

Software Engineering Group
Department of Computer Science
Nanjing University
http://seg.nju.edu.cn

Technical Report No. NJU-SEG-2016-IW-002

2016-IW-002

ACSPChecker: An ASP based CSP Model Checking Tool

Lingyun Situ, Yu Wang, Fengjuan Gao, Linzhang Wang, Lei Bu, Jianhua Zhao, Xuandong Li

Internetware 2016

Most of the papers available from this document appear in print, and the corresponding copyright is held by the

publisher. While the papers can be used for personal use, redistribution or reprinting for commercial purposes is

prohibited.

ACSPChecker: An ASP based CSP Model Checking Tool

Lingyun Situ, Yu Wang, Fengjuan Gao, Linzhang Wang, Lei Bu, Jianhua Zhao, Xuandong Li
State Key Laboratory of Novel Computer Software Technology, Nanjing University, Nanjing 210023, China

Jiangsu Novel Software Technology and Industrialization, Nanjing 210023, China
Department of Computer Science and Technology, Nanjing University, Nanjing 210023, China

{lzwang, bulei, zhaojn, lxd}@nju.edu.cn

ABSTRACT
Existing CSP model checkers are incapable of verifying mul-
tiple properties concurrently in one run of a model checker,
and when trying to alleviate state space explosion problem,
most of reduction work are usually done after rather than be-
fore the complete state space was produced. Thus, A new C-
SP model checking tool named ACSPChecker was developed
based on answer set programming, which is a declarative log-
ic programming paradigm for solving combinational search
problems with the feature of completely free of sequential
dependencies, to verifying multiple properties concurrently
in one run of a model checker . Additionally, It integrated
an abstraction method, which could be used to alleviate the
state space explosion before the complete state space was
produced. Furthermore, a preprocessing technique of prop-
erties was proposed to improve the verification efficiency by
reducing the expense spending on replicated verification of
the same sub formulas. The feasibility and efficiency of AC-
SPChecker are illustrated by the experiments with a classic
concurrency problem - dining philosophers problem.

CCS Concepts
•Software and its engineering → Model checking;

Keywords
Abstraction; Proof; Communicating Sequential Process; Mod-
el Checking; Answer Set Programming.

1. INTRODUCTION
Model checking [5][4][2] is one of the most important and

powerful formal verification techniques for CSP. Some auto-
mated CSP model checking tools have been developed such
as FDR [7], PAT[19] , SymFDR [15], ProB [9] [11] [10], AR-
C [17] [16] and so on. But Existing CSP Model Checkers
are incapable of verifying multiple properties concurrently
in one run of a model checker, and when trying to allevi-
ate state space explosion problem, most of reduction work

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

Internetware ’16, September 18 2016, Beijing, China
c© 2016 ACM. ISBN 978-1-4503-4829-4/16/09. . . $15.00

DOI: http://dx.doi.org/10.1145/2993717.2993730

are usually done after rather than before the complete state
space was produced.

To deal with the shortcoming of inability to verify multi-
ple properties concurrently in one run of existing CSP model
checkers, a CSP bounded model checking framework using
answer set programming (ASP)[1][3] was established[18] in
our previous work , which could be used to achieve the ver-
ification of multiple properties concurrently in one run of a
model checker, relying on the feature that ASP is completely
free of sequential dependencies[6][13]. The framework turns
CSP model checking problem into a computation problem of
answer sets. A semantic equivalence explanation and proof
about the translation from CSP to ASP was given in [20].

ACSPChecker, an ASP based CSP model checking tool
was developed based on the framework[18] , an abstraction
method was embedded in it, which could be used to alle-
viate state space explosion before the complete state space
was produced. Furthermore, a preprocessing technique of
properties was also integrated into it to improve the verifi-
cation efficiency by reducing the expense spending on repli-
cated verification of the same sub formulas. The feasibility
and efficiency of the ASP based CSP model checking tool
-ACSPChecker is illustrated by the experiments with dining
philosophers problem.

2. PRELIMINARIES

2.1 CSP

Definition 1. A CSP process is defined recursively via the
following grammar:

P ≡ STOP |SKIP |CHAOS|DIV |X : A→ P (x)|µX :
A • F (X)|P1 u P2|P1|P2|P1 ‖ P2|P \A|P [R]

STOP represents a deadlocked process, which is not ca-
pable of communicating any visible or τ actions. The pro-
cess SKIP denotes successful termination and is willing to
perform

√
at any time. CHAOS is a process that may

non-derministically perform events from A. It may as well
refuse to do anything at all. DIV denotes a livelock, a pro-
cess that is engaged in performing an infinite loop of inter-
nal τ actions without ever communicating with the external
environment. The prefix process X : A → P (x) initially
offers the environment to perform any event a from A and
subsequently behaves like P (a). µX : A • F (X) denotes a
recursive process.P1 u P2 and P1|P2 denote, respectively,
external and internal choice of P1 and P2. Parallel compo-
sition of processes P1 and P2 is written as P1 ‖ P2, where

99

For Research Only

shared events must be synchronized by both processes whose
alphabet contains the events. P \ A behaves like P except
that all the events from A are being hidden. P [R] behaves
likes P, except that, whenever P can perform any event a,
P[R] can perform any event b, such that aRb.

2.2 ASP
Let A be an atom, a literal takes the form A or ∼ A,

where A is a positive literal and ∼ A is a negative literal; A
and ∼ A are called complementary literals[3]. An extended
disjunctive logic program is a set of rules, and each rule r is
of the form:

L1 ∨ ... ∨ Lk : −Lk+1, ..., Lm, not Lm+1, ..., not Ln

where n ≥ m ≥ k ≥ 0, each Li is a literal, and no-
tice the negation as failure (NAF), head(r)=L1, ..., Lk is the
head of r, pos(r)=L1, ..., Lm and neg(r)=Lm+1, ..., Ln are
the positive and negative literals present in body respective-
ly. In particular, a rule without head is called a constraint.
The computation of answer sets corresponding to ASP log-
ic programs is performed by ASP solvers, such as DLV[8],
Smodel[14] and Cmodel[12].

3. ACSPCHECKER
The structure of ASP based CSP model checking tool -

ACSPChecker is shown as Fig.1.

Figure 1: ASP based CSP BMC framework

The verification procedure of ACSPChecker is illustrated
as Figure 2.

The input of ACSPChecker is a CSP model and a set of
CTL formulas, and the output is a set of answer sets. We
decide the properties to be verified is true or not according
to the head label of relevant properties is occur in the answer
sets or not. If the properties relevant head label is occur,
then the property is true, otherwise it is false.

3.1 Abstraction
The fundamental idea of data abstraction is to give a

mapping between the actual data values and a small set
of abstract data values, which is relying on equivalence class
partition. Typically, assume we are interested in whether
the parallel process P1 ‖ P2 satisfies property for not.
αf denotes the events set of occurring in property f . Al-
l the events are partitioned into three equivalence class-
es C1,C2 andC3, where C1 = (αP1 ∪ αP2) ∩ αf , C2 =
(αP1∪αP2)−αf − (αP1∩αP2), C3 = (αP1∩αP2)−αf .

Figure 2: ACSPChecker verificaiton procedure

Now, a process can be seen as a sequence of the events
from the three equivalence classes, and the parallel compo-
sition of two processes comes down to the synchronization
or asynchronization between the three equivalence classes
C1,C2, C3 of the two processes.

When the CSP model M is a CSP basic processes P , i.e.
a process without parallel operator, then all the events ir-
relevant to the property ϕ in process P should be removed.

Figure 3: Abstraction example P1 ‖ P2

When the CSP model M is a parallel process of the form
P1 ‖ P2, the events of each component process should be
handled differently .The algorithm for dealing with parallel
process P1 ‖ P2 can be presented in Algorithm 1.

Example 1. Let P1 = a → b → c → m → d → e → f →
d → STOP , P2 = a → b → n → d → e → b → f →
a→ P2, M = P1 ‖ P2 and Pro = {a, d}, the abstract CSP
model of P1 ‖ P2 could be obtained as illustrated in Figure
3.

As shown in Figure 3, initially, the process P1 has 9 s-
tates, and P2 is a recursion process with 8 events. After
abstraction, the abstract model P1′ and P2′ contain 5 s-
tates, respectively. Further, the states of parallel process
P1′ ‖ P2′ is reduced from 8 to 3.

Furthermore, we proved that :If M
′

= abs(M,ϕ), then

M
′
� ϕ⇒M � ϕ

100

For Research Only

Algorithm 1 Abstraction algorithm of parallel process
abs(P1 ‖ P2, ϕSet)

Require: An original CSP model P1 ‖ P2, A set of proper-
ties ϕSet

Ensure: An abstract CSP model M ′

1: Pro← REProduce(ϕSet) = {c|c ∈ αϕ ∧ ϕ ∈ ϕSet};
2: P1 ← Hide(P1, αP1 − Pro− αP1 ∩ αP2);
3: P2 ← Hide(P2, αP2 − Pro− αP1 ∩ αP2);
4: P1 ← Extend(P1);
5: P2 ← Extend(P2);
6: P1.MITA←MITArea(P1);
7: P2.MITA←MITArea(P2);
8: N ←MinNum(P1.MITA, P2.MITA);
9: for all i <= N do

10: if P1.MITA[i] � P2.MITA[i] or P2.MITA[i] �
P1.MITA[i]) then

11: P1 ← Remove(P1, P1.MITA[i].events);
12: P2 ← Remove(P2, P2.MITA[i].events);
13: else
14: e1← FirstDifferEvent(P1.MITA[i], P2.MITA[i]);
15: P1 ← Replace(P1.MITA[i], e1);
16: e2← FirstDifferEvent(P1.MITA[i], P2.MITA[i]);
17: P2 ← Replace(P2.MITA[i], e2);
18: end if
19: end for
20: M

′
= P1 ‖ P2;

21: return M
′

3.2 Preprocessing
CTL is extended with events for the sake of description of

properties based on states and events.

Definition 2. The CTL formulas extended with events are
as follows:

ϕ ::= e|s|¬ψ|(ψ1 ∧ ψ2)|(ψ1 ∨ ψ2)|(ψ1 → ψ2)|
AXψ|EXψ|AFψ|EFψ|AGψ|EGψ|A[ψ1Uψ2]|E[ψ1Uψ2]

where e ranges over
∑√

. s represent the state, A represent
all the paths, E represents exist one path at least, X rep-
resent the next state, F represent some state in the future,
G represent all the state in the following and U represent
until.

Given a set U of ECTL formulas, the sharedDAG could
be obtained by applying the following rules:

Rule 1(remove duplicate leaf nodes) If a syntax
tree has the same leaf nodes n1, n2, ..., nk, then remove all
the same leaf nodes except nk, and redirect all arcs into the
ni(1 ≤ i ≤ k) to nk.

Rule 2 (remove duplicate internal nodes) Let u and
v be internal nodes, the label of u and v are the same, remove
the sub tree with the root u and redirect all arcs into u to v
if conditions below are satisfied, otherwise, remove v.

(1) Both u and v have two sub-trees, and the sub-trees of
u and v are the same.(2) Node u has one sub tree, v has two
sub trees, and the sub tree of u is the same as one of the sub
trees of v.(3) Both nodes u and v have only one sub tree,
and the sub trees of u and v are the same.

Example 2. Consider following properties of dining philoso-
pher problems:

(1)Pro 1: Any fork can not be picked up by two philoso-
phers at the same time.

(2)Pro 2: Any philosopher will eat if he has picked up his
forks.

The two properties above are described with extended
CTL formulas as follows:

(1) AG¬(i.pickFork.i ∧ i
⊕

1.pickFork.i)
(2) AG(i.pickFork.i→ AF (i.eat)
The formulas are input into the preprocessing procedure,

and then a sharedDAG is obtained as Fig.4(To be simple,
set i=2).

Figure 4: shareDAG

Intuitively, in this example, if we verify the two proper-
ties using classical labeling algorithm, ¬2.pickfrok2 will be
verified twice, but only once after preprocessing. Our pre-
processing procedure will reduce the repeated verification
overhead and improve verification efficiency especially when
the number of properties is large.

4. EXPERIMENTAL RESULTS
Experimental results with philosophers dining problem

are presented as follows, where the configuration of our com-
puter is Intel Core(TM) i3-2100 CPU, 3.10GHz, 4GB(RAM),
64bit window 7.

Table 1: Result concurrently verification
ACSPChecker CSP Model
(DLV, N=3) P 1 P 2 Sum All

Bounded k=5 0.09/T 0.15/F 0.24 0.11
Bounded k=10 1.32/T 1.38/T 2.70 1.34
Bounded k=15 1.41/T 3.44/T 4.85 3.45
Bounded k=20 6.67/T 6.68/T 13.35 7.39

Table 1 is the situation for the model of 3 philosophers.
It is shown that preprocessing technique has great effect on
improving the efficiency of verifying properties. The time
of multi-properties verification concurrently is smaller than
the sum of verification respectively. And the verification of
liveness properties is affected by the bounded step k, because
the k determine the size of states space of system.

Table 2: Results with increasing bounded k
ACSPChecker Original CSP model Abstract CSP model

DLV, N=3 P1 P2 All P1 P2 All

Bounded k= 5 0.09/T 0.15/F 0.11 0.02/T 0.03/T 0.03
Bounded k=10 1.32/T 1.38/T 1.34 0.25/T 0.27/T 0.27
Bounded k=15 1.41/T 3.44/T 3.45 0.98/T 0.95/T 1.02
Bounded k=20 6.67/T 6.68/T 7.39 1.35/T 1.63/T 1.97

101

For Research Only

Table 2 is the situation for a model of 3 philosopher-
s and inner ASP solver of ACSPChecker is DLV[8]. It is
shown that the abstraction have great effect on improving
the efficiency of verifying the properties. For example, when
bounded k steps is 10, the time to verfying P1 in original C-
SP model is 1.32 second, while 0.25 second in abstract CSP
model.

Table 3: Results with increasing philosophers
ACSPChecker N=3 N= 5 N=7 N=8 N=10

(DLV, Bounded k=10) Verification Time (s)

P1 1.32s 11.42s 37.94s 85.69s -
Original model P2 1.38s 11.49s 38.32s 85.25s -

All 1.34s 11.55s 38.50s 86.46s -
P1 0.25s 0.38s 2.29s 3.33s 9.89s

Abstract model P2 0.27s 0.41s 2.31s 3.41s 11.01s
All 0.27s 0.42s 2.33s 3.48s 11.06s

Table 3 collects the experimental results with the dining
philosophers problems with increasing numbers of philoso-
phers, where bonded step k is set to 10. We are exciting
to find the great improvement in the scale of system mod-
el could be verified, as illustrated in Table 3, the maximal
numbers of philosophers is only 8 without abstraction in 4G-
B experimental environment. But the numbers of philoso-
phers could be verified become more than 10, and the time
cost is significantly reduced when abstraction technique is
applied.

5. CONCLUSION
ACSPChecker is a new CSP model checking tool, devel-

oped based on answer set programming, which could verify
multiple properties concurrently in one run of a model check-
er. Additionally, an abstraction method and a preprocessing
technique are integrated into ACSPChecker to improve the
verification efficiency. The feasibility and efficiency of AC-
SPChecker are illustrated by the experiments with a classic
concurrency problem - dining philosophers problem.

6. ACKNOWLEDGMENT
The paper was partially supported by the National Natu-

ral Science Foundation of China (No. 91418204, 61321491,
61472179, 61561146394, 61572249).

7. REFERENCES
[1] C. Baral. Knowledge representation, reasoning and

declarative problem solving. Cambridge university
press, 2003.

[2] B. Bérard, M. Bidoit, A. Finkel, F. Laroussinie,
A. Petit, L. Petrucci, and P. Schnoebelen. Systems
and software verification: model-checking techniques
and tools. Springer Science & Business Media, 2013.

[3] P. Bonatti, F. Calimeri, N. Leone, and F. Ricca.
Answer set programming. In A 25-year perspective on
logic programming, pages 159–182. Springer-Verlag,
2010.

[4] E. M. Clarke. The birth of model checking. In 25
Years of Model Checking, pages 1–26. Springer, 2008.

[5] E. M. Clarke, O. Grumberg, and D. Peled. Model
checking. MIT press, 1999.

[6] M. Gebser, M. Maratea, and F. Ricca. WhatâĂŹs hot
in the answer set programming competition. In
Thirtieth AAAI Conference on Artificial Intelligence,
2016.

[7] T. Gibson-Robinson, P. Armstrong, A. Boulgakov,

and A. W. Roscoe. Fdr3âĂŤa modern refinement
checker for csp. In International Conference on Tools
and Algorithms for the Construction and Analysis of
Systems, pages 187–201. Springer, 2014.

[8] N. Leone, G. Pfeifer, W. Faber, T. Eiter, G. Gottlob,
S. Perri, and F. Scarcello. The dlv system for
knowledge representation and reasoning. ACM
Transactions on Computational Logic (TOCL),
7(3):499–562, 2006.

[9] M. Leuschel and M. Butler. Prob: A model checker for
b. In International Symposium of Formal Methods
Europe, pages 855–874. Springer, 2003.

[10] M. Leuschel, J. Falampin, F. Fritz, and D. Plagge.
Automated property verification for large scale b
models with prob. Formal Aspects of Computing,
23(6):683–709, 2011.

[11] M. Leuschel and M. Fontaine. Probing the depths of
csp-m: A new fdr-compliant validation tool. In
International Conference on Formal Engineering
Methods, pages 278–297. Springer, 2008.

[12] Y. Lierler and M. Maratea. Cmodels-2: Sat-based
answer set solver enhanced to non-tight programs. In
International Conference on Logic Programming and
NonMonotonic Reasoning, pages 346–350. Springer,
2004.

[13] V. Lifschitz. What is answer set programming?. In
AAAI, volume 8, pages 1594–1597, 2008.

[14] I. Niemela, P. Simons, and T. Syrjanen. Smodels: a
system for answer set programming. arXiv preprint
cs/0003033, 2000.

[15] H. Palikareva, J. Ouaknine, and A. Roscoe.
Sat-solving in csp trace refinement. Science of
Computer Programming, 77(10):1178–1197, 2012.

[16] A. Parashkevov and J. Yantchev. ArcâĂŤa verification
tool for concurrent systems. In Proceedings of the
Third Australasian Parallel and Real-Time
Conference. Citeseer, 1996.

[17] A. N. Parashkevov and J. Yantchev. Arc-a tool for
efficient refinement and equivalence checking for csp.
In Algorithms & Architectures for Parallel
Processing, 1996. ICAPP 96. 1996 IEEE Second
International Conference on, pages 68–75. IEEE, 1996.

[18] L. Situ and L. Zhao. Csp bounded model checking of
preprocessed ctl extended with events using answer set
programming. In 2015 Asia-Pacific Software
Engineering Conference (APSEC), pages 16–23.
IEEE, 2015.

[19] J. Sun, Y. Liu, and J. S. Dong. Model checking csp
revisited: Introducing a process analysis toolkit. In
International Symposium on Leveraging Applications
of Formal Methods, Verification and Validation, pages
307–322. Springer, 2008.

[20] L. Zhao, Z. zhongyi, J. Qian, and G. Yunchuang.
Model checking csp based on asp and critical-trace
model of csp. Journal of Software, 26(10), 2015.

102

For Research Only

