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1. INTRODUCTION

Testing is an important part of quality assurance in the
software life-cycle. As the complexity and the size of software
systems grow, more and more time and manpower are
required for testing. Manual testing is so labor-intensive and
error-prone that it is necessary to employ automatic testing
techniques in some circumstances.

The unified modeling language (UML) is a standard visual
modelling language that is designed to specify, visualize, con-
struct and document the artifacts of software systems [1, 2].
Since UML became a standard of OMG in 1997, UML
models have become a main class of artifacts in software
development processes. UML provides a number of diagrams
to describe different aspects of software artifacts. UML
activity diagrams describe the sequential or concurrent
control flows of activities. They can be used to model the
dynamic aspects of a group of objects, or the control flow of
an operation, which form a kind of design specifications for
programs.

In this paper, we use UML activity diagrams as design
specifications, and consider test case generation for Java

ification-based testing
[3-10]. However,
mented in a fully
reasons. First,
ra from the

automatic fashion because of il
only abstract test cases can direc

cannot be used directly in program testi
concretization. Second, for dynamic models,
are generated by traversing the paths of
test scenarios. The loops and branches in the models make
the path conditions very complicated. It lead to algorithms
with high complexity, even undecidable problems.

In this paper, instead of directly deriving test cases from
UML activity diagrams, we present an indirect approach
which selects test cases from a set of randomly generated
ones according to a given coverage criterion concerning the
activity diagram specification. In the approach, we first instru-
ment the Java program under testing according to its activity
diagram specification, and randomly generate abundant test
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546 M. CHEN et al.

cases for the program. Then, by running the program with the
generated test cases, we can obtain the corresponding program
execution traces. At last, by matching those program
execution traces with the behavior of the activity diagram,
we can select a reduced set of test cases according to a specific
test adequacy criterion. The approach can also be used to
check the consistency between the program execution traces
and the behavior ivity diagrams.

In Section 3, the approaghmgf automatic test case generation

for Java programs isfd bed in detail. The related works
are discussed in Secfion 44n me conclusions are given

in Section 5.

2. UML ACTIVITY DIAGRAMS
2.1. Notations

As opposed to other diagrams in UML, an Qctivityrdi
extracts the core idea from flowcharts, state traftSition
and Petri nets [1, 2]. An activity diagram contai
states, which represent the execution of a statement
cedure or the performance of an activity in a workfl
Instead of waiting for an event, as in a normal wait state,
activity state waits for the completion of its computation.
When the activity completes, the execution proceeds to the
next activity state within the diagram. A completion transition
in an activity diagram fires when the preceding activities are
complete. An activity diagram may contain branches, as
well as forking of control into concurrent threads. Concurrent
threads represent activities that can be performed concurrently
by different objects or persons in an organization.

In an activity diagram, an activity state is shown as a box
with rounded ends containing a description of the activity;
simple completion transitions are shown as arrows; branches
are shown as guard conditions on transitions or as diamonds
with multiple labeled exit arrows; fork or join of control is
shown by multiple arrows leaving or entering a heavy syn-
chronization bar. For example, Fig. | shows a simple activity
diagram, which consists of most elements to describe a work-
flow or an operation.

The recent major revision of UML2.0 has introduced sig-
nificant changes and additions [2]. Compared with UML1.x,
the concrete syntax of activity diagrams remains mostly the
same, but the abstract syntax and semantics have changed
drastically. In UMLI1.x, the activity diagrams were defined
as a kind of state machine diagrams. Now, there is no connec-
tion between these two notations. The meaning of activity dia-
grams is explained in terms of Petri net notion [11] such as the
token, flow, edge weight, etc. In this paper, in accordance with
UML2.0, we adopt the Petri net-like semantics of the activity
diagrams, and formalize an activity diagram as follows.

FIGURE 1. A simple activity diagram.

DEerINITION 2.1. An activity diagram D is a tuple, D = (A, T,
F, a;, ap), where

i) A={ay, as, ..., a,} is a finite set of activity states;
T=1{t,, tp,...,t,} is a finite set of completion
transitions,
A x T) U (T x A) is the flow relation;
is the initial activity state, and ar € A is
jvily state; there is only one transition t

A state . of D is
‘t={a€A|(a, 1) EF} a
denote the preset and pos
is enabled in a state pu i
Let enabled() be the set o,

Al(t, a) € F}, which
ectively. A transition t
erwise, it is disabled.
0 bled in .

In this paper, we consider an a8fivity didgr;
specification, which describes the I
program. Each activity state in the activify di
preted as the execution of a method in the
For any activity state a, we let &a) deno orresponding
method, and {(a) denote the class to which &(a) belongs.

as a design

_.
5
—.
72}
=
=
-+
o
T

DEeriNiTION 2.2, Let D= (A, T, F, a;, ar) be an activity
diagram. A transition t € T may fire from state w if and only
if t € enabled(u) and (n — °t) N t° =0, and the new state
W is given as w' = (u — 1) U t°, which is denoted by w =
fire(w, ).

The behavior of an activity diagram is described in terms of
runs.
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DeriNiTioN 2.3. Let D= (A, T, F, a;, ar) be an activity
diagram. A run segment p of D is a sequence of states and
transitions

o 4] th—1
P=HMo—> My —> > My,

= fire(l;—1, t;—1) forany i (1 <i <n).
segment p is a run.

where o = {a;} and
If w, = {ag}, then,

For exam
Flg 1, {a,}—>{a1,
—>{a4,616,618,a9}
Y laro, arr, an} S {af

the act1v1ty diagram deplcted in
—>{a2,ag,a§} X {as, as, ag)

9
a9, ajp}  —{as, ag, ayo, ar}
is a gbn.

ses for Java
Ve thus need

2.2. Paths and trails

programs specified by UML activit
to consider the test adequacy criteria witl activity
diagrams. These criteria mainly deal witl¥ th, erage
of elements and behavior of a given activity@dia
Java program with an activity diagram as its cifi
the execution orders of the concurrent methods in\di
threads, which correspond to the firing orders of the tra
during the run of the activity diagram, are independent of
program inputs. It means that for a given input, the differe
program executions may result in the different program
execution traces, which indicates that the run coverage in an
activity diagram is hardly incarnated in the test adequacy cri-
teria. Thus, for defining the test adequacy criteria, instead of
runs we introduce paths in activity diagrams as follows.

Intuitively, the paths describe the behavior of an activity
diagram as if all the transitions separately enabled in a state
fire at the same time during the activity diagram execution.
For an activity diagram, all the transitions separately
enabled in a state form a concurrent transition.

DEerINITION 2.4, Let D= (A, T, F, a;, ar) be an activity
diagram. For a state p in D, a concurrent transition 7 is the
set of the transitions ty, t», . .., t,, such that

(1) for any i (1 <i<m), t; € enabled(p);
(i) foranyi, j(1 <i<j<m), " t;N "t;=§; and

(iii) for any t € (enabled(w) — {t1, ta, . ..
(1 <i<m) such that *t N °t; # @.

, b)), there is t;

The firing of the concurrent transition T consists of the firing
of t; (1 <i<m), and the new state ' is given as | =
= ((w = ") U 1)), which is denoted by W' = fire(u, 7).

Notice that there may be more than one concurrent tran-
sition for a state in an activity diagram.

DeriNiTiON 2.5. Let D= (A, T, F, a;, ar) be an activity
diagram. A path o of D is a sequence of states and concurrent
transitions

o 0 T Tnh—1
T= o> BT

where po = {ar}, m, = {ar} and p; = fire(u;—1, 7,-1) for any
i (1 <i<n). oisasimple path if there is no execution rep-
etition in o, i.e. for any 7, and 7, (0 <i <j<n), for any
tE€Emandt €1, "tN 1 =

For an activity diagram, a run is regarded intuitively as a
linear execution of a path. Notice that a path could have

any linear executions, which means that a path could corre-
pond to many runs. For example, Fig. 2 shows four simple
) 02, 03, 04 in the act1v1tty diagram deplcted in Fig. 1.
1}—>{a1,ta2,a3} —>{a2,a3,a4} {3, as, ag)
as} —>{a6,a8,a9,alo} _>{518’a9751107a11}
—>{aF} is one of the liner executions of o.

mpels us to consider the coverage
ontains no repetition. To consider
itions of executlons and/or

enabled and firing one by ofie

DEeriNITION 2.6. Let D = (AT,
diagram. A trail y of D is a seq e of gansj
form y=to— t; — --- — t, where any
such that °t; N t;_,° # 0.

. ay, be an activity
ns of the
Si<n)is

o1 —{ary {00,021

09 = {al} @’ {a1,a27a3} mﬁ’te}

o3 ={ar} ) {a1,a2,a3} {tatato}

{ts,ts,tc}
—

o1 ={ar} ¥ a1, az, a5}

{04,0,6,(18,@9}
{(14707,6!87&9}
{a57a6,a87a9}

{a5,a7,a8,a9}

{tz,to,t11} tlS}
— {010, a11,a12} CLF}

ta,to,t {t
{ SLM} {a10,@117a12} 13 F}

tg,tg,t £1:
tedodut o 0,a1n,a10} 2 {ap}

{ts,t10,t11}
—

t
(a0, arn, a1z} 2 {ap}

FIGURE 2. Simple paths in the activity diagram in Fig. 1.
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It is clear that for a trail y of the form
Y=ty —> 1t —> - —> 1,

ift;=1;(0 <i <j < n) then ymay corresponds to a repetition
of execution. For example, for the activity diagram depicted in
Fig. 1,

t) = th — t7 = I

is a trail.

3. APPROACH TO

ﬂ GENERATION
FOR JAVA PROGRAMS

In this section, we give the details of th @ i

test case generation for Java prograffis with activity diagrams
as design specifications. The approach firgfinstruments a Java
program under testing according to its actiyi
and randomly generates abundant test cases
Then, by running the instrumented program,
responding program execution traces. At last, by i
these traces with the behavior of the activity dia
obtained a reduced set of test cases according to a spe
test adequacy criterion.

3.1. Test adequacy criteria with respect
to activity diagrams

Objective measurement of the test quality is one of the key
issues in software testing. As an essential part of any testing
method, a test adequacy criterion specifies the requirement
of a particular testing [12]. In this paper, as we use activity dia-
grams as the design specifications for Java programs under
testing, we need to set up the test adequacy criteria with
respect to activity diagrams.

There have been several works [7, 10, 13] on the test ade-
quacy criteria for UML static models, interaction models
and state machine diagrams. Those criteria can be used for
model testing or program testing. They mainly deal with the
coverage of various elements and paths in UML models, and
their basic ideas come from the traditional code coverage cri-
teria. Like those works, the test adequacy criteria we consider
here mainly deal with the coverage of elements and paths in a
given activity diagram during the execution of a program
under testing. The coverage is computed through matching
the behavior of the activity diagram with the program
execution traces. For an activity diagram, we set up the follow-
ing four test adequacy criteria.

(1) Activity coverage requires that all activity states in the
activity diagram be covered.

(ii) Transition coverage requires that all the transitions in
the activity diagram be covered.

(iii) Simple path coverage requires that all the simple paths
in the activity diagram be covered.

@iv) Trail coverage requires that all the given trails in the
activity diagram be covered.

The activity coverage and transition coverage are basic cov-
erage criteria and easily satisfied in testing, just like the state-
ment coverage in the code coverage criteria. The simple path
coverage is essentially based on a partial order of behavior of
an activity diagram. It avoids the indeterminacy caused by
concurrency, but does not cover any repetition of execution.
The trail coverage deals with some special executions (includ-
ing the repetitions of executions) in an activity diagrams
which should be covered in testing, but the trails are usually
picked out manually.

3.2. Program instrumenting

For a Java program under testing, we need to insert some state-
ments into its source code for gathering the program execution
traces. As each activity state in an activity diagram is inter-
preted as the execution of one method in a Java program,
the program execution traces we gather are a sequence of
events corresponding to method completions.
During the execution of a Java program, a class may have
le instances. The same method of different instances
invoked. This causes a trouble because we cannot
fy a¥hich object’s method in a program execution trace
iS{confesponding to a given activity diagram. Therefore, we

assiime t ny@Java program under testing, specified by an
activity dfagra ,d§’such that for any activity state a in D,
La) (i.e. cl ith the method corresponds to a) has

the program execution.

model of softwa
ponents of the system are
Although most classes in

only high-level com-
uch activity diagrams.
ented software system
ated and destroyed

dynamically, the high-level comy
and most of them are the only ins

applicability of our approach much. In"c
tion is not satisfied, our approach may sti
rewriting the activity diagram with a ¢
renaming the related classes in the program.

In a Java program, a method finishes its computation after
the execution of its last statement. Thus, we insert the state-
ments for gathering the information in the end of each
related method definition. Given an activity diagram D =
(A, T, F, a;, ap), for any a € A, when its corresponding
method &(a) finishes its computation, the information we
need to log includes the method &(a) itself and the class {(a)
which &(a) is in. The instrumentation algorithm depicted in
Fig. 3 runs as follows. First it scans the program and parses
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scan the program, and parse the source code into a file
of tokens;
open the file of tokens;
read a token from the token file and assign it to
current_token;
while current_token # eof do

begin

if curren n indicates a definition of

to current_tol
end;
return true.

Algorithm for instrumenting p

try{ synchronized(this)

java.io.RandomAccessFile regéive

= new java.io.RandomAcceSsFi

receiveLog.seek(receiveLog.lengt
receiveLog.writeBytes

Code segment Log_Finishing_FEvent

FIGURE 3. Instrumentation algorithm and inserted code segment.

the source code into tokens. Then we check each token to
recognize the related method definitions. For each method
&a) (a € A), we insert the code segment Log_Finishing_
Event depicted in Fig. 3 after the last statement of the
method. This code segment is used to log the execution infor-
mation about the method and its class.

3.3. Matching program execution traces with
activity diagram behavior

By running the program under testing with randomly gener-
ated test cases, we obtain a set of program execution traces.
For selecting the test cases according to a given test adequacy
criterion, we need to match these program execution traces
with the dynamic behaviors of an activity diagram.

For a Java program, its execution traces we gather are a set
of sequences of the method completion log items. These log
items correspond to the activity state completions in a given
activity diagram. Let D= (A, T, F, a;, ar) be an activity
diagram, and

fo n th—1
L e e

be arun of D. The firing of ¢, (0 < i < n — 1) means that all the

activity states in the preset of #; are completed. However, some
activity states of D may be completed without firing any tran-
sition (e.g. ag or ag in the activity diagram depicted in Fig. 1).
Therefore, the completions of such activity states may not be
shown explicitly in a run of D. For matching a program
execution trace with a run in an activity diagram, we need to
introduce the concept of extended runs, which show all
activity state completions explicitly. This concept is formally
defined as follows.

Let D=(A, T, F, a;, ar) be an activity diagram. An
extended state of D is of the form (u, v) where w is a state
of D, and v C A is the set of the activity states in w, which
have been completed without firing any transition in
enabled(p). Since during the execution of D an activity state
may be completed without firing any transition, we introduce
a special transition A € T which represents that no transition in
T fires. For any two extended states (u, v) and (i, v') of D, we
define

(1, v) =5 (W, V)

if either there is an activity state a € u is completed, but no

following two conditions is satisfied.

(&(a) + (Object)this.getClassName(l); e ] > € :

receiveLog.close(); }} transition can be fired, or there is an activity state a € u is

catch(Exception e){} &@mpleted, and the corresponding transition ¢ fires, i.e. one
f

ANa€E u,aé& v, W= pu, v =vU {a}, and there is
no t € enabled(w) such that *t C v'.
1) entbled(w), a€°t, a&v, ‘tCvU{a}, W=
fire( vV=v-—- "

We define tha
sequence O {

extended run segment ¢ of D is a

t,a;

i fn G
0= (ko, W)€ (1y, vy I (v,

where (w;, v;)) (0<i<n)i ded state of D and (uo,
extended run of D if (w,, v,)
of the form

where ¢ s a linear execution of p if the tra sequence 7y,
t/, ..., t,,—; can be constructed from the sequence ty, t, ...,
t,—1 by removing any ¢; (t; = A, 0 < i < n). Notice that p could
have many extended runs as its linear executions.

For a Java program, let w be its execution trace which is a
sequence mgy " my ~--"m, of method completions where m;
(0 <i <n) represents a method. Let D = (A, T, F, a;, ar) be
an activity diagram, and

fo,aop f,a; In,ap
0= (1o, ) —> (, v1) —> -+ = (Kypps Vnt1)
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current_runsegment := {{({ar}, 0));
repeat
node := (p,v) which is the last node of
current_runsegment;
if node has no new successive node (u',v’)
such that (1, v) =2 (4, 0')
then delete the last node of current runsegment

successive node of node;
({ar},0) and such that
egment is consistent with w

curren

then
begi
appe d rent_runsegment;
return cyfPent_runsegment
end;

if node is such that curyg
is a prefix for w
then append node to curre
end
until current_runsegment = {};
return “no run consistent with w”.

FIGURE 4. Algorithm for matching program execution i
activity diagram behavior.

be an extended run segment of D. We say that g is consistent
with w if &a;) = m; for any i (0 < i < n). For a run p of D, we
say that p is consistent with w if there is an extended run which
is a linear execution of p and consistent with .

Let D= (A, T, F, a;, ar) be an activity diagram, and o =
mo ™ m; ™ ..."m, be a program execution trace. For develop-
ing an algorithm to find a run of D which is consistent with o,
we need to introduce prefixes for w. An extended run segment
o of D is a prefix for w if there is i (0 <i < n) such that ¢ is
consistent with m{ m? ... " m;.

Given an activity diagram D= (A, T, F, a;, ar) and a
program execution trace w, we developed an algorithm to
match o with the behavior of D, i.e. to find a run of D
which is consistent with w (cf. Fig. 4). The algorithm traverses
the state space of D in a depth first manner starting from the
initial extended state ({a;}, ¥). The extended run segment in
the state space that we have so far traversed is stored in the
list variable current_runsegment. For each new extended
state that we discover, we first check whether it is ({ar}, 9)
and such that current_runsegment is consistent with w. If
yes, then a run of D consistent with w is found out, and we
are done. Otherwise we check if the new extended state that
we discover is such that current_runsegment is a prefix for w.
If yes, then we add the new extended state to current_
runsegment and start the search from it, otherwise we back-
track. The complexity of the algorithm is proportional to the
number of the prefixes for w and to the size of the longest
prefix for w.

3.4. Selecting test cases according to test
adequacy criteria

After matching the program execution traces with the runs of a
given activity diagram, we need to compute the contribution of
the corresponding runs w.r.t. a given test adequacy criterion,
and decide whether the corresponding test case should be
selected.

For the activity/transition coverage, the test case selection is
simple. For each run which is consistent with a program
execution trace, if it contains some activity states/transitions
which are not covered previously, then the corresponding
test case is picked out. The selection process terminates
when the test adequacy criterion is satisfied, i.e. all activity
states/transitions in the activity diagram are covered, or no
more test cases can be picked out. In the later case we need
to compute the coverage value, which is the ratio of the
covered activity states/transitions to all activity states/tran-
sitions in the activity diagram.

The simple path coverage requires that all the simple paths
in a given activity diagram be covered. It follows that we first
need to find out all the simple paths in a given activity
diagram. For an activity diagram D= (A, T, F, a;, ap), we
give an algorithm to generate all of its simple paths (cf.
Fig. 5). The algorithm traverses the state space of D along

the concurrent transitions in a depth first manner starting
mthe initial state {a;}. The path segment in the state space
e have so far traversed is stored in the list variable

en, egment, and the simple paths which are founded

current = ({ar});
simplepat
repeat

node := the last node g

by firing a concu
then delete the last

else begin
node := a new successi

if node is {ar} then
begin
append node to current_paths ;
simplepath_set :=
simplepath_set U {current_pathsegment}
end;
if node is such that current_pathsegment
can be extended into a simple path
then append node to current_pathsegment;
end
until current_pathsegment = ();
return simplepath_set.

FIGURE 5. Algorithm for generating simple paths.
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out are stored in the set variable simplepath_set. For each new
state that we discover by firing a concurrent transition, we first
check whether it is {az}. If yes, then we find out a simple path
and put it into simplepath_set. Otherwise we check if the new
state that we discover is such that current_runsegment can
be extended further into a simple path. If yes, then we add
the new state to curgent_pathsegment and start the search
from it, otherwise ktrack. Notice the above algorithm

according to the simple path
f @ program execution trace
activity diagram, and

coverage, we need to
covers a simple path. Let™D b

71
U—Mo—>M1

be a simple path in D. The simple path
program execution trace w if there is a ru

is cQ edbya

In—
p= M0—>M1—> —>,U«

consistent with w which is just a linear execution of o, 1.e.

{to,t1,....t,} =70 U T U---Umyp_

and #; # t; for any i, j (0 <i<j <n). For each program
execution trace which is generated by running the program
with the random test cases, we can decide if its corresponding
test case should be picked out for the simple path coverage by
checking if it covers a simple path which is not previously
covered. The selection process terminates when all simple
paths in the activity diagram are covered or no more test
case can be picked out. In the later case, we need to
compute the coverage value, which is the ratio of the
covered simple paths to all simple paths in the activity
diagram.

The trail coverage requires that all the given trails in an
activity diagram be covered. As the trails are introduced for
specifying some special executions in a given activity
diagram which should be covered in testing, they are usually
singled out manually. In order to select test cases according
to the trail coverage, we need to check if a program execution
trace covers a trail. Let D be an activity diagram, and

Y=ty—>t = > 1y

be a trail in D. The trail y is covered by a program execution
trace w if there is a run p of D of the form

/ 7

lo f by,
p= IJ'()—)/M—) i

consistent with w in which ¢y, 14, . . . ¢, fires in the same order
in v, i.e. the following condition is satisfied.

(i) for any #; (0 <i < m), there is #/ (0 <j < n) such that
ti = tj/,
(ii) forany i, j (0 <i<j<m), if t; =t/ and t; =t/ then
0<k<I<n;and
(iii) foranyi(0 <i<m),ift;=1r/andt,, =1t/ thent,’ #
t, for any p (k <p <1) and any ¢ (0 < g < m).

For example, for the trail #; — 7, — ¢, in the activity diagram
depicted in Fig. 1, it is covered by a program execution trace
which is con51stent with the run {a;} —>{a1, ap, az} N
{a2, a3, as) —>1as, aq, ag) —>{a4, ag, as, as} —>{06, as,
ag,a) —>las, ag, arg, an}  —>law, an,an}  —>{ar).
Given the trails in an activity diagram as a trail coverage cri-
terion, for each program execution trace which is generated by
running the program with the random test cases, we can decide
if its corresponding test case should be picked out for the trail
coverage by checking if it covers a trail which is not pre-
viously covered. The selection process terminates when all
the given trails are covered or no more test case can be
picked out. In the later case, we need to compute the coverage
value, which is the ratio of the covered trails to all the given
ails.

.S._Consistency checking

rithm described in Fig. 4 can also be used to check the
engf between the program execution traces and the
of dctivity diagrams. For a program under testing

with@n acti jagram as its design model, for a program
execution (frace her, if there is no run in the activity
diagram cOnsi w, then an inconsistent case occurs.

There are two

itself.
Therefore, the approach pesented ab@ve can also be used to
detect not only the progra j
perfect activity
ec for the
ads to a
matic fashion.

legacy systems. Therefore, this appro
testing tool, which may proceed in a fully

3.6. Tool prototype and case study

We have implemented a tool prototype to support the
approach presented in this paper. The tool has a graphical
interface to allow users to construct, edit and analyze activity
diagrams interactively. Its snapshot is shown in Fig. 6. The
tool can instrument a Java program according to a given
activity diagram, use the randomly generated test cases to
run the instrumented program and gather the corresponding
program execution traces. By comparing these traces with
the behavior of the activity diagram, the tool can pick out
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FIGURE 6. Interface of the tool prototype.

test cases into a test suite according to a given test adequacy
criterion, as well as evaluate to which extent the test suite
satisfies the test adequacy criterion. The tool can also be
used to check the consistency between the program execution
traces and the behavior of activity diagrams.

By the tool, we have conducted several case studies for
showing the potential and usability of the approach presented
in this paper. One case study is an on-line stock exchange
system (OSES), which is reconstructed from an example in
[13]. It is implemented in Java and contains 40 classes, 305
methods. The main purpose of OSES, which is modeled by
an activity diagram depicted in Fig. 7, is to accept, check
and execute the customer’s orders. These features are
implemented by Stock Broker and Securities
Exchange. First, Stock Broker accepts a customer’s
order, and checks it. If the customer’s account or the
ordered stock does not exist, this order will be stopped.

Otherwise, it will be subm

for further processing. Then, Exchange exe-

cutes the order in different ways type and
operation. Executing an order is’ a rocess, i.e.
Securities Exchange searches orders in

the database to make trade. For a market- ities
trade by the current stock price. For a li rder, as it must
be traded by the restricted or better price, Securities
Exchange first checks the price set given by the customer.
If the price is valid, Securities Exchange will find the
buy-order or sell-order to make trade by the limited or better
price. Otherwise, the order will not be traded and its result
will be set ‘No MATCH’. For any order, its executing result
falls into four classes: ‘FAILURE’, ‘SUCCESS’, ‘PARTLY
EXEcUTION’ and ‘NO MATCH’. If the order is invalid, its
result will be ‘FAILURE’. If the ordered stock is traded
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completely, partly or none, the result will be ‘SUCCESS’,
‘PARTLY EXECUTION’ or ‘NO MATCH’, respectively. After
executing the order, Securities Exchange starts mul-
tiple threads to process the result concurrently, and exits at
last.

In the activity diagram depicted in Fig. 7, there are totally
25 activity states, 30, transitions and 18 simple paths. Each

tl

activity state in this diagram is labeled with a method in the
program. The input of OSES is an order object, which consists
of several member variables, such as the number of ordered
stock, the ordered amount, the type of order (market-order
or limit-order) and the operation of the order (buy-order or
sell-order). Ordered price is required for limit-order. We can
generate an order by randomly setting these variables. For

SecuritiesExchange

(' addOrderFarmlist

getNewOrder

t15

t16

checkLimitOrderPrice

t8

= trade SUCCESS

t19

3 wade_FAILURE ‘
v
. updateOrderDB_FAILURE -

endOrderProcess

124
seniedee)éGpdmeSmck}h]dﬁDB_SUC(‘ESS

updateStockDB_SUCCESS
upditeOrderDB_SUCCESS

t2g

updateStockDB_PARTEXE Je

updateStockHolderDB_PARTEXE

updareOrderHashMap

updareOrderDB_PARTEXE

t20
t2z

Gﬂdc_NOMﬁT('D Gwmc(kdchB_NOM

127

FIGURE 7. Activity diagram for the OSES
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the trail coverage criterion, we choose the following four trails
as the special executions in the activity diagram which should
be covered in testing.

Y1 =16 —> tip —> tip —> t12 —> lLig —> o,

Yo =15 = t1p = tip = i = hs — Lo,

Y =1 113 — 13 — 113 = Li7 =~ 1o,
V4 =t — —> 14 —> g —> g — [9.
With the tool, we ins ent the program, run it by generating

20, 50, 100, 300, 500%and 8Q90'r
OSES as inputs, gather<the eSponding execution traces,
and select the test cases iffO the test suit@ according to the
four test adequacy criteria introduce
experimental results are shown in

With the tool, we also conduct th€ expe
the consistency between the program exeglitio
behavior of the activity diagram, and tRe
finds out all the inconsistent cases whigh
several related bugs embedded manually in t
activity diagram.

The other case studies we have conducted have 0,
mately the same size as the OSES. Although we do ot
conduct any more case studies with larger size, we th
there is no particular obstacle to implement the approach

om orders, respectively, for

TABLE 1. Experimental resu

presented in this paper in a fully automatic fashion since the
algorithms in the approach are simple and efficient.

As in the approach we select the test cases from a set of
randomly generated test cases, there is an important ques-
tion in random testing, which is how many random test
cases are sufficient? However this problem is not so con-
cerned with us. That is because the goal of our approach
is to automate the test case generation process so as to
reduce the testing cost. Owing to the inexpensive charge,
the tool can run as long as possible. We think the
random test cases sufficient when the tool has been
running long enough in our tolerable duration, or when
an apparent and believable result can be concluded, i.e.
the given test adequacy criteria are satisfied, or an incon-
sistent case is detected.

4. RELATED WORK

UML model-based testing has being attracted more and more
research attention [3—10, 14—17]. A large part of them are
focused on UML interaction models and state machine
diagrams-based testing techniques [3—10, 14]. Only a few
works relate to making the use of UML activity diagrams in
software testing [15—17]. Most of those approaches generate
a ct test cases directly from the UML models only, and

e Of them makes the use of the programs during the test

Activity coverage criteria

r k Number of covered activities Coverage (%) Coverage (%)
20 5 20 80 93.3

50 7 20 80 933

100 7 20 80 933

200 7 20 80 93.3

300 7 25 100 100

500 8 25 100 0

800 7 25 100 00

Simple path coverage criteria

Trail coverage criteria

k Number of covered simple paths Coverage (%) k Covered trails verage (%)
20 9 9 50 1 Y2 25
50 10 10 55.6 1 Y2 25
100 11 11 61.1 2 Y Y2 50
200 14 14 78.8 4 Yis Y2 V3 Va 100
300 15 15 83.3 4 Yis Y25 V3> Va 100
500 16 16 88.9 4 Vi Y2s V3 V4 100
800 18 18 100 4 Yis Y25 V3> Va 100

r is the number of the random test cases.
k is the number of the selected test cases.
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generation. Our approach employs both models and programs
for test case generation. The randomly generated test cases are
first executed with the program, and then they are selected
according to the test adequacy criteria with respect to
models. The selected test cases are concrete and executable
since they have already been executed with the program
before the selection.

Chen et al. [15
partition metho

se an approach to apply category-
ctivity diagrams to identify cat-

ns so that their approach is
ied to large industrial pro-

software development proc
are used to describe how the functionalj
case diagrams can be exercised in te

S dflow, and are
used to create test drivers to verify tiie mod

nctionality.

They derive the test case flow from the wotkflo ibed in
an activity diagram, and generate the test¥sc more
precise TSL language, but their activity diagrams e

annotated for test purpose, which requires users’ sttong Bac
ground of testing, modeling and domain knowledge. We Rave
given an approach to generate test case from UML i
diagrams based on the Gray-Box method [17]. It demonstra

a systematic method to generate test cases directly from U
activity diagrams, and many parts of this method could be
automated, but our coverage criteria are limited and the con-
crete test data generation is still hardly automated.

Agitator [18], a commercial tool, adopts a similar approach
to the work in this paper. It (almost randomly) creates very
simple test cases, and then refines them to satisfy the test ade-
quacy criteria. But a key difference between Agitator and our
approach is that Agitator tests are designed for Java methods
(unit testing) and the criteria are based on an implementation
rather than a model. Godefroid [19] presented a dynamic test
case generation method SMART, which adopts dynamic
program analysis, symbolic execution and constraint solver
techniques to solve the test case generation problem. With
the same idea as our approach, SMART employs the
random method to generate concrete test inputs, and selects
test cases based on program executions. But currently,
SMART can only process C programs, and cannot support
object-oriented programs yet.

The approach presented in this paper can also be used
to check the consistency between the program execution
traces and the behavior of UML activity diagrams. Therefore,
our approach is also a kind of runtime verification tech-
niques. The runtime verification techniques have been used
to detect the concurrency errors such as deadlocks and data
races for Java programs and the other programs [20-25]. In
those literatures, most of the specification languages are
based on temporal logic. Compared to those temporal logic-
based specification languages, UML activity diagrams are

more acceptable in industry, and may come directly from
the artifacts generated in software development processes.

In traditional regression testing, the test cases, which are
generated during previous testing, are selected and reduced
based on the efficiency of the test suite. In other words, the
reduced test suite has the same fault detecting power with
the original test suite [26, 27]. In our approach, the test
cases are first generated randomly, and then selected according
to the test adequacy criteria with respect to activity diagram
models without considering fault detection. The objective of
our approach is to automate the test case generation process
for reducing the testing cost other than the efficiency of fault
detection.

5. CONCLUSION

This paper propose an approach to automatic test case gener-
ation for Java programs with UML activity diagrams as design
models. Guided by a given activity diagram, the program
under testing is first instrumented so as to collect the related
program execution traces. Then abundant test cases are ran-
domly generated for driving the program. By running the
instrumented program with these randomly generated test

ses, we obtain the corresponding program execution

ges. By matching those program execution traces with the
of the activity diagram, we select a reduced test
cauding to the test adequacy criterions concerning
iagram. The approach can also be used to
checifthe c ncy between the program execution traces
and the befiavior @f activity diagrams.

The appgoach p ed in this paper focuses on the test
case generation rograms, but its underlying idea is
so be applied to the test case gener-

g@grams. The next work is to
ompositions of UML
gations for test case

ation for other obj
extend the approach to sup
dynamic models as desi
generation.
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