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Abstract—Existing energy distribution strategies of AFL and
its variants have two limitations. (1) They focus on increasing
coverage but ignore the fact that some code regions are more
likely to be vulnerable. (2) They randomly select mutators
and deterministically specify the number to mutator, therefore
lack insights regarding which granularity of mutators are more
helpful at that particular stage. We improve the two limitations of
AFL’s fuzzing energy distribution in a principled way. We direct
the fuzzer to strengthen fuzzing toward regions that have a higher
probability to contain vulnerabilities based on static semantic
metrics of the target program. Furthermore, granularity-aware
scheduling of mutators is proposed, which dynamically assigns
ratios to different mutation operators. We implemented these
improvements as an extension to AFL. Large-scale experimental
evaluations showed the effectiveness of each improvement and
performance of integration. The proposed tool has helped us
find 12 new bugs and expose three new CVEs.

Index Terms—GreyBox Fuzzing, Directed Fuzzing, Mutator
Schedule

I. INTRODUCTION

American Fuzzy Lop (AFL) [1] [5] is one of the most

effective fuzzing tools to explore vulnerabilities. A lot of

works improve AFL’s abilities by maximizing code coverage.

This is typically achieved by (1) improving feedback accuracy

and granularity [4]; (2) enhancing mutation strategies (i.e.

where and what to mutate) [3]; (3) providing high quality and

diverse seeds [8]; (4) accelerating execution speed by utilizing

hardware features (e.g Intel-PT) [7], and (5) balancing energy

distribution (e.g., low-frequency and untouched path deserve

more energy [2] [4] [6]).

Although it is shown that strategically distributing fuzzing

energy could substantially enhance the effectiveness of

fuzzing, such strategies have not yet been systematically

studied in the literature. Existing energy distribution of AFL

and its variants have two limitations:

• Vulnerability Region Unawareness. They focus on in-

creasing coverage, but lack guidance to direct the fuzzer

to strengthen fuzzing code regions that are more likely to

be vulnerable.

• Mutation Granularity Unawareness. They randomly se-

lect mutators and deterministically specify the number to

mutator, therefore lack insights regarding which granular-

ity of mutators are more helpful at that particular stage.

We improve the above two limitations in a principled way.

We direct fuzzer to strengthen fuzzing regions that are more

likely for a vulnerability to reside based on static semantic

metrics of the target program. More specifically, four kinds

of promising vulnerable regions (i.e., sensitive, complex, deep

and rare-to-reach regions) are given more resources during

fuzzing. Furthermore, granularity-aware scheduling for dif-

ferent mutation operators is proposed. The ratio of mutation

operators is increased gradually if they have better ability to

trigger new paths. All improvements are integrated and im-

plemented into a new open source fuzzing tool named TAFL.

Large-scale experimental evaluations are performed showing

the effectiveness of each improvement and performance of

integration. Furthermore, the proposed tool has helped us find

12 new bugs and identify three new CVEs.

In summary, the contributions of our work are as follows:

• Improvements. We improve the AFL’s energy distribu-

tion by making it vulnerability region aware and mutation

granularity aware.

• Tool. We implement and integrate our improvements into

afl-2.52b and develop a new open source fuzzing tool

named TAFL, which is accessible from https://github.

com/stuartly/RegionFuzz.

• Vulnerabilities. We perform a large-scale evaluation to

show TAFL’s effectiveness and efficiency. Our approach

has helped us to find 12 unknown bugs and identify three

new CVEs. (CVE-2018-1000654, CVE-2018-1000667,

and CVE-2018-1000886).

II. APPROACH

We improve two limitations of AFL’s fuzzing energy dis-

tribution and make it vulnerability region aware and mutation

granularity aware.

A. Becoming Vulnerability Region Aware

The core idea of improving AFL’s awareness of vulnerable

regions is to extract semantic metrics of the target program,

and instrument these qualitative metrics’ weight into the target

program. Then, we assign energy based on the run-time reward

of the executed path during fuzzing. In particular, seeds which

win more reward will be assigned with more energy. In this

way, we direct fuzzer to strengthen fuzzing code regions that

are more likely for a vulnerability to reside.

Let weight of a basic block BB for a specific metric be

weightM (BB). Then, reward of a path that executed with

input t could be denoted as:

Reward(t) =

∑n
i=0 weightM (BBi)

n
,BBi ∈ path(t) (1)
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Fig. 1: TAFL Workflow

After an execution is finished, the maximum, minimum

reward and average reward are updated. Furthermore, Factor
used for energy assignment is computed based on a seed’s

reward and average reward value.

Factor(t) =
Reward(t)

AvgReward
(2)

Let Pafl(t) be the energy assigned by AFL for input t, and

energy P (t) for test case t assigned after improvement could

be donated as following:

P (t) = Pafl(t) ∗ 210∗Factor(t) (3)

Furthermore, four kinds of semantic metrics are designed

and used to drive fuzzing based on institutions that the

sensitive, complex, deep and rarely reachable regions have

more chances to be vulnerable.

B. Becoming Mutation Granularity Aware

We performed an empirical evaluation of AFL’s mutators

and the results indicate that (1) coarse-grained mutators are

better than fine-grained mutators on helping path growth; (2)

the effect of combining multiple mutators is better than the

effect of using a single kind of mutator.

Granularity-Aware scheduling of mutators is proposed based

on the above observations. The proportion of mutation op-

erators, which has better ability to trigger new paths (e.g.,

extra mutators) will be increased gradually. And the number

of mutation operators will be increased over time.

III. IMPLEMENTATION AND EVALUATION

We incorporate our improvements into afl-2.52b and de-

velop a new fuzzer named TAFL. The workflow of TAFL

is demonstrated in Fig. 1. We perform large scale evalua-

tion to show its effectiveness and efficiency on well-known

benchmarks (e.g. LAVA-M) and some real-world open source

projects.

A. Benefits of Improved Vulnerability Region Awareness

Four kinds of region guided fuzzing (i.e., sensitive, complex,

deep and rare-to-reach regions) are evaluated and compared

with original AFL. In order to reduce the randoms of fuzzing,

we run each project ten times, each time lasts for 24 hours, and

get the average value. The Results show the effectiveness of

improved vulnerability region awareness. All the four regions

guided fuzzers perform better than AFL, especially in terms of

the first crash (e.g. max improvement is 41.67% and 21.14%

on average) and total crashes (e.g. max promotion is 24.15%,

20.05% on average).

B. Benefits of Improved Mutation Granularity Awareness

We compare AFL, AFLFast, and their extensions with our

mutator scheduling improvement on selected benchmarks. The

results show that scheduling of mutators is helpful to improve

code coverage in most cases. For AFL and AFLast, the average

promotion percentages are 7.03% and 4.82% respectively. In

a specific case such as libxml2-2.9.2, the promotion could be

as high as 15.8% and 14.7%.

C. Evaluation of Integrated Performance

We evaluated the performance of TAFL compared with AFL

[5], AFLFast [2] and FairFuzz [6] in overall. Our results show

that TAFL performs better than existing AFL based greybox

fuzzers in all the tested measurement metrics. Specifically,

TAFL obtains 23.40% promotion on triggering the first crash,

27.35% on total crashes, and 18.57% on total paths than the

original AFL.

IV. CONCLUSION

We improve two limitations of existing AFL’s fuzzing

energy distribution to make it vulnerability region aware and

mutation granularity aware. We direct fuzzer to strengthen

fuzzing regions that are more likely for a vulnerability to

reside. Granularity-Aware scheduling for mutators is proposed.

All improvements are integrated into a new open source

fuzzing tool named TAFL. The large-scale experiment showed

the effectiveness of each improvement and the performance

of integration. Furthermore, TAFL has helped us find 12 new

bugs and identify three new CVEs.
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