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ABSTRACT

Preferences, the setting options provided by Android, are an es-
sential part of Android apps. Preferences allow users to change
app features and behaviors dynamically, and therefore, need to be
thoroughly tested. Unfortunately, the specific preferences used in
test cases are typically not explicitly specified, forcing testers to
manually set options or blindly try different option combinations.
To effectively test the impacts of different preference options, this
paper presents Prefest, as a preference-wise enhanced automatic
testing approach, for Android apps. Given a set of test cases, Prefest
can locate the preferences that may affect the test cases with a static
and dynamic combined analysis on the app under test, and execute
these test cases only under necessary option combinations. The
evaluation shows that Prefest can improve 6.8% code coverage and
12.3% branch coverage and find five more real bugs compared to
testing with the original test cases. The test cost is reduced by 99%
for both the number of test cases and the testing time, compared to
testing under pairwise combination of options.

CCS CONCEPTS

• Software and its engineering → Software testing and de-

bugging.
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1 INTRODUCTION

The last decade has witnessed a rapid growth in Android apps,
drawing attention from both academia and industry. To cope with
the ever-changing market demands, Android app developers have
to work in fast development cycles, causing a growing need for cost-
effective testing approaches. Automatic generation of test inputs
[3, 7, 8, 15, 19] aiming at the fully automatic testing of Android
apps, as an example, has been prosperous since then.

For mobile apps on all platforms, it is often the case that there are
some setting options designed to allow users to change app features
and behaviors, and in Android, it is the preference [12]. By using
preference, users can switch among different GUI styles, change the
behaviors of certain functions, and enable or disable services, etc.
While preference offers users the ability of customization, unfortu-
nately for developers, the resulting diverse GUI displays and app
behaviors require more testing under different preference options.
Indeed, an app may work well in one setting of preference options,
while crash in another. To properly test an app’s behavior under
different preference options, which we call the preference-wise test-
ing, can be challenging. The specific preferences used in one test
case is typically not explicitly specified, and existing tools have
not considered the impacts of preferences on app behaviors during
testing. Black-box testing captures app status from GUIs. Since
changing preference options usually causes just slight or even no
changes in GUIs, preferences are mostly ignored. As for while-box
testing, since a key-value mechanism is used for preference access,
where the keys are typically dynamically generated, techniques
such as symbolic execution are required for the accurate prediction
of keys. However, symbolic execution is predominantly known to
be suffering from scalability issues [16], which is even worse for
Android apps due to the event-driven nature and the application de-
velopment framework (ADF) [23]. Therefore, despite of the recent
progresses in mobile testing, testers are still forced to manually
set preference options or try different option combinations for the
same test case, if they want to perform preference-wise testing.

In this paper, we propose the problem of preference-wise testing
for Android apps and present the Prefest approach. Prefest is built
on two key observations. Our first observation is that a test case
typically interacts with just a few preferences defined in the app.
So, for each test case, Prefest analyzes the preferences that may
impact the app behavior, which we call test case relevant preferences,
and executes test cases only under relevant preference option com-
binations. Specifically, given an Android app, Prefest first leverages
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a static analysis to identify the preference structure that contains
all the preferences defined in the app. Then in a dynamic analysis,
it executes the test cases and logs the execution flows to pinpoint
the relevant preferences to each test case. Finally, it re-executes test
cases only under relevant preference option combinations to reach
previously uncovered code.

To further reduce the test cost, we exploit our second observation
that Android apps often share app states globally using the key-
value mechanism. So, under one preference option combination,
a piece of code executed in different test cases often produces the
same app behavior, and therefore, does not require re-executions.
We equip Prefest with a reduction strategy named Target Mode,
which splits the app code into blocks and performs a further analysis
of the relevance between the preferences and the code blocks. For
one code block, referred as target, Prefest will execute it only if it
has not been executed by previous test cases.

Prefest can enhance the performance of existing automated
testing tools. In addition, it can be a useful complement to manual
testing. In practice, developers and testers are often not the same
group of people. Identifying relevant preferences for test cases and
testing apps under adequate preference options can be a costly or
even tough job for testers. This is where Prefest can be handy, since
it is all automated and the manual effort can be saved.

The main contributions can be summarized as:
(1) A novel problem of preference-wise testing and also a fully au-

tomated solution Prefest, to improve the efficacy of existing
testing approaches by considering the effects of preferences;

(2) Multiple techniques employed in analyzing the impacts of
preferences to Android testing, including the loading pat-
terns for preference identification, the analysis for relevant
preferences acquisition, and the Target Mode for test cost
reduction;

(3) A prototype also named Prefest and an empirical study on
30 real-world apps, showing that Prefest achieves 6.8% and
12.3% improvement in code and branch coverages, respec-
tively, and detects five more real bugs.

The paper is organized as follows. Sec. 2 introduces the back-
ground and motivation of our work. Sec. 3 provides the overview
and the details of the Prefest approach. Sec. 4 presents the ex-
perimental evaluation. Related work is discussed in Sec. 5 and
conclusion is drawn in Sec. 6.

2 BACKGROUND & MOTIVATION

2.1 Background

In Android, GUI pages containing preferences are called setting
screens. To use setting screens in an app, a programmer needs to
define: (1) resource files (in XML format) to describe the preferences
in each setting screen; (2) invocations of preference-related APIs in
source code to specify the loading location of each setting screen;
and (3) the accesses of preferences in source code.

Listing 1 shows a simplified resource file for a setting screen.
The top-level tag PreferenceScreen defines the container for a setting
screen. Each contained element represents a preference of different
types, such as ListPreference and CheckBoxPreference in Listing 1.

To perform preference-wise testing, we need to obtain the es-
sential details for each preference, including: (1) key: the unique

name to refer to the preference in source code; (2) title: the text
displayed in the setting screen; (3) defaultValue: the initial value of
the preference; and (4) entryValues: the possible options can be set
to the preference. As Listing 1 shows, these details are coded in the
resource files, which can be retrieved by static analysis.

<PreferenceScreen >
<CheckBoxPreference

key="widget_update_location_pref_key"
title="Update Location"
defaultValue="false"/>
...

<ListPreference
key="widget_theme_pref_key"
title="Widget theme"
entryValues ={"Dark", "Light"}/>
...

...
</PreferenceScreen >

Listing 1: Sample resource file for preferences

For an app to load a setting screen defined in the resource file, the
most common way is to call the API method addPreferencesFrom-
Resource with the resource file as its parameter, upon the creation
of an Activity or a Fragment, i.e., within their lifecycle methods
onCreate. A special setting screen named PreferenceHeaderScreen,
which shows a list of navigation texts to switch among different
setting screens, is officially recommended to load with another API
method loadHeadersFromResource (see Sec. 3.2).

The accesses of preferences values are particularly complex. An-
droid provides the SharedPreferences mechanism for activities and
applications to manage preference data in the form of key-value
pairs of primitive data types in the Android file system. The precise
values of keys are critical to analyzing which preferences are rele-
vant to a test case. However, they are difficult to acquire through
static analysis since very often they are generated dynamically. To
address this problem, we employ a dynamic approach to analyze
which preferences are loaded and used for the given test cases.
More details will be discussed in Sec. 3.3.

2.2 Motivation

In this section, we use a simple app, called GoodWeather, to show
how preferences affect app behaviors. GoodWeather is an app that
allows users to select the location by GPS or text search and displays
the weather condition for the selected location. It also has a feature
called widget that decks out the phone screen with the up-to-date
weather condition. Users are offered with customization options
manifested in preferences, as shown in Figure 1a.

Some of the preferences can change the widget’s functions, for
example, update location can determine whether or not to start a
service to runtime synchronize the location in the widget with the
one set in the app. Others can be used to customize the styles of look,
such as widget theme. The setting of such preferences can affect
either the app behavior or the GUI display, and in some cases, cause
bugs. For example, by default, update location is set to disabled,
under which users are able to change the location. However, if
update location is enabled, when users try to change the location,
a crash would occur, as shown in Figure 1b. Clearly, to reveal this
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(a) The setting screen for widget

settings

(b) A crash when selecting a

location

Figure 1: A preference-related crash in GoodWeather

bug, testers need to set this specific preference option first, and
then change the location in the app. However, there is no explicit
connection between a preference setting for the widget and a failure
in the main app, and thus this bug is very likely to be untested.

From the GoodWeather example, it is obvious that a systematic
and thorough preference-wise testing is needed to improve app
quality. However, preference-wise testing can be challenging, since
the impacts of preferences are tangled with app functions. As illus-
trated by the example, only enabling preference update location or
selecting the current location will not trigger the crash. Very often
testing tools or even human testers have no knowledge about what
preferences would affect the functions under test. Therefore, to
intentionally reveal instead of randomly triggering the preference
related bugs, they may have to perform exhaustive combinations of
test cases and preference settings, which can lead to an explosion
in testing space. Hence, there is an urgent need for the study of
cost-effective preference-wise testing approach.

3 PREFERENCE-WISE TESTING

3.1 Approach Overview

Figure 2 depicts the overview of Prefest. Given an APK file of the
App Under Test (AUT) and a set of test cases for the AUT, Prefest
identifies the relevant preferences that may affect the app behavior
and runs the test cases under relevant preference option combina-
tions to have a more thorough test of the AUT. The test cases can be
written manually, or generated from automated testing approaches
like AndroidRipper [3], A3E [7] or Stoat [33]. Prefest consists of
two major analyses: Preference Identification, which identifies and
locates all the preferences (denoted as PI ) defined in AUT ; and
Preference-Guided Test Case Analysis, which reveals the relevance
between preferences and test cases through a data-flow analysis,
and only tries the combinations of relevant preference options for
each test case (denoted as PS). An additional analysis mode, called
Target Mode is also proposed, in which Prefest splits the code into
code blocks, and identifies the untested blocks and their relevant

AUT file

Test Cases

Preference Identification

Preference-Guided Test Cases Analysis

Stubbed

Targeted TestingNormal Testing
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Dynamic Execution
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testcase1
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Figure 2: Overview of Prefest

preferences (denoted as PB). It only executes the test cases that can
reach untested code blocks, and therefore, is more efficient.

3.2 Preference Identification

To conduct preference-wise testing, it is necessary to first identify
the collection of preferences defined in the AUT. Prefest achieves
so by reversing preference resource files from the AUT with jadx
[31], and recording preferences by their key, title, type and en-
tryValues. Currently, it supports four types of preferences, which
are SwitchPreference, CheckBoxPreference , ListPreference and Edit-
TextPreference. The decision is based on the investigation of 115 apps
containing preferences from a popular open-source Android app
list on GitHub [27]. It shows, on average, each app contains 20 pref-
erences, of which 18 (90%) preferences are of the aforementioned
four types. The other 10% are of the other types or customized
preferences by developers, which we plan to support in the future.

Then, Prefest uses Soot [17] to statically analyze the source
code for the Activities and Fragments in which the preferences
are located. It first collects all the direct method calls, denoted as
mcaller →mcallee , in AUT. The method callbacks are not consid-
ered here, since methods responsible for loading setting screens
are mostly directly called during the initialization of the Activ-
ities or Fragments. Each method m is assigned an attribute de-
class representing its declaration class. A call trace ρ, defined as
ρ = m1 → m2 → ... → mt−1 → mt , represents that through
methodsm2,m3, . . . ,mt−1,m1 eventually invokesmt , and T is the
set of all call traces. Prefest conducts analysis on the call traces to
identify where the setting screens are loaded. By studying ways
of implementing the setting screen loading, we summarized three
loading patterns from the Android official documents, as shown in
Table 1.

Pattern LPA represents that the loading of a setting screen is
performed by an Activity, where the loading API addPreferences-
FromResource is eventually called by the onCreate method of an
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Table 1: Patterns for loading setting screens

Pattern Definition

LPA ∃ρ =moc → ...→madd ∈ P ,
moc .declass ∈ Activities

LPF

∃ρ, ρ ′ ∈ P , ρ =moc → ...→madd,

ρ ′ =m′
lifecycle → ...→m′

init,
moc .declass =m′

init.declass ∈ Fragments∧
m′

lifecycle.declass ∈ Activities

LPH

∃ρ, ρ ′ ∈ P , ρ =moc → ...→madd,
ρ ′ =m′

oc → ...→m′
load,

moc .declass ∈ fragments_referred(m′
load)∧

m′
oc .declass ∈ Activities

moc: lifecycle method onCreate;
mlifecycle: any lifecycle method;
madd: API method addPreferencesFromResource;
mload: API method loadHeadersFromResource;
minit: the constructor of a Class.

Activity through ρ. The setting screen is shown when the activity
is launched. Pattern LPF represents that the loading of a setting
screen is performed by a Fragment, which itself is initialized by
an Activity. Loading API addPreferencesFromResource is eventu-
ally called by method onCreate declared in a Fragment, and an
Activity instantiates this Fragment in one of its lifecycle methods
through ρ ′. For pattern LPF, the setting screen is shown when the
activity is launched, initializing the fragment to load the setting
screen. Pattern LPH represents that a preference header, responsi-
ble for loading multiple setting screens, is loaded by an Activity.
Through call trace ρ, loading API addPreferencesFromResource is
eventually called by method onCreate declared in a Fragment. Dif-
ferent from pattern LPF, the Fragment is not initialized explicitly,
but instead, referred to in a preference header resource file. When
an Activity eventually calls method loadHeadersFromResource in
its onCreate method through ρ ′ and loads the preference header,
all fragments referred to in its resource file, represented by frag-
ments_referred(m′

load), are initialized by the Android system. For
pattern LPH, when the activity is launched, a preference header
is shown, containing a list of selections for users to switch among
different setting screens.

To analyze which pattern is adopted, Prefest starts from each
madd andmload, and performs a backwards search for any match of
the pattern LPA, LPF or LPH. After the analysis, it obtains necessary
information for each preference, denoted as pi = ⟨key, title, type,
entryValues, location⟩. We define PI as the set of all the pi . With PI,
Prefest is able to set any concerned preference option combinations
automatically with off-the-shelf Android GUI test frameworks.

3.3 Preference-Guided Test Case Analysis

To reduce the number of preference option combinations for test
cases, we need to analyze for each test case which preferences are
relevant. We define the relevant preferences to a test case are those
whose values are acquired, passed and used in branch conditions
during the execution of the test case, since preferences used in
branch conditions can dynamically modify the function behaviors.

These branches, ignored by existing approaches, are usually blind
spots in Android testing.

However, it is difficult to conduct a precise analysis statically,
as Android apps are not stand-alone applications but plugins into
the Android framework [6]. Even worse, the SharedPreferences
mechanism used in preferences’ acquisition makes that the same
line of code may point to a different preference, since the key of the
preference can be changed. Techniques such as symbolic execution
is required, however, they suffer from scalability issues due to the
event-driven nature and the application development framework
of Android.

We propose a dynamic analysis to address this problem. For
the AUT, Prefest instruments loggers with Soot at the beginning
and the end of each method, and also at each branching point. For
efficiency, loggers are not instrumented in Android SDK and the
other external libraries. We simply record the invocations of API
methods in these libraries. When running a test case, the logs are
automatically collected, from which an execution flow comprised of
a linear sequence of statements is generated. Then Prefest analyzes
the execution flow statement by statement and collects variable
manipulations and branch conditions.

(expression) e ::= n | pi | v | op(e)|mi(e) ∈ E

(variable) v ::= {v1,v2, ...,vm } ∈ V

(condition label) l ∈ Label

(statements) s ::= v = e | i f el si else sj |

switch elcase ni : si ; case nj : sj ; . . .
(execution f low) f ::=s1; s2; s3; . . . ; sn

The syntax of an execution flow is shown above. Here, V and E
represent the sets of variables and expressions, respectively. Each
e ∈ E can be a constant n (including constants of Boolean, Integer,
Float, String), a variable v , or an expression constructed with a
java operator op, a method invocationmi or a symbolic variable pi
representing a preference. Recall that all necessary information for
manipulating a preference is in pi (Sec. 3.2), so it is natural to use
pi as the symbolic representation for preferences.

In an execution flow, loops are unfolded during the dynamic exe-
cution. Branch conditions of conditional statements are all labelled.
Additionally, for invocations of methods that are instrumented,
the parameter passing and method returns are also considered as
assignments, and the execution of method bodies are included in
the execution flow. Finally, an execution flow f is represented as a
series of statements.

(symbolic variable state) Γv ::= [v1 : e1, . . . ,vm : em ]

(symbolic conditional state) Γc ::= [l1 : el1 , . . . , ln : eln ]
(execution state) ωs ::= ⟨Γv , Γc ⟩

Our data-flow analysis is performed along the execution flow,
statement by statement. To deal with aliasing, an Andersen’s style
analysis is implemented. The execution state ωs at statement s is
defined above. For ωs , we use Γv and Γc to define the mapping
relation that maps a variable v or a branch condition labeled with l
to its symbolic expression e .
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By applying Γv on the variables representing keys, expressions
about keys can be obtained. In most cases, keys are represented with
constants, or string operations over several constants, and there-
fore, Prefest can calculate the concrete values of such keys. Then
it retrieves the preferences having been accessed during testing
from SharedPreferences by interpreting the seven preference acqui-
sition methods defined in the Android official documents, including
getBoolean, getFloat, getString, getInt, getLong, getStringSet, and
getAll, with the calculated concrete values of keys.

...
S1: $r1 = "widget_"
...
S2: $r2 = $r1 + "update_location_pref_key"
...
S3: $r3 = SharedPreferences.getDefaultSharedPreferences()
S4: $z0 = $r3.getBoolean($r2,0)
...
S5: $z1 = !$z0
S6: if($z1 == 0)

l6
...

Listing 2: A slice of execution flow of GoodWeather

Take the preference update location of GoodWeather in Sec. 2.2
for example. Listing 2 shows a slice of the execution flow, consist-
ing of four inconsecutive sequences of statements, which acquires
and uses preference update location. Statements S1 and S2 generate
the key of preference update location by string concatenation. S3
obtains SharedPreferences which stores all preferences. S4 invokes
a preference acquisition method (getBoolean) with variable $r2 as
the key, and assigns the acquired preference option value to $z0. S5
assigns the reverse of $z0 to $z1, which contributes to the branch
condition in S6. Prefest calculates the concrete value of the key vari-
able $r2 used in S4, which is “widget_update_location_pref_key”.
It then interprets getBoolean in S4 with the value of $r2, to get the
specific preference update location, represented by the symbolic
variable piupdate_location.

With Γc , a relevant preference can be revealed fromwhether itspi
is directly or can affect by assignments other variables contained in
the symbolic value of any branch condition. For instance, in the Γc of
the execution state at S6 of Listing 2, we have ⟨l6,piupdate_location ,
0⟩ for the branch condition in S6. So, preference update location
is relevant to this branch condition, and by setting it to different
values (true or false), the execution can reach different branches.

Now Prefest can test different app behaviors by trying different
option value combinations of the relevant preferences, instead of
all the preferences in the app. The valid values for a preference, i.e.,
entryValues, are already known, as discussed in Sec. 3.2. Specifically,
SwitchPreferences and CheckBoxPreferences can be set to true or
false; ListPreferences can be set to a finite set of options in the form
of strings, predefined by developers; for EditTextPreferences which
accept user text inputs as their values, Prefest uses boundary values
as its entryValues, such as null or a random string (0, 1, IntMax are
tested when only number input is allowed), since it focuses on bug
detection.

We define a preference option combination to be tried for a
test case testcase as a ps, where ps = ⟨{⟨pi,value⟩}, testcase⟩, and

each ⟨pi, value⟩ represents the setting for a single preference. A
testcase can have multiple ps representing different option com-
binations. Note that the number of ps for a test case depends on
the combinatorial strategy of preferences. For example, a pairwise
combinatorial strategy can result in a smaller number of ps than
a full combinatorial strategy. PS represents all preference option
combinations to be tested on all test cases in our preference-wise
testing. Given a ps ∈ PS , Prefest generates a script and executes
it to set preference option values, before executing the test case
ps .testcase . In the script, for each ⟨pi, value⟩ of ps , the pi.title and
pi.location help locate the preference in the screen, while pi.type
and value are used to generate operations that set the correct option
value for the preference. After all the relevant preference are set,
the original test case ps.testcase is executed.

3.4 Test Cost Reduction with Target Mode

By focusing on relevant preferences, Prefest only needs to try
option combinations for the relevant preferences. However, we
empirically found out that PS can still be of a large size in some
cases. For instance, in app Suntimes, 12 two-option (true and false)
preferences are used in branch conditions upon its initialization,
where option combinations can be too many. A further reduction
of test cost is required, and we propose the Target Mode.

In Target Mode, Prefest splits the app code into blocks—straight-
line code sequences with no branches in except to the entry and
no branches out except at the exit. Since Prefest aims at testing
the preference-related branches, we select blocks in preference-
related branches as our targets. Noticing that third-party libraries
can also be affected by preferences through parameter passing to
demonstrate different behaviors, blocks containing invocations of
third-party methods with preference-related variables as their pa-
rameters are also considered as targets. By splitting the execution
flows into blocks, Prefest analyzes the relevant preferences to tar-
gets, similar to the analysis in Sec. 3.3. Like the ps for a test case,
we define a preference option combination to be tested for a target
as pb = ⟨{⟨pi,value⟩},block⟩.

As discussed earlier, targets only need to be executed once dur-
ing testing. To accelerate the testing process, Prefest adopts the
greedy strategy that the test case which can potentially execute
most targets under a certain preference option combination is se-
lected to be executed first. The key to the strategy is that we need
to know which blocks can be reached by a test case under different
option combinations, and which option combinations can help to
reach the previously unreached blocks. By analyzing the execution
flow of a test case combined with code, we can locate the branching
points that the test case can reach, and all branches belong to these
branching points can be reached potentially. To test the unreached
blocks, we need the concrete values of variables, including prefer-
ences, to manipulate the values of the branch condition. Thanks
to the symbolic representation of the branch conditions, most con-
crete values can be calculated. Thus, given a target block, Prefest
can produce its pb, which is used to set the values of preferences.

Algorithm 1 shows the details of the Target Mode. It takes PS—
the set of test cases with different preference option combinations—
as input, and outputs PBtotal—the set of the reached blocks with the
option combination settings when it finishes. In the beginning is a
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Algorithm 1: Target Mode of Prefest.
Input: PS = {⟨{⟨pi, value⟩}, testcase⟩}
Output: PBtotal: the total set of pb of reached blocks

1 foreach ps ∈ PS do

2 PBS B getTargetBlocks(ps);
3 PBtarget.put (PBS);
4 end

5 PBtarget.remove(PBorigin);
6 PBtotal B ∅;
7 while PS , ∅ & PBtarget , ∅ do

8 psmax B getMostBlocks(PS);
9 PBreach B execute(psmax);

10 PBtotal B PBtotal ∪ PBreach;
11 PBtarget.remove(PBreach);
12 PS .remove(ps);
13 end

loop (lines 1-4) that iterates each ps ∈ PS to get the blocks that can
be potentially reached by ps .testcase, which form the set of targets
PBtarget. Then in line 5, PBorigin, the already reached blocks when
executing the original test cases, are removed from PBtarget.

Next, a greedy algorithm, which is also a loop, starts from line
7. It aims at reaching as many unreached blocks as possible each
turn until all unreached blocks are reached or there is no test cases
left to be executed. In the loop, Prefest will (1) search PS for psmax
that can test most unreached blocks; (2) execute psmax and record
all the reached blocks with option combination settings (PBreach),
add them to PBtotal and remove them from PBtarget (lines 9-11;
(3) remove ps from PS (line 12).

The Target Mode uses just one option combination for a block,
instead of exhausting combinations of relevant preferences. This
is particular effective when there are more than one preferences
in a branch condition. As the experiment in Sec. 4.4 shows, Target
Mode can reduce a significant portion of the test cost, while still
being effective in code coverage and bug detection.

3.5 System Preference Analysis

In this paper, we mainly focus on user preferences, which are de-
signed for users to change app behaviors and features. Similarly,
environment configurations of the Android system can also make
apps behave differently. They are like the preferences on the system
level. Prefest also supports the testing under different environment
configurations. Currently, Prefest supports six kinds of environ-
ment configurations that are often used, which are WiFi, bluetooth,
mobile data, GPS locating, network locating and music playing. By
interpreting API methods for acquiring the status of the six envi-
ronment configurations, similar to the interpreting the preference
acquisition methods but no keys required, the environment config-
urations can be treated the same as user preferences.

4 EVALUATION

We implemented our approach into a tool, also name Prefest. The
tool and the experimental data are available online 1.
1https://github.com/Prefest2018/Prefest

To evaluate Prefest, we conducted a series of experiments to
answer the following questions:

RQ1 How effective is Prefest in terms of the code/ branch cover-
ages and the bug detection ability?

RQ2 How efficient is Prefest in terms of the number of test-runs
and the test time?

RQ3 How does Prefest compare against alternative approaches
for preference option combinations in terms of effectiveness
and efficiency?

RQ4 How does Target Mode perform? Specifically, does it strike a
good balance between test cost and test effectiveness?

4.1 Experiment Setup

We selected Stoat [33], one of the state-of-the-art automated An-
droid testing tools, to generate test cases as inputs for Prefest. The
subject apps are chosen from both previous researches [29, 32] and
a popular open-source Android app list on GitHub [27] with the
following criteria:

(1) the app should contain at least five preferences in its setting;
(2) the app should be able to run standalone instead of as a li-

brary, and should be compatible with Android API-19, which
is the recommended environment for Stoat;

(3) the app should achieve a code coverage of over 20% and not
easily crash when tested with Stoat.

Eventually, 7 apps from previous researches and 22 apps from
the GitHub list satisfying the criteria were selected. Together with
our motivating example GoodWeather, totally 30 apps were cho-
sen as our subjects. We also analyzed the apps’ sizes by lines of
ByteCode (i.e., lines of instructions, calculated by JaCoCo) and num-
bers of preferences. The results show that the complexity of these
apps has enough diversity for ranging from 5k instructions with 5
preferences, to over 200k instructions with 96 preferences.

To answer the RQs, we first applied Prefest with Target Mode
(denoted as Prefest(T)) on all 30 apps. Then, we compared Prefest(T)
with another two combination approaches for preference options,
which are:

NonDefault—from Sec. 3.2, we know that each preference has
a default value under which the original test case is executed. In
this strategy, each preference is set to a value other than its default
value (random value is used if there are multiple valid values).

Pairwise—themost common type of t-way combinatorial testing
[26], that is, for any two preferences among all preferences, all
possible pairs of their option values are tested for each test case. For
ListPreference and EditTextPreference which may have multiple
values, only two values—the default one and a randomly selected
one—is used to restrict the combination number in Pairwise.

We also compared Prefest against an implementation without
the Target Mode (denoted as Prefest(N)) in the comparative study.
Prefest(N) uses pairwise technique to construct the set PS to be
executed. In other words, comparedwith Pairwise, Prefest(N) adapts
the pairwise testing for not all preferences but only relevant ones.

The comparative study was only conducted on GoodWeather
and the seven apps from previous researches, since it was extremely
time consuming and virtually impossible to conduct the study on
all 30 apps.

273

For Research Only



Preference-Wise Testing for Android Applications ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia

Table 2: The performance of Prefest on 30 apps

Subject Inst. Pref. Default Prefest(T) Default Prefest(T)
Inst.% Branch% Inst.% Branch% Time(min) #Run Time(min) #Run

GoodWeather 11192 11 60.61 35.10 68.33(+12.7%) 47.05(+34.1%) 137 360 14(<1) 14
A2dpvolume 18324 15 40.03 17.39 41.56(+3.8%) 20.31(+16.8%) 73 180 8(<1) 6
Alwayson 15379 29 44.53 30.71 46.10(+3.5%) 33.63(+9.5%) 121 240 22(<1) 15
Suntimes 64898 25 39.65 29.25 42.69(+7.7%) 32.58(+11.4%) 88 150 32(<1) 22
Opensudoku 17606 14 44.61 32.53 46.76(+4.8%) 36.60(+12.5%) 65 120 12(<1) 10
Radiobeacon 36252 20 37.18 19.90 39.60(+6.5%) 21.28(+6.9%) 118 180 17(<1) 16
NotePad 7722 6 51.97 39.84 55.19(+6.2%) 47.81(+20.0%) 104 321 48(<1) 56
WikiPedia 105509 53 43.14 27.31 45.66(+5.8%) 29.23(+7.0%) 123 180 28(4) 17
fillup 18141 6 21.13 16.46 24.32(+15.1%) 20.06(+21.9%) 123 210 17(<1) 19
TintBrowser 33074 22 26.98 16.15 29.06(+7.7%) 17.49(+8.3%) 65 210 3(<1) 3
Signal 237215 40 30.58 14.27 31.81(+4.0%) 15.04(+5.4%) 246 450 49(11) 25
Anki-Android 128890 96 33.05 22.68 34.83(+5.4%) 24.75(+9.1%) 145 210 17(<1) 16
Runnerup 75863 67 20.15 13.66 21.14(+4.9%) 14.87(+8.9%) 93 150 14(1) 12
amme 93689 34 25.29 17.91 26.58(+5.1%) 18.86(+5.3%) 105 180 10(2) 8
nanoConverter 8508 6 34.38 30.89 38.32(+11.5%) 37.76(+22.2%) 107 210 23(<1) 19
APhotoManager 47512 25 38.96 26.77 42.82(+9.9%) 29.52(+10.3%) 71 150 33(<1) 23
Timber 55262 11 25.42 15.11 25.98(+2.2%) 16.25(+7.5%) 90 240 9(1) 8
AntennaPod 38421 34 25.81 18.54 28.80(+11.6%) 22.03(+18.8%) 77 180 26(1) 24
vanilla 48501 36 45.54 35.20 48.99(+7.6%) 38.74(+10.1%) 110 270 60(1) 35
materialistic 30085 37 44.33 26.09 49.89(+12.5%) 32.12(+23.1%) 113 210 61(2) 32
RedReader 59012 62 32.83 24.94 34.83(+6.1%) 28.35(+13.7%) 67 240 24(2) 21
commons 42439 5 25.80 15.02 25.98(+0.7%) 15.22(+1.3%) 101 270 5(1) 4
hacker-news 14790 5 47.84 34.28 50.55(+5.7%) 37.13(+8.3%) 80 240 18(1) 14
KISS 20003 37 47.44 34.28 53.69(+13.2%) 41.25(+20.3%) 151 360 44(4) 24
uhabit 20107 11 54.76 28.47 55.66(+1.6%) 29.14(+2.4%) 101 300 4(1) 3
Omni-Notes 34993 23 25.09 20.38 26.30(+4.8%) 21.62(+6.1%) 124 330 12(1) 11
AmazeFileManager 80767 31 20.64 14.97 22.26(+7.9%) 16.70(+11.6%) 138 210 55(4) 35
connectbot 70864 26 23.21 23.88 23.37(+0.7%) 24.41(+2.2%) 83 120 11(1) 3
forecast 8331 15 57.94 40.79 65.23(+12.6%) 53.57(+31.3%) 137 300 26(1) 22
OpenBikeSharing 5529 5 58.84 47.93 60.70(+3.2%) 48.76(+1.7%) 92 180 18(<1) 17
Average 48284 27 37.59 25.69 40.23(+6.8%) 29.07(+12.3%) 107 232 24(2) 18

The experimental environment was a physical machine with
8GB RAM and 2.0GHz quad-core processor. The Android emulator
to run tests was configured with 2GB RAM and the X86 ABI image
(SDK 4.4.2, API level 19). The running of Stoat was on Ubuntu
14.04 configured as: 1h for GUI exploring, 1h for MCMC sampling,
30 steps as the longest steps in sampling one case, and 30 cases
generated at one iteration of sampling. For comparison, we retrieved
the test cases from Stoat’s records of MCMC sampling and run
the tests on Windows 10 under the above four strategies. For all
the experiments, we use JaCoCo [14] to calculate the coverage of
instructions and branches.

4.2 RQ1: Effectiveness on Coverage and Bugs

Table 2 lists the 30 apps, their sizes measured by number of in-
structions and preferences, the instruction and branch coverages
achieved by the original test (Default) and Prefest(T), respectively.
As we can see, with a preference-wise testing, the coverages of all
subjects have been improved by percentages ranging from 0.7%-
15.1% for instruction coverage, and 1.3%-34.1% for branch coverage.

The average improvement is 6.8% and 12.3%, for instruction and
branch coverages, respectively. As an enhanced testing for an al-
ready state-of-the-art tool, this improvement is significant.

We can see that Prefest(T) achieved large improvement in some
apps: among 30 apps, instruction coverage improvement over 10%
is seen in 8 apps, and branch coverage improvement over 20% is
seen in 7 apps; and small improvement (less than 3% improvement
in instruction and branch coverages) in 3 apps—commons, connect-
bot and uhabit. We studied these apps and their original test cases,
and found out that the apps having more improvement were better
tested by Stoat, compared with the apps with less improvement.
This is reasonable, since Prefest is a complement to existing testing
approaches and relies on the execution flows to analyze the rele-
vant preferences. Therefore, the preference-wise testing and the
other testing approaches can form a mutual boost relationship in
performance.

It is worth mentioning that for apps Signal, Anikandroid and
Wikipedia, although the improvement of 4.02%, 5.39% and 5.84%
(5.40%, 9.13% and 7.03%) in instruction (branch) coverage is not
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Figure 3: Preference-related branch coverage achieved by

Stoat, Monkey, Prefest(T) and Prefest(N)

significant, considering that these apps have more than 100k in-
structions, the more tested instructions and branches, in absolute
terms, can be over 2000 instructions and 100 branches.

We are particularly interested in branch coverage, since branches
can cause different app behaviors with the same movements on the
GUIs, and are common in complex apps. We conducted experiments
to evaluate how well the branches can be tested with Prefest, and
whether it is possible to use existing approaches to obtain similar
or better results. We chose Default (Stoat), Prefest(N), Prefest(T),
and an additional testing tool Monkey [13]—a clear winner among
current test input generation tools [9], to conduct experiments
on the example of goodWeather and the seven apps from existing
researches. We configured Monkey as [9] suggested, and the test
time was also set to 1 hour, the time for MCMC sampling in Stoat.

The results are shown in Figure 3. For all the branches in the
apps that can be affected by preferences, Prefest(T) and Prefest(N)
covered 88% and 90% branches on average. Although Prefest(T)
tries less preference option combinations than Prefest(N), in some
apps, it can achieve higher branch coverage, since Prefest(T) can
select the exact options for ListPreferences to cover preference-
related branches via the concrete value calculation, whereas for the
pairwise combination strategy of Prefest(N), a random selection of
the ListPreferences value is used for the non-default value. Stoat
and Monkey achieved 59% and 72% branch coverages on average,
respectively. Considering that all preferences have default values,
even forbidding the setting of preferences, Stoat andMonkey should
be able to achieve a branch coverage ranging from 30% to 50% from
our observation. So, from this point of view, we can say that it is
difficult to achieve a high coverage for these preference-related
branches, even with the two of the most effective testing tools.
However, with Prefest, the branch coverage can be easily improved
to around 90%.

Prefest detected additional five bugs, as shown in Table 3. These
bugs are all preference related, which can only be found by testing
specific functions under specific preference settings, and are not
detected by Stoat. The reason is that Stoat usually missed some

Table 3: Bugs detected by Prefest

App GitHub Issue URL

GoodWeather github.com/qqq3/good-
weather/issues/54

Radiobeacon github.com/openbmap/radiocells-
scanner-android/issues/223

KISS github.com/Neamar/KISS/issues/1136

vanilla github.com/vanilla-
music/vanilla/issues/898

AmazeFileManager github.com/TeamAmaze/AmazeFi-
leManager/issues/1400

specific values of specific preferences, or sometimes even missed
the setting screens, due to its random nature. The first bug causes
data leaks while the others cause app crashes, which were logged as
error messages by Android system. All bugs have been reproduced.
Only the bug in vanilla is two-preference relevant while the rests
are one-preference relevant. Particularly, the first four bugs were
revealed for the first time, and we posted issues on GitHub. The last
bug has been reported by others. So far, bugs in KISS, vanilla and
AmazeFileManager have been confirmed and fixed by developers.
Especially, the bug revealed in vanilla was an old one introduced
over one year ago, and developers were happy to know the root
cause and be able to fix it. There is no response for the other two
bug issues, and we noticed that these two projects are no longer
maintained. Nevertheless, since they cause app crashes or data
leaks, we are confident that they are real bugs.

4.3 RQ2: Efficiency

To answer RQ2, we recorded the test time and the numbers of
test-runs of Default and Prefest(T) on the 30 apps in Table 2. Time
consumed by Prefest(T) consists of the preference analysis time
and the test execution time, and Table 2 shows the total time, with
the analysis time in parentheses.

Compared to 107 minutes and 232 test-runs took by Default on
average, Prefest(T) only took 24 minutes and 18 test-runs, contribut-
ing 22.4% and 8.0% to those of Default. The reason is that Prefest(T)
aims at only the unreached blocks, and thus, just needs to execute
part of the test cases. Meanwhile, as discussed, Prefest(T) has a
good performance on code coverage and bug detection, showing
the value of our proposed “enhanced testing”.

The results also show the efficiency of our static and dynamic
combined analyses. For 29 out of all 30 apps, 23 apps took just about
1 minute to conduct the analyses, and the other 6 apps took no
more than 4 minutes. Only app —Signal, took 11 minutes due to
its large app size and long execution flow. However, the time cost
is still acceptable, compared with the original test time, and more
time spent on complex apps, we believe, is worthwhile.

4.4 RQ3 & RQ4: Comparative Study

To answer RQ3 and RQ4, we run experiments on the example of
GoodWeather and the seven apps from existing researches with De-
fault, Prefest(T), Prefest(N), NonDefault and Pairwise, and recorded
the results in in Table 4 and Table 5.
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Table 4: Comparison of the instruction and branch coverages of different strategies

Subject Default Prefest(T) Prefest(N) NonDefault Pairwise
Inst.% Branch% Inst.% Branch% Inst.% Branch% Inst.% Branch% Inst.% Branch%

GoodWeather 60.61 35.10 68.33 47.05 70.12 49.41 67.28 46.02 70.46 51.18
A2dpvolume 40.03 17.39 41.56 20.31 41.70 20.93 41.42 19.96 42.38 21.07
Alwayson 44.53 30.71 46.10 33.63 47.64 35.36 45.90 33.18 47.23 34.91
Suntimes 39.65 29.25 42.69 32.58 43.94 34.81 42.18 32.23 43.67 34.76
Opensudoku 44.61 32.53 46.76 36.60 47.29 37.80 46.42 35.62 47.67 37.65
Radiobeacon 37.18 19.90 39.60 21.28 39.80 21.51 39.24 21.46 40.06 22.29
Notepad 51.97 39.84 55.19 47.81 55.19 46.08 54.26 43.96 55.63 45.56
Wikipedia 43.14 27.31 45.66 29.23 49.25 32.49 45.25 28.33 48.81 32.51

Average Improvement% 6.4% 14.8% 8.9% 19.3% 5.4% 11.9% 8.9% 19.8%

Table 5: Comparison of test-run numbers and test time of different strategies

Subject Default Prefest(T) Prefest(N) NonDefault Pairwise
#Run Time(min) #Run Time(min) #Run Time(min) #Run Time(min) #Run Time(min)

GoodWeather 360 137 14 14 2035 1766 360 453 3600 4295
A2dpvolume 180 73 6 8 1080 1473 180 357 1800 3212
Alwayson 240 121 15 22 1049 1365 240 754 2880 8150
Suntimes 150 88 22 32 1497 3446 150 397 1800 4975
Opensudoku 120 65 10 12 129 169 120 231 1200 2482
Radiobeacon 180 118 16 17 294 355 180 318 1800 3371
Notepad 321 104 56 48 1661 1357 321 292 2889 2622
Wikipedia 180 123 17 32 1429 2529 180 427 2160 5728

Average Percentage 9.0% 22.2% 522% 1557% 100% 393% 1037% 4360%

Table 4 lists the instruction and branch coverages, and Table 5
lists the test time and the number of test runs. In general, we have
Pairwise > Prefest(N) > Prefest(T) > NonDefault in the improve-
ment of coverages and Pairwise > Prefest(N) ≫ NonDefault ≫

Default > Prefest(T) in the test time and the number of test-runs.
Being the simplest way to conduct perfence-wise testing, NonDe-
fault showed the poorest performance in improving code coverage,
and took more time than Prefest(T). This demonstrates that a more
sophisticated approach for preference-wise testing is needed.

From Table 4 we can see that Pairwise and Prefest(N) have
the best and similar performance in improving instruction and
branch coverages, which are 8.9% and over 19% improvement for in-
struction and branch coverages, respectively. The marginally lower
branch coverage of Prefest(N) than Pairwise is because Prefest(N)
missed some relevant preferences due to the short-circuit evalua-
tion in the compiling stage. As Soot works on Java ByteCode, these
short-circuit preferences were not analyzed. However, such cases
are extremely rare, and thus, we can consider the effectiveness of
Prefest(N) and Pairwise as equivalent. Prefest(T) comes next in
effectiveness, with 6.4% and 14.8% improvement for instruction and
branch coverages, respectively. A main reason for more coverage
of Pairwise and Prefest(N) compared with Prefest(T) lies in that,
for few blocks, their behaviors can vary under different preference
option combinations. For example, some blocks, responsible for dis-
playing GUIs, can present different preferences on setting screens,
depending on the value of a certain preference, e.g., a switch de-
ciding to display or hide a sub-menu of preferences. These cases

cannot be handled by Prefest(T), but with a more exhaustive trying
of different preferences, Prefest(N) is able to process most of them.

Nevertheless, Prefest(T) still retained 72% and 77% improvement
in instruction and branch coverages of those of Prefest(N) and Pair-
wise. Considering its time cost, we still consider Prefest(T) as the
best approach, for its balance on effectiveness and cost. As Table 5
shows, the Pairwise approach was extremely time-consuming, by
taking over 43 times of the original time cost. In fact, the compara-
tive study on just these 8 apps took about 35 days, and we estimated
that over four months would be needed to scale the study to all
the 30 apps. The fact that 24 days were used in applying Pairwise
on the 8 apps indicates the necessity of our Prefest. By removing
irrelevant preferences in combinations, Prefest(N) reduces the time
by about two third of the time cost of Pairwise, but still needed
more than 15 times of the original test time. In contrast, Prefest(T)
only took about half an hour to perform the tests, accounting to
just one-fifth of the original test time.

Nowadays, fast developing cycle is the key to the success of
Android app development due to the fast-changing mobile markets,
and developers typically can only spare a little time for testing.
The Target Mode, which tries to keep a good balance between
test efficiency and effectiveness, is more likely to be attractive
to developers. If app quality is critical and time recourse allows,
developers can still choose Prefest(N) for its best effectiveness in
coverage but much less time cost than Pairwise. However, as the
experiments show, the effectiveness in bug detection for Prefest(N)
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and Prefest(T) is the same: all bugs found by Prefest(N) and Pairwise
were found by Prefest(T).

4.5 Threats to Validity

4.5.1 Internal Threats. The major threat comes from that the orig-
inal test cases may include some operations of setting preference
options, which will change some option values set by Prefest and
result in executing different code parts than planned. To mitigate
this threat, Prefest takes into account the effects of some simple
preference setting methods, such as setBoolean(), setString(), when
calculating the values of preference options.

Another threat comes from Soot, which we use to perform the
analysis. Soot works on Java ByteCode, so the short-circuit evalua-
tion in the compilation phase would lead to the missing of relevance
between preferences and test cases. An alternative analysis frame-
work based on original source code can solve the problem, which
we plan to study in the future.

The third threat comes from that the current implementation of
Prefest takes Stoat’s way of focusing on error messages produced
by the Android system, and does not consider test assertions. If one
needs assertions in the test cases, since Prefest generates new tests
with different preference settings, new assertions will be needed.

4.5.2 External Threats. The main external threat is that our evalu-
ation results may not be generalized on other Android applications.
Our experiments were performed only on thirty apps, since the
experiments were time-consuming. It is possible that the effective-
ness may vary for other apps. However, this problem is alleviated
since the complexity of the thirty apps has enough diversity for
ranging from 5k to over 200k instructions, and several apps are also
widely used in real-world such as Wikipedia and Signal.

As Prefest has only worked with Stoat, another threat arises
from whether Prefest can work with other test input generation
approaches. We mitigate this threat by implementing Prefest into
an independent tool which takes test cases as the direct input. In
this case, Prefest can easily cooperate with other tools, as test
cases can be easily obtained from these tools’ log files. Certainly,
manually written test cases are also welcome to Prefest.

5 RELATEDWORK

In this section, we will discuss relevant researches from Android
testing and combinatorial testing.

5.1 Android Testing

Nowadays, frameworks and tools that automate the execution of
tests are widely spread in industry, such as Robotium [28], mon-
keyrunner [25] and Appium [5]. To further improve the automation,
many research approaches are proposed for the automated gen-
eration of test inputs, based on fuzzing testing techniques [2, 19],
model-based testing techniques [3, 7] and search-based techniques
[20, 21]. Several researches also apply symbolic execution or con-
colic execution to Android testing: Mirzaei et al. [23] present SIG-
Droid, which combines model-based testing with symbolic execu-
tion to systematically generate test inputs for Android apps; Anand
et al. [4] illustrate the technique ACTEve, which treats touch on
screen as user inputs and generates sequences of events automat-
ically and systematically with concolic execution to alleviate the

path explosion problem. These approaches are similar to Prefest,
as Prefest also performs a dynamic analysis similar to concolic exe-
cution. However, Prefest only focuses on preferences and analyzes
the execution of given test cases, so it consumes much less test cost
and is less affected by app size. Also, most preferences’ options
are enumerable, in which case the exact option values to reach the
targets can be obtained by enumeration, while for SIGDroid and
ACTEve, a constraint solver is needed for specific values, which can
be more time-consuming. Most importantly, the application sce-
narios and purposes are different: Prefest works based on existing
tests to enhance their performance in terms of preferences, while
both SIGDroid and ACTEve try to generate new tests for given apps.

5.2 Combinatorial Testing

Combinatorial Testing has been an active field of researches in the
last twenty years [26]. One of the major trends in this area has been
towards minimizing the size of test sets for a given combinatorial
criteria, with greedy and heuristic algorithms [10, 11, 18, 34], genetic
algorithm [22, 30], or even artificial intelligence [1].

Recent years, these combinatorial optimization techniques are
also adapted in Android testing. Two studies are closely related
to this paper, one is TrimDroid [24], an approach that statically
extracts dependencies among widgets to reduce the number of
combinations in GUI testing; and the other one is PATDroid, which
performs a hybrid program analysis that excludes irrelevant per-
missions to reduce unnecessary permission combinations for test
cases. Compared with TrimDroid, Prefest uses both static and dy-
namic analyses on the AUT and the existing test cases to perform
the preference-wise testing under certain preference option com-
binations, while TrimDroid employs static analysis over the AUT,
to automatically generate test cases. Compared with PATDroid,
Prefest targets at preferences, which are more difficult to analyze
as their values are passed through execution flows. In addition,
PATDroid uses manual written test cases while Prefest uses test
cases generated from automatic testing tools, which are usually of
huge size, bringing more difficulty for reduction. In summary, we
propose the Target Mode in Prefest that can reduce the test cost to
a plausible level.

6 CONCLUSION

We present Prefest, a preference-wise enhanced testing approach
for Android applications. With a static and dynamic combined
analysis, Prefest gives an automated solution to test apps only un-
der necessary preference option combinations with existing tests,
in which a Target Mode is proposed for further reduction in test
cost. Our experiment results show that within 1% test cost com-
pared to tests under pairwise combinations of preferences, Prefest
achieves a 6.8% and 12.3% improvement in code and branch cover-
ages. Moreover, we also found five additional preference-related
bugs in real-world apps using Prefest.
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