models, and adopts the synchronous concatena-
tion for scenario compositions. TASS is written in Java as
an Eclipse plugin [14], and can be downloaded from its
website [15]. We have extended TASS by accepting MSC
specifications, and implementing the timing analysis algo-
rithms for MSC specifications with asynchronous concatena-
tion presented in this paper. The linear programming software

package integrated in TASS is from OR-Objects of DRA
Systems [16] which is a free collection of Java classes for
developing operations research, scientific and engineering
applications.

We evaluate the performance of TASS on the well-known
example of automatic teller machine (ATM) system [4],
shown in Fig. 5. The ATM system consists of the three com-
ponents: the customers (User), the ATM controller (ATM),
and a host computer in a bank (Bank). Initially, the ATM
controller waits to receive the customer’s bank card and
requests a pin number in [0, 2] seconds after receiving a
card (0 ≤ b1 − a2 ≤ 2, bMSCs StartTrans and GetPin).
Then, it either receives a request to cancel the transaction

123

For Research Only

Timing analysis of MSC specifications 647

Table 1 Sample results
of timing analysis of
the ATM MSS

a The verification problem
disappears because the node is
unreachable

Case Problem

Reachability Sm
B (j4, a1, 20)

Result Time Result Time

w = 4, B1 = 0, B2 = ∞, T1 = 0.5, T2 = 2 No 2.142 s a a

w = 6, B1 = 0.5, B2 = 1, T1 = 0.5, T2 = 2 Yes 30 ms No 31 ms

w = 6, B1 = 1, B2 = 2, T1 = 0.5, T2 = 2 Yes 29 ms No 30 ms

w = 9, B1 = 2, B2 = 3, T1 = 1, T2 = 3 Yes 30 ms Yes 3.775 s

within [0,4] seconds (0 ≤ c2 − b1 ≤ 4, bMSC EndTrans),
or receives the customer’s pin number with [5,60] seconds
(5 ≤ d2−b1 ≤ 60, bMSC ProcessPin). If the ATM receives
a request to cancel the transaction, it returns the customer’s
card and takes [2, 3] seconds to return to its initial state
(2 ≤ �c − c3 ≤ 3, bMSC EndTrans). The ATM expects a
reply from the bank within 10 s, which form the following
timing constraints:

0 ≤ f2 − d3 ≤ 10, 0 ≤ g2 − d3 ≤ 10, 0 ≤ j2 − h7 ≤ 10
0 ≤ k2 − h7 ≤ 10, 0 ≤ i6 − i3 ≤ 10, 0 ≤ j8 − j5 ≤ 10.

If no reply from the bank is received in a delay of 10 s, the card
is returned, an appropriate message is then displayed, and the
ATM takes [2,3] seconds to return to its initial state (e1−d3 =
10, 2 ≤ �e − e5 ≤ 3, bMSC TryAgain). Our specification
also describes the following constraints: a customer expects
a withdraw request to be processed within [0, W] seconds
relative to the time of entering an amount (0 ≤ j4 − h5 ≤
W, 0 ≤ k4 − h5 ≤ W); the ATM takes [B1, B2] seconds for
book-keeping after dispensing cash (B1 ≤ � j − j9 ≤ B2,
bMSC DispenseCash); the ATM takes [3, 5] seconds to
print a receipt after receiving the balance information from
the bank (3 ≤ jb − j8 ≤ 5, 3 ≤ i9 − i6 ≤ 5, bMSC
DispenseCash, bMSC GetBalance); and in the case of
refusing pin number, at the first time the ATM takes [0, 2]
seconds to request a pin number again after sending the infor-
mation for the invalid pin number (0 ≤ b1 − g3 ≤ 2), and
at the second time it takes [3, 5] seconds to confiscate the
card and inform the customer (3 ≤ l1 − g3 ≤ 5, bMSC Con-
fiscateCard). Each ATM-customer communication takes at
least T1 seconds, and each ATM-bank communication takes
at least T2 seconds, which we do not explicitly represent in
the chart. The ATM MSS can be regarded as an FLMSS
because the ATM system requirements are compatible with
asynchoronous concatenation, and the loop-closed condition
and flexible condition are satisfied.

On an HP laptop (Intel Core 2 Duo CPU 2.2 GHz/ 2 GB
RAM), TASS is used for solving the following timing anal-
ysis problems:

• Reachability analysis: we check if the node bMSC Dis-
penseCash is reachable in the specification.

• Bound delay analysis: for the security consideration it is
necessary to record the process for withdrawing money by
the camera embedded in the ATM. We require that every
process for withdrawing money takes enough time for
recording, which forms a minimal bounded delay speci-
fication Sm

B (j4, a1, 20).

Given the various values of W, B1, B2, T1, and T2, TASS
reports the corresponding sample results, which is depicted
in Table 1. As we expect, the experiment results are satisfac-
tory since we only assigned 50M memory to the Java Virtual
Machine, and all the analysis tasks finished in split seconds
including the time to check whether the MSS is flexible loop-
closed. There are two reasons for such good performance.
One is that our algorithm is to recursively traverse directly
on the structure of the MSS and check each relevant path in a
depth-first manner, one by one. No matter how big the whole
model state is, it only cares about the currently visiting path
and therefore consumes little memory. The other reason is
that our algorithm takes advantage of the characteristics of
FLMSSs. For the FLMSSs which contain loops, only paths
which contain up to two simple path segments need to be
checked for reachability according to Theorem 1, and those
which contain up to three simple path segments need to be
checked for bounded delay specifications according to The-
orem 2.

5 Related work and conclusion

MSC specifications and similar formalisms are increasingly
being used by designers for specifying requirements. In
addition such specifications are naturally compatible with
object-oriented design methods, and are being supported by
modern software engineering methodologies such as UML
[5,6]. They are playing an increasingly important role in the
design of software systems.

The bMSCs and simple UML sequence diagrams describe
exactly one scenario. In [3], the problem of checking bMSCs
with delay intervals for timing consistency is reduced to
computing negative cost cycles and shortest distances in a
weighted directed graph using temporal constraint network

123

For Research Only

648 M. Pan, X. Li

techniques. In [7], the same techniques are used for tim-
ing consistency analysis of a class of simple UML sequence
diagrams in which all timing constraints are of the form
a ≤ e1 − e2 ≤ b. In [8] a case study is investigated for
UML sequence diagram-based verification in which a simple
sequence diagram is transformed to a set of timed automata
and then checked for a timed automata-based implementa-
tion by a model checking [17] tool. In [18], MSCs with timed
stamps at events are interpreted as event clock communicat-
ing finite-state machines, which later are used to construct
global timed automata and the model checking problem is
then reduced to checking timed automata.

To specify a complete system, specifications with multiple
scenarios are necessary. The simple property of time consis-
tency has been extensively studied for these specifications.
In [19] and [20], the problems of checking compositions of
UML sequence diagrams for timing consistency and tim-
ing inconsistency are considered. The problem of checking
MSC specifications for timing consistency is considered in
[4], which just gives a sufficient condition for timing con-
sistency. In [21] the strong and weak time consistency are
studied for MSC specifications in which the timing con-
straints can be absolute or relative time constraints. The
reachability analysis, constraint conformance analysis, and
bounded delay analysis problems for scenario-based speci-
fications expressed by UML models are considered in [11],
which are conducted on synchronous compositional seman-
tics (synchronous concatenation).

In [2], the model checking problem of MSC specifications
with asynchronous concatenation is shown undecidable, due
to unbounded drift between instances. To translate the MSC
specifications to automata, a restricted class called bounded
MSC-graphs is proposed in which the distance that instances
can drift is bounded, or in other words, the number of the
pending messages is bounded. Theoretically, under asyn-
chronous semantics, to translate MSC specifications with
timing constraints to timed automata requires a similar
restriction on the structure of the MSC specifications. For
example, in [22], MSC specifications with timing constraints
are used as behavioral specifications and timed automata
are regarded as system models. The MSC specifications
called locally synchronized message sequence graphs, which
require that all the communication channels are bounded,
are transformed to MSC event clock automata, which can
be translated into equivalent timed automata and used for
checking the automata which model the system. The MSC
specifications considered in this paper do not have any restric-
tion on their structures, and therefore cannot be transformed
into timed automata. Furthermore, the timed automata-based
approach requires the timing constraints be only related to
one time distance between a pair of events. If the timing con-
straints considered in this paper are allowed, which are about
the relations among multiple time distances between pairs of

events, we have to compare multiple clocks in the corre-
sponding timed automata, which will result in that the corre-
sponding model checking problems are undecidable [23].

In this paper, we give the linear programming-based solu-
tions to timing analysis of MSC specifications with asyn-
chronous concatenation. For FLMSSs, which satisfy that for
any loop, its first node is flexible in execution time and its
any associated external timing constraint is enforced on the
entire loop, we develop the efficient algorithms for the reach-
ability analysis and bounded delay analysis problems. These
algorithms are also a semi-decision procedure for the general
MSC specifications.

Acknowledgments Thanks to the anonymous reviewers and editors
for their valuable comments and suggestions. This work is supported
by the National Natural Science Foundation of China (No.90818022,
No.61021062), the National Grand Fundamental Research 973 Pro-
gram of China (No.2009CB320702), and by the National 863 High-
Tech Programme of China (No.2011AA010103, No.2012AA011205).

Appendix A: Algorithm to check if an MSS is flexible
loop-closed

Let S = (U, N , succ, re f, T) be an MSS. According to the
definition, for checking if the flexible condition is held for
S, we just need to check all the bMSCs corresponding to
the loop-start nodes for their execution time. The loop-start
nodes can be obtained from the set loopset which records all
the loops in S, as depicted in Fig. 6. So we only need to con-
sider the problem of checking if a bMSC is flexible, which is
equivalent to the problem to check if there is an up-bound on
the time distance between the start event and the end event of
the bMSC. This can be solved by linear programming. For a
bMSC B = (I, E, M, L , V, C). Let E = {e0, e1, . . . en}, e0

be the start event, en be the end event, and ti represent the
occurrence time of ei for any i (0 ≤ i ≤ n). Then, the prob-
lem of checking if the time distance between e0 and en has a
up-bound in any σ ∈ L(B) can be solved as follows: check if
the maximal value of the objective function tn − t0 regarding
to the linear program lp(B) is bounded.

Let S = (U, N , succ, re f, T) be an MSS. According to
the definition, for checking if the loop-closed condition is
held for S, we just need to traverse all the path segments in
S of the form v0 → v1 → · · · → vi−1 → vi → vi+1 →
· · · → vn where (, v0) ∈ succ, vi (0 ≤ i ≤ n) is a loop-
start node, all v j (0 ≤ j ≤ i) are distinct, and all vk (i <

k ≤ n) are distinct„ which are called checked path segments.
A path segment ρ is a prefix for a checked path segment if
it may be extended into a checked path segment, i.e. there
could be a path segment ρ1 such that ρ → ρ1 becomes a
checked path segment.

The following presents an algorithm to check if an MSS
S is flexible loop-closed (cf. Fig. 6). The algorithm is based

123

For Research Only

Timing analysis of MSC specifications 649

Fig. 6 Algorithm to check if an MSS is flexible loop-closed

on depth-first search method. The main data structure in the
algorithm includes a list currentpath of nodes which is used
to record the current paths, and a set loopset of loops which
records all the loops in S. The algorithm consists of two main
steps. First, by a depth-first search the algorithm finds out all
loops in S and checks if any loop-start node is flexible. Then
it traverses all the checked paths segments in S to check if
S is loop-closed. The complexity of the algorithm is propor-
tional to the number of the prefixes and the size of the longest
prefix for loop-closed condition in S.

Appendix B: Proofs of Theorems

Theorem 1 Let S = (U, N , succ, re f, T) be an FLMSS,
and v be a node in N. Then, v is reachable if and only if
there is a path ρ ∈ �(S, v) such that L(ρ)
= ∅.

Proof It is clear that one half of the claim holds: if there
is ρ ∈ �(S, v) such that L(ρ)
= ∅, then v is reachable.
The other half of the claim can be proved as follows. Suppose
that v is reachable. Then there is a path ρ of the form v0 →
v1 → · · · → vi → · · · → vm such that vi = v (0 ≤ i ≤ m),
and a timed event sequence σ ∈ L(ρ) of the form (e0, t0) →
(e1, t1) → · · · → (en, tn). If all v j (0 ≤ j ≤ i) are distinct
and all vk (i ≤ k ≤ m) are distinct, then ρ ∈ �(S, v) and we
are done. Otherwise, there are vp′ and vq ′ (0 ≤ p′ < q ′ ≤ i)
such that vp′ → vp′+1 → · · · → vq ′ is loop (vp′ = vq ′),
and (or) there are vp′′ and vq ′′ (i ≤ p′′ < q ′′ ≤ m) such that
vp′′ → vp′′+1 → · · · → vq ′′ is loop (vp′′ = vq ′′). Suppose
that the rightmost loop in ρ is vp → vp+1 → · · · → vq .
By removing the subsequences vp+1 → vp+2 → · · · → vq

from ρ, we can get a path ρ′, and in the following we will
show by reconstructing σ we can get σ ′ such that σ ′ ∈ L(ρ′).

First, we get σ ′ from σ by removing all the events
in the bMSCs corresponding to the nodes in the subse-
quence vp+1 → vp+2 → · · · → vq , without changing
the time distances between the rest events in σ , i.e. for any
timed event (e f , t f) in σ (0 ≤ f ≤ n), if e f occurs in
re f (vl) (p < l ≤ q) and (e f , t f) is not the last timed event
in σ , then remove (e f , t f) from σ , and change (e f +1, t f +1)

to (e f +1, t f + t f +1).
Secondly, to be consistent with asynchronous concatena-

tion, we require that if after the above removal of nodes,
vp is not the last node of ρ′, then the start event of bMSC
re f (vq+1) happen before or simultaneously with the end
event of re f (vp). If this is the case in σ ′, then the reconstruc-
tion is done. Otherwise, let t be the time distance between
these two events in σ ′. Since re f (vp) is a flexible bMSC,
we can always find a new behavior of re f (vp) of the form
σp = (eu, tu) → (eu+1, tu+1) → · · · → (ev, tv) whose
execution time is t time units longer to replace the timed
events of re f (vp) in σ ′, without changing the time distances
between the events which are not in re f (vp), i.e.

• we remove the old behavior of re f (vp) from σ ′, i.e. for
any timed event (e f , t f) in σ ′ (0 ≤ f ≤ n), if e f occurs
in re f (vp) and e f is not the start event of re f (vp), then
remove (e f , t f), and change (e f +1, t f +1) to (e f +1, t f +
t f +1). The start event of re f (vp) is left in σ ′ so that we
know where to begin the insertion of the new behavior;
and

• we insert the new behavior σp of re f (vp) into σ ′, i.e.
remove the first timed event from σp as it is already in
σ ′ and no longer needed. Then repeat the following pro-
cess until σp = ∅. For the first timed event (ew, tw) in
σp (u ≤ w ≤ v), locate the timed event (er , tr) in σ ′ (0 ≤
r ≤ n) such that er = ew−1 where ew−1 is the event
right before ew in the original σp. Since the new behav-
ior σp of re f (vp) is only t time units longer than the
old one, any event of re f (vq+1) in σ ′ does not happen

123

For Research Only

650 M. Pan, X. Li

before any event in σp, and since there are at least two
events in re f (vq+1), we can always find two timed event
(es, ts) and (es+1, ts+1) (r ≤ s ≤ n) in σ ′ such that tr+1+
tr+2 + · · · + ts ≤ tw and tr+1 + tr+2 + · · · + ts+1 > tw,
insert (ew, t ′w) between (es, ts) and (es+1, ts+1) where
t ′w = tw − (tr+1 + tr+2 + · · · + ts), change (es+1, ts+1)

to (es+1, ts+1 − t ′w), and remove (ew, tw) from σp.

From the construction steps it is easy to see that the time
distances between any two events which are not in re f (vp)

are unchanged in σ ′ after the reconstruction of σ . So all the
timing constraints in the bMSCs which make up ρ′ are sat-
isfied.

Since S satisfies the loop-closed condition, any timing
constraint in T does not combine any two nodes which are
inside and outside a loop, respectively. It follows that there
is no timing constraint combines vp and the other node in
ρ′, so no timing constraints are affected by the replacement
of the timed event sequence of re f (vp). It also follows that
all timing constraints which combine two nodes outside the
removed loop remain unchanged after the removal of the loop
nodes. Therefore, all timing constraints in T are satisfied.

Plus it is obvious that σ ′ meets the requirement of asyn-
chronous concatenation. Hence σ ′ is a behavior of ρ′, which
indicates L(ρ′)
= ∅.

By applying the above step repeatedly, we can get a pathρ′′
of the form v′

1 → v′
2 → · · · → v′

j → vi → v′
j+1 · · · → v′

k
such that L(ρ′′)
= ∅, all v′

h (0 ≤ h ≤ j) and vi are distinct,
and that all v′

h (j < h ≤ k) and vi are distinct. It follows that
ρ′′ is in �(S, v), from which the claim holds. �	

Theorem 2 Let S be an FLMSS, and SB(e, e′, d) be a
bounded delay specification. Then, S satisfies SB(e, e′, d)

if and only if any path in �(S,SB(e, e′, d)) satisfies
SB(e, e′, d).

Proof It is clear that one half of the claim holds: if S satis-
fies SB(e, e′, d), then any path in �(S,SB(e, e′, d)) satisfies
SB(e, e′, d). The other half of the claim can be proved as fol-
lows. Suppose that any path in �(S,SB(e, e′, d)) satisfies
SB(e, e′, d), and there is a path ρ of S such that a behavior
σ ∈ L(ρ) does not satisfy SB(e, e′, d). Without losing gen-
erality, suppose that ρ is of the form v0 → v1 → · · · →
vm , and σ is of the form (e0, t0) → (e1, t1) → · · · →
(ek, tk) → · · · → (el , tl) → · · · → (en, tn) where e′ = ek

and e = el (0 ≤ k < l ≤ n), and e, e′ do not appear in any
(eh, th) (k < h < l). The time distance between el and ek is
smaller (or greater) than d for the bounded delay specifica-
tion Sm

B (e, e′, d) [or SM
B (e, e′, d)]. In the following, we prove

that we can construct a path ρ′′ ∈ �(S,SB(e, e′, d)) such
that there is a timed event sequence σ ′′ ∈ L(ρ′′) which does
not satisfies SB(e, e′, d), which results in a contradiction and
implies that the claim holds. Suppose that e′ occurs in re f (vi)

and e occurs in re f (v j), or e occurs in re f (vi) and e′ occurs
in re f (v j) (0 ≤ i < j ≤ m). Since ρ
∈ �(S,SB(e, e′, d)),

• there are vp′ and vq ′ (0 ≤ p′ < q ′ < i) such that vp′ →
vp′+1 → · · · → vq ′ is loop (vp′ = vq ′), and (or)

• there are vp′′ and vq ′′ (i < p′′ < q ′′ < j) such that
vp′′ → vp′′+1 → · · · → vq ′′ is loop (vp′′ = vq ′′), and
(or)

• there are vp′′′ and vq ′′′ (j < p′′′ < q ′′′ ≤ m) such that
vp′′′ → vp′′′+1 → · · · → vq ′′′ is loop (vp′′′ = vq ′′′).

Suppose that the rightmost loop in ρ is vp → vp+1 →
· · · → vq . By removing the subsequences vp+1 → vp+2 →
· · · → vq from ρ, we can get a path ρ′, and using the same
constructing steps used in the proofs of Theorem 1, we can
get σ ′ such that σ ′ ∈ L(ρ′).

By applying the above step repeatedly, we can get a path
ρ′′ ∈ �(S,SB(e, e′, d)) such that there is a timed event
sequence σ ′′ ∈ L(ρ′′) which does not satisfy SB(e, e′, d),
which results in a contradiction and implies that the claim
holds. �	

References

1. ITU-T. Recommendation, Z120. Message Sequence Charts.
International Telecommunication Union, Standardization Sector,
Genève, Switzerland (2000)

2. Alur, R., Yannakakis, M.: Model checking of message sequence
charts. In: Proceedings of the 10th International Conference on
Concurrency Theory (CONCUR ’99), pp. 114–129. Springer,
Berlin (1999)

3. Alur, R., Holzmann, G.J., Peled, D.: An analyzer for mes-
sage sequence charts. In: Software-Concepts and Tools, vol. 17,
pp. 70–77. Springer, Berlin (1996)

4. Ben-Abdallah, H., Leue, S.: Timing constraints in message
sequence chart specifications. In: Proceedings of the IFIP TC6
WG6.1 Joint International Conference on Formal Description
Techniques for Distributed Systems and Communication Pro-
tocols, and Protocol Specification, Testing and Verification
(FORTE/PSTV ’97), pp. 91–106. Chapman & Hall, Ltd, London
(1998)

5. Rumbaugh, J., Jacobson, I., Booch, G. (eds.): The Unified Mod-
eling Language reference manual. Addison-Wesley Longman
Ltd., Essex (1999)

6. OMG. UML2.0 Superstructure Specification. http://www.uml.org,
Oct. (2005)

7. Seemann, J., von Gudenberg, J.W.: Extension of uml sequence
diagrams for real-time systems. In: Proceedings of the First
International Workshop on The Unified Modeling Language (UML
’98), pp. 240–252. Springer, Berlin (1999)

8. Firley, T., Huhn, M., Diethers, K., Gehrke, T., Goltz, U.: Braun-
schweig TU. Timed sequence diagrams and tool-based analysis—a
case study. In: Proceedings of the Second International Conference
on UML (UML ’99), pp. 645–660. Springer, Berlin (1999)

9. Debbabi, M., Hassaïne, F., Jarraya, Y., Soeanu, A.: Verification
and Validation in Systems Engineering: Assessing UML/SysML
Design Models. Springer, Berlin (2010)

123

For Research Only

http://www.uml.org

Timing analysis of MSC specifications 651

10. Peled, D.A.: Message sequence charts. In: Peled, D.A., Gries, D.,
Schneider, F.B. (eds.) Software Reliability Methods, pp. 300–305.
Springer, Berlin (2001)

11. Li, X., Pan, M., Bu, L., Wang, L., Zhao, J.: Timing analysis of sce-
nario-based specifications using linear programming. In: Software
Testing, Verification and Reliability, vol. 22, no.2, pp. 121–143.
Wiley InterScience, New York (2012)

12. Karmarkar, N.: A new polynomial-time algorithm for linear pro-
gramming. In: Proceedings of the Sixteenth Annual ACM Sympo-
sium on Theory of Computing (STOC ’84), pp. 302–311. ACM,
New York (1984)

13. Pan, M., Bu, L., Li, X., TASS.: Timing analyzer of scenario-based
specifications. In: Proceedings of the 21th International Confer-
ence on Computer Aided Verification (CAV2009), pp. 689–695.
Springer, Berlin (2009)

14. Eclipse—The Eclipse Foundation open source community website.
http://www.eclipse.org/ (2011). Accessed 26 Sep 2011

15. TASS: Timing Analyzer of Scenario-based Specifications. http://
seg.nju.edu.cn/TASS/ (2011). Accessed 26 Sep 2011

16. OR-Objects. OR-Objects/index.html. http://1997.opsresearch.
com/ (2011). Accessed 26 Sep 2011

17. Clarke, E., Grumberg, J., Peled, D.: Model Checking. The MIT
Press, Cambridge (2000)

18. Akshay, S., Bollig, B., Gastin, P.: Automata and logics for timed
message sequence charts. In: Proceedings of the 27th International
Conference on Foundations of Software Technology and Theo-
retical Computer Science (FSTTCS ’07), pp. 290–302. Springer,
Berlin (2007)

19. Li, X., Lilius, J.: Timing analysis of uml sequence diagrams.
In: Proceedings of the Second International Conference on UML
(UML ’99), pp. 661–674. Springer, Berlin (1999)

20. Li, X., Lilius, J.: Checking compositions of uml sequence dia-
grams for timing inconsistency. In: Proceedings of the Sev-
enth Asia-Pacific Software Engineering Conference (APSEC ’00),
pp. 154–161. IEEE Computer Society, New York (2000)

21. Zheng, T., Khendek, F.: Time consistency of MSC-2000 specifica-
tions. In: Computer Networks, vol. 42(3), pp. 303–322. Elsevier,
Amsterdam (2003)

22. Akshay, S., Gastin, P., Mukund, M., Narayan Kumar, K.: Model
checking time-constrained scenario-based specifications. In:
Proceedings of the 30th Conference on Foundations of Software
Technology and Theoretical Computer Science (FSTTCS’10),
pp. 204–215. Schloss Dagstuhl, Washington, DC (2010)

23. Alur, R., David, D.: A theory of timed automata. In: Theoretical
Computer Science, vol. 126(2), pp. 183–235. Elsevier, Amsterdam
(1994)

123

For Research Only

http://www.eclipse.org/
http://seg.nju.edu.cn/TASS/
http://seg.nju.edu.cn/TASS/
http://1997.opsresearch.com/
http://1997.opsresearch.com/

