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Control Cyber-Physical Systems (CPSs) constitute a major category of CPS. In control CPSs, in addition to the

well-studied noises within the physical subsystem, we are interested in evaluating the impact of cross-domain

noise: the noise that comes from the physical subsystem, propagates through the cyber subsystem, and goes

back to the physical subsystem. Impact of cross-domain noise is hard to evaluate when the cyber subsystem

is a black box, which cannot be explicitly modeled. To address this challenge, this article focuses on the two-

level control CPS, a widely adopted control CPS architecture, and proposes an emulation based evaluation

methodology framework. The framework uses hybrid model reachability to quantify the cross-domain noise

impact, and exploits Lyapunov stability theories to reduce the evaluation benchmark size. We validated the

effectiveness and efficiency of our proposed framework on a representative control CPS testbed. Particularly,

24.1% of evaluation effort is saved using the proposed benchmark shrinking technology.

CCS Concepts: • Computer systems organization → Embedded and cyber-physical systems; • Soft-

ware and its engineering→ Software testing and debugging;
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1 INTRODUCTION

Cyber-Physical Systems (CPSs) (Sha et al. 2008) converge the discrete computing and continuous
physical domains. One representative category of CPSs is control CPSs, where computer systems
control physical objects in real time. Naturally, control CPSs demand integration of computer sci-
ence and control theories.
This article focuses on one aspect of the integration: how to evaluate the impact of cross-domain

noises in control CPSs. Specifically, this article assumes a classic control CPS architecture described
by Figure 1. It consists of a “physical” control subsystem (simplified as the “physical subsystem” 1 in
the following) and a “cyber” computing subsystem (simplified as the “cyber subsystem” in the fol-
lowing). The physical and cyber subsystems form a two-level control loop. The physical subsystem
conducts the inner control loop, which carries out fine-time-grain sensing (the “local sensing” in the
figure) and actuation of the plant (i.e., the physical object being controlled). The cyber subsystem
conducts the outer control loop, which carries out coarse-time-grain reference point updates. For
simplicity, in the following, this article calls the control CPS architecture of Figure 1 the two-level
control CPS (2L-CCPS) architecture.
More specifically, in Figure 1, the dashed box delineates the physical subsystem, which is the

same as a conventional non-CPS control system. The external input to the physical subsystem is
the reference point value, a vector that specifies the target state of the plant. Given the reference
point value, the physical subsystem takes charge of maneuvering the plant until the plant’s state
reaches the reference point value. For example, suppose the plant is a cart, with vector (x1,x2)

T

as its state, where x1 is the cart’s current location and x2 is the cart’s current velocity. A reference
point value of (10, 0)T commands the physical subsystem to move the cart to location 10 and stop
there.
Besides the physical subsystem, the dash-dot box in Figure 1 delineates the cyber subsystem.

Specifically, the cyber subsystem is a set of interconnected digital modules (can be both software
and/or hardware; e.g., digital signal processors). These digital modules collaboratively carry out
a workflow that remotely senses the plant state (see Mrs in Figure 1), processes the sensed state,
and decides the new reference point value. The new reference point value is the output (see Mfd

in Figure 1) of the cyber subsystem, and is fed back to the physical subsystem.
The reference point update events take place in coarse-time-grain: they happen discretely and

are separated by long time intervals. In contrast, the local sensing and controller actuation in

1Note the term “physical subsystem” is a notational convenience. Strictly speaking, it refers to the low-level control system

(aka “inner control loop”), which may or may not be purely analog. For example, when a ground computer (i.e., the “cyber

subsystem”) uses analogwireless signals to remotely control a purely analog(consider mechanical is a kind of analogue)

drone, the “physical subsystem” (i.e., the drone) is purely analogue. However, when the ground computer uses WiFi to

remotely control aWiFi+analogue drone, the “physical subsystem” (i.e., the drone) is indeed a mixture of digital and analog

parts.

ACM Transactions on Cyber-Physical Systems, Vol. 3, No. 1, Article 2. Publication date: August 2018.

For Research Only

https://doi.org/10.1145/3226029


Cross-Domain Noise Impact Evaluation for Black Box Two-Level Control CPS 2:3

Fig. 1. 2L-CCPS, a classic control CPS architecture. Note that the cyber subsystem digital modules can be

interconnected via local or remote function calls.

the physical subsystem (i.e., the inner control loop) take place in fine-time-grain. They run in
continuous time, or periodically with a sufficiently small period.2

For example, for a 2L-CCPS to remotely fly a drone, the drone (the physical subsystem) has its
onboard fine-time-grain sensing and actuation for attitude control; whereas, the ground station
(the cyber subsystem) uses visuals to conduct remote coarse-time-grain sensing of the drone, and
to command the drone where to go. In the following, unless otherwise denoted, the “sensing” of this
article refers to the latter, i.e., the coarse-time-grain remote sensing for computing new reference point
values by the cyber subsystem.
In practice, sensed signals are always accompanied with noises. These noises constitute a major

source of errors. Noises within conventional control systems (e.g., the physical subsystem of a
2L-CCPS) include local sensing noises, controller output disturbances, and plant modeling errors.
They are well-studied and can be well contained (Hovakimyan and Cao 2010). Hence, these noises
are not the focus of this article. Instead, this article focuses on the noise that crosses the boundaries
between the cyber and physical subsystems, i.e., the so-called cross-domain noise. Specifically, in
a 2L-CCPS, cross-domain noise (see N in Figure 1) refers to the noise that arises from the remote
sensing (see moduleMrs in Figure 1) of the plant. It propagates through the cyber subsystem, and
goes back to the physical subsystem as the error component of the new reference point value.

Challenge and Overall Idea of the Proposed Solution Framework. In a conventional con-
trol system, noises (i.e., sensing noises, controller output disturbances, and plant modeling errors)
propagate through the sensing, controller, and plant module, which can all be modeled by closed-
form formulas. Correspondingly, the impacts of the noises can be analytically evaluated. In con-
trast, the cross-domain noise in a 2L-CCPS propagates through the discrete cyber subsystem (see
Figure 1), which cannot be modeled by closed-form formulas in general. The situation is worse
when the cyber subsystem is black box: e.g., when the cyber subsystem is encapsulated by a third
party vendor.

2According to Franklin et al. (1994), when replacing an analog controller with a discrete controller, we can empirically

regard the discrete controller as an analog controller, if the sampling rate is faster than 20 times the closed-loop bandwidth

of the analog physical subsystem.
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To address the challenge on how to evaluate cross-domain noise’s impacts, this article aims to
make an initial step forward: we propose a methodology framework to evaluate the impacts of
the cross-domain noise in a 2L-CCPS with a black box cyber subsystem. The overall idea of our
framework is as follows.
We first prepare a benchmark, i.e., a set of sample states of the plant. For each sample state of

the benchmark, we carry out Monte Carlo emulation. In each emulation trial, the benchmark sam-
ple state, plus the cross-domain noise, are entered into the cyber subsystem. The cyber subsystem
then outputs the (noisy) next reference point value, which is fed across the domain boundary into a
physical subsystem simulator to measure the accident risk. Via the above Monte Carlo emulation,
we establish a quantitative relationship between the cross-domain noise level and the plant acci-
dent risk increase.3 This relationship becomes a metric to evaluate the impact of the cross-domain
noise. We further propose a control theory based method to shrink the benchmark size, to make
our evaluation more efficient.

Contributions and Basic Insights. In amore general sense, our proposed framework addresses a
subproblem of fault propagation profiling, a hot topic in system dependability research. Compared
to existing fault propagation profilingworks, our cyber subsystemmodel is a black box to the users;
our physical subsystem model is at the granularity of differential equation level; we extensively
exploit interdisciplinary control theory; and we focus on evaluating cross-domain noises unique
to CPSs.
The framework is also related to control CPS fault diagnosis and fault tolerance. Compared to

existing control CPS fault diagnosis/tolerance works, our cyber subsystem model is a black box to
the users, hence the cyber subsystem does not have an accurate model. In addition, we are neither
focusing on fault diagnosis (the cause of fault is known, i.e., cross-domain noise), nor on fault
tolerance.
Main contributions and insights of this article are summarized as follows.

(1) We propose a benchmark metric and corresponding measurement method to evaluate
cross-domain noise impacts to 2L-CCPSs with black box cyber subsystems.

(2) We further propose a method to effectively shrink the benchmark, exploiting the interdis-
ciplinary Lyapunov stability control theories.

(3) We validated the effectiveness and efficiency of our proposed methodology framework
on a representative 2L-CCPS testbed. Particularly, the benchmark shrinking technology
reduces 24.1% of the evaluation effort.

Article Organization. The rest of the article is organized as follows. Section 2 discusses related
work. Section 3 describes the overall systems model to set the context for discussion. Section 4
elaborates our basic cross-domain noise impact evaluation method. Section 5 proposes a method
to effectively shrink the evaluation benchmark. Section 6 demonstrates and validates the proposed
methodology framework. Section 7 concludes the article.

3Again, use the aforementioned remotely flying drone example. In each Monte Carlo trial, the benchmark sample can be a

video frame (i.e., a photo) of the remote drone and its nearby obstacles. The video frame plus additive white Gaussian noise

(i.e., the cross-domain noise) is inputted into the ground station (i.e., the cyber subsystem). This mimics the fact that the

ground station’s video camera is noisy. Then the ground station conducts computer vision recognition and decisionmaking

as a black box. The decision, i.e., the outputted new reference point on where to fly the remote drone, is fed back to a drone

simulator, which simulates the next step physical trajectory of the drone. Expectedly, with higher additive white Gaussian

noise, the ground station would more likely make wrong decisions, and the simulated drone trajectory will have a higher

probability of hitting the obstacles. By carrying out many randomized trials of such, we will establish the quantitative

relationship between the additive white Gaussian noise level and the obstacle-hitting probability.
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2 RELATED WORK

In a more general sense, this article addresses a sub-problem of fault propagation profiling, a hot
topic in system dependability research.Works of Hiller et al. (2004) propose using conditional prob-
ability to profile the permeability, exposure, and impact of faults in a network of software modules.
Oliner and Aiken (2011) propose using principal component analysis and temporal correlations
to discover influence relationships between software modules, to profile anomaly propagation.
Distefano et al. (2011) propose a compositional calculus to analyze software fault propagation
with closed-form formulas. Jhumka and Leeke (2011) use software fault propagation profiling
results to guide the placement of fault detector assertions. Pham et al. (2015) propose a UML
based annotation and inference framework to analyze concurrent fault propagations in compo-
nent based software systems. However, all the above works focus on pure software system, rather
than CPS.
There are works on profiling CPS fault propagation. Sierla et al. (2013) study CPS fault

propagation with an explicit object-oriented and event based model. Ge et al. (2009) analyze CPS
failure probability using the PRISM (Kwiatkowska et al. 2002) probabilistic model checker. There
are also works on using various artificial intelligence and/or statistics tools to quantify CPS fault
propagation (Augustine et al. 2012). However, the above works all assume a white box cyber
subsystem, or at least a cyber subsystem where the interconnection details of digital modules are
known to the user.
As cross-domain noise impact evaluation is a subtask of holistic system analysis, the solution

proposed by this article can be plugged into holistic system analysis frameworks, such as FMEA
or FMECA (US Dept. of the Army 2015). For example, for FMEA, our impact evaluation results can
serve as a system failure rate input related to cross-domain noise.
This article is also related to fault-tolerant control CPS. Conventional fault-tolerant control CPS

works deal with sensing errors, actuation errors, system parameter errors, or even system model
changes. They typically require white box models of the cyber subsystem (Gao et al. 2015a). Re-
search on fault-tolerant control CPS with black box cyber subsystems is relatively young. There
are works on using redundancy to deal with faults in such control CPS (Wang et al. 2013). Such
topic is apparently orthogonal to this article’s topic.
Model predictive control (Camacho and Bordons 2013) focuses on repeatedly deriving optimal

control signals to control the plant. This article, however, is not focusing on how to control the
plant.
There are also works on using data mining, machine learning, and/or inference to diagnose the

cause of faults (Gao et al. 2015b). In contrast, our article is not about diagnosis. The cause of fault
is given: the cross-domain noise. We want to evaluate its impact on the physical subsystem given
different noise levels and various initial plant states. On the other hand, our evaluation results can
serve as a training set for data mining, machine learning, or as the prerequisite conditional prob-
ability distribution needed by Bayesian inference. In this sense, this article’s work complements
the diagnosis works.
Thework in Tan et al. (2014) proposes using a Bayesian network for cross-domain noise profiling

in control CPS. However, it is a one-page work-in-progress abstract and its proposed methodology
may not be valid when noise is non-Gaussian.
The work of this paper is included in the first author’s PhD thesis.

3 OVERALL SYSTEMS MODELS

We shall first set the context for our discussion by introducing the overall systems model. This
includes the physical and cyber aspects of the 2L-CCPS architecture, and the combined systems
model.
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3.1 Physical Subsystem Model

In this article, we assume the physical subsystem of a 2L-CCPS is a Linear Time Invariant (LTI)
control system, which is arguably the most widely used control system.
For an LTI control system, the state of the plant at time t is described by ann-dimensional vector

X (t ) = (x1 (t ), x2 (t ), . . . ,xn (t ))T. The vector is also called the plant’s state vector (in the following,
we use the term “plant’s state” and “plant’s state vector” interchangeably), and each element of
the state vector is also called a state variable. For simplicity, we often omit the parameter t when
writing state vector and/or variables, and use Ẋ (and ẋi , i = 1, . . . ,n, respectively) to denote the

derivative dXdt (and
dxi

dt , i = 1, . . . ,n, respectively).
The dynamics of the plant is governed by the following systems of differential equations.

d(X −Oref)

dt
= A(X −Oref) + BU , (1)

U = −K(X −Oref), (2)

where Oref ∈ Rn is the reference point value from the cyber subsystem: the objective of control
is to maneuver the plant state vector X to Oref (so that X −Oref = 0); A ∈ Rn×n and B ∈ Rn×m are
two constant matrices dependent on the plant’s physics; U (t ) = (u1 (t ), u2 (t ), . . . ,um (t ))T is the
controller output created as per Equation (2); K ∈ Rm×n is a constant matrix defining the control

strategy. Denote X̃
def
= X −Oref; the system of Equations (1), (2) can be rewritten into the following

form.

˙̃X = FX̃ , (3)

where F = A − BK.
Besides the above systems of differential equations, the dynamics of the plant are also governed

by allowed regionA ⊆ Rn (or equivalently, forbidden region Ā def
= Rn − A, i.e., the complement of

the allowed region) in the state space Rn . Every time X exceeds the allowed region (i.e., reaches
the forbidden region), a plant fault happens. For example, for a drone swarm control CPS, any two
drones must maintain a distance of over 500 meters. Dropping below this 500 meter limit means a
plant fault happens.

3.2 Cyber Subsystem Model

We assume the following about the cyber subsystem (see Figure 1).

Assumption 1. Except forMrs andMfd and their interfaces to the rest of the cyber subsystem,
the cyber subsystem is a black box to the 2L-CCPS user. The user knows nothing about
the existence,4 interconnection details, and implementation details of all other cyber sub-
system digital modules. This is common in practice. For example, in computer operating
systems (OSs), except for some application layer modules (analogous toMrs andMfd), the
rest of the OS modules are black boxes to OS users.

Assumption 2. The cyber subsystem, however, is a white box to the 2L-CCPS vendor. The
vendor can suggest to the user alternatives to upgrade (or patch, or reconfigure) the 2L-
CCPS without revealing cyber subsystem modular details, i.e., the interconnection and
internal implementation details of digital modules. This is again a common practice, e.g.,

4After deployment, if the 2L-CCPS vendor requests to upgrade (or patch, or reconfigure) some of the digital modules,

existence of these modules may be revealed to the user, but not the interconnection and internal implementation details

of these modules.
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Fig. 2. Hybrid automaton H that models 2L-CCPS.

OS vendors often suggest different ways to patch OSs to users without revealing the mod-
ular details.

Assumption 3. The time cost to deliver a plant’s state sample to the cyber subsystem is τ1
(see Figure 1); and the time cost to run the cyber subsystem and to deliver the outputted
reference point value to the physical subsystem is τ2 (see Figure 1). Every time the cy-
ber subsystem delivers a new reference point value to the physical subsystem, we say a
reference point update event happens.

Assumption 4. The cyber subsystem decides the new reference point value purely based on
the most recent remote sensing of the plant’s state. In other words, the cyber subsystem
is memoryless.

According to Assumption 1, to users, the cyber subsystem is a black box except the known
existence of the “remote sensing” module Mrs and the “final decision” module Mfd (see Figure 1).
The single cyber subsystem input port sends the current state of the plant X into Mrs; and the
single cyber subsystem output port sends the decision from Mfd as the new reference point value
O ′

ref
to the physical subsystem.Mrs senses the state of the physical plant, and outputsMrs (X ) + N

to the rest of the cyber subsystem, where Mrs (X ) is the sensing result without noise, and N is
the cross-domain noise random variable (RV). The cross-domain noise RV N hence will propagate
throughout the black box cyber subsystem to interfere the final decision making.

3.3 Combined Model

The hybrid automaton (Tabuada 2009) of Figure 2, denoted asH , models the combined “cyber” and
“physical” aspects of 2L-CCPS.
H ’s node describes the continuous behavior of the combined model. It includes Equation (3) and

the continuous increase of time: ṫ = 1. H ’s edge describes the discrete behavior of the combined
model. It represents a reference point update event: at time t0, the cyber subsystem can change the
value of reference pointOref by delivering the cyber subsystem’s output to the physical subsystem.
After a reference point update event, Oref takes a new value (denoted as O

′
ref

(t0) in Figure 2) and
remains constant until the next reference point update event. Note, to comply with reality, we
assume the triggering of reference point update events is non-zeno.

4 CROSS-DOMAIN NOISE IMPACT EVALUATION FRAMEWORK

Asmentioned in Section 1, noises in the physical subsystem, such as local sensing noises, controller
output disturbances, and plant modeling errors, are well studied and can be well contained by the
physical subsystem. Therefore, these noises are not the focus of this article. Instead, we focus on
cross-domain noises (i.e., the noise denoted by RV N in Figure 1), which are not contained within
the physical subsystem. Correspondingly, in the following, unless explicitly denoted, we use the term
“noise” and “cross-domain noise” interchangeably. Our goal is to propose a framework of methods to
evaluate the cross-domain noise’s impact on a 2L-CCPS (see Figure 1). In this section, we propose
a hybrid automata reachability based metric to quantify the impact, and propose a corresponding
basic measurement method.
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4.1 Elementary Trial and Reachability Probability

The physical subsystem of a 2L-CCPS is modeled by Equation (3); hence, is memoryless. That is,
the future trajectory of the plantX (t ) (t ∈ (t0,+∞), where t0 is the current time) is only dependent
on the current state X (t0) and the current and future reference point values Oref (t ) (t ∈ [t0,+∞)).
In practice, the derivative on the left-hand side of Equation (3) is finite, therefore, we can also say
the future trajectory of X (t ) (t ∈ (t0,+∞)) is only dependent on the current state X (t0) and future
reference point values Oref (t ) (t ∈ (t0,+∞)).
Suppose the current time is t0 − τ1 − τ2 (where τ1 and τ2 are the two delay time costs; see Fig-

ure 1), and the current plant state X (t0 − τ1 − τ2) is given: X (t0 − τ1 − τ2) = X 0. We carry out the
following elementary trial. At t0 − τ1 − τ2, the cyber subsystem samples the current plant state and
triggers the corresponding reference point update event at t0 − τ1 − τ2 + τ1 + τ2 = t0 (see Figure 2),
changingOref toO

′
ref

(t0). After that, the cyber subsystem triggers no more reference point update
event.
With the concept of elementary trial, we shall propose a methodology framework to evaluate

the cross-domain noise impact on a 2L-CCPS. Meanwhile, to simplify our theoretical modeling
and analysis, we assume the following.

Assumption 5. Unless otherwise denoted, in the following theoretical modeling and analysis
sections (i.e., from here to the end of Section 5, including Appendices A, B, and C), we
assume τ1 = τ2 = 0.

Later, in Section 5.4, we will discuss the implications of Assumption 5 to real-world systems
with non-zero delays. But for now, under Assumption 5, suppose the current time is t0, and the
current plant state is X (t0) = X 0, then an elementary trial shall run as follows. At t0, the cyber
subsystem samples the current plant state and triggers the corresponding reference point update
event at t0 (see Figure 2), changingOref toO

′
ref

(t0). After that, the cyber subsystem triggers no more
reference point update event.
In the elementary trial, the sampling, and hence the cyber subsystem’s decision making, are

interfered by the cross-domain noise RV N (see Figure 1). Therefore, whether a plant fault will
happen (i.e., X (t ) reaches the forbidden region Ā during (t0,+∞)) becomes random, and can be
represented by a Bernoulli RV of R (N ,X 0): R (N ,X 0) = 1 represents that a plant fault will happen;
and R (N ,X 0) = 0 otherwise. We call R (N ,X 0) the reachability RV under cross-domain noise RV
N and given X 0, and denote the reachability probability Pr(R (N ,X 0) = 1) as p (N ,X 0); and con-
sequently, Pr(R (N ,X 0) = 0) = 1 − p (N ,X 0). Intuitively, p (N ,X 0) reflects the risk of the 2L-CCPS
under cross-domain noise RV N and given X 0 (interested readers can refer to Appendix A to fur-
ther understand this intuition). In the following, unless otherwise denoted, we simplify R (N ,X 0)
as R and p (N ,X 0) as p.

4.2 Measuring Reachability Probability

Next, we describe how tomeasure the value ofp (N ,X 0). Under cross-domain noise RVN and given
X (t0) = X 0, we run a campaign of η elementary trials. The value of p (N ,X 0) can be estimated by
averaging the results of these elementary trials.
Specifically, denote the reachability RV for the jth (j = 1, . . . ,η) elementary trial as R j . Denote

R̄
def
= 1

η

∑η
j=1 R j . According to the well-known central limit theorem, when η is big enough, we can

use R̄ to estimate p (N ,X 0). This is quantitatively elaborated by the following proposition.
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Proposition 4.1 (Campaign Scale). Under cross-domain noise RV N , given X (t0) = X 0, α ∈
[0, 1], and δp ∈ (0,+∞),

if η � ��
Φ−1 (1 − α

2 )

2δp

��
2

, (4)

where Φ is the cumulative distribution function of standard normal distribution and Φ−1 is Φ’s
inverse; then R̄ falls within rangep ± δp with confidence level of (1 − α ). That is, Pr( |R̄ − p | � δp ) �
1 − α .

Proof. Due to the memoryless assumption of the cyber and physical subsystems, R j ’s are iden-
tical independent distribution RVs, and R j ∼ Bernoulli(p). According to the central limit theorem,
RV R̄ therefore conforms to the normal distribution Normal(μ,σ 2/η), where μ and σ 2 are respec-
tively the expectation and variance of R j . As R j ∼ Bernoulli(p), μ = p and σ 2 = p (1 − p) � 1

4 (be-

cause p ∈ [0, 1]), i.e., σ � 1
2 .

Also Inequality (4)⇒ √η �
Φ−1 (1 − α

2 )

2δp
⇒ δp �

Φ−1 (1 − α
2 )

2
√
η

. (5)

Therefore, R̄ ∼ Normal(μ,σ 2/η) ⇒ Pr

(
|R̄ − μ | � σ

√
η

Φ−1
(
1 − α

2

))
� 1 − α

⇒ Pr

(
|R̄ − p | � 1

2
√
η

Φ−1
(
1 − α

2

))
� 1 − α (as μ = p and σ � 1

2 )

⇒ Pr( |R̄ − p | � δp ) � 1 − α (due to Inequality (5)). �

Proposition 4.1 implies that under cross-domain noise RV N , given X (t0) = X 0, α , and δp , after
a measurement campaign of η (η satisfies Inequality (4)) elementary trials, we derive a realization
r̄ of RV R̄, which can be used as an estimation of p, i.e., p̂ = r̄ , with confidence level of at least (1 − α ).
As R̄’s realization, we have r̄ = 1

η

∑η
j=1 r j , where r j is RV R j ’s realization in the corresponding

elementary trail. To get r j , the simple way is to emulate the jth elementary trial as follows:

Step 1. Feed the initial plant state X 0 into the real cyber subsystem and derive O ′
ref
.

Step 2. Simulate the physical subsystem of Equation (3), from simulator time t0 to simulator
time +∞, with initial plant stateX 0, and updated reference point valueO ′

ref
. If the resulted

trajectory X (t ) (t ∈ [t0,+∞)) reaches the forbidden region Ā, then r j = 1; otherwise
r j = 0.

In practice, infinite time simulation is impossible. Therefore, Step 2 has to be accelerated. This
is possible when the physical subsystem (described by Equation (3)) is an LTI control system.
In control engineering, it is a well established practice that LTI control systems in the form of

Equation (3) are designed to be stable in the sense of Lyapunov (Brogan 1991). Specifically, K of
Equation (2) is designed such that a positive definite symmetric matrix P ∈ Rn×n exists to satisfy

FTP + PF = −I, (6)

where I is the n × n identity matrix.
Correspondingly, given control systems of Equation (3) that are stable in the sense of Lyapunov,

there are mature tools (Brogan 1991) to derive the aforementioned P.

ACM Transactions on Cyber-Physical Systems, Vol. 3, No. 1, Article 2. Publication date: August 2018.

For Research Only



2:10 F. Tan et al.

Fig. 3. Pseudo C code to emulate an elementary trial, to calculate r j . It is an emulation because Line 2 uses

the real cyber subsystem.

With P, we can define a Lyapunov function V (X (t ),Oref (t )) as follows.

V (X (t ),Oref (t ))
def
= (X (t ) −Oref (t ))

TP(X (t ) −Oref (t )). (7)

Intuitively, Lyapunov function represents a virtual “potential energy” of the physical plant. If the
physical subsystem is stable, this potential energy should monotonically decrease. This is quanti-
fied by the following proposition.

Proposition 4.2 (Trajectory Boundary). Given X (t0) = X 0 ∈ Rn andO ′
ref

(t0) ∈ Rn , let X (t )
(t ∈ [t0,+∞)) be the trajectory of plant state evolved according to Equation (3) when Oref (t ) ≡
O ′

ref
(t0), then ∀t ∈ [t0,+∞),

d V (X (t ),Oref (t ))

d t
� 0. (8)

Proof. Proposition 4.2 is already implied in the classic proof of Lyapunov stability (Khalil 2001).
The details are recompiled in Appendix B. �

Due to Proposition 4.2, in an elementary trial, the plant’s Lyapunov function value monotoni-
cally drops. Particularly, if it drops below the minimum Lyapunov function value of the forbidden
region Ā, the plant state can never reach Ā again. Based on this heuristics, we propose the al-
gorithm of Figure 3 to emulate the jth elementary trial (j = 1, . . . ,η), so as to approximate r j , the
realization of reachability RV R j .
In Figure 3, Line 7 corresponds to the case that trajectory X (t ) is found to reach forbidden re-

gion Ā, hence r j = 1. In Line 8, as future trajectory X (t )’s Lyapunov function value drops below
infY ∈Ā {V (Y ,Oref)}, a simple proof with negation can show that due to Inequality (8), X (t ) will
never reach any points in Ā. Line 11 corresponds to the situation that after sufficiently long sim-
ulation, we still cannot decide if X (t ) reaches Ā; therefore, we pessimistically overapproximate
with r j = 1.

4.3 Quantifying Impact of Cross-Domain Noise with Reachability Probability

Now we can get the η realizations {r j }. Let p̂
def
= r̄

def
= 1

η

∑η
j=1 r j . As per Proposition 4.1, when η

satisfies Inequality (4), p̂ = r̄ is a (1 − α ) confident estimation ofp. By definition,p is an elementary
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Cross-Domain Noise Impact Evaluation for Black Box Two-Level Control CPS 2:11

trial’s reachability probability (i.e., probability to reach forbidden region Ā) under cross-domain
noise RVN and given initial plant stateX 0. That is,p’s elaborative form isp (N ,X 0), and it measures
the risk of an elementary trial.
The impact of cross-domain noise RV N should be the risk increase caused by N . Let I (N ,X 0)

denote the impact of N on the 2L-CCPS with initial plant state X (t0) = X 0. Then we propose to
quantify I (N ,X 0) as

I (N ,X 0)
def
= p (N ,X 0) − p (0,X 0), (9)

where p (0,X 0) is an elementary trial’s reachability probability under 0 cross-domain noise and
given initial plant state X 0.
To holistically quantify the impact of N to the 2L-CCPS, ideally, we should evaluate I (N ,X 0)

for every X 0 ∈ Rn . Obviously this is impractical. Instead, we propose to use a benchmark X =
{X 0i }i=1, ...,b of b sample points in the allowed region A (i.e., ∀i , X 0i ∈ A). The b sample points in
X are fixed, or the sampling method is fixed (e.g., uniform sampling in A). We call each sampled
point X 0i a benchmark point.

With benchmarkX = {X 0i }i=1, ...,b , we summarize our basic 2L-CCPS cross-domain noise impact
evaluation method as follows. Given cross-domain noise RV N , for each benchmark pointX 0i ∈ X,
we run the elementary trial campaign described in Sections 4.1 and 4.2 to get reachability proba-
bility pi (N ,X 0i ) and pi (0,X 0i ), and follow Equation (9) to get cross-domain noise impact Ii (N ,X 0i ).
The holistic impact of cross-domain noise RV N is thus quantified by the set {Ii (N ,X 0i )}i=1, ...,b .

5 SHRINKING BENCHMARK REGION

5.1 Refined 2L-CCPS Architecture

In Section 4, the benchmark points are sampled from the entire allowed regionA. This benchmark
sampling region (simplified as “benchmark region” in the following) is too big. On the other hand,
for an initial plant stateX 0 ∈ A sufficiently away from the forbidden region Ā, the plant trajectory
may never reach Ā, even perturbed by large cross-domain noises. It is therefore meaningless to
include such X 0 in the benchmark. To make an analogy, to benchmark meteoroids’ reachability to
the Earth, it is sufficient to focus onmeteoroids in the solar system;meteoroids in other galaxies are
practically irrelevant. Based on the above heuristics, we propose to shrink the benchmark region
as follows.
We refine the classic 2L-CCPS architecture of Figure 1 by adding a bounding filter to the in-

put port of the physical subsystem (see Figure 4). This bounding filter rejects extreme new ref-
erence point values from the cyber subsystem. Specifically, suppose at time t0 a reference point
update event happened, and X (t0) = X 0. Then, the bounding filter will define a hyper bounding
ball Ball(X 0,γ ) in the state space, centered at X 0 with radius γ > 0. If the new reference point
valueO ′

ref
from the cyber subsystem is within Ball(X 0,γ ), thenO ′

ref
is accepted. Otherwise,O ′

ref
is

truncated. Formally, the filtered new reference point value O ′′
ref
is

O ′′ref =
⎧⎪⎨⎪⎩

O ′
ref
−X 0

| |O ′
ref
−X 0 | |2γ + X

0 (if | |O ′
ref
− X 0 | |2 � γ )

O ′
ref

(otherwise).
(10)

Note, Equation (10) implies that the classic 2L-CCPS architecture (see Figure 1) is a special case
of the refined 2L-CCPS architecture (see Figure 4), where γ = +∞.
With the bounding filter, no matter what the cross-domain noise RV N is, given the current

plant state X 0, a reference point update event can only change reference point to a value within
Ball(X 0,γ ). Therefore, in the refined 2L-CCPS architecture, given whatever cross-domain noise N ,
for an elementary trial starting from plant state X 0, the reachable state space of all possible future
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2:12 F. Tan et al.

Fig. 4. Refined 2L-CCPS architecture. Note under Assumption 5, τ1 = τ2 = 0.

trajectories is constrained. Denote this reachable state space as Traj(N ,X 0). Denote

B̄∗ def
= {X 0 |X 0 ∈ A, and Traj(N ,X 0) ∩ Ā ≡ ∅ for whatever RV N }.

Then for whatever RV N , ∀X 0 ∈ B̄∗, p (N ,X 0) ≡ 0 and I (N ,X 0) ≡ 0. Therefore, if we can explicitly
identify B̄∗, then we do not need to benchmark test any point in B̄∗. A point in B̄∗ is thus an
“irrelevant benchmark point.”

Correspondingly, the (relevant) benchmark points only need to be sampled fromB∗ def
= A − B̄∗.

More specifically, we call B∗ the “tight shrunk benchmark region,” and call any B ⊇ B∗ (B ⊆ A) a
“shrunk benchmark region.”We call B̄∗ the “tight irrelevant benchmark region,” and call any B̄ ⊆ B̄∗
(B̄ ⊆ A) an “irrelevant benchmark region.”

5.2 Heuristics to Shrink Benchmark Region

Now, the question is how to find B, or equivalently B̄, given the bounding filter (see Figure 4).
Our solution heuristics is still based on Proposition 4.2. Basically, for awell designed LTI physical

subsystem, the plant’s Lyapunov functionV (X (t ),Oref (t )) exists, and is monotonically decreasing
whenOref (t ) is a constant, which is the case for elementary trials. According to Proposition 4.2, at
time t0, given initial plant state X (t0) = X 0 ∈ A and bounding filtered new reference point value
O ′′

ref
(t0) ∈ Ball(X 0,γ ), the trajectory of an elementary trial X (t ) (t ∈ [t0,+∞)) is confined by the

hyper-ellipsoid E (X 0,O ′′
ref

(t0)) of

E (X 0,O ′′ref (t0))
def
= {Y |Y ∈ Rn and (Y −O ′′ref (t0))

TP(Y −O ′′ref (t0)) � V (X 0,O ′′ref)}, (11)

where P is the positive definite symmetric matrix in the Lyapunov function of Equation (7). We
call E (X 0,O ′′

ref
(t0)) a “Lyapunov hyper-ellipsoid.”

As shown by Figure 5, if none of such confining Lyapunov hyper-ellipsoids intersects with Ā, then
X 0 ∈ B̄∗. Consequently, the set of such X 0’s constitute a B̄ ⊆ B̄∗.
Formally, let us define

V
sup

X 0,Ball(X 0,γ )

def
= sup
∀O ′′

ref
∈Ball(X 0,γ )

{V (X 0,O ′′ref)}, (12)

and for arbitrary Y ⊆ Rn , define

V inf
Y,Ball(X 0,γ )

def
= inf
∀O ′′

ref
∈Ball(X 0,γ )

{V (Y ,O ′′ref) |∀Y ∈ Y}.

Then the intuition of Figure 5 is formalized by Lemma 5.1.
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Fig. 5. Confining Lyapunov hyper-ellipsoids and forbidden region.

Fig. 6. Intuition of V
sup

X 0,Ball(X 0,γ )
.

Lemma 5.1 (Irrelevant Benchmark Point). For any state X 0 ∈ A, if V
sup

X 0,Ball(X 0,γ )
<

V inf
Ā,Ball(X 0,γ )

, then X 0 ∈ B̄∗.

Proof. For any elementary trial starting with X (t0) = X 0, no matter what RV N is, the re-
sulted new reference point after bounding filtering, denoted as O ′′

ref
(t0), is within Ball(X 0,γ ). If

V inf
Ā,Ball(X 0,γ )

> V
sup

X 0,Ball(X 0,γ )
, then the elementary trial plant state trajectory’s initial Lyapunov

function value V (X (t0),O
′′
ref

(t0)) is less than that of any state in Ā. As per Proposition 4.2, the
elementary trial plant state trajectory can never reach Ā. This is true for any elementary trial
starting with X (t0) = X 0 under whatever RV N . Therefore, Traj(N ,X 0) ∩ Ā ≡ ∅ for whatever
RV N . �

5.3 Closed-Form Definition of Shrunk Benchmark Region

This subsection shall extend Lemma 5.1 to find a closed-form B̄, hence B.
Our heuristics is to first find the closed-form formula for V

sup

X 0,Ball(X 0,γ )
. Using this formula, we

then find a sufficient condition for V
sup

X 0,Ball(X 0,γ )
< V inf

Ā,Ball(X 0,γ )
. Then any X 0 satisfying the suffi-

cient condition should belong to B̄∗. Consequently, the set of such X 0’s constitute a B̄ ⊆ B̄∗.
Figure 6 gives the intuition to find the closed-form formula to calculate V

sup

X 0,Ball(X 0,γ )
. Given X 0

and ∀O ′′
ref
∈ Ball(X 0,γ ), the maximum Lyapunov function value V (X 0,O ′′

ref
) is achieved when we

choose O ′′
ref
= O1, so that the radius of Ball(X 0,γ ) exactly overlaps with the semi-minor axis of

Lyapunov hyper-ellipsoid E (X 0,O ′′
ref

) (see Equation (11)). Note the directions and lengths ratio of

themajor andminor axes of all Lyapunov hyper-ellipsoids are fixed once P is given; and E (X 0,O ′′
ref

)

is centered on O ′′
ref
and has X 0 on the surface.
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Figure 6’s intuition to find the closed-form formula ofV
sup

X 0,Ball(X 0,γ )
is formalized by Lemma 5.2.

Lemma 5.2 (Closed-Form Value of V sup
X 0,Ball(X 0,γ )

). We have V
sup

X 0,Ball(X 0,γ )
= λmax (P)γ 2, where

λmax (P) is the maximal eigenvalue of P in Lyapunov function of Equation (7).

Proof. According to Equation (12), V
sup

X 0,Ball(X 0,γ )
is the optimal objective function value for the

following optimization problem:

max
O ′′

ref

fX 0 (O ′′ref) = V (X 0,O ′′ref) = (X 0 −O ′′ref)
TP(X 0 −O ′′ref)

s.t. (X 0 −O ′′ref)
T (X 0 −O ′′ref) � γ 2,

(13)

where O ′′
ref
is the only optimization variable.

Problem (13) is a typical Quadratic Constrained Quadratic Optimization (QCQP) problem (Boyd
and Vandenberghe 2004). As this problem has a single constraint and the constraint itself is a hyper
ball, a special form of quadratic function, we can solve it as follows.

First, denote Õref
def
= X 0 −O ′′

ref
, and f ′

X 0 (Õref)
def
= −fX 0 (O ′′

ref
) = −ÕT

ref
PÕref. Then, problem (13) is

equivalent to problem

min
Õref

f ′
X 0 (Õref)

s.t. ÕT
refÕref � γ 2.

(14)

The Lagrangian of optimization problem (14) is

L(Õref,ν ) = ÕT
ref (ν I − P)Õref − νγ 2,

and the dual function is

д(ν ) = inf
Õref

{L(Õref,ν )} =
{
−νγ 2 (if ν I − P � 0)
−∞ (otherwise),

where “� 0” means the matrix on the left-hand side is positive semidefinite. Using a Schur com-
plement (Boyd and Vandenberghe 2004), the Lagrange dual problem to problem (14) is

max
ν

h

s.t. ν � 0[
ν I − P 0
0 −νγ 2 − h

]
� 0.

(15)

As problem (14) is strictly feasible, i.e., there exists some Õref (e.g., Õref = 0) s.t. Õ
T
ref
Õref < γ

2,
problem (15) holds strong duality to problem (14) (Boyd and Vandenberghe 2004). Hence, the two
problems’ optimal values are equal. By solving problem (15), we have the optimal value

h∗ = −λmax (P)γ 2,

where λmax (P) is the maximal eigenvalue of matrix P. Then we have

fX 0 (O ′′ref)
∗ = −f ′

X 0 (Õref)
∗ = −h∗ = λmax (P)γ 2. �

Now we know that given X 0 ∈ A, V sup

X 0,Ball(X 0,γ )
= λmax (P)γ 2. Then, it is possible to find a suffi-

cient condition to make V
sup

X 0,Ball(X 0,γ )
< V inf

Ā,Ball(X 0,γ )
. To find such sufficient condition, let us first
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define the distance between a point X 0 ∈ Rn and a region Y ⊆ Rn as

Dis(X ,Y )
def
= inf{| |X − Y | |2 |∀Y ∈ Y}.

Then a sufficient condition is described by Lemma 5.3.

Lemma 5.3 (Irrelevance Distance). Given Y ⊆ Rn , state X 0 ∈ A, and an arbitrarily small
positive constant ε > 0, if

Dis(X 0,Y ) >

√
λmax (P)

λmin (P)
γ + γ + ε

def
= Γ, (16)

where λmax (P) and λmin (P) are, respectively, the maximum and minimum eigenvalues of the positive
definite symmetric matrix P of Equation (7), then V

sup

X 0,Ball(X 0,γ )
< V inf

Y,Ball(X 0,γ )
.

Proof. ∀O ′′
ref
∈ Ball(X 0,γ ), ∀Y ∈ Y ,

V (Y ,O ′′ref) = (Y −O ′′ref)
TP(Y −O ′′ref). (17)

Due to the bounding filter, we know that

(O ′′ref − X
0)T (O ′′ref − X

0) � γ 2.

Also, as Dis(X 0,Y ) > Γ, we have

(Y − X 0)T (Y − X 0) > Γ2.

From Equation (17), we get

V (Y ,O ′′ref) � λmin (P) (Y −O ′′ref)
T (Y −O ′′ref)

= λmin (P)[(Y − X 0) − (O ′′ref − X
0)]T[(Y − X 0) − (O ′′ref − X

0)]

> λmin (P) (Γ − γ )2 (see Lemma C.1 in Appendix C)

> λmax (P)γ 2 + λmin (P)ε2 = V
sup

X 0,Ball(X 0,γ )
+ λmin (P)ε2.

That is, ∀O ′′
ref
∈ Ball(X 0,γ ), ∀Y ∈ Y , we have V (Y ,O ′′

ref
) > V

sup

X 0,Ball(X 0,γ )
+ λmin (P)ε2. Therefore,

V
sup

X 0,Ball(X 0,γ )
< V inf

Y,Ball(X 0,γ )
. �

We call Γ the irrelevance distance. Figure 7 visualizes the intuition of Γ. Basically, ifDis(X 0,Y ) >
Γ, then no Lyapunov hyper-ellipsoid E (X 0,O ′′

ref
) (∀O ′′

ref
∈ Ball(X 0,γ )) can intersect withY . Hence,

elementary trial trajectories starting from X 0 can never reach Y . In case Y = Ā and X 0 ∈ A, X 0
thus is an irrelevant benchmark point: X 0 ∈ B̄∗.
Lemma 5.3 thus helps us to find a closed-form shrunk benchmark region B, as described by

Theorem 5.4.

Theorem 5.4 (Shrunk Benchmark Region). For the refined 2L-CCPS architecture,

B def
= {X 0 |X 0 ∈ A, and Dis(X 0, Ā) � Γ} (18)

is a shrunk benchmark region.

Proof. ∀X 0 ∈ B̄ = A − B, Dis(X 0, Ā) > Γ. Due to Lemma 5.3, we know that V
sup

X 0,Ball(X 0,γ )
<

V inf
Ā,Ball(X 0,γ )

. Due to Lemma 5.1, we know X 0 ∈ B̄∗. Therefore, B̄ ⊆ B̄∗. That is, B ⊇ B∗. �
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Fig. 7. Visual intuition of irrelevance distance Γ.

Fig. 8. A shrunk benchmark region derived via Theorem 5.4.

Figure 8 illustrates an example shrunk benchmark region derived via Theorem 5.4. Now, to build
benchmarkX, instead of sampling the entire allowed regionA, we only need to sample the shrunk
benchmark region B.

5.4 Discussions on Assumption 5

So far, unless otherwise denoted, all contents of Sections 4 and 5 are based on Assumption 5,
which idealizes delay time costs as τ1 = τ2 = 0.
In reality, the delay time costs cannot be zero. Therefore, the evaluationmethodology framework

proposed in Sections 4 and 5 provides only an idealized theoretical approximation of the reality. But
this does not render the theoretical evaluation results useless, becuase they increase our knowledge
and confidence on the real system.
That said, the knowledge and confidence derived from the idealized theoretical approximation

are particularly relevant when τ1 and τ2 are sufficiently small: e.g., several orders of magnitude
smaller than the interval between consecutive reference point update events. This is corroborated
by our evaluations in Section 6, where real 2L-CCPS experiment results (see Section 6.4) match
idealized theoretical evaluation results (see Sections 6.2 and 6.3).
From a more generic perspective, using idealized theoretical approximation results to increase

knowledge and confidence of computer systems is a well adopted engineering practice. For ex-
ample, when using automata based model checking to verify complex computer systems (those
involving thousands of lines of source code), the formal model can rarely exactly match all the
source code (that is why we still have to test and debug the source code after model checking).
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Fig. 9. Parallel-inverted-pendulum testbed.

But this does not render automata based model checking useless: we still need model checking to
know the real computer system better, and to trust the real computer systems more.

6 EVALUATION

In this section, we evaluate our proposed methodology framework in Sections 4 and 5. Specifically,
we evaluate the cross-domain noise impacts of two cyber subsystem upgrade alternatives for an
inverted pendulum (Brogan 1991) testbed. By comparing the two evaluation results, a better alter-
native is chosen. Runtime experiments are then carried out to verify the choice. We also show that
Section 5’s benchmark region shrinking method can save 24.1% of the offline evaluation effort,
meanwhile achieving the same evaluation goal.

6.1 Inverted Pendulum Testbed

Our testbed is a 2L-CCPS that runs computer vision assisted parallel inverted pendulums (Brogan
1991) (see Figure 9). In the testbed, two unmanned carts respectively maintain the standing of their
inverted pendulums (IPs), and maintain a certain cart-convoy formation. The physical subsystem
controls the unmanned IP carts’ fine-grain movements, while the cyber subsystem coordinates the
cart-convoy formation using computer vision. This is a representative 2L-CCPS testbed, which can
be generalized to many real-world applications: e.g., computer vision guided driving or convoy-
formation of unmanned automobiles (Beyeler et al. 2014), unmanned aerial vehicles (Kong et al.
2014), and computer vision assisted industrial robot coordination (Kim et al. 2012). All of such
systems involve a physical subsystem of mission-critical plants (the unmanned automobiles, the
unmanned aerial vehicles, the industrial robots), just like the unmanned carts with IPs; and a
computer vision assisted cyber subsystem that runs complex computations to decide coarse-grain
coordination.
Specifically, the physical subsystem of the testbed consists of two inverted pendulums: IP1 and

IP2. An inverted pendulum is a metal rod with one end hinged on a cart, and the other end free
to rotate around the hinge (see Figure 9(a)). The cart can move along a piece of metal rail. The
controller of the inverted pendulum takes charge of moving the cart back and forth along the rail
to keep the hinged metal rod (the inverted pendulum) standing upright.
For IPi (i = 1, 2), let Xipi (t ) denote its plant state. Xipi then includes four state variables (see

Figure 9(a)): respectively, the current location xipi (t ) (m) and velocity ẋipi (t ) (m/sec) of the cart,

and the current angular displacement θipi (t ) (rad) and velocity θ̇ipi (t ) (rad/sec) of the rod from the

upright position. That is, Xipi (t ) = (xipi (t ),θipi (t ), ẋipi (t ), θ̇ipi (t ))T.
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As an LTI control system,5 the physical dynamics of IPi is governed by the following systems
of differential equations (Googol 2016).

d(Xipi −Oiprefi )

dt
= Aipi (Xipi −Oiprefi ) + BipiUipi ,

Uipi = −Kipi (Xipi −Oiprefi ),

where Xipi , Oiprefi , Uipi , Aipi , Bipi , and Kipi respectively correspond to X , Oref, U , A, B, and K in
Equations (1) and (2). The specific inverted pendulums we use are made by Googol (Googol 2016),
and have the following configurations (for both i = 1 and 2).

Aipi =

������
0.000 1.000 0.000 0.000
0.000 0.000 0.000 0.000
0.000 0.000 0.000 1.000
0.000 0.000 29.400 0.000

��
,

Bipi = (0.000, 1.000, 0.000, 3.000)T,

Kipi = (−5.0505,−5.8249, 35.2502, 6.2750).
As we have two inverted pendulums, the holistic plant of our testbed can be described by the

following differential equation systems.

d(Xtb −Otbref)

dt
= Atb (Xtb −Otbref) + BtbUtb, (19)

Utb = −Ktb (Xtb −Otbref), (20)

where Xtb =
(

Xip1

Xip2

)
, Otb =

(
Oipref1

Oipref2

)
, Atb =

(
Aip1 0

0 Aip2

)
, Btb =

(
Bip1 0

0 Bip2

)
, and Ktb =

(
Kip1 0

0 Kip2

)
.

Both IPs move along the x-axis. The given allowed region A for our testbed is6

A = {Xtb |Xtb ∈ R8, and 0.15 ≤ xip2 − xip1 ≤ 0.2}. (21)

That is, IP1 and IP2’s carts cannot go too close nor too apart.
7

The cyber subsystem of our testbed takes charge of computing new reference points for the
plant (i.e., IP1 and IP2) using computer vision sensing inputs. Due to Assumption 2 in Section 1,
the cyber subsystem is a white box to the vendor. Figure 10 depicts the white box details.
Note that a reference point represents the equilibrium state that the user aims to achieve. For

inverted pendulum IPi (i = 1, 2), the user always wants the equilibrium taking the form Oiprefi =

(xiprefi , 0, 0, 0)
T. That is, at equilibrium, the inverted pendulum cart should stop at xiprefi , and the

rod should stand still at upright angle. Therefore, the only update the cyber subsystem shouldmake
to a reference point is the cart’s equilibrium location xiprefi : at different time, the cyber subsystem
may want to move the cart to different locations. That is, the cyber subsystem is focusing on
computing the new xiprefi .
As shown in Figure 10, the cyber subsystem’s computation dataflow starts fromM0, the “remote

sensing” module, where a USB 2 Mega pixel camera captures a 640 × 480 pixel raw image of IP1
and IP2. Denote the raw image captured as D0 = M0 (X ) + N , where X is the current plant state,
and N is the cross-domain noise. D0 is then fed to modules M1 and M2, respectively, for red and

5Strictly speaking, an inverted pendulum control system is not linear, but when θipi is reasonably small (e.g., ≤ π

6 (rad)),

the system can be regarded as linear.
6Here we are assuming the rails of the IPs are long enough. Otherwise, a more strict definition of A should also include
the rail length constraints.
7In the actual implementation, IP1 and IP2 are moving along two parallel rails. Therefore, the two inverted pendulums will

not really crash. However, for evaluation purposes, we still enforce the allowed region of Inequality (21), regarding IP1 and

IP2 as if moving along a same rail.
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Fig. 10. Testbed cyber subsystem white box details in the vendor’s view (note, according to Assumption 1

in Section 1, to the user, the cyber subsystem is a black box except M0, M5 and their interfaces to the rest of

the cyber subsystem).

yellow color recognition. M1’s output D1 is a binary image: a pixel of 1 means the corresponding
pixel in D0 is recognized as red; and 0 otherwise. The same applies to M2 and D2, except that the
color to recognize is yellow.
The reason why to carry out red and yellow color recognition is because IP1 and IP2’s carts

respectively bear a red and a yellow label. By recognizing the red and yellow label, the cyber
subsystem identifies xip1 and xip2, the current locations of the two carts. This is realized by feeding
D1, D2 respectively toM3 andM4 for IP1 and IP2 cart localization. The output ofM3 (i.e., D3) is the
estimation of xip1; while the output of M4 (i.e., D4) is the estimation of xip2. D3 and D4 are fed to
M5, the “final decision” module, to compute the new reference point values, i.e., xipref1 and xipref2.

6.2 Offline Cross-Domain Noise Impact Evaluation

In our testbed of Figure 10, raw image data (i.e., D0) captured by M0 are noisy. This cross-domain
noise propagates through the network of digital modules, and finally affects the plant. In order to
enhance robustness against the cross-domain noise, the testbed vendor proposes two upgrading
alternatives: either upgrade M1 to a commercial-off-the-shelf (COTS) module of M ′1; or to upgrade
M3 to a COTS module of M

′
3; but not both, because of budget limit. Meanwhile, as both M ′1 and

M ′3 are COTS, their interconnection and internal implementation details are hidden to the user.
To independently decide which alternative to take, the testbed user carries out the cross-domain
noise impact evaluation framework of Sections 4 and 5.
As summarized by the last paragraph of Section 4, the first step of the evaluation framework is

to prepare a benchmark X = {X 0i }i=1, ...,b . Without loss of generality, the user chooses b = 1,000.
For the time being, the user first tries the framework without benchmark region shrinking. That is,
the user sample b = 1,000 benchmark points from the entire allowed regionA (see Equation (21)).
For each benchmark point X 0i (i = 1, . . . ,b), the framework asks the user to emulate η elemen-

tary trials following the algorithm of Figure 3. Particularly, the user implements Line 2 according
to the alternative way described in the comment. That is, M0 outputs M0 (X

0
i ) + N to the rest of

the cyber subsystem to generateO ′
ref

(t0) (note according to Assumption 1 of Section 3.2,M0 and
its interface to the rest of the cyber subsystem is not a black box to the user).
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Fig. 11. Statistics of cross-domain noise impact values {I (N ,X 0)}∀X 0∈X , without shrinking benchmark

region.

The implementation detail is as follows. For eachX 0i ∈ X, the user prepares a high-quality 640 ×
480 pixels picture Pi asM0’s noiseless output. That is, Pi = M0 (X

0
i ). Let N denote the cross-domain

noise RV, and D0,i denote the noisy output ofM0 corresponding to X
0
i . Then D0,i = M0 (X

0
i ) + N =

Pi + N .
Indeed, D0,i is also a 640 × 480 pixel picture, with each pixel inflicted by RV N . The user gen-

erates D0,i pixel by pixel. Let Pi (j,k ) ∈ [0, 255] (j = 1, 2, . . . , 640; k = 1, 2, . . . , 480) denote Pi ’s red
(or yellow) color value of the pixel at coordinate (j,k ). Let N (j,k ) ∈ R denote the component of
cross-domain noise N at pixel coordinate (j,k ). Let D0,i (j,k ) denote the noisy raw image red (or
yellow) color value at pixel (j,k ). Then, D0,i (j,k ) = Pi (j,k ) + N (j,k ) (in practice, D0,i (j,k )’s value
is rounded to the closest integer in [0, 255]).
Without loss of generality, the user generates the cross-domain noise RV N as per Gaussian

distribution, i.e., N (j,k ) ∼ Normal(0,σ 2). The user defines the level of N , denoted as ‖N ‖, with
mean square error (MSE), a well-known concept in image processing.

MSE
def
=

1

J · K

J∑
j=1

K∑
k=1

N 2 (j,k ), (22)

where J and K are, respectively, the width and length of an image in pixels. It can be proven that
E(MSE) = σ 2.
The user then discretizes 10 log10 MSE’s value range into five intervals; respectively, (−∞,−10),

[−10, 0), [0, 10), [10, 20), and [20, 30). Suppose the 10 log10 MSE derived from the current N falls in
the lth (l ∈ {1, 2, . . . , 5}) interval; then the user says ‖N ‖ = l .
With the above methodology to generate D0,i = M0 (X

0
i ) + N for each benchmark point X 0i , the

user implements the elementary trial emulation described by Figure 3.
Now the user is ready to evaluate the impact of cross-domain noise to our testbed. The user

examines three cyber subsystem settings: no upgrade, upgradeM1 only, and upgradeM3 only.
For each setting, for each benchmark point X 0i ∈ X (i = 1, . . . , 1,000) and each noise level
| |N | | = l , l ∈ {1, 2, . . . , 5}, the user runs a campaign of η = 1,000 elementary trial emulations, and
derives the cross-domain noise impact value as per Equation (9). According to Proposition 4.1, this
guarantees a confidence level of 95% that the derived impact value error is within ±0.032. For the
bounding filter in the physical subsystem, the user sets its radius γ = 0.001m (see Figure 10). All
the emulations are carried out on a HP workstation with Intel Core I7-3610QM and 8G RAM.
The statistics of impact values over all benchmark points are shown and compared in Figure 11.
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Fig. 12. Statistics of cross-domain noise impact values {I (N ,X 0)}∀X 0∈X , with shrunk benchmark region.

As the impact value indicates the increase of plant fault probability due to cross-domain noise
N , the smaller the impact value, the more robust the system. Therefore, Figure 11 clearly favors
upgradingM1.

6.3 Offline Evaluation with Shrunk Benchmark Region

In Section 6.2’s evaluation, the benchmark points are sampled from the entire allowed region A.
By applying the benchmark region shrinking methodology proposed in Section 5, the user can
sample less. Specifically, using the existing LTI control Lyapunov analysis methodology (Brogan
1991), the user finds for our testbed of Equations (19), (20),

P =

(
Q 0

0 Q

)
,

where

Q =

������
190.2853 −50.0013 29.3842 10.9965
−50.0013 436.0298 −10.9938 442.5856
29.3842 −10.9938 23.9030 −50.0135
10.9965 442.5856 −50.0135 639.884

��
.

The user chooses ε = 0.0002, so the irrelevance distance Γ =
√

λmax (P)
λmin (P)

γ + γ + ε = 0.016 (see

Equation (16)), which defines the shrunk benchmark region B via Equation (18).
The user reuses the benchmark points used in Section 6.2, but excluding all those outside of B.

In this way, the shrunk benchmark region B removes 241 of the original 1,000 benchmark points
(i.e., 24.1% of the evaluation computation effort is saved). The statistics of cross-domain noise
impact values over the reduced benchmark are shown and compared in Figure 12. The results also
apparently favor upgradingM1.

6.4 Runtime Experiment Validation

Through our proposed evaluation framework, Sections 6.2 and 6.3 both come to the conclusion
that the user should upgrade M1 to M ′1. To validate the user’s decision, we carry out runtime
experiments to compare the actual results of the upgrading alternatives.
Specifically, we evaluate three scenarios of the testbed. In the first scenario, no digital module

is upgraded. In the second scenario, only M1 is upgraded to M
′
1. In the third scenario, only M3 is

upgraded toM ′3. For each scenario, we set the cross-domain noise level ‖N ‖ to 1, 2, 3, 4, and 5 (see
Section 6.2 and Equation (22) for the definition of these values; in our experiment implementation,
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Table 1. Percentage of Trials that Encounter Plant Fault(s)

Scenario Total Number of Faults Faulty Trial Percentage
No Upgrade 49 49%
UpgradeM1 20 20%
UpgradeM3 39 39%

moduleM0, a noisy camera, is realized by appending a noise generator to a high-quality camera’s
output). For each noise level, 20 elementary trial experiments are carried out. In each experiment,
IP1 and IP2 start from a random initial state uniformly picked from the allowed regionA, and run
for 1 minute. We record whether during this 1 minute, IP1 and IP2’s state ever exceeds A. If so, a
plant fault occurs.
Table 1 lists the experiment result: the total number of plant faults and the percentage of trials

that involves faults. According to the table, upgrading M1 apparently performs better than up-
gradingM3 in terms of fault reduction. This matches the prediction made by offline evaluation of
Sections 6.2 and 6.3, and hence validates the usefulness of our proposed cross-domain noise impact
evaluation methodology framework.
Note, as discussed in Section 5.4, the evaluation in Sections 6.2 and 6.3 is a theoretical approxi-

mation of the reality. It assumes zero delay to deliver the plant state to the cyber subsystem, and
to calculate and deliver the new reference point value from the cyber subsystem to the physical
subsystem. In our real-world runtime experiment, the aforementioned delay is non-zero, and is
in the order of magnitude of 10ms. The fact that the runtime experiment results still match the
theoretical evaluation results corroborates the following: when the delay is sufficiently small, the
theoretical evaluation is good enough to increase our knowledge and confidence on the real-world
2L-CCPS.

7 CONCLUSION

In this article, we propose a framework of methodology to evaluate the impact of cross-domain
noise in a generic 2L-CCPS architecture, whose cyber subsystem is a black box to the user. Our
contributions are as follows:

(1) We proposed a benchmark metric and corresponding measurement method to quantify
the cross-domain noise impact to the black box 2L-CCPS.

(2) We further proposed a method to effectively shrink the benchmark, exploiting interdisci-
plinary Lyapunov stability control theories.

(3) We validated the effectiveness and efficiency of our proposed methodology framework
with a representative 2L-CCPS testbed. Particularly, the proposed benchmark shrinking
technology saves us 24.1% of the evaluation effort.

APPENDIX

A MEANING OF REACHABILITY PROBABILITY

Proposition A.1 (Risk of Trajectory). Given cross-domain noise RV N , suppose during
[t0,+∞), a 2L-CCPS undergoes k (k � 1) reference point update events, which respectively happened
at t0 < t1 < · · · < tk−1. Let Xi (i = 0, . . . ,k − 1) denote the plant state right before the ith reference
point update event. Let Ri denote the reachability RV for Xi under N , and pi = Pr(Ri = 1). Let ϖ
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denote the probability that the trajectory of X (t ) (t ∈ [t0,+∞)) never reaches Ā (i.e., the 2L-CCPS

never encounters plant fault). Then ϖ � Πk−1
i=0 (1 − pi ).

Proof. Starting from Xi , what happens during [ti , ti+1) (i = 0, . . . ,k − 1, where tk
def
= +∞) is

exactly what happens to an elementary trial starting from Xi during [0, ti+1 − ti ) (suppose the el-
ementary trial starts from time 0). Therefore, the probability of not reaching Ā during [ti , ti+1)
is no less than (1 − pi ). As per Equation (3), X (t ) is continuous on [t0,+∞), therefore, ϖ �
Πk−1

i=0 (1 − pi ). �

Particularly, if pi ’s are upper bounded by p
max, then ϖ � (1 − pmax)k . In the extreme case, if

pmax = 0, then ϖ = 1. That is, the control CPS has 0 probability of encountering a plant fault.

B PROOF OF PROPOSITION 4.2

dV (X (t ),Oref (t ))

dt
(where Oref (t ) ≡ O ′ref

(t0))

= Ẋ TP(X (t ) −O ′ref (t0)) + (X (t ) −O ′ref (t0))
TPẊ (see Equation (7))

= (F(X (t ) −O ′ref (t0)))
TP(X (t ) −O ′ref (t0))

+ (X (t ) −O ′ref (t0))
TPF(X (t ) −O ′ref (t0)) (see Equation (3))

= (X (t ) −O ′ref (t0))
T (FTP + PF) (X (t ) −O ′ref (t0))

= −(X (t ) −O ′ref (t0))
TI(X (t ) −O ′ref (t0)) (see Equation (6))

= −(X (t ) −O ′ref (t0))
T (X (t ) −O ′ref (t0)) � 0. �

C SHORTEST DISTANCE FROM A BALL TO A CONCENTRIC BALL COMPLEMENT

∀X ,Y ∈ Rn , denote dis(X ,Y )
def
= | |X − Y | |2 =

√
(X − Y )T (X − Y ). We have the following:

Lemma C.1. Given Γ � γ > 0, then ∀X ,Y ∈ Rn s.t. X TX � γ 2 and Y TY > Γ2, we have
dis(X ,Y ) > Γ − γ .

Proof. Define fY (X )
def
= (X − Y )T (X − Y ), let us first solve the following optimization problem:

min
X

fY (X )

s.t. X TX � γ 2.

For this problem,we have its LagrangianL(X ,ν ) = | |X − Y | |22 + ν ( | |X | |22 − γ 2). Using the Karush-
Kuhn-Tucker (KKT) conditions, we have

| |X ∗ | |2 − γ � 0, (23)

ν∗ � 0,
ν∗ ( | |X ∗ | |2 − γ ) = 0, (24)

(1 + ν∗)X ∗ − Y = 0. (25)

Substituting X ∗ from Equation (25) into Equation (24), we have

ν∗ ( | |X ∗ | |2 − γ ) =
ν∗

1 + ν∗
( | |Y | |2 − (1 + ν∗)γ ) = 0. (26)
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Fig. 13. Minimal distance from a ball to a concentric ball complement.

As we know Y TY > Γ2 and Γ � γ > 0, then we have | |Y | |2 > Γ � γ > 0. From Equation (26), we
know either ν∗ = 0 or ( | |Y | |2 − (1 + ν∗)γ ) = 0. If ν∗ = 0, we have X ∗ = Y from Equation (25), and
| |Y | |2 = | |X ∗ | |2 � γ from Equation (23), which contradicts the fact that | |Y | |2 > γ . Thus, we have

| |Y | |2 − (1 + ν∗)γ = 0⇒ 1 + ν∗ = | |Y | |2
γ
.

Substituting (1 + ν∗) = | |Y | |2/γ into Equation (25), we derive

X ∗ =
γ

| |Y | |2
Y .

Then, we have

fY (X )∗ =
����� γ

| |Y | |2
Y − Y

�����
2

2

= ( | |Y | |2 − γ )2.

Here,Y is a given parameter to the optimization problem. As | |Y | |2 > Γ � γ > 0, we have fY (X )∗ =
( | |Y | |2 − γ )2 > (Γ − γ )2. That is, ∀X ,Y ∈ Rn , if X

TX � γ 2, Y TY > Γ2, and Γ � γ > 0, dis(X ,Y ) =√
fY (X ) �

√
fY (X )∗ > Γ − γ . �

The idea of Lemma C.1 is illustrated by Figure 13.

REFERENCES

Manu Augustine, Om Prakash Yadav, Rakesh Jain, and Ajay Rathore. 2012. Cognitive map-based system modeling for

identifying interaction failure modes. Res. Eng. Design 23 (2012), 105–124.

Michael Beyeler, Florian Mirus, and Alexander Verl. 2014. Vision-based robust road lane detection in urban environments.

Proc. of IEEE Intl. Conf. on Robotics and Automation (ICRA’14).

Stephen Boyd and Lieven Vandenberghe. 2004. Convex Optimization. Cambridge University Press.

William L. Brogan. 1991. Modern Control Theory (3rd ed.). Prentice Hall.

Eduardo F. Camacho and Carlos Bordons. 2013. Model Predictive Control in the Process Industry (Advances in Industrial

Control). Springer.

Salvatore Distefano, Antonio Filieri, Carlo Ghezzi, and Raffaela Mirandola. 2011. A compositional method for reliability

analysis of workflows affected by multiple failure modes. Proc. of CBSE.

Gene F. Franklin, J. David Powell, and Abbas Emami-Naeini. 1994. Feedback Control of Dynamic Systems (3rd ed.). Addison-

Wesley Publishing Company.

Zhiwei Gao, Carlo Cecati, and Steven X. Ding. 2015a. A survey of fault diagnosis and fault-tolerant techniques part I: Fault

diagnosis with model-based and signal-based approaches. IEEE Trans. Ind. Electronics 62, 6 (2015), 3757–3767.

Zhiwei Gao, Carlo Cecati, and Steven X. Ding. 2015b. A survey of fault diagnosis and fault-tolerant techniques part II: Fault

diagnosis with knowledge-based and hybrid/active approaches. IEEE Trans. Ind. Electronics 62, 6 (2015), 3768–3774.

Xiaocheng Ge, Richard F. Paige, and John A.McDermid. 2009. Probabilistic failure propagation and transformation analysis.

Proc. of the 28th Intl. Conf. on Computer Safety, Reliability, and Security, 215–228.

Tech. Ltd. Googol. 2016. Linear Inverted Pendulum. Retrieved August 23, 2018 from http://www.googoltech.com.

ACM Transactions on Cyber-Physical Systems, Vol. 3, No. 1, Article 2. Publication date: August 2018.

For Research Only

http://www.googoltech.com


Cross-Domain Noise Impact Evaluation for Black Box Two-Level Control CPS 2:25

Martin Hiller, Arshad Jhumka, and Neeraj Suri. 2004. EPIC: Profiling the propagation and effect of data errors in software.

IEEE Trans. Computers 53, 5 (2004), 1–19.

Naira Hovakimyan and Chengyu Cao. 2010. L1 Adaptive Control Theory: Guaranteed Robustness with Fast Adaptation. SIAM.

Arshad Jhumka and Matthew Leeke. 2011. The early identification of detector locations in dependable software. Proc. of

IEEE Intl. Symp. on Software Reliability Engineering.

Hassan K. Khalil. 2001. Nonlinear Systems (3rd ed.). Prentice Hall.

Kyekyung Kim, Joongbae Kim, Sangseung Kang, Jaehong Kim, and Jaeyeon Lee. 2012. Vision-based bin picking system

for industrial robotics applications. Proc. of the 9th Intl. Conf. on Ubiquitous Robots and Ambient Intelligence (URAI’12),

515–516.

Weiwei Kong, Dianle Zhou, Daibing Zhang, and Jianwei Zhang. 2014. Vision-based autonomous landing system for un-

manned aerial vehicle: A survey. Proc. of Intl. Conf. on Multisensor Fusion and Inf. Integration for Intelligent Systems

(MFI’14).

Marta Kwiatkowska, Gethin Norman, and David Parker. 2002. PRISM: Probabilistic symbolic model checker. TOOLS 2002

2324 (2002), 200–204.

Adam J. Oliner and Alex Aiken. 2011. Online detection of multi-component interactions in production systems. Proc. of

Dependable Systems and Networks (DSN’11), 49–60.

Thanh-Trung Pham, Xavier Defago, and Quyet-Thang Huynh. 2015. Reliability prediction for component-based software

systems: Dealing with concurrent and propagating errors. Sci. Computer Programm. 97 (2015), 426–457.

Lui Sha, Sathish Gopalakrishnan, Xue Liu, and Qixin Wang. 2008. Cyber-physical systems: A new frontier. IEEE SUTC

(2008), 1–9.

Seppo Sierla, Bryan M. O’Halloran, Tommi Karhela, Nikolaos Papakonstantinou, and Irem Y. Tumer. 2013. Common cause

failure analysis of cyber-physical systems situated in constructed environments. Res. Eng. Design 24, 4 (2013), 375–394.

Paulo Tabuada. 2009. Verification and Control of Hybrid Systems: A Symbolic Approach. Springer.

Feng Tan, Liansheng Liu, Stefan Winter, Qixin Wang, Neeraj Suri, Lei Bu, Yu Peng, Xue Liu, and Xiyuan Peng. 2014. WiP

abstract: A framework on profiling cross-domain noise propagation in control CPS. ACM/IEEE Intl. Conf. on Cyber-

Physical Systems (ICCPS’14), 224.

US Dept. of the Army. 2015. TM 5-698-4: Failure Modes, Effects and Criticality Analyses (FMECA) for Command, Control,

Communications, Computer, Intelligence, Surveillance, and Reconnaissance (C4ISR) Facilities.

Xiaofeng Wang, Naira Hovakimyan, and Lui Sha. 2013. L1Simplex: Fault-tolerant control of cyber-physical systems. Proc.

of ICCPS, 41–50.

Received February 2017; revised February 2018; accepted April 2018

ACM Transactions on Cyber-Physical Systems, Vol. 3, No. 1, Article 2. Publication date: August 2018.

For Research Only


