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SUMMARY

ch as UML interaction models, offer an intuitive and visual way
playing an increasingly important role in the design of software
systems This paper presents a ap a¢h to timing analysis of SBSs expressed by UML interaction

Scenario based speciﬁcation SBSs

delay analysis problems, which redud 8se p lems into hnear programs. With the synchronous
interpretation of the SD compositions,
procedure for a class of SBSs where any 100 yath is time-independent of the other parts in the

eafor general SBSs with both the synchronous
and asynchronous composition semantics. The approach pports bounded timing analysis of SBSs,
e, and performs the timing analysis for
each finite path by linear programming. A tool proto developed to support this approach.
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1. INTRODUCTION

Scenarios are widely used as a requirements technique since they describe concrete inter:
are, therefore, easy for customers and domain experts to use. Scenario-based specifica
such as message sequence charts (MSCs) [1] and UML interaction models [2, 3], offer an j
and visual way of describing design requirements. They are playing an increasingly impgffant
role in the design of software systems. Such specifications focus on message exchanges amon
communicating entities in distributed software systems. This paper considers timing analy§i
SBSs modelled by UML interaction models.
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122 X. LI ET AL.

UML sequence diagrams (SDs) form a class of important UML interaction models. Each of
them describes an interaction, which is a set of messages exchanged among objects within a
collaboration to effect a desired operation or result, and its focus is on the temporal order of the
message flow [2, 3]. For example, a UML SD is depicted in Figure 1(a), which describes a scenario
about the well-known example of the railroad crossing system in [4, 5]. This system operates a
gate at a railroad crossing, in which there are a railroad crossing monitor and a gate controller.
Whenghe monitor detects that a train is arriving, it sends a message to the controller to move the

and loops. For describing multiple scenarios and complete system specifications,
o use a simplified version of UML2.0 interaction overview diagrams [3], which

iming constraints in MSCs and UML SDs, which are timers [1],
arks [2, 3, 8, 9]. All of those mechanisms are suitable to describe
simple timing constraints nly related to the time separation between two events. For
example, for the SD depicte re 1(a), the simple timing constraints such as the time
separation between the sending, ev nd e13 that is not smaller than 100 time units can be
described by timers, interval delays or{timihg marks. However, in practical problems there are
often the requirements to describe a ‘€lassfof more complex timing constraints which are about the
relation among multiple time separati events. For example, in the scenario about the
railroad crossing system depicted in Figurgl 1 e gate is required to stay for a certain period

interval delays [6, 7]

within certain tolerance intervals, e.g. it is jred t om the time one train is arriving to the
time the next train is arriving, the gate stays op least half of this period. It means that
the time separation between the sending event e hegdSending event ey is not greater than
two times the time separation between the sending event£ys and the receiving event ej;. Clearly,
the existing mechanisms in MSCs and UML SDs cann®t de eSuch a timing constraint. This

paper introduces a more expressive mechanism in UML SD§ to d
considers checking SBSs with more complex timing constrat
Like any other aspect of the specification and design proces
and their analysis is important. Alur ef al. [6] investigate a variety of antic interpretations for
MSCs, and develop an analyser for basic MSCs. Alur and Yannakaki i prehensive
study of model checking of MSCs for temporal requirements. Holzmann [11— the tool

iming constraints, and
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Figure 1. UML interaction models: (a) a sequence diagram and (b) an interaction overview diagram.
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SPIN which supports the design of MSCs, and allows for the creation, debugging, organization and
maintenance of MSCs. Peled et al. [14, 15] present a tool for searching a hierarchical MSC design
for a path that matches a given specification. For SBSs with timing constraints used to describe
real-time systems, the verification problems are more difficult and complicated. Some algorithms
are presented by Alur et al. [6] for analysing basic MSCs with interval delays. A solution is
given to the timed analogue of scenario matching by Akshay et al. [16]. Timing analysis has been
extended to check UML SDs and MSC specifications [7, 17, 18]. However, all those works are

t of properties about the accumulated delays on the traces of systems. For example,
ten is a need to check if all traces of a system satisfy that the separation in time between
nts is within a given time interval, which is called bounded delay analysis. This
gen considered for timed automata by Courcoubetis and Yannakakis [19], and for a
i et, Hulgaard and Burns [20].

This p serits an approach to timing analysis of SBSs expressed by UML interaction
models. The @pproach givegysolution to the reachability analysis, constraint conformance analysis
and bounded delay anal

lass of SBSs where any loop in any path is time-independent of
rithms are also a semi-decision procedure for general SBSs
onous composition semantics. The approach also supports
bounded timing analysis of S chginvestigates all the paths in the bound limit one by one,
and performs the timing analysis Tor each fiflite path by linear programming. A tool prototype has
been developed to support this appr@ach!

with both the synchronous‘an

The paper is organized as follows. section introduces SBSs expressed by UML
interaction models. Section 3 gives the lingar mming-based approach to timing analysis of
SBSs. The last section discusses the relate k an: tains some conclusions.

2. SCENARIO-BASED S IC

In this paper, UML interaction models are used as SBSs, ich co of UML2.0 interaction
overview diagrams and SDs.

2.1. UML sequence diagrams and timing constraints

time, and the horizontal dimension represents different objects. Each object is as
and the messages are shown as horizontal, labelled arrows.

This paper considers more general and expressive timing constraints in SDs. In an S
the message sending and message receiving. Here event names are used to represent the oc@urrefice
time of events, and linear inequalities on event names are used to represent the timing constfaints.
A timing constraint is of the form

a<coleg—ey)+ciler—e)) +---+cnlen—e,) <b

where ¢; and e; (0<i<n) are event names which represent the occurrence time of ¢; and el’. s
a, b and cg,cy,...,c, are real numbers (b may be oo). For example, for the scenario about the
railroad crossing system depicted in Figure 1(a), it is required that when a train has passed, a new
train should come after at least 100 time units, which can be represented by the timing constraint
100 <e13—e1 <oo. Compared to timers, interval delays and timing marks, the timing constraints
considered here can be used to describe more complex timing requirements in practical use. For
example, for the scenario about the railroad crossing system depicted in Figure 1(a), the timing
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124 X. LI ET AL.

constraint 0 <2(ej3 —ej2) — (€13 —e1) <00 specifies the requirement that from the time one train is
arriving to the time the next train is arriving, the gate must stay open for at least half of this period.
Clearly, such a timing requirement is about the relation between two time separations between
events (one is the time separation between ej3 and e]>, and the other is the time separation between
e13 and ep), and none of the timers, interval delays and timing marks can be used to describe
such a timing requirement since they are only suitable for describing the simple timing constraints
related,to the time separation between two events.

antics of an SD consists of the sequences (traces) of the message sending (receiving)
rder of events (i.e. message sending or receiving) in a trace is deduced from the visual
rder determined by the flow of control within each object in the SD along with a causal

a sending event.
e FIFO order: T
column, and the corr
where e is above ¢/

vent e appears above the receiving event ¢’ on the same object
sending events e; and e] appear on a mutual object column
For analysing SBSs, SDs afg, formalized as follows:

Definition 1
An SD D isatuple D=(0,E, M, L3

O is a finite set of objects.
e E is a finite set of events which corresp
two special events ¢ and @ in E which repr

ing and receiving a message. There are
and end of D, respectively.
ir (e,e’) where e and ¢’ € E are

e L:E— O is a labelling function which maps each eve
is the sender (receiver) whereas e corresponds to sendi
V is a finite set whose elements are a pair (e, ¢’) (e and €
if e<e’ then (e,e’) € V. For any event e € E (e #eNe #w),
e C is a finite set of timing constraints.

behaviour of SDs. An event sequence is of the form ey— ey — ---— ey,
ei+1 takes place after ¢; for any i (0<i<m—1).

Definition 2
Let D=(0O,E,M,L,V,C) be an SD. An event sequence ey— ¢] — ---—> ¢y, IS a trace
and only if the following conditions hold:

e ¢o=c¢and ¢, =w.

e ¢y, ¢€1,...,ey is a permutation of the events in E.

® e, eq,...,ey satisfy the visual order defined by V, i.e. for any ¢; and e}, if (e;,e;) €V, then
O<i<j<m.

The timed event sequences are used to represent the behaviour of SDs. A timed event sequence
is of the form (eg, ty) — (e1, t1) = ---— (em, t) Where e; is an event and #; is a non-negative real
number for any i (0<i<m), which describes that eg takes place ty time units after the scenario
starts, then e takes place ¢ time units after eq takes place, so on and so forth, and finally e, takes
place t,, time units after e, takes place. It follows that for any i (0 <i <m), the occurrence time

of ¢; is lezotj‘

Copyright © 2010 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2012; 22:121-143
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Definition 3
Let D=(O,E,M,L,V,C) be an SD. A timed event sequence

o= {(ep, o) = (e1,11) = ---—> (em, tm)

is a behaviour of D if and only if the following conditions hold:

° e|— ---—> e, is a trace of D.
to=Wyand 19,1, ..., 1, satisfy the timing constraints in C, i.e.
r any timing constraint a <) /_¢;(fi— f/) <bin C, a <codo+c101+---+c,0, <b where
foPeachi (0<i<n),if fi=e; and f/=e, then
k1 Fla+- -+ if j>k
—(tjr1+tjp2+-+1) if j<k

imed event sequences representing the behaviour of D.

2.2. UML2.0 interaction g¥ervi rams and SBSs

An SD considered in this pap@r d es_exactly one scenario. For describing multiple scenarios
and complete system specificati itis fiecegsary to use a simplified version of UML2.0 interaction
overview diagrams [3], which focufes the overview of the flow of control where the nodes

are SDs. An interaction overview dia d composition of a set of SDs, which describes
potentially iterating and branching system .

This paper considers timing analysis of§SBSSY A S under analysis is represented by an
interaction overview diagram, which is define follows:

Definition 4
An SBS G is a tuple G = (U, N, succ, ref, T) where

e U is a finite set of SDs satisfying the following: for D =40 M,L,V,C)and D' =
(O',E',M',L',V',C")in U, if D# D’ then ENE’'=0.

e N={T}UIU{Ll} is a finite set of nodes partitioned into thr singleton-set of start
node, the set of intermediate nodes and the singleton-set of end , respectively.

e succC N x N is the relation which reflects the connectivity of th€ nodes i is required
that any node in N is reachable from the start node).

e ref: I+ U is a function that maps each intermediate node to an SD in

e T is a finite set of timing constraints of the form a <e — ¢’ <b where ¢ and different
SDs in U and 0<a <b (b may be co), which are used to describe the timing i
enforced between two events in different SDs in U.

For an SBS G=(U, N, succ,ref, T), a path segment is a sequence of intermedial
Vo—> V] —> - - - — Uy satisfying (vi_1, v;) € succ for any i (0<i <n). A path is a path segment vy v
— ---— v, such that (T, vg) € succ and (v,, L) € succ.

The timing constraints in SBSs are interpreted by local semantics: select one path at one tim
analyse its timing requirements independently of other paths that may branch out of the selected
one. In UML2.0, interaction overview diagrams are defined as specializations of activity diagrams
in a way that promotes overview of the control flow [3]. It is quite in accord with the synchronous
mode interpreting the concatenation of two SDs in an SBS: when moving one node to the other,
all events in the previous SD finish before any event in the following SD occurs, which is the same
as the synchronous interpretation of the concatenation of two basic MSCs in MSC specifications
[10]. With this synchronous composition semantics, the behaviour of an SBS G are defined as the
timed event sequences which are the concatenation of the timed event sequences representing the
behaviour of the SDs which make up G.

Copyright © 2010 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2012; 22:121-143
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Definition 5
Let G= (U, N, succ, ref, T) be an SBS. For any path segment

P=V)—> V]l —> " —> Uy

in G, let Z(p) be the set of all timed event sequences of the form (eq, ty) — (e, 1) — - -— (en, tn)
satisfying the following condition:

eoNg) —> (e1, 1) —> -++— (ey, ty) =060 —> 61 — - -+ —> G, Where o; is a behaviour of ref(v;)
or e i (0<i<m) and
. to)—>(e1 1) — ---— (ey, ty) satisfies any timing constraints in 7', i.e. foranya < f — ' <
any i, j (0<i<j<n) such that f'=e;, f=e;, and that f #ex A f’ e for any k
1 <tit1+tiyo+---+1; <b.

ce ¢ is a behaviour of G if and only if there is a path p in G such that
O

ment in G such that (T, vg) € succ. If there is v; (0<i <n)
such that (v,, v;) €succ, the ence v; — vj4]— ---—> U, —>v; is a loop, and v; is the
loop-start node of the loop.

For an SBS G = (U N, succ,ref, ), vo — vl — ---— v, be a path segment. For a timing
constraint a<e—e’<bin T, if e oc "occurs in ref(v;) (0<j<i<n) and e, e’ do
not occur in any ref (vg) (j<k<i), the constralnt is said to combine nodes v; and v;
in p (in this case, the occurrence time of e the occurrence time of ¢’ in ref (v;) must
satisfy this timing constralnt) Figure 2 show Tl When a timing constraint a <e—e’' <b
combines two nodes v and v’ in a path segment

This paper develops algorithms for timing an . These algorithms are a semi-
decision procedure for general SBSs, and a decision dure a class of SBSs which satisfy
the loop-closed condition and the loop-unlimited condition. an 8BS & = (U, N, succ, ref,T),
the loop-closed condition requires that in any path of G any

any two nodes which are inside and outside of a loop, respectt
(outside) of a loop, and the other node is outside (inside) of the #0p, wMich is corresponding to

e for any loop vg— v]— ---— vy, if e occurs in ref (v;) (0<i<m) and occur in
any ref(v;) (0<j<i), then there is no simple path segment v, — v}

e for any loop vg—> vi —> ---—> vy, if ¢’ occurs in ref(v;) (0<i <m) and e d8 in
any ref(v;) (i<j<m), then there is no simple path segment v,— v]—---— uch ghat
v, =0, e occurs in ref (v},), and that e’ does not occur in any ref (v;) (0<k <n).

For an SBS G = (U, N, succ, ref, T), the loop-unlimited condition requires that no timing consffaint
be enforced on the repetition of any loop (case (3) in Figure 2 is not allowed), i.e. any timin,
constraint in T of the form a <e—¢’ <b must satisfy:

e for any loop vg— v{— ---—> v, where e and ¢ do not occur in any ref(v;) (0<i<m),
there is no simple path segment v, — v} — ---— v, such that there is v; (0<k<n) satisfying
v, =10, e occurs in ref (v},), ¢’ occurs in ref (v(), and that e and e’ do not occur in any ref (v})
(O<i<n).

An SBS is said to be loop-unlimited if it satisfies both the loop-closed condition and loop-unlimited
condition. The purpose for enforcing the loop-closed condition and loop-unlimited condition on
an SBS is such that any loop in any path is time-independent of the other parts in the path, and
this restriction is reasonable in many cases.

Copyright © 2010 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2012; 22:121-143
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******************************************

*********************************************************

@ X ®) v

ﬁgure 2. Loop-closed condition and loop-unlimited condition.

Usually, for a loop i @ its repetition will take time. It follows that if a timing constraint
0 oop such as case (3) in Figure 2, the repetition of the loop will

be restricted to a finite n imes. In this case, the loop can be unfolded with the finite
number of times, and theW th constraint can be removed from the SBS. Therefore, the
loop-unlimited condition is acgept in_many cases.

the loop-closed condition is that there is a reverse
v, be a loop in a path in G. A timing constraint
o if e occurs in ¢ prior to ¢, i.e. e occurs
n a path p which contains the repetition of

ines two nodes in conjunction with two
ime dependent of the latter occurrence
uthers’ opinion, the reverse constraints

In an SBS G, a common ca
constraint for a loop. Let g=v9—

in ref(v;) and e’ occurs in ref(v;) (0<i
0, the reverse constraint a <e—e’' <b ess

of ¢, which is illustrated by case (4) in Figure 2%
are seldom adopted in practical use because their ot s're barely perceptible in terms of
the structure of SBSs. Notice that the loop-closed condiion al timing constraint to combine
two nodes in the same loop, such as case (5) in Figure 2. Sugl’a con§traigfis in common use, and
its denotation is perceptible in terms of the structure of SB

An efficient algorithm can be developed to check if an S 1s lo@p-unlimited, which is
described in Appendix A.

2.4. An automatic teller machine example

For illustrating the approach presented in this paper, the automatic teller mac
[7] serves as an example. Its specification is depicted in Figure 3, which is a 100

The ATM system consists of the three components: potential customers (User)
controller (ATM) and a host computer in a bank (Bank). Initially, the ATM contro
receive the customer’s bank card and requests a PIN in [0, 2] s (at least 0 but no more than
receiving a card (0<b; —ap <2, SDs StartTrans and GetPin). Then, it either receives a regest
to cancel the transaction within [0,4]s (0 <cy —bj <4, SD EndTrans), or receives the customer’
PIN with [5,60]s (5 <d, —b; <60, SD ProcessPin). If the ATM receives a request to can
transaction, it returns the customer’s card and takes [2, 3] s to return to its initial state 2<w,—c3<3,
SD EndTrans). The ATM expects a reply from the bank within 10s, which is represented by the
following timing constraints:

system

0< fr—d3<10, 0=<gr—d3<10, 0<j,—h7<10
0<ky—h7=<10, 0=<ic—i3z<10, 0<jg—js=<10.

If no reply from the bank is received within 10s, the card is returned, an appropriate message is
then displayed, and the ATM takes [2, 3] s to return to its initial state (ej —d3 =10, 2 <m, —e5 <3,

Copyright © 2010 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2012; 22:121-143
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-
StartTrans

[

0<by —ay <2
0<ecoy—by <4

| 5<dy— by <60

|'} EndTrans | r)ProcessPin |

e; —dz =10
0< fa —d3 <10

0<j4—hs <W
0 <j2 —h7 <10
0<ki—hs<wW
0< kg —hy <10
3<1l1—g3<5

| 0<gs—ds <10
|" GetOption )__‘ I" TryAgain RefusePin 0<by —g3<2

rJProcessPin H'} EndTrans |

I
-
RefusePin
< .
onfiscateCarg

3etPin
ATM
‘1 REQpin |,
2<w.—c3<3
_— =
[PracessPin J TryAGd ‘ GetOption )
AT M |]
v
. Rett .
. Ab s
¢ |Timeout-MSG . 1 fa Option

2< we —e5 <3 ‘

| RefusePin Withdraw ) IGeBalance
ATM 1
h Withdraw h . 3 en . .
Invalid T — “ "2REQ balancg | "4
g2 91 hf REQ.amount hs ' 5ol
INV_pin.MSG hs—Enter amount, | , o ) @ : alan i
94 i7
h7|-ADDIOVE-AMT, |, a io
DispenseCash/) RefuseWi ConfiscateCard/
; [ATM] e
. J2
ja Give.money ko
]:5 kol Not._possible .
. | Print_record 78« . Option
Ja Option E
Je|
3 <Jp—Js =5 ) ] 2<w; —1; <3
B < wj —j9 < Bs, 0 <jg —js <10

Figure 3. Scenario-based specification for the ATM example.

SD TryAgain). The specification also describes the following constraints:

e a customer expects a withdraw request to be processed within [0, W] s relative to the time of
entering an amount (0 < js—h5 <W,0<ks—h5<W);

o the ATM takes [By, Bz]s for bookkeeping after dispensing cash (B <w;— jo<B>, SD
DispenseCash);

e the ATM takes [3, 5] s to print a receipt after receiving the balance information from the bank
(B3<jp—Jjg<5,3<i9—ig <5, SD DispenseCash, SD GetBalance) and

e in the case of refusing PIN, the first time the ATM takes [0, 2] s to request a PIN again after
sending the information for the invalid PIN (0 <b;—g3<2), and the second time it takes
[3, 5] s to confiscate the card and inform the customer (3 <[y — g3 <5, SD ConfiscateCard).

Copyright © 2010 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2012; 22:121-143
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Each ATM-customer communication takes at least 7 seconds, and each ATM-bank communication
takes at least 7, seconds, which we do not explicitly represent in the chart.

3. TIMING ANALYSIS OF SCENARIO-BASED SPECIFICATIONS

This sgction describes the linear programming-based approach to timing analysis of SBSs, including
bility analysis, the constraint conformance analysis and the bounded delay analysis.

achability analysis

Reacha); amalysis checks if a given node of an SBS is reachable along a behaviour of the SBS.
Let G w succ, ref, T) be an SBS. For a given node v e N, the reachability analysis checks
if there Nsgafpat ssing through v which is of the form v9p— v —---— v; > ---— v, such
that v; =v (0&7 <m) and that ¥ (p) # . For example, for the ATM system given in Section 2.4,
the reachability analysis if the node SD DispenseCash is reachable in the specification
depicted in Figure 3.

Let G=(U,N,s

(0<i<j<m) such that r i i), by renaming, let E;NE ;=@ for any i, j (0<i<j<m).
Let E=E\UE,U---UE,, ={gp, ,en}, and ¢t; represent the occurrence time of ¢; (0<i<n)
9 . group of linear inequalities on #, 1, ..., t,, denoted
by Ip(p), can be constructed as follgws¥

| <n) then t; =0;
téeiy1 of ref(vit1) (0<i<m),ifep=w; (0=

o for the start event & of ref(vg),

e for the end event @; of ref (v;) and th
p<m) and e;=¢; 1 (0<qg<m) then

e forany #; and t; (0<i<j<n),if e;cEy a 1 (0<k<m), then t; —1; <0;

e fy,11,...,1, must satisfy all the timing const

. d the corresponding linear inequal-
ities are given according to Definition 5 and f
e fo,11,...,t, mustsatisfy all the timing constraints in®€ach | <m), and the corresponding
linear inequalities are given according to Definition 3.
As L (p)#£¥ if and only if /p(p) has a solution, the reachab roblem for a node v
of G can be reduced into the linear programming problems as eck if there is a path
o’ in G passing through v such that Ip(p’) #@. It is clear that in t orst case, a
in G that pass through v need to be checked. Since the number of paths of

and the length of a path of G could be infinite, it is necessary to solve the
finite set of the finite paths of G.

finite because N is finite. A path segment p in G is a prefix for A(G,v) if it may be extefided
into a path which is in A(G, v), i.e. there could be a path segment p, in G such that p— p, is i
A(G, v). The following theorem shows that if G is loop-unlimited, the reachability analysi
just needs to check each path in A(G, v).

Theorem 1
Let G=(U, N, succ, ref, T) be a loop-unlimited SBS, and v be a node in N. Then, v is reachable
if and only if there is a path p € A(G, v) such that £ (p) £0.

The proof of this theorem is presented in Appendix B. Based on the above theorem, an algorithm
can be developed to check if a node v in an SBS G is reachable (cf. Figure 4). The algorithm first
checks if G is loop-unlimited, and assigns the result to the boolean variable loop_unlimited. Then,
it traverses the state space of the nodes of G in a depth-first manner starting from the start node T.
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check if G is loop-unlimited;
if yes then loop_unlimited :=true else loop_unlimited :=false;
currentpath := (T);
repeat
node := the last node of currentpath;
if all successive nodes of node are explored through currentpath
then /*backtracking®/ delete the last node of currentpath
else begin /*explore an unexplored successive node through currentpath*/
node := a successive node of node not explored through currentpath;
if the path segment p corresponding to the concatenation of
currentpath and node is in A(G,v)
then begin check if £(p) # 0;
if yes then return true;
end;
if the path segment corresponding to the concatenation of
currentpath and node is a prefix for A(G, v)
then append node to currentpath;

c th = ();
if loog@nlimited then return false else return undecided.

4. Algorithm for reachability analysis.

The path in the state spa
currentpath. For each su
checks whether the path seg
is in A(G, v). If yes, then it cheg @ by linear programming, and returns ‘true’ when
L(p) 0. If the path segment corr@spoRding to the concatenation of currentpath and node is a
prefix for A(G, v), then the algorith the current path and starts the search from it,
otherwise it searches the other successive algorithm backtracks when all the successive
nodes of the last node of currentpath ar After finishing the depth-first search, the
algorithm returns ‘false’ when G is loop-unli
Notice that the algorithm can answer ‘true’ for so
It is thus a decision procedure for the loop-unlimited
non-loop-unlimited SBSs.

3.2. Constraint conformance analysis

Constraint conformance analysis checks if the given several sce
in the behaviour of an SBS, satisfy a given timing constraint. Let G , N, succ,ref, T) be an
SBS. A constraint conformance specification, denoted by & ¢ (g, {), Consists o sequence
0=Dy— D;—---— Dy of SDs in U and a timing constraint { of the form

a<co(fo—fo)+er(fi—fD++ealfi—f)<b

where the events f;, fi’ (0<i<l) occur in Dy, Dy, ..., Dy exactly once. Let p be a
of the form vg— vy — ---— v,,. For ¥ ¢(0, (), an occurrence of ¢ in p is a subsequénce o
the form v; - vj11— - = vj (0<j<m—k) such that ref (v;) =D;_j forany i (j <i
and it satisfies { if the following condition holds:

s, which occur continuously

e for any c=09— 01— -+ — 0, € Z(p) where every o; (0<i <m) is a behaviour of ref (v;
if 6j—>0j411—>--—0jx=C(e0,t0)—> (e1,t1) =~ ---— (e, t,) then a=<codo+cio1+--+
¢, 0; <b, where for any i (0<i <), if f;=e, and fl.’=eq 0<p,qg<n) then

lgr1tig42+--+1p if p>g
i= .
—(tpr1+ipiat-+1y) if p<q
p satisfies & ¢ (g, ) if every occurrence of ¢ in p satisfies {, and G satisfies ¥ ¢ (g, () if any path
in G satisfies & ¢ (g, {). For example, for the ATM example given in Section 2.4, since a customer
may lose his patience after he gets the money, it is required that the time that the ATM takes for

the printing and bookkeeping after giving the money be not greater than half of the time that the
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customer waits for withdrawing the money, which forms a constraint conformance specification
L c(0,(), where 9=Withdraw — DispenseCash and {=2(w; — j§) < j. —hs.

Let G=(U, N, succ, ref, T) be an SBS, and ¥ ¢ (g, {) be a constraint conformance specification
where 9= Dy — D| — ---— Dy and ( is of the form a < Zi:o ci(fi— fi/) <b. The following shows
that for a finite path p in G, the constraint conformance analysis for & ¢ (g, {) can be solved by
linear programming. Suppose p=vp— vi — -+ — U, and L (p) #. As there could be v; and v;
(0<i sj <m) such that ref (v;)=ref (v;), by renaming, let E;NE ;= for any i, j (0<i<j<m). Let

E=E|UEyU.---UE,,={eg, €1, ...,e,},

or any i (j <i <j+k). Then, the satisfaction problem of p for ¥ (g, {) can be
e ogram such as: finding the maximum (minimum) value of the linear function
Zgzociéi subjCt to the linear constraint [p(p), where 0; =1, —1t4 A fi=ep A fl=e4 (e, and ¢,
occurs in p)*Tor any i (0z

For checking all the
needed to solve the g
an SBS, and & (g,
Let A(G, P (0,{)) be a s

Vo—> V] —> - Vi Ul > U Vi ] > Vi 2> > Uy

$6d on a finite set of finite paths. Let G= (U, N, succ, ref, T) be
raint conformance specification, where 9= Dy — D| — ---— Dy.
of hs in G of the form

where ref (u;) = D; for any i (0<T'<k),\@ll U (0 <j <i) and ug are distinct,and all v; (+1=<j <

m) and uy are distinct. Intuitively, a{pathfin S c(0,()) consists of three parts in succession:
the first and last parts are simple pa d the middle part corresponds to g. A path
segment p in G is a prefix for A(G, ¥ (0, it may be extended into a path which is in

A(G, ¥ c(0,0)), i.e. there could be a path scSmen
The following theorem indicates that if G is loo
for ¥ ¢ (0, {) just needs to check each path in A(

such that p— py is in A(G, L ¢ (g, ().
ited, the constraint conformance analysis

Theorem 2
Let G be a loop-unlimited SBS, and ¥ ¢ (g, {) be a constraiiit con e specification. Then,
G satisfies ¥ ¢(g, () if and only if any path in A(G, ¥ ¢(o, tis (0,0).

The proof of this theorem is presented in Appendix B. Based on4lie abgye’theorem, an algorithm
can be developed to check if an SBS G satisfies a constraint confo e specification % ¢ (g, )
(cf. Figure 5). The algorithm first checks if G is loop-unlimited, and assigns

concatenation of currentpath and node is in A(G, ¥ ¢ (g, {)). If yes, then it checks
S (0,0 by linear programming, and returns ‘false’ when % (g, () is not satisfied.

a prefix for A(G, ¥ ¢(g,()). If yes, then it adds node to the current path and starts the search fro
it, otherwise searches the other successive nodes. The algorithm backtracks when all the succ
nodes of the last node of currentpath are explored. After finishing the depth-first search, the
algorithm returns ‘true’ when G is loop-unlimited, and ‘undecided’ when G is not loop-unlimited.
Notice that the algorithm can answer ‘false’ for some SBSs that are not loop-unlimited, but not
all. Tt is thus a decision procedure for the loop-unlimited SBSs, and a semi-decision procedure for
the non-loop-unlimited SBSs.

3.3. Bounded delay analysis
Bounded delay analysis checks whether the time separation between the two given events in any

behaviour of an SBS is not smaller or greater than a given real number, which is called the minimal
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check if GG is loop-unlimited;
if yes then loop_unlimited :=true else loop_unlimited :=false;
currentpath := (T);
repeat
node := the last node of currentpath;
if all successive nodes of node are explored through currentpath
then /*backtracking*/ delete the last node of currentpath
else begin /*explore an unexplored successive node through currentpath®/
node := a successive node of node not explored through currentpath;
if the path segment p corresponding to the concatenation of
currentpath and node is in A(G, Sc (o, ¢))
then begin check if p satisfies Sc (g, €);
if no then return false;
end;
if the path segment corresponding to the concatenation of
currentpath and node is a prefix for A(G, Sc (o, (¢))
then append node to currentpath;

c th = ();
if loo, limited then return true else return undecided.

unded delay specification consists of two events e,
or & 1}3’1 (e,€’,d)), which requires that the time
separation between e and ¢’ in any behavio
for the ATM example given in Section 2.4, rdiag the process for withdrawing money with
a camera embedded in the ATM, it is requir process for withdrawing money takes
time which is long enough for recording, whic inimal bounded delay specification
y’g(j4, ar, 20).

Let G=(U, N, succ,ref,T) be an SBS, S (e, e, dy (or ,e',d)) be a bounded delay
specification and ¢ be a behaviour of G of the form

(EO,tO)_>(el,tl)_>"'_>(ei,ti)_>"'_>(eja - natn)

If forany i and j (0<i<j<n)suchthate;=¢’, e;=e, and that e; #e # ¢’ forany k (i<k<j),
tig1+tigo+---+1; = (=)d, then ¢ is said to satisfy S5 (e, e, d) (or 4 (e, €', ath p in G
satisfies S5 (e, €, d) (or y%](e, e',d)) if any o € L (p) satisfies S5 (e, e’,d) (q
G satisfies 9" (e, €', d) (or y%”(e, ¢’,d)) if any path in G satisfies S7; (e, ¢/,

Let G=(U, N, succ, ref, T) be an SBS, and ¥} (e, ¢/, d) (or y%](e, e',d)) be
specification. The following shows that for a finite path p in G, the satisfaction probl
Se(e, e d) (or & 1}3’1 (e, €', d)) can be reduced into a linear programming problem. S¥ppose

P=V)—> V= >V Vi > >V > Vg > > Uy (L(p) D)

where ¢’ occurs in ref (v;), e occurs in ref (v;) (0<i<j <m), and e, ¢’ do not occur in any ref (v
(i<k<j). As there could be vy and v; (0 <k<I<m) such that ref (vy) =ref(v;), by renaming; let
ExNE;=@forany k,l (0<k<l<m).Let E=E|UEyU---UE,, ={eg, €1, ..., e,}, and t; represent
the occurrence time of e; (0 <k <n) in a timed event sequence in £ (p). Suppose that ¢’ occurring
in ref (v;) is e, and e occurring in ref (v;) is e; (0<p, g <n). Then, the problem of checking if
the time separation between e occurring in ref(v;) and ¢’ occurring in ref (v;) is not smaller (or
greater) than d in any g€ % (p) can be solved as follows: finding the minimum (or maximum)
value of the linear function #, —¢, subject to the linear constraint /p(p), and checking whether it
is not smaller (or greater) than d, which can be solved by linear programming. For all the paths
in G, the solution for the satisfaction problem for #'; (e, ¢’, d) (or & 1}9’1 (e, €’,d)) needs to be based
on a finite set of the finite paths in G.
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Let G=(U, N, succ,ref, T) be an SBS, and %5 (e, ¢’,d) (or 9%(6, ¢',d)) be a bounded delay
specification. Let A(G, ¥"g(e,e’,d)) and A(G, 9%(6, ¢',d)) be the set of the paths in G of the
form

V> V] —> > V> Vi > > V> U > > Uy

where

ccurs in ref (v;), e occurs in ref(v;) (0<i<j<m), and e, ¢’ do not occur in any ref (vy)

<[ <i) are distinct, all vy (i <k < j) are distinct, and all v, (j < p <m) are distinct.

ach path in A(G, Sg(e,e',d)) (or A(G, y’};’(e,e’,d))) is separated by ¢’ and e
e path segments in succession. For an SBS G, for a bounded delay specifica-
T yg(e,e’,d)), a path segment p in G is a prefix for A(G, S;(e,€’,d))

G for a bounded delay fication #'5(e,e’,d), can be solved by checking each path

A(G, S5 (e, e, d)), whic S by the following theorem.
Theorem 3
Let G be a loop-unlimited SBS?®and §&"; ,e',d) be a minimal bounded delay specification.

Then, G satisfies (e, ¢’,d) if andlonl§if any path in A(G, S5 (e, ¢, d)) satisfies S5 (e, ', d).

The proof of this theorem is presented i adix B. Based on Theorem 3, an algorithm can

be developed to check if an SBS G satisfie i ounded delay specification /' (e, ', d)
(cf. Figure 6). The structure of the algorithm is me)as the algorithm depicted in Figure 5.
As the algorithm can answer ‘false’ for some S not loop-unlimited, but not all, it
is thus a decision procedure for the loop-unlimite Ss semi-decision procedure for the

non-loop-unlimited SBSs.

For the maximal bounded delay analysis, it needs more cofiSiderafion
complicated than the minimal bounded delay analysis. First, §,is,nee
nodes for the two given events in an SBS. A loop ¢ in an
repetition of the loop may take time, i.e. there is (eg, fo) — (e1,11) — - - ns 1) € £ (0) such that
to+1t +---+1,>0 (notice that checking if a loop is positive can be sol¥d by lineapiegramming).
A loop ¢ (Z(9) #¥) in an SBS G is said to be free of an event e if e does nogo g
in ¢. For an SBS G, a node v in G, and for two events e, ¢’ in G, the set O (¢ defined

ause it is a little more
introduce the violable
id to be positive if a

check if G is loop-unlimited;
if yes then loop_unlimited :=true else loop_unlimited :=false;
currentpath := (T);
repeat
node := the last node of currentpath;
if all successive nodes of node are explored through currentpath
then /*backtracking®/ delete the last node of currentpath
else begin /*explore an unexplored successive node through currentpath*/
node := a successive node of node not explored through currentpath;
if the path segment p corresponding to the concatenation of
currentpath and node is in A(G, SF (e, ¢, d))
then begin check if p satisfies SB' (e, €, d);
if no then return false;
end;
if the path segment corresponding to the concatenation of
currentpath and node is a prefix for A(G, SF (e, €', d))
then append node to currentpath;
end
until currentpath = ();
if loop_unlimited then return true else return undecided.

Figure 6. Algorithm for minimal bounded delay analysis.

Copyright © 2010 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2012; 22:121-143
DOI: 10.1002/stvr



134 X. LI ET AL.
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positive loop

€ insulating segment €
UL S—— | _ss— o—————
V; (% Uj

violable node

recursively a@ :

Figure 7. The intuition of Theorem 4.
e any loop ¢ (Z(0) %

O
and

e for any loop in O(G,p¢") of the form vg— vy — -+ — vy, any loop ¢ (L (0) #¥) in G

ree of e and ¢’ whose loop-start node is v belongs to (G, v, e, ¢’)

free of e and e’ whos€/loo node is v; (0<i <m) belongs to O(G,v,e,¢).
For a node v in an SBS G and t ents e and ¢/, if there is a positive loop in O(G, v, e, '),
then v is said to be a violable r e.
Then, for an SBS G and for a mayimalbounded delay specification y%” (e, €', d), the insulating
segments are introduced in the paths ,e',d)). For any p e A(G, 91}3” (e, €', d)) of the
form

vV)—> V] —> >V —> '—>l)j+1—>~'—>l)m

), and e, ¢’ do not occur in any ref (v)
nd e of the form v; | — vi12—
is a node v in its insulating
t satisfy S (e, e’,d),
ite times, which results

where ¢’ occurs in ref (v;), e occurs in ref (v;) (0
(i<k<}j), its insulating segment is the subsequen
---—>v;j_1. Notice that for a path peA(G, 9’}3”(6,
segment which is violable for e and ¢’, then a behaviour of G
can be constructed by repeating the positive loop in @(G, v,
in the following theorem and is depicted in Figure 7.

Theorem 4

satisfies . 1}9’1 (e,€’,d) and there is not any node in its insulating segments wh!
and ¢’

The proof of this theorem is presented in Appendix B. Based on Theorem 4, an a
be developed to check if an SBS G satisfies a maximal bounded delay specification y%”
(cf. Figure 8). The structure of the algorithm is the same as the algorithm depicted in Fig
The difference from the minimal bounded delay analysis algorithm is that after a pat
A(G, 9%’1 (e,€',d)) is discovered, the algorithm not only checks if it satisfies 91}9’1 (e, e, d
also checks if there is no violable node for ¢ and ¢’ in its insulating segments when G is
loop-unlimited. As the algorithm can answer ‘false’ for some SBSs which are not loop-unlimited,
but not all, it is thus a decision procedure for the loop-unlimited SBSs, and a semi-decision
procedure for the non-loop-unlimited SBSs.

3.4. Complexity of algorithms

The complexity of the algorithms presented in this section consists of two parts: one is from
searching the node state space of an SBS G, and the other includes the number and size of the
linear programs to be solved in the algorithms.
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check if GG is loop-unlimited;
if yes then loop_unlimited :=true else loop_unlimited :=false;
currentpath := (T);
repeat
node := the last node of currentpath;
if all successive nodes of node are explored through currentpath
then /*backtracking*/ delete the last node of currentpath
else begin /*explore an unexplored successive node through currentpath*/
node := a successive node of node not explored through currentpath;
if the path segment p corresponding to the concatenation of
currentpath and node is in A(G, SH (e, ¢, d))
then begin check if p satisfies S (e, €', d);
if no then return false;
if loop_unlimited
then begin check if there is a violable node for
e and €’ in the insulating segments;
if yes then return false;

end
end;
if the path segment corresponding to the concatenation of
tpath and node is a prefix for A(G, SH (e, e’, d))

e numbers of the prefixes for the path sets A(G, v),
(e,e/,d)) are not greater than |N|!, (IN|"3,
e longest prefixes for the path sets A(G,v),
e,e’,d)) are not greater than |N|, 3|N|, 3|N|

(IN|D? and (|N|!)3, respectively, and
A(G, S c(0,0), AG, S (e, e',d)) and A
and 3|N|, respectively.

For the node state space search, the complexity rithms is proportional to the number of
the prefixes for the path sets A(G, v), A(G, S ¢ (05 ( Z(e,e’,d)) or A(G, V%”(e, e, d)),
and to the size of the longest prefix.

As in the algorithms, for each path in the set A(G,7), A@, O A(G, S5 (e, €', d)) or

A(G, yg](e, e’,d)), at most one linear program needs to be s@lved, the
to be solved is proportional to the number of the paths i
A(G, S5 (e, e d)) or A(G, 9%(6, e',d)). As one event correspo
programs, the size of the linear programs to be solved in the algori
maximal number of the events occurring in a path in the sets, and to
timing constraints in a path in the sets.

The algorithms presented above are based on linear programming. The gramming

ber of linear programs
), MG, Sc(0.0),
variable in the linear
s is proportional to the
e maxigia! number of the

Thanks to the advances in computing in the past decade, linear programs in a few thousa
and constraints are nowadays viewed as ‘small’. Problems having tens or hundreds
of continuous variables are regularly solved. Indeed many software packages have been d
to efficiently find solutions for linear programs, which thus supports the approach presented ahove
to be efficient for problems in practical use.

3.5. Analysis tool prototype

The approach presented above has been implemented into a tool prototype TASS [22,23] for
timing analysis of SBSs. TASS can be used to check SBSs for reachability, constraint conformance
specifications and for bounded delay specifications.

TASS is implemented in Java, and reads the UML interaction models produced in Topcased
[24], which is an open-source toolkit based on Eclipse platform [25]. The linear programming
software package which is integrated in the tool is from OR-Objects of DRA Systems [26], which
is a free collection of Java classes for developing operations research, scientific and engineering
applications.
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On a Pentium M/1.50 GHz/512MB PC, TASS runs comfortably for checking several SBSs
with more than 30 SDs in a few seconds. The case studies include the ATM system [7] and the
global system for mobile communication (GSM) [27], and their details are given in the TASS
website [22].

For timing analysis of the ATM specification depicted in Figure 3, TASS is used to solve the
following problems:

chability analysis: To check if the node SD DispenseCash is reachable in the specifica-

@ ;— jg) < jo—hs), which forms a constraint conformance specification & ¢ (g, ()
raw — DispenseCash and {=2(w; — jg) < j. —hs.
e Bound y analysis: As for the security consideration it is necessary to record the process
for withdrawing mopéy By the camera embedded in the ATM, every process for withdrawing
a

money is required ohough time for recording, which forms a minimal bounded delay
specification S j4,

b

it

Given the various values
reports the corresponding Sa

eters W, By, By, T1 and T, in the specification, the tool
s, which are depicted in Table 1.

3.6. Discussion on approach generdlizatign

The timing analysis algorithms presen
SBSs. The reason is that both the loop-closed
which ensure that any loop in any path is ti

e a decision procedure for the loop-unlimited
ion and the loop-unlimited condition are held,
in ndent of the other parts in the path. Based

CO

on these two conditions, the timing analysis pro n infinite path can be reduced into the
ones on a finite path by removing all the loop o ce, e infinite path (see the theorem
proofs in Appendix B). However, if the loop-close tion loop-unlimited condition are

not satisfied, e.g. there are reverse constraints in an SBS"whi
the reduction of timing analysis problems on an infinite pa
an infinite path in an SBS is formed by repeating loops infint ndjthe reverse constraints
make it that the infinitely many loop occurrences are time depen
by case (4) in Figure 2) so that those loop occurrences cannot be reioved without influencing
the other parts in the path. That is why those timing analysis algorithms are o i-decision
procedure for general SBSs.

loop-closed condition,

is the same as the asynchronous interpretation of the concatenation of two basic M
specifications [10].

Table 1. Sample results of timing analysis of the ATM specification.

Problem

Reachability S, 0 S8 (ja, ar,20)
Case Result Time Result Time Result Time
w=4, BIZO, Bz:OO, T1=0.5, T2=2 No 3.226s * * * *
w=6, B1=0.5, Bp=1, T1=0.5, T, =2 Yes 63 ms Yes 3.760 s No 96 ms
w=6, Bi=1, Bp=2, T1=0.5, T, =2 Yes 47 ms Yes 3.603s No 78 ms
w=9, B1=2, Bp=3, T1=1, Th=3 Yes 47 ms Yes 3.526s Yes 3.588s
*The verification problem disappears because the node is unreachable.
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Definition 6

Let G=(U, N, succ,ref,T) be an SBS, and D; = (01, E{, M1, L, Vy,Cy) and Dy =(03, E, M>,
Ly, V5,C2) be SDs in U (E1NE>=0). The asynchronous concatenation of D and D,, denoted
by DioDj,isan SD D=(0,E, M, L,V,C) which is defined by

e O=01U0y, E=E|UE), M=M;UM,.
e Foree Eq, L(e)=L(e), and for ec E, L(e)=Ly(e).
° ViUuVL,UV3U V4 where
3 e1,e3) |er€E,epe Ey, L(e;)=L(ez), e is a sending event}

e1€Ey,e2€ Ey, L(e1) =L(e)
Va={ (e1,e2) | e1, ey are reveiving events whose corresponding
f sending events appear on mutual object column
o C=C19CUC3UCsaflhere C3={a<e—e'<b|a<e—e' <beT,dcEj,ecEy} and C4=

event of D, @ is the end event of Dy}.

{er—w1 <0 | & is 6
According to the above defimifion, every path in an SBS corresponds to an SD, and thus the

behaviour of an SBS is interpre y the behaviour of SDs. It follows that for a finite path in
al straint conformance analysis and bounded delay analysis
ble

an SBS, the reachability a
problems can be solved by libea ming. However, for an infinite path in an SBS, the
reduction of the timing analysis camnot be implemented by simply removing all the loop
occurrences in the path as shown ifil th&ythcorem proofs in Appendix B. The reason is that the
asynchronous composition semantics Ds in the path overlap in time with each other.
Therefore, the algorithms presented abovefar ly generalized as a semi-decision procedure
for timing analysis of an SBS G with the aSgnchrén omposition semantics, which investigate
all the paths in the sets A(G,v), A(G, ¥c(g,0)), (e,e’,d)) and A(G, V%’l(e, e',d)), and

have been implemented into TASS.
Drawing lessons from bound model checking [2 MO search for a counterexample in
nte

the model executions whose length is bounded by so Wthe approach presented above
can be generalized to perform bounded timing analysis of SBSs. Asithe
for a finite path in an SBS can be solved by linear programm na m can be developed to
traverse the structure of the SBS directly in a depth-first manner ap@”checl®all the potential paths
one by one whose lengths are constrained by a threshold. This bounde ing analysis function
has been supported by TASS.

ing analysis problems

4. RELATED WORK AND CONCLUSION

This paper presents a linear programming-based approach to timing analysis of SB xpregsed
by UML interaction models. With more general and expressive timing constraints in UM

the algorithms in the approach solve the problems of the reachability, constraint conf8fmafice
and bounded delay analysis of SBSs. These algorithms form a decision procedure for the Yoop-
unlimited SBSs where any loop in any path is time-independent of the other parts in the path, an
a semi-decision procedure for general SBSs.

To the authors’ knowledge, all the literature on timing analysis of SBSs are only about timing
consistency. By using temporal constraint network techniques, Alur et al. [6] reduce the problem
of checking basic MSCs with delay intervals for timing consistency into computing negative cost
cycles and shortest distances in a weighted directed graph. The same techniques are used by
Seemann and von Gudenberg [8] for timing consistency analysis of a class of UML SDs in which all
timing constraints are of the form a <ej; —ey <b. The problem of checking MSC specifications for
timing consistency is considered by Ben-Abdallah and Leue [7], which checks if every execution
scenario described by an MSC specification is timing consistent. But in that work only a sufficient
condition for timing consistency is given, which is not enough to develop an algorithm to analyse
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MSC specifications for timing consistency. Li and Lilius [17] give a complete solution for checking
the compositions of UML SDs for timing consistency. They also solve the problem of checking
compositions of UML SDs for timing inconsistency [18], which checks if any execution scenario
described by a composition of UML SDs is timing consistent.

Ladin and Leue [29] have interpreted MSC specifications as global state automata. Theoreti-
cally, the problems considered in this paper can thus be solved by transforming the SBSs into
timed @utomata [30], and then checking the timed automata for the corresponding properties. In
ach, in addition to the high complexity of checking timed automata themselves, the
n will generate the state space altogether, which introduces considerable complexity.
ple, the bounded delay analysis has been considered by Courcoubetis and Yannakakis
ifedhautomata, but the algorithm complexity is very high, and to the authors’ knowledge

implemented so far. A case study is investigated by Firley et al. [9] for UML

d in which a simple SD is transformed in a set of timed automata and then
I a

ed” automata-based implementation by a model checking [31] tool for timed
automata. Héwever, as sho
constraints enforced on8
algorithms for checki

Compared to the timed

in the case study, a lot of clocks are introduced for describing timing
sich results in an exponential increment on the complexity of the
omata.

dmata-based approach, the advantage of the approach presented in
this paper includes two agpect: he one hand, the approach in this paper analyses directly
SBSs themselves by investrga he node state spaces of SBSs which are much smaller than
the corresponding timed state SpaceS¥0f timaed automata, and reduces the timing analysis problems
into linear programming problerts whi be solved with efficient algorithms. It thus avoids
the generation of the state space alt and also the involved complexity. On the other hand,
the approach in this paper considers d expressive timing constraints, which can be
used to describe the relations among multiple tiw€ separations between events. It is well known

that for a clock constraint in a timed automates onding timing constraint is just related
to the time separation between two events. For idg timing constraints about the relations
among multiple time separations between events, ce, to compare multiple clocks in a

timed automaton, which will result in the model che€ki roblems that are undecidable [30].
This paper is mainly focused on timing analysis of \SBS e synchronous composition
semantics. For SBSs with the asynchronous composition serfiantics,%h ing analysis problems
are more difficult. Alur and Yannakakis [10] have shown th ding model checking
problem of MSC specifications for temporal requirements is un his paper only gives
a simple discussion on the problems, and a more deep and complet estigation is definitely
necessary.

APPENDIX A: CHECKING IF AN SBS IS LOOP-UNLIMI

Let G=(U, N, succ, ref, T) be an SBS. According to the definition of loop-unlimit ondidon,
for checking if the loop-unlimited conditions are held for G, it is needed to traverse all P
segments in G of the form

Vo—> V] —> > V1>V, —>Vjt]—> " —> Uy

where (T, vo) € succ, all v; (0<j <i) are distinct, all v; (i<k <n) are distinct, a <e—e'<beT,
¢’ occurs in ref (v;), e occurs in ref (v,) and e, ¢’ do not occur in any v; (i </ <n), which are called
checked path segments for loop-unlimited condition. According to the definition of loop-closed
condition, for checking if the loop-closed conditions are held for G, it is needed to traverse all the
path segments in G of the form

Vo—> V] —> > Vi1 >V, —>Vit]—> " —>Uy

where (T, vg) €succ, v; (1 <i<n) is a loop-start node, all v; (0<j<i) are distinct and all vy
(i<k <n) are distinct, which are called checked path segments for loop-closed condition. A path
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currentpath := (T); loopset := 0
repeat
node := the last node of currentpath;
if all successive nodes of node are explored through currentpath
then /*backtracking*/ delete the last node of currentpath
else begin /*explore an unexplored successive node through currentpath™*/
node := a successive node of node not explored through currentpath;
if node is in currentpath /*aloop is discovered*/
then begin check if there is a reverse constraint for the loop;
if yes then return false else put the loop into loopset
end;
else append node to currentpath;

end
until currentpath = ();

nipath = (T);

the last node of currentpath;
sive nodes of node are explored through currentpath

t p corresponding to currentpath

ath segment for loop-unlimited condition
if the loop-unlimited condition is satisfied;
if no then return false;

h vde is a prefix for loop-unlimited condition
then append oy rr ath;

end
until currentpath = (); rettfn tru

currentpath := (T);
repeat
node := the last node of currentpat
if all successive nodes of node are expl@red tig@gh currentpath
then /*backtracking™/ delete the last no currentpoh
else begin /*explore an unexplored successive g
node := a successive node of node n¢
if the path segment p corresponding to
is a checked path segment for loop-clos
then begin check if the loop-closed condition j
if no then return false;

currentpath*/
rough currentpath;

end;
if the path segment corresponding to the concatenatiq of
currentpath and node is a prefix for loop-close jtio
then append node to currentpath;

. end
until currentpath = (); return true.

Figure Al. Algorithm to check if an SBS is loop-unlimited.

segment p is a prefix for loop-unlimited condition (loop-closed condition) if it may be €
a checked path segment for loop-unlimited condition (loop-closed condition), i.e. there cou
path segment p; such that p— p; becomes a checked path segment for loop-unlimited c®ndj
(loop-closed condition).

The following presents an algorithm to check if an SBS G is loop-unlimited (cf. Figure, Al
The algorithm is based on the depth-first search method. The main data structure in the algorithm
includes a list currentpath of nodes which is used to record the current paths, and a set loopset
of loops which records all the loops in G. The algorithm consists of three main steps. First, by a
depth-first search the algorithm finds out all loops in G, and checks if there is any reverse constraint
for any loop in G. Then it traverses all the checked path segments for loop-unlimited condition
in G to check if the loop-unlimited condition is satisfied. Finally, the algorithm traverses all the
checked path segments for loop-closed condition in G to check if the loop-closed condition is
held. The complexity of the algorithm is proportional to the number of the prefixes for loop-closed
condition (loop-unlimited condition), and to the size of the longest prefix for loop-closed condition
(loop-unlimited condition) in G.
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APPENDIX B: PROOFS OF THEOREMS

Theorem 1
Let G=(U, N, succ, ref, T) be a loop-unlimited SBS, and v a node in N. Then, v is reachable if
and only if there is a path p € A(G, v) such that Z(p) #0.

that one-half of the claim holds: if there is p€ A(G, v) such that £ (p) #@, then v is
Wlhe other half of the claim can be proved as follows. Suppose v is reachable. Then
a path p of the form vg—vi—---—v;—>---— v, (0<i<m) such that v;=v, and a
camscquence o € £ (p) of the form 69— 01— ---— g; — ---— g, where each g; (0<
$ v;)). The following proves that there is a path p’ € A(G, v) such that Z(p") #,
which € the claim holds. If all v; (0 </ <7) are distinct and all vy (i <k <m) are distinct,
then p e NG, the claim holds. Otherwise, there are v, and v, (0<p<gq <i) such that
Vp = Uptl & is logp (v, =), and/or there are v,y and v, (i < p’<q’ <m) such that the
subsequence v, — vp4 v, consists of multiple occurrences of a loop (v, is the loop-
start node, and v = v isfies the loop-closed condition and the loop-unlimited condition,
any timing constrain®¥does pmbine any two nodes that are inside and outside a loop, respec-
tively, and is not enforced j@n th tition of any loop, which indicates that the loop v, — v,y
== vgand vy —> v, W — , are time-independent of the other parts in p. It follows that
by removing the subsequencefio), — ---— 041 and/or 6,1 —> 0y —>---—> 0 from
g, a timed event sequence og h i aviour of G can be obtained, and by removing the
subsequences v, —> Uy —> -+ —>V Pl —> Vpyo —> -+ — vy from p, a path pp such that

or € Z(pg) can be obtained. By app t e step repeatedly, a path p’ can be constructed
from p, which is of the form v} — v, — -- Vi — U}H ---— v, such that £ (p") #0, all v;
(0<l<j) and v; are distinct, and that all p<l < d v; are distinct. It follows that p’ is in
A(G, v), from which the claim holds. O

Theorem 2
Let G be a loop-unlimited SBS, and #¢(g,{) be a ¢ rai rmance specification. Then,
G satisfies ¢ (g, {) if and only if any path in A(G, ¢ (o, satisfles (0,0).

Proof
It is clear that one half of the claim holds: if G satisfies & ¢ (g, (), fien a ath in A(G, L ¢ (g, ()
satisfies < ¢ (0, {). The other half of the claim can be proved as foll

form

Vo—> V] —> > Vi1 >V, > Vi1 > Vitk > Vitk+1—> "> Uy
where ref (viy;j)=D;j for any j (0<j<k), and o is of the form
0g0—>0]1—> " +—>0j—1—>0;—>0i4+]1 > —>0i4+k > 0Oj4+k+1—> " —>0p

where ¢ € £ (ref (v})) for any j (0<j<m), and { is not satisfied by v; = vj;|—> = v;4{
following shows that a path p’ € A(G, % ¢ (¢, {)) can be constructed such that there is a timed event
sequence ¢’ € Z(p’) which contains ¢; — 641 — ---— 64k, which results in a contradiction and
implies that the claim holds. As p € A(S, Lc(0,0)),

e there are v, and v, (0<p<gq <i) such that v, —>v,11—---— vy is loop (v, =v,) and/or
o there are v,y and vy (i +k < p’<q’ <m) such that Uy = Vpyr—> - —> Vg 8 100p (v =vy).

As G satisfies the loop-closed condition and the loop-unlimited condition, any timing
constraint does not combine any two nodes that are inside and outside a loop, respectively, and is
not enforced on the repetition of any loop, which indicates that the loop v,—v,41—---—v, and
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Uy —>Vpi1/—>-+-—>V, are time-independent of the other parts in p. It follows that by removing
the subsequences 6, — 041 —---— 041 and 0p41' —> 0y 2 —> ...~ 04 from o, a timed event
sequence g which is a behaviour of G can be obtained; and by removing the subsequences
Vp—>Vpt1—> -+ —> Vg1 and v,4 1/ —> V1 —> -+ -—> v, from p, a path pg such that og € Z(pg)
can be obtained. By applying the above step repeatedly, a path p'€A(G, ¢ (9,{)) can be
constructed from p such that there is ¢’ € £(p’) not satisfying {, which results in a contradiction
and implies that the claim holds. (]

G sati (e, ¢’,d) if and only if any path in A(G, %5 (e, €', d)) satisfies S5 (e, e’, d).

Proof

It is ¢ at alf of the claim holds: if G satisfies 9 (e, ¢',d), then any path in
A(G, Sy (e, ef)) satisfies 9% (e,e’,d). The other-half of the claim can be proved as follows.
Suppose that any path in P'e(e, €', d)) satisfies S’ (e, €', d), and there is a path p of G such
that there is a behaviq in % (p), which does not satisfy .7’ (e, ¢’, d). Without losing
generality, suppose formvg— vy — - =V > Vi1 VU > Uy
where e’ occurs in ref (v;)fle occurs in ref(v;) (0<i<j<m), and e and ¢’ do not occur in any

ref(vy) (i<k<j); o is offthe 0> 01—+ —> 0 >0y > —>0;—>0j ] = —> O,
where g € % (vg) for any k ( ; and the separation in time between e occurring in ¢; and
¢’ occurring in o; is smaller th e wing shows that a path p’ € A(G, ¥} (e, €', d)) can be
constructed such that there is a timed gveRili seQuence ¢’ € £ (p") which does not satisfy &7 (e, €', d),
which results in a contradiction and S e claim holds. As p ¢ A(G, S5 (e, €', d)),

o there are v, and v, (0<p<q <i) sudl th — Vpy1 = = Uy 18 loop (v, =1y),

e there are v,y and vy (i+1<p'<q'< uc Uy = Vpppr—> -+ — vy is loop (v, =

v,r) and/or

=

e there are v,» and v, (j < p”<q” <m) such fﬁ — o= vy isloop (vyr =vgr).
As G satisfies the loop-closed condition and the loop-éilimi dition, any timing constraint
does not combine any two nodes that are inside and outside affoop, ely, and is free for the
repetition of any loop, which indicates that the loop v;, — v+ P U Uy
p. It follows that by
removing the subsequences o, —0py1—>--—>0y—1, Opp11—>0py FP--—> 0y and 0,417 —
Optor —> -+ —> 04 from g, a timed event sequence og can be obtaine hich is adeehaviour of G
and such that in o the time separation between e occurring in ¢; and ¢’ occurg
than d; and by removing the subsequences v, —> Vpt1—> -+ —> Vg—1, Vpt1/
and v,q 17— vpyor—> - —> v, from p, a path pp such that og € Z(pg) cam
applying the above step repeatedly, a path p’ € A(G, %5 (e, €', d)) can be construch
that there is a timed event sequence ¢’ € #(p) which does not satisty (e, €', d), resilts
in a contradiction and implies that the claim holds.

Theorem 4

Let G be a loop-unlimited SBS, and V%” (e,e',d) be a maximal bounded delay specificatio
Then, G satisfies y%”(e, ¢’,d) if and only if for any path p in A(G, y%(e, e, d)) (ZL(p) A it
satisfies y%’l (e, €', d) and there is no node in its insulating segments which is violable for e and ¢'.

Proof

It is clear that one half of the claim holds: if G satisfies y%’l (e,e’,d), then for any path p in
AG, S M (e e, d)) (L(p)#0), it satisfies &M (e,e’,d) and there is no node in its insulating
segments which is violable for e and ¢’. The reason is that if there is a path p € A(G, 9%] (e, e, d))
(Z(p) #9) such that there is a node v in its insulating segments which is violable for e and €', then
from a timed event sequence in .#(p), a behaviour of G that does not satisfy . 1}9’1 (e,e’,d) can be
constructed by repeating the positive loop in ®(G, v, e, ') with finite times. The other half of the
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claim can be proved as follows. Suppose that for any path p in A(G, V%” (e,e,d)) (L (p)#D), it
satisfies y%’l (e, €', d) and there is no node in its insulating segments which is violable for e and €',
and that there is a path p’ in G such that ¢ € Z(p’) does not satisfy &% (e, ¢/, d). Without losing
generality, suppose that p’ is of the form v > vi = -+ > V; > Vip 1= >V >V = > Uy
where e’ occurs in ref (v;), e occurs in ref(v;) (0<i<j<m), and e and ¢’ do not occur in any
ref (vr) (i<k<j); o’ is of the form

00—>0]1—> >0 —>0i4]—> " —>0;—>0j4]|—> " —>0p

o € Z(vy) for any k (0 <k <m); and the separation in time between e occurring in ¢; and

e’ occ ip 0; is greater than d. The following shows that a path p” € A(S, %} (e, ¢’,d)) can
be con uch that either there is ¢”’ € £ (p”") which does not satisfy & %’1 (e, €', d) or there is
a violal fope and ¢’ in the insulating segment of p”, which results in a contradiction and

implies 1 aith holds. As p’ €A(G, 9¥ (e, e, d)),

Q

i p<g <i) such that v, - v,y —---— vy is loop (v, =1vy),

o there ar¢ v, and v,

e there are v, and p'<q’ < j—1) such that v,y = v,y — - = vy is loop (v, =

vy’) and/or
e there are v,» and v, ( "<m) suchthat v,y — v, 17— - = vy is loop (V7 =vyr).
As G satisfies the loop-clo bn and the loop-unlimited condition, any timing constraint
does not combine any two nod ide and outside a loop, respectively, and is free for the

repetition of any loop, which ind

and v, —> vy —> - —> vy areti endent of the other parts in p’. It follows that if the loop

Vp/ —> Upy1/ —> === —> Vg iS NOt positi e oving the subsequences 6, — 0,41 —> - —
Og—1,0pq1! —> Oppy —>---—> 0y and 04| »— ---— a,r from ¢’, a timed event sequence
o’y can be obtained, which is a behaviour and that in ¢, the time separation between
e occurring in ¢; and ¢’ occurring in g; is gre ; and by removing the subsequences
Vp = Vpil = > Vg1, Uppl/ —> Upgdr —> =+ —> v —> Vpyor —> - — v, from p/, a
path p’ such that o, € Z(p;) can be obtained. By§appl§ing ‘the above step repeatedly, a path
p" e A(S, V%”(e, ¢',d)) can be obtained from p’ such that ei e is ¢’ € Z(p”), which does
not satisfy &% (e, e’,d) or there is a violable node for e an ¢’ in thegdffSulating segment of p”,
which results in a contradiction and implies that the claim h |
ACKNOWLEDGEMENTS

Thanks go to the anonymous reviewers for their valuable comments and suggestions. T
by the National Natural Science Foundation of China (No. 90818022, No. 60721002
High-Tech Programme of China (No. 2009AA01Z148, No. 2007AA010302) and b
Fundamental Research 973 Program of China (No. 2009CB320702).

pported
onal 863
pnaleGrand

REFERENCES

1. ITU-T. Recommendation z.120. Message sequence charts. International Telecommunication Union—
Standardization Sector, Genéve, Switzerland, 2000.

2. Rumbaugh J, Jacobson I, Booch G (eds.). The Unified Modeling Language Reference Manual. Addison-
Longman Ltd: Essex, U.K., 1999.

3. OMG. UML2.0 Superstructure Specification. Available at: http://www.uml.org [10 October 2005].

4. Heitmeyer CL, Jeffords RD, Labaw BG. Comparing different approaches for specifying and verifying real-time
systems. IEEE Real-Time System Newsletter 1993; 9(1-2):122—129.

5. Kluge O. Modelling a railway crossing with message sequence charts and petri nets. Petri Technology for
Communication-Based Systems—Advance in Petri Nets (Lecture Notes in Computer Science,vol. 2472), Ehrig
H, Reisig W, Rozenberg G, Weber H (eds.). Springer: Berlin, 2003; 197-218.

6. Alur R, Holzmann GJ, Peled D. An analyzer for message sequence charts. Software—Concepts and Tools.
Springer: Berlin, 1996; 17:70-77.

7. Ben-Abdallah H, Leue S. Timing constraints in message sequence chart specifications. FORTE X/PSTV XVII
'97: Proceedings of the IFIP TC6 WG6.1 Joint International Conference on Formal Description Techniques

Copyright © 2010 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2012; 22:121-143
DOI: 10.1002/stvr



TIMING ANALYSIS OF SBS USING LINEAR PROGRAMMING 143

for Distributed Systems and Communication Protocols (FORTE X) and Protocol Specification, Testing and
Verification (PSTV XVII). Chapman & Hall: London, U.K., 1998; 91-106.

8. Seemann J, von Gudenberg JW. Extension of UML sequence diagrams for real-time systems. UML ’98: Selected
Papers from the First International Workshop on The Unified Modeling Language. Springer: London, U.K., 1999;
240-252.

9. Firley T, Huhn M, Diethers K, Gehrke T, Goltz U, Braunschweig TU. Timed sequence diagrams and tool-based
analysis—A case study. UML ’99: Proceedings of the Second International Conference on UML (Lecture Notes

in Computer Science,vol. 1732). Springer: Berlin, 1999; 645-660.

Yannakakis M. Model checking of message sequence charts. CONCUR ’99: Proceedings of the 10th

al Conference on Concurrency Theory. Springer: London, U.K., 1999; 114-129.

10.

king coverage for infinite collections of timed scenarios. CONCUR

’07: Proceedings of Internationg ce on Concurrency Theory (Lecture Notes in Computer Science, vol.

4703). Springer: Berlin, 2007;

17. Li X, Lilius J. Timing analysis o
Conference on UML (Lecture Notes in

18. Li X, Lilius J. Checking composition:
Proceedings of the Seventh Asia-Pacific Sofiwa
DC, U.S.A., 2000; 154-161.

19. Courcoubetis C, Yannakakis M. Minimum and
in System Design 1992; 1(4):385-415.

20. Hulgaard H, Burns SM. Bounded delay timing analys
Design 1997; 11(3):265-294.

21. Peled D. Software Reliability Methods. Springer: Berlin, 2001

22. TASS: Timing Analysis of Scenario-Based Specifications. Avdilable . httpil/cs.nju.edu.cn/lxd/TASS/index.htm
[10 August 2009].

23. Pan M, Bu L, Li X. TASS: Timing analyzer of scenario-based spegifigatio
21th International Conference on Computer Aided Verification (Lecture
Springer: Berlin, 2009; 689-695.

24. Topcased. Available at: http://www.topcased.org/ [21 July 2009].

25. Eclipse—An open development platform. Available at: http://www.eclipse.org/ [21 July 200

26. OR-Objects. Available at: http://opsresearch.com/OR-Objects/index.html [28 March 2008

27. Telecom Message Sequence Charts. Available at: http://www.eventhelix.com/Event$tudio/telecomdmessage_
sequence_charts/ [30 May 2009].

28. Biere A, Cimatti A, Clarke EM, Strichman O, Zhu Y. Bounded model checking. Advance
58:118-149.

29. Ladkin P, Leue S. Interpreting message sequence charts (revised version). Technical Report TR 108, Dep nt
of Computing Science, University of Stirling, U.K., 1993.

30. Alur R, Dill DL. A theory of timed automata. Theoretical Computer Science 1994; 126(2):183-235.

31. Clarke EM, Grumberg J, Peled D. Model Checking. MIT Press: Cambridge, MA, 2000.

’2009: Proceedings of the
in Computer Science, vol. 5643).

pu 003;

Copyright © 2010 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2012; 22:121-143
DOI: 10.1002/stvr



