

Software Engineering Group
Department of Computer Science
Nanjing University
http://seg.nju.edu.cn

Technical Report No. NJU-SEG- 2010-IC-002

BACH 2 : Bounded ReachAbility CHecker for

Compositional Linear Hybrid Systems

Lei Bu, You Li, Linzhang Wang, Xin Chen, Xuandong Li

Postprint Version. Originally Published in: ACM Press, 2010, pp.1512-1517.

Most of the papers available from this document appear in print, and the corresponding copyright is held by the

publisher. While the papers can be used for personal use, redistribution or reprinting for commercial purposes is

prohibited.

http://seg.nju.edu.cn/

BACH 2 : Bounded ReachAbility CHecker for
Compositional Linear Hybrid Systems

Lei Bu, You Li, Linzhang Wang, Xin Chen, and Xuandong Li
State Key Laboratory for Novel Software Technology, Nanjing University, Nanjing, Jiangsu, P.R.China 210093

Department of Computer Science and Technology, Nanjing University, Nanjing, Jiangsu, P.R.China 210093
Email: {bl|leo86}@seg.nju.edu.cn, {chenxin|lzwang|lxd}@nju.edu.cn

Abstract—Existing reachability analysis techniques are easy to
fail when applied to large compositional linear hybrid systems,
since their memory usages rise up quickly with the increase
of systems’ size. To address this problem, we propose a tool
BACH 2 that adopts a path-oriented method for bounded
reachability analysis of compositional linear hybrid systems. For
each component, a path is selected and all selected paths compose
a path set for reachability analysis. Each path is independently
encoded to a set of constraints while synchronization controls
are encoded as a set of constraints too. By merging all the
constraints into one set, the path-oriented reachability problem
of a path set can be transformed to the feasibility problem of
this resulting linear constraint set, which can be solved by linear
programming efficiently. Based on this path-oriented method,
BACH 2 adopts a shared label sequence guided depth first search
(SLS-DFS) method to perform bounded reachability analysis of
compositional linear hybrid system, where all potential path sets
within the bound limit are identified and verified one by one.
By this means, since only the structure of a system and the
recently visited one path in each component need to be stored
in memory, memory consumption of BACH 2 is very small at
runtime. As a result, BACH 2 enables the verification of extremely
large systems, as is demonstrated in our experiments.

I. INTRODUCTION

Hybrid automata [1] are well studied formal models for hy-
brid systems with both discrete and continuous state changes.
Unfortunately, hybrid automata are very difficult to analyze.
Even for a simple class such as linear hybrid automata
(LHA), the reachability problem is undecidable [1][2]. Ex-
isting techniques do not scale well with the problem sizes of
practical interest as they need to perform expensive polyhedral
computation, and the complexity of their algorithms is expo-
nential in the number of variables in the automata. Especially
when performing the reachability analysis for compositional
linear hybrid systems, they need to compute the Cartesian
Product of all the components at first which will cause state
explosion very easily therefore make their performance even
worse [8][9].

Recently, benefited from the progress of the boolean satis-
fiability problem (SAT), bounded model checking (BMC) [3]
has been proposed as an alternative technique for BDD-based
model checking as it is able to find witnesses in situations
where other techniques fail completely. As a successful ex-
tension of SAT, Satisfiability Modulo Theories (SMT) has
been widely applied to lots of real cases, including linear
hybrid automata [4][5]. However, when encoding a compo-
sitional system, classical SMT-style BMC method [4][5] has

to keep a global bound and a global step for all component
automata. This always results in “stutter transitions” in the
encoding when a component automaton does nothing in the
corresponding step. It will cause transition interleaving and
result in a huge problem space for the solver to solve when
the system size, e.g., the number of component automaton, is
large. This limitation restricts the size of the problem that can
be solved.

In our previous study [6], we proposed a prototype tool
BACH to do bounded reachability checking of a single linear
hybrid automata. It traverses the structure of a linear hybrid
automata using depth first search and verifies the abstract
path by linear programming (LP). In this paper, we propose
a new tool – BACH 2– for bounded reachability analysis of
compositional LHA systems. Different from BACH, BACH
2 introduces a new method to encode the synchronization of
automata and uses an efficient way to explore the state space.
The main contributions of BACH 2 are given below:

• A new encoding is introduced for checking the path-
oriented reachability problem of a path set [7]. Each
path set consists of one path for each component in the
compositional LHA system. In our encoding, each path
in the path set is encoded to a group of linear constraints
independently and a special set of constraints is added
for synchronization control. Based on this encoding, the
path-oriented reachability problem of the path set can be
verified by solving the feasibility of the constraint set
using linear programming very efficiently, without using
neither Cartesian Product in general reachability analysis
techniques, nor ”stutter transitions” in SMT encoding for
bounded reachability analysis.

• A tailored depth first search algorithm, named as SLS-
DFS, is designed. It drops many path sets where se-
quences obtained by projecting each path on shared labels
are not consistent with each other, and thus greatly reduce
the number of path sets for checking. Driven by this
algorithm, all potential path sets within a bound limit
are picked out and checked one by one. Thus, we can
tackle the problem of bounded reachability analysis of
compositional linear hybrid system.

The rest of the paper is organized as follows: Sec. II gives
a simple description of the underlying techniques of BACH 2.
Sec. III describes several case studies to show the performance

978-3-9810801-6-2/DATE10 © 2010 EDAA

For Research Only

Fig. 1. Sample Automata

of our tool. Finally the conclusion is stated in Sec. IV.

II. THE UNDERLYING TECHNIQUES

A. Novelty of BACH 2

Path-Oriented Encoding. As mentioned in Sec. I, the main
challenges for the current techniques for reachability analysis
of compositional LHA systems are the state explosion caused
by Cartesian Product in general techniques and the transi-
tion interleaving caused by stutter transitions in SMT-based
BMC encoding. Instead of using the above two methods, in
BACH 2 we implement our path-oriented reachability analysis
method [7] which encodes each path in a path set separately
and controls the synchronization by adding a special group
of constraints. In this manner, we can solve the bounded
reachability problem of the compositional LHA system by
solving the feasibility of the small group of linear constraints
and avoid the state explosion problem effectively. Here, we’ll
use a simple system given in Fig. 1 to illustrate the Cartesian
Product-based general reachability analysis, the SMT-based
BMC encoding and our path-oriented encoding introduced in
BACH 2. This system consists of three subsystems: S, T , and
K. These three subsystems synchronize with each other by
shared labels b, e and f .

• In the traditional analysis procedure, most pieces of
model checking work related to compositional LHA anal-
ysis usually combine all the participant automata together
by Cartesian Product, which causes a critical problem
of state explosion, thus greatly restricts the problem
size, namely the number of participant automata in this
context. Even if these three subsystems shown in Fig. 1
are all very simple, the size of the resulting automata is
still quite large as we can see from Fig.2.A. This resulting
system has 14 states and 12 paths to traverse if we want
to check it.

• In SMT-based BMC encoding, the behavior of the system
will be unrolled for k times. As the encoding keeps a
global step for the whole system, it will introduce “stutter
transitions” in the encoding when a component automaton
does nothing but waits for synchronization as shown by
the dashed arrows in Fig.2.B. Each dashed arrow stands
for firing a stutter transition for k′ times (0 ≤ k′ ≤ k). As
the exact number of stutter transitions can’t be decided in
advance, in general such a transition has to be encoded
for k times, which introduces transition interleaving in the
state space of the target SMT problem. When the size of

the system is large, this will bring many variables and
constraints into the target SMT problem that need to be
solved, hence restrict the size of the problem that can be
analyzed.

• While using our path-oriented approach, we can encode
this system to a linear constraint set in the following way:

1) For each path, we abstract the timed transition
in each location using a nonnegative real variable
which stands for the time spent on the location. For
example, we use variable δs1 to indicate the time
that the system S stayed in location s1.

2) Generate a set of constraints to guarantee all the sys-
tem variables still satisfy all the location invariants
and transition guards of each path after the system
spent some amount of time in each location.

3) Control the synchronization of the behavior of each
component by adding constraints according to the
time when certain transitions with shared labels are
fired. For example, b is a label shared by S and T ,
then we have constraint δs1 + δs2 = δt1 . In such a
manner, we can ensure these three components co-
operate accurately according to the synchronization
events since they fire the transition with the same
label at the same time spot, which are represented
by the dashed lines in Fig.2.C.

In general, this group of constraints generated in step 2
and step 3 with respect to the 3 paths in Fig.2.C can
cover all the legal behaviors according to the 12 paths
in Fig.2.A and all the possible interleaving in Fig.2.B.
Thus, the compositional reachability problem of these
three subsystems is transformed to the feasibility problem
of a small group of linear constraints, which can be solved
by linear programming efficiently.

SLS-DFS. As we already have an efficient approach to verify
the reachability of a path set, if all the path sets of the
system within a bound limit can be checked one by one,
the bounded reachability problem of this system can be
verified accordingly. However, when the number of component
automata increases, the number of path sets could blow up
quickly, which causes the enumeration of path by plain DFS
doesn’t work. In order to alleviate this composition explosion,
we propose a novel shared label sequence guided depth first
search method (SLS-DFS) to decrease the number of path sets
needed to be checked.

The main idea of this DFS method is, given an arbitrary
path set, if the projection of each path on their shared labels,
denoted as shared label sequence (SLS), are not consistent
with each other, this path set cannot compose a legal behavior
of the whole system. Take the compositional system in Fig. 1
for example, given path set ρ∗ = {ρS = 〈s1〉−→

a
〈s2〉−→

b
〈s3〉,

ρT = 〈t1〉 −→
b

〈t2〉−→
d

〈t3〉−→
e

〈t4〉, ρK = 〈k1〉−→
c

〈k2〉−→
e

〈k3〉},
as S communicates with T by shared labels b and e, the SLS of
ρS is b, while the SLS of ρT is b → e. These two SLSs are not
consistent with each other, so the path set ρ∗ is unreachable
for sure. According to this rule, we can decrease the number

For Research Only

Fig. 2. Compositional State Space Interpretations for Sample Automata

of path sets which needed to be checked enormously.

B. Scenario Illustration

The main novelties of BACH 2 are explained in Sec.II-A
already. Now, we use one real case scenario called TRAIN–
GATE CONTROLLER (TGC) from study [2] to demonstrate
the main underlying techniques of BACH 2. This system is
composed of three components: TRAIN, GATE and CON-
TROLLER as shown in Fig. 3 (hereafter T, G and C). Each
component has certain local time constraints that must be
satisfied during the system execution. The synchronization
between component automata is controlled by shared labels.
For example, LHA T communicates with LHA C by two
shared labels approach and exit.

Fig. 3. Train-gate controller

Path-Oriented Reachability Analysis. In order to illustrate
our approach succinctly, the path we choose for each compo-
nent visits each transition only once, as indicated in Fig. 4.

Fig. 4. Path example of Train-gate controller Model

The problem we are concerned with is to check the reacha-
bility along these three paths, which can be reduced to a linear
program whose linear inequality set is defined as follows:

1) Abstract the timed transition in each location by a
nonnegative real variable δX

Y and represent the behavior
of each path in the form of Fig. 5,
where δX

Y stands for the time spent in the Y th location
of LHA X .

Fig. 5. Behavior example of Train-gate controller Model

2) For each local constraint, generate the corresponding

For Research Only

linear constraints as follows: take the constraint x > 2 in
the transition in of T for example, as the flow condition
of x in T1 is [0.9, 1.1] and x is reset to 0 in the transition
approach, we can generate the following constraints
xT1 > 2, δT

2 ×0.9≤xT1 ≤ δT
2 ×1.1, where xT1 stands

for the value of x after the LHA T stayed at state T1

for time δT
2 .

3) The sum of time spent on each path are required to be
equal, e.g., for G and C, we can generate constraint:
δG
1 + δG

2 + δG
3 + δG

4 + δG
5 = δC

1 + δC
2 + δC

3 + δC
4 + δC

5 .
4) For each shared label, we will also generate the con-

straints, e.g., for exit in T and C, we can generate
constraint: δT

1 + δT
2 + δT

3 + δT
4 = δC

1 + δC
2 + δC

3 .

This is a simple illustration of how our solution can be
used, and this example is transformed into a LP problem with
68 constraints and 22 variables which can be solved by an
off-the-shelf LP solver in milliseconds.

Bounded Reachability Analysis. Here we still use the TGC
model to illustrate our bounded reachability method, especially
the SLS-DFS method, as follows. The reachability target
under verification is whether the location (T0, G0, C0) can be
reached within the bound limit {[2, 5], [2, 5], [2, 5]} for the
three components, where the bound means the number of
discrete locations in the path.

1) Generate the shared label set {approach, exit, lower,
raise}. Generate the initial empty path for each com-
ponent respectively: ρT , ρG, ρC and the path set ρ∗ =

{ρT , ρG, ρC}. Generate and initialize the SLS set ζ∗ to
be empty.

2) Using plain DFS, find the next ρT in LHA T, denoted as
ρ′

T , which can reach T0 within bound [2,5]. The first path
can be found is 〈T0〉 −→

approach
〈T1〉−→

in
〈T2〉−→

out
〈T3〉−→

exit
〈T0〉.

Update ρT and ρ∗ with ρ′
T .

3) Generate SLS ζT from ρT : approach → exit, and add
ζT to ζ∗.

4) Similarly, find path ρ′
G = 〈G0〉 −→

lower
〈G1〉−→

down
〈G2〉−→

raise

〈G3〉−→
up

〈G0〉 from LHA G. Update ρG and ρ∗ with ρ′
G,

5) Get SLS ζG from ρG : lower → raise, add ζG to ζ∗.
6) Find path ρ′

C = 〈C0〉 −→
approach

〈C1〉 −→
lower

〈C0〉−→
exit

〈C2〉
−→
raise

〈C0〉 from LHA C according to ζ∗ and the reacha-
bility target. Update ρC and ρ∗ with ρ′

C ,
7) Since LHA C is the last component, check the reacha-

bility of ρ∗ by the path-oriented method mentioned in
the last paragraph.

8) If ρ∗ is reachable, stop.
9) Otherwise, continue performing DFS on LHA C from

ρC . As no more path can be found in this case, backtrack
to LHA G to search for the next ρG, again no such
path exists. Keep backtracking to LHA T, the next ρT

can not be found neither. Since the first component has
been backtracked, we stop and report that the bounded
reachability target of the system can not be satisfied.

Note that, for either proving or disproving the given

bounded reachability specification of this TGC system, only
one path set needs to be generated and verified. This small
example gives a simple but clear demonstration of how our
approach can decrease the number of potential path sets which
need to be generated. By taking advantage of our path-oriented
reachability verification approach, we can traverse all potential
path sets within the bound limit efficiently and finish the
bounded reachability checking of compositional LHA systems
without performing Cartesian Product or introducing stutter
transition.

III. CASE STUDIES

As a successor of BACH, BACH 2 is also implemented
in Java, and can be downloaded from http://seg.nju.edu.cn/
BACH/. BACH 2 shares the Graphical LHA Editor with
BACH and extends two kinds of reachability verification:
path-oriented and bounded reachability verification for com-
positional LHA systems. We briefly evaluate the performance
of BACH 2 with two well-known examples: the Fischer
Protocol and the Nuclear Reactor system. The experiments
are conducted on a DELL workstation (Intel Core2 Quad CPU
2.4GHz, 4GB RAM).

The Fischer Protocol system consists of several competing
processes which all attempt to enter the critical section. The
automaton we use to model a single process is shown in Fig. 6.
As this is a classical shared variable problem, in order to
handle it in the context of our tool (synchronize with shared
labels), we build a LHA: Shared Variable (SV) to represent
all the evaluation and reset actions on the shared variable. The
Nuclear Reactor System controls a nuclear reactor with n rods
whose models are shown in Fig. 7. The system use these rods
to absorb neutrons one by one. Each rod that has just been
moved out of the heavy water must stay out of the water and
cool for several time units. The size of these two examples can
easily scale up by increasing the number of processes(rods),
thus they are particularly appropriate to evaluate BACH 2.

For the path-oriented analysis part, we conduct a group
of experiments based on these two systems with many com-
ponents, i.e. 40 processes/rods. The path we select for each
component is a long path which traverses all discrete locations
in this component automaton several times. The experiment
data are shown in Table I and Table II, e.g., for the fischer
protocol system, the largest problem we solve is a system
having 40 processes with each path traverses the structure of
the system for 15 times. As the size of the linear program our
approach generates is linear in the size of system (number of
paths and locations in each path), this indicates a possibility of
solving a system containing many more component automata
with shorter path for each component.

We also evaluate the processing ability of the Bounded
Reachability Checking (BRC) in BACH 2 using the same
models by comparing with a group of state-of-the-art SMT
solvers which support linear real arithmetic (LRA) and took
part in the QF-LRA division of SMT-COMP’08. The solvers
we compare with are MathSAT [10], Yices [11], CVC3 [12],
and Barcelogic [13]. All the solvers we use in comparison

For Research Only

Fig. 6. Fischer Protocol

Fig. 7. Nuclear Reactor System

TABLE I
FISCHER PROTOCOL, 40 PROCESSES

Pro 1 (s1 t̂est 0 1̂ . . . ŝ4 ŝet 0 1)k ŝ1

Pro 2 (s1 t̂est 0 2̂ . . . ŝ4 ŝet 0 2)k ŝ1
Path

Pro 40 (s1 t̂est 0 40̂ . . . s4 ŝet 0 40)k ŝ1

SV (0̂ test 0 1̂ . . . 0̂̂ set 0 1)k 0̂
k Cons. Vari. Mem.(M) Time(s)
5 4962 2041 256 160.661
10 9762 4041 1024 1233.208
15 14562 6041 2048 4099.463

TABLE II
NUCLEAR REACTOR SYSTEM, 40 RODS

Rod 1 (out̂ add 1̂ . . . r̂eĉ rec 1)k ôut

Rod 2 (out̂ add 2̂ . . . r̂eĉ rec 2)k ôut
Path

Rod 40 (out̂ add 40̂ . . . r̂eĉ rec 40)k ôut

Con. (rod 0̂ add 1̂ . . . r̂od 40)k r̂od 0
k Cons. Vari. Mem.(M) Time(s)
4 6246 1682 256 235.066
8 12166 3282 1024 1602.527

12 18086 4882 2048 5334.934

are in the latest version available online. In addition, we also
compare our tool with a state-of-the-art SAT-style bounded
model checker for hybrid automata HySAT [4]. In the ex-
periments, the timeout was set to 24 hours, the SMT and
HySAT encoding techniques are from study [4] and study [5].
For more information, our encoding of the examples, in the
format of .ha, .hys, .msat and .smt, are all available on
http://seg.nju.edu.cn/BACH/.

The reachability specification for the Fischer Protocol we
want to check is whether the system can reach a state that
all the processes are in the critical section. The reachability
specification for Nuclear Reactor System we check is whether
the system can reach a state in which all the rods are in the
recover location. By adjusting parameters, we build two kinds

of models for each system – unreachable models and reachable
models. “Unreachable model” means the reachability specifi-
cation cannot be satisfied by any path set in the model while
“reachable model” means every potential path set in the model
satisfy the reachability specification.

We conduct the experiments by setting the bound to the
smallest number of the discrete locations for each component
to reach the target. The experiment data on unreachable models
are shown in Fig. 8 and Fig. 9, while the experiment data on
reachable models are shown in Fig. 10 and Fig. 11. From these
data, we can see that:

1) For unreachable models, we first consider the memory
usage. The memory usage of SMT solvers blow up
quickly with the increasing of system size. Several SMT
solvers throw the memory allocation exception when
tackling problem with around 10 components and more
(> 3 GB), which means the size of system they can solve
can not be larger even more time is given. However, the
memory footprint of BACH 2 for the same problem is
quite small (< 64 MB). We believe if time permits,
BACH 2 can solve a larger problem when all the SMT
solvers are failed owing to the memory explosion. On
the other hand, from the aspect of time usage, as all
the path sets within the bound limit don’t satisfy the
reachability specification, BACH 2 needs to exhaust all
the path sets, which turns out to be time consuming. For
example, on the nuclear reactor system, it took BACH 2
several hours to prove that the reachability specification
can not be satisfied within the bound limit when solving
problems with 10 rods. While with the help of the
conflict clause learning method, Yices and Barcelogic
successfully tackled the problem consisting of 11 rods.
Note that, as the main issue of compositional analysis
is the memory problem introduced by state explosion,
and BACH 2 is not restricted by memory limitation, we
believe the size of the problem that BACH 2 can solve
will outperform SMT solvers in general.

2) For reachable models, BACH 2 only needs to find one
path set which turn out to be reachable after path-
oriented verification. From Fig. 10 and Fig. 11, we
can see that BACH 2 can handle an extremely large
system consisting of 320 processes/rods within 1 hour!
At the same time, the performance of SMT solvers
are restricted by the problem size. The largest problem
SMT solvers solved in one day is a Nuclear Reactor
System consisting of 18 rods which took Barcelogic
25648.9 seconds. Furthermore, similarly with the data
on unreachable model, the memory usage for the same
problem of BACH 2 (< 64 MB) is far less than
SMT solvers (> 3 GB), which shows a clear potential
of solving huge problems by BACH 2 in the future.
Compared with data on unreachable models, the data
on reachable models are more qualified to illustrate the
advantage of BACH 2 in the context of BMC: the ability
to find witnesses in situations where other techniques fail

For Research Only

 0.005

 0.05

 0.5

 10

 100

 1000

 10000

 86400

 2 3 4 5 6 7 8 9

Tim
e (

se
co

nd
)

Number of Processes

BACH 2
HySAT 0.8.4

MathSAT 4.2.3
Yices 1.0.19

CVC3 1.5
Barcelogic 1.3

Fig. 8. BRC Results of Fischer Protocol on Unreachable Model

 0.005

 0.05

 0.5

 10

 100

 1000

 10000

 86400

 2 3 4 5 6 7 8 9 10 11

Tim
e (

se
co

nd
)

Number of Temperature Rods

BACH 2
HySAT 0.8.4

MathSAT 4.2.3
Yices 1.0.19

CVC3 1.5
Barcelogic 1.3

Fig. 9. BRC Results of Nuclear Reactor on Unreachable Model

 0.005

 0.05

 0.5

 10

 100

 1000

 10000

 86400

 2 3 5 10 40 80 160 320

Tim
e (

se
co

nd
)

Number of Processes

BACH 2
HySAT 0.8.4

MathSAT 4.2.3
Yices 1.0.19

CVC3 1.5
Barcelogic 1.3

Fig. 10. BRC Results of Fischer Protocol on Reachable Model

 0.005

 0.05

 0.5

 10

 100

 1000

 10000

 86400

 2 3 5 10 18 40 80 160 320

Tim
e (

se
co

nd
)

Number of Temperature Rods

BACH 2
HySAT 0.8.4

MathSAT 4.2.3
Yices 1.0.19

CVC3 1.5
Barcelogic 1.3

Fig. 11. BRC Results of Nuclear Reactor on Reachable Model

completely.

In summary, compared with SMT solvers, BACH 2 can take
bounded reachability checking with much smaller memory
usage and similar computation performance. To some extent,
BACH 2 is immune to the memory exhaustion problem and
thus can be used for extremely large systems.

IV. CONCLUSION

In this paper, we present a successor of our bounded
reachability checker BACH for single LHA– BACH 2 for
compositional LHA systems.

BACH 2 extends a powerful path-oriented reachability
checker to analyze a path set in compositional LHA systems
by encoding the path set to a set of linear constraints, then
solving this constraint set by linear programming. BACH 2
also provides a bounded reachability checker using our SLS-
DFS method to traverse all potential path sets within the
bound limit and verify each of them using the path-oriented
method to tackle the problem of bounded reachability analysis
of compositional LHA system.

The experiments show that when solving problems of the
same size, BACH 2 outperforms most SMT solvers signif-
icantly on the aspect of memory usage, at the same time
maintaining the time usage on the same level, which benefits
the verification of extremely large systems, e.g., a Fischer
Protocol system consisting of 320 processes.

ACKNOWLEDGMENT

We would like to thank Dr. Alessandro Cimatti, Dr. Stefano
Tonetta, and anonymous reviewers for their valuable comments
and suggestions of this paper. This work is supported by the
National Natural Science Foundation of China (No.90818022
and No.60721002), the National 863 High-Tech Programme
of China (No.2009AA01Z148 and No.2007AA010302), and

by the National Grand Fundamental Research 973 Program of
China (No.2009CB320702).

REFERENCES

[1] T. A. Henzinger. The theory of hybrid automata. In Proceedings of LICS
1996, IEEE Computer Society, 1996, pp. 278-292.

[2] R. Alur, C. Courcoubetis, N. Halbwachs, T.A. Henzinger, P.-H.Ho, X.
Nicollin, A. Olivero, J. Sifakis, S. Yovine. The algorithmic analysis of
hybrid systems. In Theoretical Computer Science, 138(1995), pp.3-34.

[3] A. Biere, A. Cimatti, E. Clarke, O. Strichman, Y. Zhu. Bounded Model
Checking. In Advance in Computers, Vol.58, Academic Press, 2003,
pp.118-149

[4] M. Fränzle, C. Herde, S. Ratschan, T. Schubert, and T. Teige. Efficient
solving of large non-linear arithmetic constraint systems with complex
boolean structure. In Journal on Satisfiability, Boolean Modeling and
Computation, 2007, vol.1, pp.209-236

[5] G. Audemard, M. Bozzano, A. Cimatti, R. Sebastiani. Verifying In-
dustrial Hybrid Systems with MathSAT. In Proceedings of the Second
International Workshop on Bounded Model Checking (BMC04), Vol.119,
No.2, 2005, pp.17-32.

[6] L. Bu, Y. Li, L. Wang and X. Li. BACH: Bounded Reachability Checker
for Linear Hybrid Automata. In Proceedings of the 8th International
Conference on Formal Methods in Computer Aided Design, IEEE
Computer Society, pp.65-68,2008.

[7] L. Bu and X. Li. Path-Oriented Bounded Reachability Analysis of
Compositional Linear Hybrid Systems. http://seg.nju.edu.cn/BACH/
publications/prcsttt3.pdf, manuscript submitted, 2008.

[8] T.A. Henzinger, P.-H. Ho, and H. Wong-Toi. HYTECH: a model checker
for hybrid systems. In Software Tools for Technology Transfer, 1:110-
122, Springer, 1997.

[9] G. Frehse. PHAVer: Algorithmic Verification of Hybrid Systems past
HyTech. In Proceedings of International Conference on Hybrid Systems:
Computation and Control ’05, LNCS 2289, pp.258-273.

[10] R. Bruttomesso, A. Cimatti, A. Franzen, A. Griggio, R. Sebastiani. The
MathSAT 4 SMT Solver. In Proceedings of International Conference on
Computer Aided Verification 08. LNCS 5123, pp.299-303.

[11] B. Dutertre and L. de Moura. The Yices SMT Solver, http://yices.csl.
sri.com/tool-paper.pdf, 2006.

[12] C. Barrett and C. Tinelli. CVC3. In Proceedings of International
Conference on Computer Aided Verification 07, LNCS 4590, pages 298-
302. Springer, July 2007.

[13] M. Bofill, R. Nieuwenhuis, A. Oliveras, E. Carbonell, A. Rubio. The
Barcelogic SMT Solver. In Proceedings of International Conference on
Computer Aided Verification 08. LNCS 5123, 2008.

For Research Only

