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SUMMARY

Scenario-based specifications (SBSs), such as UML interaction models, offer an intuitive and visual way
of describing design requirements, and are playing an increasingly important role in the design of software
systems. This paper presents an approach to timing analysis of SBSs expressed by UML interaction
models. The approach considers more general and expressive timing constraints in UML sequence diagrams
(SDs), and gives a solution to the reachability analysis, constraint conformance analysis and bounded
delay analysis problems, which reduces these problems into linear programs. With the synchronous
interpretation of the SD compositions, the timing analysis algorithms in the approach form a decision
procedure for a class of SBSs where any loop in any path is time-independent of the other parts in the
path. These algorithms are also a semi-decision procedure for general SBSs with both the synchronous
and asynchronous composition semantics. The approach also supports bounded timing analysis of SBSs,
which investigates all the paths in the bound limit one by one, and performs the timing analysis for
each finite path by linear programming. A tool prototype has been developed to support this approach.
Copyright q 2010 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Scenarios are widely used as a requirements technique since they describe concrete interactions and
are, therefore, easy for customers and domain experts to use. Scenario-based specifications (SBSs),
such as message sequence charts (MSCs) [1] and UML interaction models [2, 3], offer an intuitive
and visual way of describing design requirements. They are playing an increasingly important
role in the design of software systems. Such specifications focus on message exchanges among
communicating entities in distributed software systems. This paper considers timing analysis of
SBSs modelled by UML interaction models.
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UML sequence diagrams (SDs) form a class of important UML interaction models. Each of
them describes an interaction, which is a set of messages exchanged among objects within a
collaboration to effect a desired operation or result, and its focus is on the temporal order of the
message flow [2, 3]. For example, a UML SD is depicted in Figure 1(a), which describes a scenario
about the well-known example of the railroad crossing system in [4, 5]. This system operates a
gate at a railroad crossing, in which there are a railroad crossing monitor and a gate controller.
When the monitor detects that a train is arriving, it sends a message to the controller to move the
gate down. After the train leaves the crossing, the monitor sends a message to controller to open
the gate.

This paper uses a simplified version of UML SDs, which describes exactly one scenario without
any alternatives and loops. For describing multiple scenarios and complete system specifications,
it is necessary to use a simplified version of UML2.0 interaction overview diagrams [3], which
focuses on the overview of the flow of control where the nodes are SDs. An interaction overview
diagram defines a composition of a set of SDs, which describes potentially iterating and branching
system behaviour. For example, Figure 1(b) depicts a simple interaction overview diagram.

For specifying real-time systems, timing constraints are enforced on SBSs. Several mechanisms
have been introduced to describe timing constraints in MSCs and UML SDs, which are timers [1],
interval delays [6, 7] and timing marks [2, 3, 8, 9]. All of those mechanisms are suitable to describe
simple timing constraints which are only related to the time separation between two events. For
example, for the SD depicted in Figure 1(a), the simple timing constraints such as the time
separation between the sending events e1 and e13 that is not smaller than 100 time units can be
described by timers, interval delays or timing marks. However, in practical problems there are
often the requirements to describe a class of more complex timing constraints which are about the
relation among multiple time separations between events. For example, in the scenario about the
railroad crossing system depicted in Figure 1(a), the gate is required to stay for a certain period
within certain tolerance intervals, e.g. it is required that from the time one train is arriving to the
time the next train is arriving, the gate stays open for at least half of this period. It means that
the time separation between the sending event e13 and the sending event e1 is not greater than
two times the time separation between the sending event e13 and the receiving event e12. Clearly,
the existing mechanisms in MSCs and UML SDs cannot describe such a timing constraint. This
paper introduces a more expressive mechanism in UML SDs to describe timing constraints, and
considers checking SBSs with more complex timing constraints.

Like any other aspect of the specification and design process, SBSs are amenable to errors,
and their analysis is important. Alur et al. [6] investigate a variety of semantic interpretations for
MSCs, and develop an analyser for basic MSCs. Alur and Yannakakis [10] give a comprehensive
study of model checking of MSCs for temporal requirements. Holzmann [11–13] develops the tool

(a) (b)

Figure 1. UML interaction models: (a) a sequence diagram and (b) an interaction overview diagram.
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SPIN which supports the design of MSCs, and allows for the creation, debugging, organization and
maintenance of MSCs. Peled et al. [14, 15] present a tool for searching a hierarchical MSC design
for a path that matches a given specification. For SBSs with timing constraints used to describe
real-time systems, the verification problems are more difficult and complicated. Some algorithms
are presented by Alur et al. [6] for analysing basic MSCs with interval delays. A solution is
given to the timed analogue of scenario matching by Akshay et al. [16]. Timing analysis has been
extended to check UML SDs and MSC specifications [7, 17, 18]. However, all those works are
about checking SBSs for timing consistency which is a basic property. In view of the practical use,
there are a lot of properties about the accumulated delays on the traces of systems. For example,
there often is a need to check if all traces of a system satisfy that the separation in time between
two given events is within a given time interval, which is called bounded delay analysis. This
problem has been considered for timed automata by Courcoubetis and Yannakakis [19], and for a
class of Petri nets by Hulgaard and Burns [20].

This paper presents an approach to timing analysis of SBSs expressed by UML interaction
models. The approach gives a solution to the reachability analysis, constraint conformance analysis
and bounded delay analysis problems, which reduces these problems into linear programs. With the
synchronous interpretation of the SD compositions, the timing analysis algorithms in the approach
form a decision procedure for a class of SBSs where any loop in any path is time-independent of
the other parts in the path. These algorithms are also a semi-decision procedure for general SBSs
with both the synchronous and asynchronous composition semantics. The approach also supports
bounded timing analysis of SBSs, which investigates all the paths in the bound limit one by one,
and performs the timing analysis for each finite path by linear programming. A tool prototype has
been developed to support this approach.

The paper is organized as follows. The following section introduces SBSs expressed by UML
interaction models. Section 3 gives the linear programming-based approach to timing analysis of
SBSs. The last section discusses the related work and contains some conclusions.

2. SCENARIO-BASED SPECIFICATIONS

In this paper, UML interaction models are used as SBSs, which consist of UML2.0 interaction
overview diagrams and SDs.

2.1. UML sequence diagrams and timing constraints

This paper just uses a simplified version of UML SDs, which describes exactly one scenario
without any alternatives and loops. An SD has two dimensions: the vertical dimension represents
time, and the horizontal dimension represents different objects. Each object is assigned a column,
and the messages are shown as horizontal, labelled arrows.

This paper considers more general and expressive timing constraints in SDs. In an SD, events are
the message sending and message receiving. Here event names are used to represent the occurrence
time of events, and linear inequalities on event names are used to represent the timing constraints.
A timing constraint is of the form

a≤c0(e0−e′
0)+c1(e1−e′

1)+·· ·+cn(en−e′
n)≤b

where ei and e′
i (0≤ i≤n) are event names which represent the occurrence time of ei and e′

i ,
a, b and c0,c1, . . .,cn are real numbers (b may be ∞). For example, for the scenario about the
railroad crossing system depicted in Figure 1(a), it is required that when a train has passed, a new
train should come after at least 100 time units, which can be represented by the timing constraint
100≤e13−e1<∞. Compared to timers, interval delays and timing marks, the timing constraints
considered here can be used to describe more complex timing requirements in practical use. For
example, for the scenario about the railroad crossing system depicted in Figure 1(a), the timing
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constraint 0≤2(e13−e12)−(e13−e1)<∞ specifies the requirement that from the time one train is
arriving to the time the next train is arriving, the gate must stay open for at least half of this period.
Clearly, such a timing requirement is about the relation between two time separations between
events (one is the time separation between e13 and e12, and the other is the time separation between
e13 and e1), and none of the timers, interval delays and timing marks can be used to describe
such a timing requirement since they are only suitable for describing the simple timing constraints
related to the time separation between two events.

The semantics of an SD consists of the sequences (traces) of the message sending (receiving)
events. The order of events (i.e. message sending or receiving) in a trace is deduced from the visual
partial order determined by the flow of control within each object in the SD along with a causal
dependency between the events of sending and receiving a message [1–3, 21]. In accordance with
the definition given by Peled [21], for a pair of events e and e′ in an SD, e precedes e′ (denoted
by e≺e′) in the following cases:

• Causality: A sending event e and its corresponding receiving event e′.
• Controllability: The event e appears above the event e′ on the same object column, and e′ is
a sending event.

• FIFO order: The receiving event e appears above the receiving event e′ on the same object
column, and the corresponding sending events e1 and e′

1 appear on a mutual object column
where e1 is above e′

1.

For analysing SBSs, SDs are formalized as follows:

Definition 1
An SD D is a tuple D= (O, E,M, L,V ,C) where

• O is a finite set of objects.
• E is a finite set of events which corresponds to sending and receiving a message. There are
two special events � and � in E which represent the start and end of D, respectively.

• M is a finite set of messages whose elements are a pair (e,e′) where e and e′ ∈ E are
corresponding to the sending and the receiving of a message, respectively.

• L : E→O is a labelling function which maps each event e∈ E to an object L(e)∈O which
is the sender (receiver) whereas e corresponds to sending (receiving) a message.

• V is a finite set whose elements are a pair (e,e′) (e and e′ ∈ E). For any events e and e′ ∈ E ,
if e≺e′ then (e,e′)∈V . For any event e∈ E (e 	= �∧e 	=�), (�,e)∈V and (e,�)∈V .

• C is a finite set of timing constraints.

The event sequences are used to represent the traces of SDs which correspond to the untimed
behaviour of SDs. An event sequence is of the form e0→e1→·· ·→em , which represents that
ei+1 takes place after ei for any i (0≤ i≤m−1).

Definition 2
Let D= (O, E,M, L,V ,C) be an SD. An event sequence e0→e1→·· ·→em is a trace of D if
and only if the following conditions hold:

• e0= � and em =�.
• e0,e1, . . .,em is a permutation of the events in E .
• e0,e1, . . .,em satisfy the visual order defined by V , i.e. for any ei and e j , if (ei ,e j )∈V , then
0≤ i< j≤m.

The timed event sequences are used to represent the behaviour of SDs. A timed event sequence
is of the form (e0, t0)→ (e1, t1)→·· ·→ (em, tm) where ei is an event and ti is a non-negative real
number for any i (0≤ i≤m), which describes that e0 takes place t0 time units after the scenario
starts, then e1 takes place t1 time units after e0 takes place, so on and so forth, and finally em takes
place tm time units after em−1 takes place. It follows that for any i (0≤ i≤m), the occurrence time
of ei is

∑i
j=0 t j .

Copyright q 2010 John Wiley & Sons, Ltd.
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Definition 3
Let D= (O, E,M, L,V ,C) be an SD. A timed event sequence

�= (e0, t0)→ (e1, t1)→·· ·→ (em, tm)

is a behaviour of D if and only if the following conditions hold:

• e0→e1→·· ·→em is a trace of D.
• t0=0, and t0, t1, . . ., tm satisfy the timing constraints in C , i.e.
for any timing constraint a≤∑n

i=0 ci ( fi − f ′
i )≤b in C , a≤c0�0+c1�1+·· ·+cn�n ≤b where

for each i (0≤ i≤n), if fi =e j and f ′
i =ek , then

�i =
⎧⎨
⎩
tk+1+ tk+2+·· ·+ t j if j>k

−(t j+1+ t j+2+·· ·+ tk) if j<k

Let L(D) denote the set of the timed event sequences representing the behaviour of D.

2.2. UML2.0 interaction overview diagrams and SBSs

An SD considered in this paper describes exactly one scenario. For describing multiple scenarios
and complete system specifications, it is necessary to use a simplified version of UML2.0 interaction
overview diagrams [3], which focuses on the overview of the flow of control where the nodes
are SDs. An interaction overview diagram defines a composition of a set of SDs, which describes
potentially iterating and branching system behaviour.

This paper considers timing analysis of SBSs. An SBS under analysis is represented by an
interaction overview diagram, which is defined formally as follows:

Definition 4
An SBS G is a tuple G= (U,N,succ,ref ,T ) where

• U is a finite set of SDs satisfying the following: for any D= (O, E,M, L,V ,C) and D′ =
(O ′, E ′,M ′, L ′,V ′,C ′) in U , if D 	=D′ then E∩E ′ =∅.

• N ={
}∪ I∪{⊥} is a finite set of nodes partitioned into three sets: the singleton-set of start
node, the set of intermediate nodes and the singleton-set of end node, respectively.

• succ⊂N×N is the relation which reflects the connectivity of the nodes in N (it is required
that any node in N is reachable from the start node).

• ref : I �→U is a function that maps each intermediate node to an SD in U .
• T is a finite set of timing constraints of the form a≤e−e′ ≤b where e and e′ occur in different
SDs in U and 0≤a≤b (b may be ∞), which are used to describe the timing constraints
enforced between two events in different SDs in U .

For an SBS G= (U,N,succ,ref ,T ), a path segment is a sequence of intermediate nodes
v0→v1→·· ·→vn satisfying (vi−1,vi )∈ succ for any i (0<i ≤n). A path is a path segment v0→v1
→·· ·→vn such that (
,v0)∈ succ and (vn,⊥)∈ succ.

The timing constraints in SBSs are interpreted by local semantics: select one path at one time and
analyse its timing requirements independently of other paths that may branch out of the selected
one. In UML2.0, interaction overview diagrams are defined as specializations of activity diagrams
in a way that promotes overview of the control flow [3]. It is quite in accord with the synchronous
mode interpreting the concatenation of two SDs in an SBS: when moving one node to the other,
all events in the previous SD finish before any event in the following SD occurs, which is the same
as the synchronous interpretation of the concatenation of two basic MSCs in MSC specifications
[10]. With this synchronous composition semantics, the behaviour of an SBS G are defined as the
timed event sequences which are the concatenation of the timed event sequences representing the
behaviour of the SDs which make up G.

Copyright q 2010 John Wiley & Sons, Ltd.
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Definition 5
Let G= (U,N,succ,ref ,T ) be an SBS. For any path segment

�=v0→v1→·· ·→vm

in G, letL(�) be the set of all timed event sequences of the form (e0, t0)→ (e1, t1)→·· ·→ (en, tn)
satisfying the following condition:

• (e0, t0)→ (e1, t1)→·· ·→ (en, tn)=�0→�1→·· ·→�m , where �i is a behaviour of ref (vi )
for each i (0≤ i≤m) and

• (e0, t0)→ (e1, t1)→·· ·→ (en, tn) satisfies any timing constraints in T , i.e. for any a≤ f − f ′ ≤
b∈T , for any i , j (0≤ i< j ≤n) such that f ′ =ei , f =e j , and that f 	=ek∧ f ′ 	=ek for any k
(i<k< j), a≤ ti+1+ ti+2+·· ·+ t j ≤b.

A timed event sequence � is a behaviour of G if and only if there is a path � in G such that
�∈L(�). �

2.3. Loop-unlimited scenario-based specifications

For an SBS G= (U,N,succ,ref ,T ), a path segment is called simple if all its nodes are distinct. Let
v0→v1→·· ·→vn be a simple path segment in G such that (
,v0)∈ succ. If there is vi (0≤ i≤n)

such that (vn,vi )∈ succ, then the sequence vi →vi+1→·· ·→vn →vi is a loop, and vi is the
loop-start node of the loop.

For an SBS G= (U,N,succ,ref ,T ), let �=v0→v1→·· ·→vn be a path segment. For a timing
constraint a≤e−e′ ≤b in T , if e occurs in ref (vi ), e′ occurs in ref (v j ) (0≤ j<i ≤n) and e,e′ do
not occur in any ref (vk) ( j<k<i), then this timing constraint is said to combine nodes vi and v j
in � (in this case, the occurrence time of e in ref (vi ) and the occurrence time of e′ in ref (v j ) must
satisfy this timing constraint). Figure 2 shows various cases when a timing constraint a≤e−e′ ≤b
combines two nodes v and v′ in a path segment � with a loop.

This paper develops algorithms for timing analysis of SBSs. These algorithms are a semi-
decision procedure for general SBSs, and a decision procedure for a class of SBSs which satisfy
the loop-closed condition and the loop-unlimited condition. For an SBS G= (U,N,succ,ref ,T ),
the loop-closed condition requires that in any path of G any timing constraint in T do not combine
any two nodes which are inside and outside of a loop, respectively, (in this case one node is inside
(outside) of a loop, and the other node is outside (inside) of the loop, which is corresponding to
cases (1) and (2) in Figure 2), i.e. any timing constraint in T of the form a≤e−e′ ≤b must satisfy:

• for any loop v0→v1→·· ·→vm , if e occurs in ref (vi) (0≤ i<m) and e′ does not occur in
any ref (v j) (0≤ j<i), then there is no simple path segment v′

0→v′
1→·· ·→v′

n such that
v′
n =v0, e′ occurs in re f (v′

0), and that e does not occur in any ref (v′
k) (0≤k≤n) and

• for any loop v0→v1→·· ·→vm , if e′ occurs in ref (vi ) (0<i ≤m) and e does not occur in
any ref (v j) (i< j ≤m), then there is no simple path segment v′

0→v′
1→·· ·→v′

n such that
v′
0=v0, e occurs in ref (v′

n), and that e′ does not occur in any ref (v′
k) (0≤k≤n).

For an SBS G= (U,N,succ,ref ,T ), the loop-unlimited condition requires that no timing constraint
be enforced on the repetition of any loop (case (3) in Figure 2 is not allowed), i.e. any timing
constraint in T of the form a≤e−e′ ≤b must satisfy:

• for any loop v0→v1→·· ·→vm where e and e′ do not occur in any ref (vi) (0≤ i ≤m),
there is no simple path segment v′

0→v′
1→·· ·→v′

n such that there is v′
k (0<k<n) satisfying

v′
k =v0, e occurs in ref (v′

n), e
′ occurs in ref (v′

0), and that e and e′ do not occur in any ref (v′
i )

(0<i<n).

An SBS is said to be loop-unlimited if it satisfies both the loop-closed condition and loop-unlimited
condition. The purpose for enforcing the loop-closed condition and loop-unlimited condition on
an SBS is such that any loop in any path is time-independent of the other parts in the path, and
this restriction is reasonable in many cases.
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Figure 2. Loop-closed condition and loop-unlimited condition.

Usually, for a loop in an SBS, its repetition will take time. It follows that if a timing constraint
is enforced on the repetition of a loop such as case (3) in Figure 2, the repetition of the loop will
be restricted to a finite number of times. In this case, the loop can be unfolded with the finite
number of times, and then the timing constraint can be removed from the SBS. Therefore, the
loop-unlimited condition is acceptable in many cases.

In an SBS G, a common case that violates the loop-closed condition is that there is a reverse
constraint for a loop. Let �=v0→v1→·· ·→vm be a loop in a path in G. A timing constraint
a≤e−e′ ≤b is said to be a reverse constraint for � if e occurs in � prior to e′, i.e. e occurs
in ref (vi) and e′ occurs in ref (v j ) (0≤ i< j≤n). In a path � which contains the repetition of
�, the reverse constraint a≤e−e′ ≤b essentially combines two nodes in conjunction with two
occurrences of � such that the former occurrence of � is time dependent of the latter occurrence
of �, which is illustrated by case (4) in Figure 2. In the authors’ opinion, the reverse constraints
are seldom adopted in practical use because their denotations are barely perceptible in terms of
the structure of SBSs. Notice that the loop-closed condition allows a timing constraint to combine
two nodes in the same loop, such as case (5) in Figure 2. Such a constraint is in common use, and
its denotation is perceptible in terms of the structure of SBSs.

An efficient algorithm can be developed to check if an SBS G is loop-unlimited, which is
described in Appendix A.

2.4. An automatic teller machine example

For illustrating the approach presented in this paper, the automatic teller machine (ATM) system
[7] serves as an example. Its specification is depicted in Figure 3, which is a loop-unlimited SBS.

The ATM system consists of the three components: potential customers (User), the ATM
controller (ATM) and a host computer in a bank (Bank). Initially, the ATM controller waits to
receive the customer’s bank card and requests a PIN in [0,2] s (at least 0 but no more than 2 s) after
receiving a card (0≤b1−a2≤2, SDs StartTrans and GetPin). Then, it either receives a request
to cancel the transaction within [0,4] s (0≤c2−b1≤4, SD EndTrans), or receives the customer’s
PIN with [5,60] s (5≤d2−b1≤60, SD ProcessPin). If the ATM receives a request to cancel the
transaction, it returns the customer’s card and takes [2,3] s to return to its initial state (2≤�c−c3≤3,
SD EndTrans). The ATM expects a reply from the bank within 10 s, which is represented by the
following timing constraints:

0≤ f2−d3≤10, 0≤g2−d3≤10, 0≤ j2−h7≤10

0≤ k2−h7≤10, 0≤ i6−i3≤10, 0≤ j8− j5≤10.

If no reply from the bank is received within 10 s, the card is returned, an appropriate message is
then displayed, and the ATM takes [2,3] s to return to its initial state (e1−d3=10, 2≤�e−e5≤3,

Copyright q 2010 John Wiley & Sons, Ltd.
DOI: 10.1002/stvr

Softw. Test. Verif. Reliab. 2012; 22:121–143

127

For Research Only



X. LI ET AL.

Figure 3. Scenario-based specification for the ATM example.

SD TryAgain). The specification also describes the following constraints:

• a customer expects a withdraw request to be processed within [0,W ] s relative to the time of
entering an amount (0≤ j4−h5≤W,0≤k4−h5≤W );

• the ATM takes [B1, B2] s for bookkeeping after dispensing cash (B1≤� j − j9≤B2, SD
DispenseCash);

• the ATM takes [3,5] s to print a receipt after receiving the balance information from the bank
(3≤ jb− j8≤5, 3≤ i9−i6≤5, SD DispenseCash, SD GetBalance) and

• in the case of refusing PIN, the first time the ATM takes [0,2] s to request a PIN again after
sending the information for the invalid PIN (0≤b1−g3≤2), and the second time it takes
[3,5] s to confiscate the card and inform the customer (3≤ l1−g3≤5, SD ConfiscateCard).
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Each ATM-customer communication takes at least T1 seconds, and each ATM-bank communication
takes at least T2 seconds, which we do not explicitly represent in the chart.

3. TIMING ANALYSIS OF SCENARIO-BASED SPECIFICATIONS

This section describes the linear programming-based approach to timing analysis of SBSs, including
the reachability analysis, the constraint conformance analysis and the bounded delay analysis.

3.1. Reachability analysis

Reachability analysis checks if a given node of an SBS is reachable along a behaviour of the SBS.
Let G= (U,N,succ,ref ,T ) be an SBS. For a given node v∈N , the reachability analysis checks
if there is a path � passing through v which is of the form v0→v1→·· ·→vi →·· ·→vm such
that vi =v (0≤ i≤m) and that L(�) 	=∅. For example, for the ATM system given in Section 2.4,
the reachability analysis checks if the node SD DispenseCash is reachable in the specification
depicted in Figure 3.

Let G= (U,N,succ,ref ,T ) be an SBS, and � be a path in G of the form v0→v1→·· ·→vm
where ref (vi )= (Oi , Ei ,Mi , Li ,Vi ,Ci ) for any i (0≤ i≤m). Since there could be vi and v j
(0≤ i< j≤m) such that ref (vi)= ref (v j ), by renaming, let Ei ∩E j =∅ for any i , j (0≤ i< j ≤m).
Let E= E1∪E2∪· · ·∪Em ={e0,e1, . . .,en}, and ti represent the occurrence time of ei (0≤ i≤n)

in a timed event sequence in L(�). Then a group of linear inequalities on t1, t2, . . ., tn , denoted
by lp(�), can be constructed as follows:

• for the start event �0 of ref (v0), if ei = �0 (0≤ i≤n) then ti =0;
• for the end event �i of ref (vi ) and the start event �i+1 of ref (vi+1) (0≤ i<m), if ep =�i (0≤

p≤m) and eq = �i+1 (0≤q≤m) then tp = tq ;
• for any ti and t j (0≤ i< j ≤n), if ei ∈ Ek and e j ∈ Ek+1 (0≤k<m), then ti − t j ≤0;
• t0, t1, . . ., tn must satisfy all the timing constraints in T , and the corresponding linear inequal-
ities are given according to Definition 5 and

• t0, t1, . . ., tn must satisfy all the timing constraints in each Ci (0≤ i≤m), and the corresponding
linear inequalities are given according to Definition 3.

As L(�) 	=∅ if and only if lp(�) has a solution, the reachability analysis problem for a node v

of G can be reduced into the linear programming problems as follows: check if there is a path
�′ in G passing through v such that lp(�′) 	=∅. It is clear that in the worst case, all the paths
in G that pass through v need to be checked. Since the number of paths of G could be infinite,
and the length of a path of G could be infinite, it is necessary to solve the problem based on a
finite set of the finite paths of G.

Let G= (U,N,succ,ref ,T ) be an SBS, and v be a node in N . Let �(G,v) be a set of the paths
in G of the form v0→v1→·· ·→vi →vi+1→·· ·→vm , where vi =v (0≤ i≤m), all v j (0≤ j≤ i)
are distinct, and all vk (i ≤k≤m) are distinct. Intuitively, the node v divides each path in �(G,v)

into two simple path segments, which implies that �(G,v) is finite and each path in �(G,v) is
finite because N is finite. A path segment � in G is a prefix for �(G,v) if it may be extended
into a path which is in �(G,v), i.e. there could be a path segment �1 in G such that �→�1 is in
�(G,v). The following theorem shows that if G is loop-unlimited, the reachability analysis of v

just needs to check each path in �(G,v).

Theorem 1
Let G= (U,N,succ,ref ,T ) be a loop-unlimited SBS, and v be a node in N . Then, v is reachable
if and only if there is a path �∈�(G,v) such that L(�) 	=∅.

The proof of this theorem is presented in Appendix B. Based on the above theorem, an algorithm
can be developed to check if a node v in an SBS G is reachable (cf. Figure 4). The algorithm first
checks if G is loop-unlimited, and assigns the result to the boolean variable loop unlimited. Then,
it traverses the state space of the nodes of G in a depth-first manner starting from the start node 
.
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Figure 4. Algorithm for reachability analysis.

The path in the state space that the algorithm has so far traversed is stored in the list variable
currentpath. For each successive node node of the last node of currentpath, the algorithm first
checks whether the path segment � corresponding to the concatenation of currentpath and node
is in �(G,v). If yes, then it checks if L(�) 	=∅ by linear programming, and returns ‘true’ when
L(�) 	=∅. If the path segment corresponding to the concatenation of currentpath and node is a
prefix for �(G,v), then the algorithm adds node to the current path and starts the search from it,
otherwise it searches the other successive nodes. The algorithm backtracks when all the successive
nodes of the last node of currentpath are explored. After finishing the depth-first search, the
algorithm returns ‘false’ when G is loop-unlimited, and ‘undecided’ when G is not loop-unlimited.
Notice that the algorithm can answer ‘true’ for some SBSs that are not loop-unlimited, but not all.
It is thus a decision procedure for the loop-unlimited SBSs, and a semi-decision procedure for the
non-loop-unlimited SBSs.

3.2. Constraint conformance analysis

Constraint conformance analysis checks if the given several scenarios, which occur continuously
in the behaviour of an SBS, satisfy a given timing constraint. Let G= (U,N,succ,ref ,T ) be an
SBS. A constraint conformance specification, denoted by SC (�,�), consists of a finite sequence
�=D0→D1→·· ·→Dk of SDs in U and a timing constraint � of the form

a≤c0( f0− f ′
0)+c1( f1− f ′

1)+·· ·+cn( fl− f ′
l )≤b

where the events fi , f ′
i (0≤ i≤ l) occur in D0,D1, . . .,Dk exactly once. Let � be a path in G

of the form v0→v1→·· ·→vm . For SC (�,�), an occurrence of � in � is a subsequence of � of
the form v j →v j+1→·· ·→v j+k (0≤ j≤m−k) such that ref (vi )=Di− j for any i ( j≤ i ≤ j+k),
and it satisfies � if the following condition holds:

• for any �=�0→�1→·· ·→�m ∈L(�) where every �i (0≤ i≤m) is a behaviour of re f (vi),
if � j →� j+1→·· ·→� j+k = (e0, t0)→ (e1, t1)→·· ·→ (en, tn) then a≤c0�0+c1�1+·· ·+
cn�l ≤b, where for any i (0≤ i≤ l), if fi =ep and f ′

i =eq (0≤ p,q≤n) then

�i =
{
tq+1+ tq+2+·· ·+ tp if p>q

−(tp+1+ tp+2+·· ·+ tq) if p<q

� satisfies SC (�,�) if every occurrence of � in � satisfies �, and G satisfies SC (�,�) if any path
in G satisfies SC (�,�). For example, for the ATM example given in Section 2.4, since a customer
may lose his patience after he gets the money, it is required that the time that the ATM takes for
the printing and bookkeeping after giving the money be not greater than half of the time that the
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customer waits for withdrawing the money, which forms a constraint conformance specification
SC(�,�), where �=Withdraw→DispenseCash and �=2(� j − j8)≤ jc−h5.

Let G= (U,N,succ,ref ,T ) be an SBS, and SC (�,�) be a constraint conformance specification
where �=D0→D1→·· ·→Dk and � is of the form a≤∑l

i=0 ci ( fi − f ′
i )≤b. The following shows

that for a finite path � in G, the constraint conformance analysis for SC (�,�) can be solved by
linear programming. Suppose �=v0→v1→·· ·→vm and L(�) 	=∅. As there could be vi and v j
(0≤i< j≤m) such that ref (vi)=ref (v j ), by renaming, let Ei∩E j=∅ for any i , j (0≤i< j≤m). Let

E= E1∪E2∪· · ·∪Em ={e0,e1, . . .,en},
and ti represent the occurrence time of ei (0≤ i≤n) in a timed event sequence in L(�). Suppose
that there is a subsequence �1 of � of the form v j →v j+1→·· ·→v j+k (0≤ j≤m−k) such that
ref (vi)=Di− j for any i ( j ≤ i ≤ j+k). Then, the satisfaction problem of � for SC (�,�) can be
reduced to a linear program such as: finding the maximum (minimum) value of the linear function∑l

i=0 ci�i subject to the linear constraint lp(�), where �i = tp− tq ∧ fi =ep∧ f ′
i =eq (ep and eq

occurs in �1) for any i (0≤ i≤ l), and checking whether it is not greater than b (smaller than a).
For checking all the paths of an SBS for a given constraint conformance specification, it is

needed to solve the problem based on a finite set of finite paths. Let G= (U,N,succ,ref ,T ) be
an SBS, and SC (�,�) be a constraint conformance specification, where �=D0→D1→·· ·→Dk .
Let �(G,SC (�,�)) be a set of the paths in G of the form

v0→v1→·· ·→vi →u0→u1→·· ·→uk →vi+1→vi+2→·· ·→vm

where ref (ui )=Di for any i (0≤ i≤k), all v j (0≤ j≤ i) and u0 are distinct, and all v j (i+1≤ j≤
m) and uk are distinct. Intuitively, a path in �(S,SC (�,�)) consists of three parts in succession:
the first and last parts are simple path segments and the middle part corresponds to �. A path
segment � in G is a prefix for �(G,SC (�,�)) if it may be extended into a path which is in
�(G,SC (�,�)), i.e. there could be a path segment �1 in G such that �→�1 is in �(G,SC (�,�)).
The following theorem indicates that if G is loop-unlimited, the constraint conformance analysis
for SC (�,�) just needs to check each path in �(G,SC (�,�)).

Theorem 2
Let G be a loop-unlimited SBS, and SC (�,�) be a constraint conformance specification. Then,
G satisfies SC (�,�) if and only if any path in �(G,SC(�,�)) satisfies SC (�,�).

The proof of this theorem is presented in Appendix B. Based on the above theorem, an algorithm
can be developed to check if an SBS G satisfies a constraint conformance specification SC (�,�)
(cf. Figure 5). The algorithm first checks if G is loop-unlimited, and assigns the result to the
boolean variable loop unlimited. Then, it traverses the state space of the nodes of G in a depth-
first manner starting from the start node 
. The path in the state space that the algorithm has so
far traversed is stored in the list variable currentpath. For each successive node node of the last
node of currentpath, the algorithm first checks whether the path segment � corresponding to the
concatenation of currentpath and node is in �(G,SC (�,�)). If yes, then it checks if � satisfies
SC(�,�) by linear programming, and returns ‘false’ when SC (�,�) is not satisfied. Then the
algorithm checks if the path segment corresponding to the concatenation of currentpath and node is
a prefix for �(G,SC (�,�)). If yes, then it adds node to the current path and starts the search from
it, otherwise searches the other successive nodes. The algorithm backtracks when all the successive
nodes of the last node of currentpath are explored. After finishing the depth-first search, the
algorithm returns ‘true’ when G is loop-unlimited, and ‘undecided’ when G is not loop-unlimited.
Notice that the algorithm can answer ‘false’ for some SBSs that are not loop-unlimited, but not
all. It is thus a decision procedure for the loop-unlimited SBSs, and a semi-decision procedure for
the non-loop-unlimited SBSs.

3.3. Bounded delay analysis

Bounded delay analysis checks whether the time separation between the two given events in any
behaviour of an SBS is not smaller or greater than a given real number, which is called the minimal
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Figure 5. Algorithm for constraint conformance analysis.

bounded delay analysis or the maximal bounded delay analysis, respectively. It is clear that for
an SBS, if the two given events are in the same node, then the problems can be reduced into a
constraint conformance analysis problem. Then the following just considers the problems in which
the two given events are in the different nodes of an SBS.

For an SBS G, a minimal (or maximal) bounded delay specification consists of two events e,
e′ and a real number d, denoted by Sm

B (e,e′,d) (or SM
B (e,e′,d)), which requires that the time

separation between e and e′ in any behaviour of G be not smaller (or greater) than d. For example,
for the ATM example given in Section 2.4, for recording the process for withdrawing money with
a camera embedded in the ATM, it is required that every process for withdrawing money takes
time which is long enough for recording, which forms a minimal bounded delay specification
Sm

B( j4,a1,20).
Let G= (U,N,succ,ref ,T ) be an SBS, Sm

B (e,e′,d) (or SM
B (e,e′,d)) be a bounded delay

specification and � be a behaviour of G of the form

(e0, t0)→ (e1, t1)→·· ·→ (ei , ti )→·· ·→ (e j , t j )→·· ·→ (en, tn)

If for any i and j (0≤ i< j ≤n) such that ei =e′, e j =e, and that ek 	=e∧ek 	=e′ for any k (i<k< j),
ti+1+ ti+2+·· ·+ t j ≥(≤)d, then � is said to satisfy Sm

B (e,e′,d) (or SM
B (e,e′,d)). A path � in G

satisfiesSm
B (e,e′,d) (or SM

B (e,e′,d)) if any �∈L(�) satisfiesSm
B (e,e′,d) (or SM

B (e,e′,d)), and
G satisfies Sm

B (e,e′,d) (or SM
B (e,e′,d)) if any path in G satisfies Sm

B (e,e′,d) (or SM
B (e,e′,d)).

Let G= (U,N,succ,ref ,T ) be an SBS, and Sm
B (e,e′,d) (or SM

B (e,e′,d)) be a bounded delay
specification. The following shows that for a finite path � in G, the satisfaction problem of � for
Sm

B(e,e′,d) (or SM
B (e,e′,d)) can be reduced into a linear programming problem. Suppose that

�=v0→v1→·· ·→vi →vi+1→·· ·→v j →v j+1→·· ·→vm (L(�) 	=∅)

where e′ occurs in ref (vi ), e occurs in ref (v j ) (0≤ i< j≤m), and e,e′ do not occur in any ref (vk)
(i<k< j). As there could be vk and vl (0≤k<l≤m) such that ref (vk)= ref (vl), by renaming, let
Ek∩El =∅ for any k, l (0≤k<l≤m). Let E= E1∪E2∪· · ·∪Em ={e0,e1, . . .,en}, and tk represent
the occurrence time of ek (0≤k≤n) in a timed event sequence in L(�). Suppose that e′ occurring
in ref (vi ) is ep and e occurring in ref (v j ) is eq (0≤ p,q≤n). Then, the problem of checking if
the time separation between e occurring in ref (v j ) and e′ occurring in re f (vi ) is not smaller (or
greater) than d in any �∈L(�) can be solved as follows: finding the minimum (or maximum)
value of the linear function tq − tp subject to the linear constraint lp(�), and checking whether it
is not smaller (or greater) than d, which can be solved by linear programming. For all the paths
in G, the solution for the satisfaction problem for Sm

B (e,e′,d) (or SM
B (e,e′,d)) needs to be based

on a finite set of the finite paths in G.
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Let G= (U,N,succ,ref ,T ) be an SBS, and Sm
B (e,e′,d) (or SM

B (e,e′,d)) be a bounded delay
specification. Let �(G,Sm

B (e,e′,d)) and �(G,SM
B (e,e′,d)) be the set of the paths in G of the

form

v0→v1→·· ·→vi →vi+1→·· ·→v j →v j+1→·· ·→vm

where

• e′ occurs in ref (vi ), e occurs in ref (v j ) (0≤ i< j≤m), and e, e′ do not occur in any ref (vk)
(i<k< j) and

• all vl (0≤ l≤ i) are distinct, all vk (i ≤k≤ j) are distinct, and all vp ( j ≤ p≤m) are distinct.

Intuitively, each path in �(G,Sm
B (e,e′,d)) (or �(G,SM

B (e,e′,d))) is separated by e′ and e
into three simple path segments in succession. For an SBS G, for a bounded delay specifica-
tion Sm

B (e,e′,d) (or SM
B (e,e′,d)), a path segment � in G is a prefix for �(G,Sm

B (e,e′,d))

(or �(G,SM
B (e,e′,d))) if it may be extended into a path which is in �(G,Sm

B (e,e′,d))

(or �(G,SM
B (e,e′,d))), i.e. there could be a path segment �1 in G such that �→�1 is in

�(G,Sm
B (e,e′,d)) (or �(G,SM

B (e,e′,d))).
For an SBS G which is loop-limited, the minimal bounded delay analysis problem, checking

G for a bounded delay specification Sm
B (e,e′,d), can be solved by checking each path

�(G,Sm
B (e,e′,d)), which is supported by the following theorem.

Theorem 3
Let G be a loop-unlimited SBS, and Sm

B (e,e′,d) be a minimal bounded delay specification.
Then, G satisfies Sm

B (e,e′,d) if and only if any path in �(G,Sm
B (e,e′,d)) satisfies Sm

B (e,e′,d).

The proof of this theorem is presented in Appendix B. Based on Theorem 3, an algorithm can
be developed to check if an SBS G satisfies a minimal bounded delay specification Sm

B (e,e′,d)

(cf. Figure 6). The structure of the algorithm is the same as the algorithm depicted in Figure 5.
As the algorithm can answer ‘false’ for some SBSs which are not loop-unlimited, but not all, it
is thus a decision procedure for the loop-unlimited SBSs, and a semi-decision procedure for the
non-loop-unlimited SBSs.

For the maximal bounded delay analysis, it needs more consideration because it is a little more
complicated than the minimal bounded delay analysis. First, it is needed to introduce the violable
nodes for the two given events in an SBS. A loop � in an SBS G is said to be positive if a
repetition of the loop may take time, i.e. there is (e0, t0)→ (e1, t1)→·· ·→ (en, tn)∈L(�) such that
t0+ t1+·· ·+ tn>0 (notice that checking if a loop is positive can be solved by linear programming).
A loop � (L(�) 	=∅) in an SBS G is said to be free of an event e if e does not occur in any node
in �. For an SBS G, a node v in G, and for two events e, e′ in G, the set �(G,v,e,e′) is defined

Figure 6. Algorithm for minimal bounded delay analysis.

Copyright q 2010 John Wiley & Sons, Ltd.
DOI: 10.1002/stvr

Softw. Test. Verif. Reliab. 2012; 22:121–143

133

For Research Only



X. LI ET AL.

Figure 7. The intuition of Theorem 4.

recursively as follows:

• any loop � (L(�) 	=∅) in G free of e and e′ whose loop-start node is v belongs to �(G,v,e,e′)
and

• for any loop in �(G,v,e,e′) of the form v0→v1→·· ·→vm , any loop � (L(�) 	=∅) in G
free of e and e′ whose loop-start node is vi (0≤ i≤m) belongs to �(G,v,e,e′).

For a node v in an SBS G and two events e and e′, if there is a positive loop in �(G,v,e,e′),
then v is said to be a violable node for e and e′.

Then, for an SBS G and for a maximal bounded delay specificationSM
B (e,e′,d), the insulating

segments are introduced in the paths in �(G,SM
B (e,e′,d)). For any �∈�(G,SM

B (e,e′,d)) of the
form

v0→v1→·· ·→vi →vi+1→·· ·→v j →v j+1→·· ·→vm

where e′ occurs in ref (vi ), e occurs in ref (v j ) (0≤ i< j ≤m), and e, e′ do not occur in any ref (vk)
(i<k< j), its insulating segment is the subsequence between e′ and e of the form vi+1→vi+2→
·· ·→v j−1. Notice that for a path �∈�(G,SM

B (e,e′,d)), if there is a node v in its insulating
segment which is violable for e and e′, then a behaviour of G, which does not satisfy SM

B (e,e′,d),
can be constructed by repeating the positive loop in �(G,v,e,e′) with finite times, which results
in the following theorem and is depicted in Figure 7.

Theorem 4
Let G be a loop-unlimited SBS, and SM

B (e,e′,d) be a maximal bounded delay specification.
Then, G satisfies SM

B (e,e′,d) if and only if for any path � in �(G,SM
B (e,e′,d)) (L(�) 	=∅), it

satisfies SM
B (e,e′,d) and there is not any node in its insulating segments which is violable for e

and e′.

The proof of this theorem is presented in Appendix B. Based on Theorem 4, an algorithm can
be developed to check if an SBS G satisfies a maximal bounded delay specification SM

B (e,e′,d)

(cf. Figure 8). The structure of the algorithm is the same as the algorithm depicted in Figure 6.
The difference from the minimal bounded delay analysis algorithm is that after a path in
�(G,SM

B (e,e′,d)) is discovered, the algorithm not only checks if it satisfies SM
B (e,e′,d), but

also checks if there is no violable node for e and e′ in its insulating segments when G is
loop-unlimited. As the algorithm can answer ‘false’ for some SBSs which are not loop-unlimited,
but not all, it is thus a decision procedure for the loop-unlimited SBSs, and a semi-decision
procedure for the non-loop-unlimited SBSs.

3.4. Complexity of algorithms

The complexity of the algorithms presented in this section consists of two parts: one is from
searching the node state space of an SBS G, and the other includes the number and size of the
linear programs to be solved in the algorithms.
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Figure 8. Algorithm for maximal bounded delay analysis.

Let G= (U,N,succ,ref ,T ) be an SBS. The numbers of the prefixes for the path sets �(G,v),
�(G,SC (�,�)), �(G,Sm

B (e,e′,d)) and �(G,SM
B (e,e′,d)) are not greater than |N |!, (|N |!)3,

(|N |!)3 and (|N |!)3, respectively, and the sizes of the longest prefixes for the path sets �(G,v),
�(G,SC (�,�)), �(G,Sm

B (e,e′,d)) and �(G,SM
B (e,e′,d)) are not greater than |N |, 3|N |, 3|N |

and 3|N |, respectively.
For the node state space search, the complexity of the algorithms is proportional to the number of

the prefixes for the path sets �(G,v), �(G,SC (�,�)), �(G,Sm
B (e,e′,d)) or �(G,SM

B (e,e′,d)),
and to the size of the longest prefix.

As in the algorithms, for each path in the set �(G,v), �(G,SC (�,�)), �(G,Sm
B (e,e′,d)) or

�(G,SM
B (e,e′,d)), at most one linear program needs to be solved, the number of linear programs

to be solved is proportional to the number of the paths in the set �(G,v), �(G,SC (�,�)),
�(G,Sm

B (e,e′,d)) or �(G,SM
B (e,e′,d)). As one event corresponds to one variable in the linear

programs, the size of the linear programs to be solved in the algorithms is proportional to the
maximal number of the events occurring in a path in the sets, and to the maximal number of the
timing constraints in a path in the sets.

The algorithms presented above are based on linear programming. The linear programming
problem has been well studied, and can be solved with a polynomial-time algorithm in general.
Thanks to the advances in computing in the past decade, linear programs in a few thousand variables
and constraints are nowadays viewed as ‘small’. Problems having tens or hundreds of thousands
of continuous variables are regularly solved. Indeed many software packages have been developed
to efficiently find solutions for linear programs, which thus supports the approach presented above
to be efficient for problems in practical use.

3.5. Analysis tool prototype

The approach presented above has been implemented into a tool prototype TASS [22, 23] for
timing analysis of SBSs. TASS can be used to check SBSs for reachability, constraint conformance
specifications and for bounded delay specifications.

TASS is implemented in Java, and reads the UML interaction models produced in Topcased
[24], which is an open-source toolkit based on Eclipse platform [25]. The linear programming
software package which is integrated in the tool is from OR-Objects of DRA Systems [26], which
is a free collection of Java classes for developing operations research, scientific and engineering
applications.
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On a Pentium M/1.50GHz/512MB PC, TASS runs comfortably for checking several SBSs
with more than 30 SDs in a few seconds. The case studies include the ATM system [7] and the
global system for mobile communication (GSM) [27], and their details are given in the TASS
website [22].

For timing analysis of the ATM specification depicted in Figure 3, TASS is used to solve the
following problems:

• Reachability analysis: To check if the node SD DispenseCash is reachable in the specifica-
tion.

• Constraint conformance analysis: As a customer may lose his patience after he gets the money,
it is required that the time that the ATM takes for the printing and bookkeeping after giving
the money be not greater than half of the time that the customer waits for withdrawing the
money (2(� j − j8)≤ jc−h5), which forms a constraint conformance specification SC (�,�)
where �=Withdraw→DispenseCash and �=2(� j − j8)≤ jc−h5.

• Bound delay analysis: As for the security consideration it is necessary to record the process
for withdrawing money by the camera embedded in the ATM, every process for withdrawing
money is required to take enough time for recording, which forms a minimal bounded delay
specification Sm

B ( j4,a1,20).

Given the various values of the parameters W , B1, B2, T1 and T2 in the specification, the tool
reports the corresponding sample results, which are depicted in Table I.

3.6. Discussion on approach generalization

The timing analysis algorithms presented above are a decision procedure for the loop-unlimited
SBSs. The reason is that both the loop-closed condition and the loop-unlimited condition are held,
which ensure that any loop in any path is time-independent of the other parts in the path. Based
on these two conditions, the timing analysis problems on an infinite path can be reduced into the
ones on a finite path by removing all the loop occurrences in the infinite path (see the theorem
proofs in Appendix B). However, if the loop-closed condition and loop-unlimited condition are
not satisfied, e.g. there are reverse constraints in an SBS which violates the loop-closed condition,
the reduction of timing analysis problems on an infinite path is not feasible. The reason is that
an infinite path in an SBS is formed by repeating loops infinite times, and the reverse constraints
make it that the infinitely many loop occurrences are time dependent on each other (as illustrated
by case (4) in Figure 2) so that those loop occurrences cannot be removed without influencing
the other parts in the path. That is why those timing analysis algorithms are only a semi-decision
procedure for general SBSs.

The timing analysis algorithms presented above are based on the synchronous composition
semantics of SBSs. The asynchronous composition semantics of SBSs corresponds to concatenating
two SDs object by object, i.e. the asynchronous concatenation of two SDs gives another SD, which
is the same as the asynchronous interpretation of the concatenation of two basic MSCs in MSC
specifications [10].

Table I. Sample results of timing analysis of the ATM specification.

Problem

Reachability SC (�,�) Sm
B ( j4,a1,20)

Case Result Time Result Time Result Time

w=4, B1=0, B2=∞, T1=0.5, T2=2 No 3.226 s ∗ ∗ ∗ ∗
w=6, B1=0.5, B2=1, T1=0.5, T2=2 Yes 63ms Yes 3.760 s No 96ms
w=6, B1=1, B2=2, T1=0.5, T2=2 Yes 47ms Yes 3.603s No 78ms
w=9, B1=2, B2=3, T1=1, T2=3 Yes 47ms Yes 3.526 s Yes 3.588 s

∗The verification problem disappears because the node is unreachable.
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Definition 6
Let G= (U,N,succ,ref ,T ) be an SBS, and D1= (O1, E1,M1, L1,V1,C1) and D2= (O2, E2,M2,

L2,V2,C2) be SDs in U (E1∩E2=∅). The asynchronous concatenation of D1 and D2, denoted
by D1◦D2, is an SD D= (O, E,M, L,V ,C) which is defined by

• O=O1∪O2, E= E1∪E2, M=M1∪M2.
• For e∈ E1, L(e)= L1(e), and for e∈ E2, L(e)= L2(e).
• V =V1∪V2∪V3∪V4 where

V3={(e1,e2) | e1∈ E1,e2∈ E2, L(e1)= L(e2), e2 is a sending event}

V4=

⎧⎪⎨
⎪⎩(e1,e2)

∣∣∣∣∣∣∣
e1∈ E1,e2∈ E2, L(e1)= L(e2)

e1,e2 are reveiving events whose corresponding

sending events appear on mutual object column

⎫⎪⎬
⎪⎭ .

• C=C1∪C2∪C3∪C4 where C3={a≤e−e′≤b | a≤e−e′ ≤b∈T,e′ ∈ E1,e∈ E2} and C4=
{�2−�1≤0 | �2 is the start event of D2, �1 is the end event of D1}.

According to the above definition, every path in an SBS corresponds to an SD, and thus the
behaviour of an SBS is interpreted by the behaviour of SDs. It follows that for a finite path in
an SBS, the reachability analysis, constraint conformance analysis and bounded delay analysis
problems can be solved by linear programming. However, for an infinite path in an SBS, the
reduction of the timing analysis problems cannot be implemented by simply removing all the loop
occurrences in the path as shown in the theorem proofs in Appendix B. The reason is that the
asynchronous composition semantics makes that all SDs in the path overlap in time with each other.
Therefore, the algorithms presented above are simply generalized as a semi-decision procedure
for timing analysis of an SBS G with the asynchronous composition semantics, which investigate
all the paths in the sets �(G,v), �(G,SC (�,�)), �(G,Sm

B(e,e′,d)) and �(G,SM
B (e,e′,d)), and

have been implemented into TASS.
Drawing lessons from bound model checking [28], which is to search for a counterexample in

the model executions whose length is bounded by some integer k, the approach presented above
can be generalized to perform bounded timing analysis of SBSs. As the timing analysis problems
for a finite path in an SBS can be solved by linear programming, an algorithm can be developed to
traverse the structure of the SBS directly in a depth-first manner and check all the potential paths
one by one whose lengths are constrained by a threshold. This bounded timing analysis function
has been supported by TASS.

4. RELATED WORK AND CONCLUSION

This paper presents a linear programming-based approach to timing analysis of SBSs expressed
by UML interaction models. With more general and expressive timing constraints in UML SDs,
the algorithms in the approach solve the problems of the reachability, constraint conformance
and bounded delay analysis of SBSs. These algorithms form a decision procedure for the loop-
unlimited SBSs where any loop in any path is time-independent of the other parts in the path, and
a semi-decision procedure for general SBSs.

To the authors’ knowledge, all the literature on timing analysis of SBSs are only about timing
consistency. By using temporal constraint network techniques, Alur et al. [6] reduce the problem
of checking basic MSCs with delay intervals for timing consistency into computing negative cost
cycles and shortest distances in a weighted directed graph. The same techniques are used by
Seemann and von Gudenberg [8] for timing consistency analysis of a class of UML SDs in which all
timing constraints are of the form a≤e1−e2≤b. The problem of checking MSC specifications for
timing consistency is considered by Ben-Abdallah and Leue [7], which checks if every execution
scenario described by an MSC specification is timing consistent. But in that work only a sufficient
condition for timing consistency is given, which is not enough to develop an algorithm to analyse
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MSC specifications for timing consistency. Li and Lilius [17] give a complete solution for checking
the compositions of UML SDs for timing consistency. They also solve the problem of checking
compositions of UML SDs for timing inconsistency [18], which checks if any execution scenario
described by a composition of UML SDs is timing consistent.

Ladin and Leue [29] have interpreted MSC specifications as global state automata. Theoreti-
cally, the problems considered in this paper can thus be solved by transforming the SBSs into
timed automata [30], and then checking the timed automata for the corresponding properties. In
that approach, in addition to the high complexity of checking timed automata themselves, the
transformation will generate the state space altogether, which introduces considerable complexity.
For example, the bounded delay analysis has been considered by Courcoubetis and Yannakakis
[19] for timed automata, but the algorithm complexity is very high, and to the authors’ knowledge
no tool has been implemented so far. A case study is investigated by Firley et al. [9] for UML
SD-based verification in which a simple SD is transformed in a set of timed automata and then
checked for a timed automata-based implementation by a model checking [31] tool for timed
automata. However, as shown in the case study, a lot of clocks are introduced for describing timing
constraints enforced on SDs, which results in an exponential increment on the complexity of the
algorithms for checking timed automata.

Compared to the timed automata-based approach, the advantage of the approach presented in
this paper includes two aspects. On the one hand, the approach in this paper analyses directly
SBSs themselves by investigating only the node state spaces of SBSs which are much smaller than
the corresponding timed state spaces of timed automata, and reduces the timing analysis problems
into linear programming problems which can be solved with efficient algorithms. It thus avoids
the generation of the state space altogether and also the involved complexity. On the other hand,
the approach in this paper considers more general and expressive timing constraints, which can be
used to describe the relations among multiple time separations between events. It is well known
that for a clock constraint in a timed automaton, its corresponding timing constraint is just related
to the time separation between two events. For describing timing constraints about the relations
among multiple time separations between events, it is necessary to compare multiple clocks in a
timed automaton, which will result in the model checking problems that are undecidable [30].

This paper is mainly focused on timing analysis of SBSs with the synchronous composition
semantics. For SBSs with the asynchronous composition semantics, the timing analysis problems
are more difficult. Alur and Yannakakis [10] have shown that the corresponding model checking
problem of MSC specifications for temporal requirements is undecidable. This paper only gives
a simple discussion on the problems, and a more deep and complete investigation is definitely
necessary.

APPENDIX A: CHECKING IF AN SBS IS LOOP-UNLIMITED

Let G= (U,N,succ,ref ,T ) be an SBS. According to the definition of loop-unlimited condition,
for checking if the loop-unlimited conditions are held for G, it is needed to traverse all the path
segments in G of the form

v0→v1→·· ·→vi−1→vi →vi+1→·· ·→vn

where (
,v0)∈ succ, all v j (0≤ j≤ i) are distinct, all vk (i<k≤n) are distinct, a≤e−e′ ≤b∈T ,
e′ occurs in ref (vi ), e occurs in re f (vn) and e,e′ do not occur in any vl (i<l<n), which are called
checked path segments for loop-unlimited condition. According to the definition of loop-closed
condition, for checking if the loop-closed conditions are held for G, it is needed to traverse all the
path segments in G of the form

v0→v1→·· ·→vi−1→vi →vi+1→·· ·→vn

where (
,v0)∈ succ, vi (1≤ i≤n) is a loop-start node, all v j (0≤ j≤ i) are distinct and all vk
(i<k≤n) are distinct, which are called checked path segments for loop-closed condition. A path
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Figure A1. Algorithm to check if an SBS is loop-unlimited.

segment � is a prefix for loop-unlimited condition (loop-closed condition) if it may be extended into
a checked path segment for loop-unlimited condition (loop-closed condition), i.e. there could be a
path segment �1 such that �→�1 becomes a checked path segment for loop-unlimited condition
(loop-closed condition).

The following presents an algorithm to check if an SBS G is loop-unlimited (cf. Figure A1).
The algorithm is based on the depth-first search method. The main data structure in the algorithm
includes a list currentpath of nodes which is used to record the current paths, and a set loopset
of loops which records all the loops in G. The algorithm consists of three main steps. First, by a
depth-first search the algorithm finds out all loops in G, and checks if there is any reverse constraint
for any loop in G. Then it traverses all the checked path segments for loop-unlimited condition
in G to check if the loop-unlimited condition is satisfied. Finally, the algorithm traverses all the
checked path segments for loop-closed condition in G to check if the loop-closed condition is
held. The complexity of the algorithm is proportional to the number of the prefixes for loop-closed
condition (loop-unlimited condition), and to the size of the longest prefix for loop-closed condition
(loop-unlimited condition) in G.
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APPENDIX B: PROOFS OF THEOREMS

Theorem 1
Let G= (U,N,succ,ref ,T ) be a loop-unlimited SBS, and v a node in N . Then, v is reachable if
and only if there is a path �∈�(G,v) such that L(�) 	=∅.
Proof
It is clear that one-half of the claim holds: if there is �∈�(G,v) such that L(�) 	=∅, then v is
reachable. The other half of the claim can be proved as follows. Suppose v is reachable. Then
there is a path � of the form v0→v1→·· ·→vi →·· ·→vm (0≤ i≤m) such that vi =v, and a
timed event sequence �∈L(�) of the form �0→�1→·· ·→�i →·· ·→�m where each � j (0≤
j ≤m)∈L(re f (v j )). The following proves that there is a path �′ ∈�(G,v) such that L(�′) 	=∅,
which results in the claim holds. If all v j (0≤ l≤ i) are distinct and all vk (i ≤k≤m) are distinct,
then �∈�(G,v) and the claim holds. Otherwise, there are vp and vq (0≤ p<q≤ i) such that
vp →vp+1→·· ·→vq is loop (vp =vq), and/or there are vp′ and vq ′ (i ≤ p′<q ′ ≤m) such that the
subsequence vp′ →vp+1′ →· · ·→vq ′ consists of multiple occurrences of a loop (vp′ is the loop-
start node, and vp′ =vq ′). As G satisfies the loop-closed condition and the loop-unlimited condition,
any timing constraint does not combine any two nodes that are inside and outside a loop, respec-
tively, and is not enforced on the repetition of any loop, which indicates that the loop vp →vp+1
→·· ·→vq and vp′ →vp+1′ →· · ·→vq ′ are time-independent of the other parts in �. It follows that
by removing the subsequences �p →�p+1→·· ·→�q−1 and/or �p+1′ →�p+2′ →· · ·→�q ′ from
�, a timed event sequence �R which is a behaviour of G can be obtained, and by removing the
subsequences vp →vp+1→·· ·→vq−1 and vp+1′ →vp+2′ →· · ·→vq ′ from �, a path �R such that
�R ∈L(�R) can be obtained. By applying the above step repeatedly, a path �′ can be constructed
from �, which is of the form v′

1→v′
2→·· ·→v′

j →vi →v′
j+1 · · ·→v′

k such that L(�′) 	=∅, all v′
l

(0≤ l≤ j) and vi are distinct, and that all v′
l ( j<l≤k) and vi are distinct. It follows that �′ is in

�(G,v), from which the claim holds. �

Theorem 2
Let G be a loop-unlimited SBS, and SC (�,�) be a constraint conformance specification. Then,
G satisfies SC (�,�) if and only if any path in �(G,SC(�,�)) satisfies SC (�,�).

Proof
It is clear that one half of the claim holds: if G satisfies SC(�,�), then any path in �(G,SC (�,�))
satisfies SC (�,�). The other half of the claim can be proved as follows. Suppose that any path
in �(G,SC (�,�)) satisfies SC (�,�), and that there is a path � in G such that �∈L(�) does not
satisfy SC (�,�). Let �=D0→D1→·· ·→Dk . Without losing generality, suppose that � is of the
form

v0→v1→·· ·→vi−1→vi →vi+1→·· ·→vi+k →vi+k+1→·· ·→vm

where ref (vi+ j)=Dj for any j (0≤ j≤k), and � is of the form

�0→�1→·· ·→�i−1→�i →�i+1→·· ·→�i+k →�i+k+1→·· ·→�m

where � j ∈L(ref (v j)) for any j (0≤ j≤m), and � is not satisfied by vi →vi+1→·· ·→vi+k . The
following shows that a path �′ ∈�(G,SC (�,�)) can be constructed such that there is a timed event
sequence �′ ∈L(�′) which contains �i →�i+1→·· ·→�i+k, which results in a contradiction and
implies that the claim holds. As � 	∈�(S,SC (�,�)),

• there are vp and vq (0≤ p<q≤ i) such that vp →vp+1→·· ·→vq is loop (vp =vq) and/or
• there are vp′ and vq ′ (i+k≤ p′<q ′ ≤m) such that vp′ →vp+1′ →· · ·→vq ′ is loop (vp′ =vq ′).

As G satisfies the loop-closed condition and the loop-unlimited condition, any timing
constraint does not combine any two nodes that are inside and outside a loop, respectively, and is
not enforced on the repetition of any loop, which indicates that the loop vp→vp+1→·· ·→vq and
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vp′→vp+1′→· · ·→vq ′ are time-independent of the other parts in �. It follows that by removing
the subsequences �p →�p+1→·· ·→�q−1 and �p+1′ →�p+2′ → . . .→�q ′ from �, a timed event
sequence �R which is a behaviour of G can be obtained; and by removing the subsequences
vp →vp+1→·· ·→vq−1 and vp+1′ →vp+2′ →· · ·→vq ′ from �, a path �R such that �R ∈L(�R)

can be obtained. By applying the above step repeatedly, a path �′ ∈�(G,SC (�,�)) can be
constructed from � such that there is �′ ∈L(�′) not satisfying �, which results in a contradiction
and implies that the claim holds. �

Theorem 3
Let G be a loop-unlimited SBS, and Sm

B (e,e′,d) be a minimal bounded delay specification. Then,
G satisfies Sm

B (e,e′,d) if and only if any path in �(G,Sm
B (e,e′,d)) satisfies Sm

B (e,e′,d).

Proof
It is clear that one-half of the claim holds: if G satisfies Sm

B (e,e′,d), then any path in
�(G,Sm

B (e,e′,d)) satisfies Sm
B (e,e′,d). The other-half of the claim can be proved as follows.

Suppose that any path in �(G,Sm
B (e,e′,d)) satisfies Sm

B (e,e′,d), and there is a path � of G such
that there is a behaviour � of G in L(�), which does not satisfy Sm

B (e,e′,d). Without losing
generality, suppose that � is of the form v0→v1→·· ·→vi →vi+1→·· ·→v j →v j+1→·· ·→vm
where e′ occurs in ref (vi ), e occurs in ref (v j ) (0≤ i< j ≤m), and e and e′ do not occur in any
ref (vk) (i<k< j); � is of the form �0→�1→·· ·→�i →�i+1→·· ·→� j →� j+1→·· ·→�m ,
where �k ∈L(vk) for any k (0≤k≤m); and the separation in time between e occurring in � j and
e′ occurring in �i is smaller than d. The following shows that a path �′ ∈�(G,Sm

B (e,e′,d)) can be
constructed such that there is a timed event sequence �′ ∈L(�′)which does not satisfySm

B (e,e′,d),
which results in a contradiction and implies that the claim holds. As � 	∈�(G,Sm

B (e,e′,d)),

• there are vp and vq (0≤ p<q≤ i) such that vp →vp+1→·· ·→vq is loop (vp =vq),
• there are vp′ and vq ′ (i+1≤ p′<q ′ ≤ j−1) such that vp′ →vp+1′ →· · ·→vq ′ is loop (vp′ =

vq ′) and/or
• there are vp′′ and vq ′′ ( j≤ p′′<q ′′ ≤m) such that vp′′ →vp+1′′ →· · ·→vq ′′ is loop (vp′′ =vq ′′).

As G satisfies the loop-closed condition and the loop-unlimited condition, any timing constraint
does not combine any two nodes that are inside and outside a loop, respectively, and is free for the
repetition of any loop, which indicates that the loop vp →vp+1→·· ·→vq , vp′ →vp+1′→· · ·→vq ′
and vp′′ →vp+1′′ →· · ·→vq ′′ are time-independent of the other parts in �. It follows that by
removing the subsequences �p →�p+1→·· ·→�q−1, �p+1′ →�p+2′ →· · ·→�q ′ and �p+1′′ →
�p+2′′ →· · ·→�q ′′ from �, a timed event sequence �R can be obtained, which is a behaviour of G
and such that in �R the time separation between e occurring in � j and e′ occurring in �i is smaller
than d; and by removing the subsequences vp →vp+1→·· ·→vq−1, vp+1′ →vp+2′ →· · ·→vq ′
and vp+1′′ →vp+2′′ →· · ·→vq ′′ from �, a path �R such that �R ∈L(�R) can be obtained. By
applying the above step repeatedly, a path �′ ∈�(G,Sm

B (e,e′,d)) can be constructed from � such
that there is a timed event sequence �′ ∈L(�′) which does not satisfy Sm

B (e,e′,d), which results
in a contradiction and implies that the claim holds. �

Theorem 4
Let G be a loop-unlimited SBS, and SM

B (e,e′,d) be a maximal bounded delay specification.
Then, G satisfies SM

B (e,e′,d) if and only if for any path � in �(G,SM
B (e,e′,d)) (L(�) 	=∅), it

satisfies SM
B (e,e′,d) and there is no node in its insulating segments which is violable for e and e′.

Proof
It is clear that one half of the claim holds: if G satisfies SM

B (e,e′,d), then for any path � in
�(G,SM

B (e,e′,d)) (L(�) 	=∅), it satisfies SM
B (e,e′,d) and there is no node in its insulating

segments which is violable for e and e′. The reason is that if there is a path �∈�(G,SM
B (e,e′,d))

(L(�) 	=∅) such that there is a node v in its insulating segments which is violable for e and e′, then
from a timed event sequence in L(�), a behaviour of G that does not satisfy SM

B (e,e′,d) can be
constructed by repeating the positive loop in �(G,v,e,e′) with finite times. The other half of the
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claim can be proved as follows. Suppose that for any path � in �(G,SM
B (e,e′,d)) (L(�) 	=∅), it

satisfies SM
B (e,e′,d) and there is no node in its insulating segments which is violable for e and e′,

and that there is a path �′ in G such that �′ ∈L(�′) does not satisfy SM
B (e,e′,d). Without losing

generality, suppose that �′ is of the form v0→v1→·· ·→vi →vi+1→·· ·→v j →v j+1→·· ·→vm
where e′ occurs in ref (vi ), e occurs in ref (v j ) (0≤ i< j ≤m), and e and e′ do not occur in any
ref (vk) (i<k< j); �′ is of the form

�0→�1→·· ·→�i →�i+1→·· ·→� j →� j+1→·· ·→�m

where �k ∈L(vk) for any k (0≤k≤m); and the separation in time between e occurring in � j and
e′ occurring in �i is greater than d. The following shows that a path �′′ ∈�(S,SM

B (e,e′,d)) can
be constructed such that either there is �′′ ∈L(�′′) which does not satisfy SM

B (e,e′,d) or there is
a violable node for e and e′ in the insulating segment of �′′, which results in a contradiction and
implies that the claim holds. As �′ 	∈�(G,SM

B (e,e′,d)),

• there are vp and vq (0≤ p<q≤ i) such that vp →vp+1→·· ·→vq is loop (vp =vq),
• there are vp′ and vq ′ (i+1≤ p′<q ′ ≤ j−1) such that vp′ →vp+1′ →· · ·→vq ′ is loop (vp′ =

vq ′) and/or
• there are vp′′ and vq ′′ ( j≤ p′′<q ′′ ≤m) such that vp′′ →vp+1′′ →· · ·→vq ′′ is loop (vp′′ =vq ′′).

As G satisfies the loop-closed condition and the loop-unlimited condition, any timing constraint
does not combine any two nodes that are inside and outside a loop, respectively, and is free for the
repetition of any loop, which indicates that the loop vp →vp+1→·· ·→vq , vp′ →vp+1′ →· · ·→vq ′
and vp′′ →vp+1′′ →· · ·→vq ′′ are time-independent of the other parts in �′. It follows that if the loop
vp′ →vp+1′ →· · ·→vq ′ is not positive, then by removing the subsequences �p →�p+1→·· ·→
�q−1, �p+1′ →�p+2′ →· · ·→�q ′ and �p+1′′ →�p+2′′ →· · ·→�q ′′ from �′, a timed event sequence
�′
R can be obtained, which is a behaviour of G and such that in �′

R the time separation between
e occurring in � j and e′ occurring in �i is greater than d; and by removing the subsequences
vp →vp+1→·· ·→vq−1, vp+1′ →vp+2′ →· · ·→vq ′ and vp+1′′ →vp+2′′ →· · ·→vq ′′ from �′, a
path �′

R such that �′
R ∈L(�′

R) can be obtained. By applying the above step repeatedly, a path
�′′ ∈�(S,SM

B (e,e′,d)) can be obtained from �′ such that either there is �′′ ∈L(�′′), which does
not satisfy SM

B (e,e′,d) or there is a violable node for e and e′ in the insulating segment of �′′,
which results in a contradiction and implies that the claim holds. �
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