
	
	
	

Software	Engineering	Group	
Department	of	Computer	Science	
Nanjing	University	
http://seg.nju.edu.cn	

	
	
	
	

Technical	Report	No.	NJU-SEG-2016-IC-009	

2016-IC-009	

	
	

A Linear Programming Relaxation Based Approach for 

Generating Barrier Certificates of Hybrid Systems	
Zhengfeng	Yang,	Chao	Huang,	Xin	Chen,	Wang	Lin,	Zhiming	Liu	

	
	
	
	
	

Formal	Methods	-	21st	International	Symposium	2016	
	
	
	
	
	
	
	

Most of the papers available from this document appear in print, and the corresponding copyright is held by the 

publisher. While the papers can be used for personal use, redistribution or reprinting for commercial purposes is 

prohibited. 



A Linear Programming Relaxation
Based Approach for Generating

Barrier Certificates of Hybrid Systems

Zhengfeng Yang1, Chao Huang2, Xin Chen2, Wang Lin3(B), and Zhiming Liu4

1 Shanghai Key Lab of Trustworthy Computing,
East China Normal University, Shanghai, China

zfyang@sei.ecnu.edu.cn
2 State Key Lab for Novel Software Technology, Nanjing University, Nanjing, China

{huangchao,chenxin}@nju.edu.cn
3 Key Lab of Mathematics Mechanization, AMSS, CAS, Beijing, China

linwang@wzu.edu.cn
4 Center for Research and Innovation in Software Engineering,

Southwest University, Chongqing, China
zhimingliu88@swu.edu.cn

Abstract. This paper presents a linear programming (LP) relaxation
based approach for generating polynomial barrier certificates for safety
verification of semi-algebraic hybrid systems. The key idea is to introduce
an LP relaxation to encode the set of nonnegativity constraints derived
from the conditions of the associated barrier certificates and then resort
to LP solvers to find the solutions. The most important benefit of the
LP relaxation based approach is that it possesses a much lower com-
putational complexity and hence can be solved very efficiently, which is
demonstrated by the theoretical analysis on complexity as well as the
experiment on a set of examples gathered from the literature. As far as
we know, it is the first method that enables LP relaxation based poly-
nomial barrier certificate generation.

Keywords: Formal verification · Hybrid systems · Barrier certificates ·
Linear programming relaxation

1 Introduction

Safety verification of hybrid systems has attracted much research attention in
recent years [2]. This is mainly due to the requirement of ensuring the safety of
embedded systems whose complex behaviors can be exhibited by hybrid systems
via interacting discrete and continuous dynamics [3,12]. In principle, safety ver-
ification aims to decide that starting from an initial set, whether a system can
evolve to some unsafe region in the state space. A successful verification can give
more confidence in the verified systems.

Barrier certificate based methods are developed to handle the safety veri-
fication problem [13,16,17,27]. A barrier certificate is a function of state that
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divides the state space into two parts. All system trajectories starting from a
given set of initial conditions fall into one side while the unsafe region locates
on the other. Thus, the problem of safety verification is converted to the prob-
lem of barrier certificate generation. Compared with reachable set computation,
when encountering nonlinear systems, a barrier function is much easier to com-
pute. It also gives more exact result when the safety property refers to infinite
horizon [17].

Barrier certificate generation is a computationally intensive task. Usually, a
function of a specific form with unknown coefficients is given as the template,
and then computational methods based on different principles are used to deter-
mine the value of those unknown coefficients so that the conditions of the desired
barrier certificate are satisfied. For barrier certificate based verification, its effec-
tiveness and practicality are decided to a large extent by the efficiency of the
computational methods, therefore the method for effective computation becomes
a key point.

There have been many barrier certificates of different types proposed for
hybrid systems with different features [13,15,21,27,31]. Among them, polyno-
mial barrier certificates for semi-algebraic hybrid systems (i.e. those systems
whose vector fields are polynomials and whose set descriptions are polynomial
equalities or inequalities) receive most attention, as they are more universal.
For barrier certificates generation, methods based on sums of squares (SOS)
relaxation are quite popular, as the associated semidefinite programming (SDP)
has a much lower computational complexity and there are many efficient solvers
available.

The paper focuses on introducing linear programming (LP) relaxation to gen-
erating polynomial barrier certificates with convex condition for semi-algebraic
hybrid systems. Compared with SOS relaxation based approaches, our LP relax-
ation based method offers three main advantages: First, LP has a much lower
computational complexity than SDP does, thus it can be solved more quickly.
Second, LP provides a much higher numerical stability and hence can treat many
cases where SDP generates invalid polynomials due to numerical errors [15,21].
At last, LP gives a new encoding of polynomial positivity quite different from
SDP, and thus has the potential to generate polynomials that SDP is unable
to produce. It is a necessary complement to relaxation based methods as it can
generate barrier certificates uncovered by existing methods.

The proposed method considers a polynomial barrier certificate whose coeffi-
cients must satisfy a set of nonnegativity constraints of multivariate polynomials
over semi-algebraic sets. It employs the theory of Krivine-Vasilescu-Handelman’s
(KVH) Positivstellensatz [14] to construct an LP relaxation of the constraint set
and then relies on LP solvers to find the solution for the coefficients of the bar-
rier certificate. The theoretical analysis demonstrates that for a hybrid system,
the complexity of finding the solution based on the LP solver is approximately
O(n2d+D) while that based on the SDP solver is approximately O(n4D), where
n is the number of system variables, d and D are the degree bounds of the bar-
rier certificate and its nonnegative representation derived from LP relaxation
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and SOS relaxation, respectively. Our LP relaxation based method is compared
with the SOS relaxation based approach over a set of benchmarks gathered from
the literature, which shows that our method provides much better efficiency. To
the best of our knowledge, it is the first study that enables LP relaxation based
polynomial barrier certificate generation.

We start by defining continuous systems and hybrid systems in Sect. 2. We
then present our approach and give a complexity analysis on both our LP relax-
ation based method and the SOS relaxation based method in Sect. 3. We present
how to use our approach to generate barrier certificate for several nontrivial
examples and compare the efficiency of our method with SOS relaxation based
method over a set of benchmarks in Sect. 4. We compare with related works in
Sect. 5 before concluding.

2 Continuous and Hybrid Systems

Notations. Let R and N be the field of real number and natural num-
ber, respectively; R[x] denotes the polynomial ring with coefficients in R over
x = [x1, x2, · · · , xn]T , and R[x]n denotes the n-dimensional polynomial ring
vector.

A continuous dynamical system is modeled by a finite number of first-order
ordinary differential equations

ẋ = f(x), (1)

where ẋ denotes the derivative of x with respect to the time variable t, and f(x)
is called vector field f(x) = [f1(x), · · · , fn(x)]T defined on an open set Ψ ⊆ R

n.
We assume that f satisfies the local Lipschitz condition, which ensures that given
x(0) = x0, there exists a time T > 0 and a unique function τ : [0, T ) �→ R

n such
that τ(t) = x(t). And x(t) is called a solution of (1) that starts at a certain
initial state x0. Namely, x(t) is also called a trajectory of (1) from x0.

Definition 1 (Continuous System). A continuous system over x consists of
a tuple S : 〈Θ, f , Ψ〉, wherein Θ ⊆ R

n is a set of initial states, f is a vector field
over the domain Ψ ⊆ R

n.

Hybrid systems involve both continuous dynamics as well as discrete transi-
tions. To model hybrid systems, we use the notion of hybrid automata [3].

Definition 2 (Hybrid Automata). A hybrid automaton is a system H :
〈L, X, F , Ψ,E,G,R,Θ, �0〉, where
– L, a finite set of locations (or models);
– X ⊆ R

n is the continuous state space. The hybrid state space of the system is
defined by X = L × X and a state is defined by (�,x) ∈ X ;

– F : L → (Rn → R
n), assigns to each location � ∈ L a locally Lipschitz

continuous vector field f�;
– Ψ assigns to each location � ∈ L a location condition (location invari-

ant) Ψ(�) ⊆ R
n;
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724 Z. Yang et al.

– E ⊆ L × L is a finite set of discrete transitions;
– G assigns to each transition e ∈ E a switching guard Ge ⊆ R

n;
– R assigns to each transition e ∈ E a reset function Re : Rn → R

n;
– Θ ⊆ R

n, an initial continuous state set;
– �0 ∈ L, the initial location. The initial state space of the system is defined by

�0 × Θ.

A trajectory [31] of H is an infinite sequence of states

(l0,x0), (l1,x1), · · · , (li,xi), (li+1,xi+1), · · ·

such that

– [Initiation] (l0,x0) ∈ �0 × Θ;
Furthermore, for each consecutive pair (li,xi), (li+1,xi+1), one of the two con-
secution conditions holds:

– [Discrete Consecution] e = (li, li+1) ∈ E, xi ∈ Ge and xi+1 = Re(xi); or
– [Continuous Consecution] li = li+1 = �, and there exists a time interval

[0, δ] such that the solution x(xi; t) to ẋ = f� evolves from xi to xi+1, while
satisfying the location invariant Ψ(�). Formally,

• x(xi, δ) = xi+1 and
• ∀t ∈ [0, δ],x(xi, t) ∈ Ψ(�).

A state (�,x) is called a reachable state of a hybrid system H from the initial
state set �0 × Θ if it appears in some trajectory of H. During a continuous
flow, the discrete location �i is maintained and the continuous state variables
x evolve according to the differential equations ẋ = f�i

(x), with x satisfying
the location invariant Ψ(�i). At the state (�i,x), if there is a discrete transition
e = (�i, �j) ∈ E such that x ∈ Ge, the system may undergo a transition to
location �j , and x will take the new value x′, which is determined by the reset
function Re.

In this paper, we focus on continuous systems and hybrid systems whose
elements are represented as polynomial relations (equalities and inequalities)
over the system variables. In what follows, the definition of semi-algebraic hybrid
system is provided. The definition of semi-algebraic continuous system is similar.

Definition 3 (Semi-algebraic Hybrid System). A semi-algebraic hybrid system
is a hybrid system: H : 〈L, X, F , Ψ,E,G,R,Θ, �0〉, where
– the continuous vector field F (�) for each � ∈ L is of the form ẋ = f�(x), where

f�(x) ∈ R[x]n;
– the initial condition Θ, the location invariant Ψ(�) for each � ∈ L, and the

guard condition Ge for each e ∈ E are semi-algebraic sets defined by polyno-
mial inequalities with variables x; Re ∈ R[x]n is the reset function for each
e ∈ E.
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For ease of presentation, the semi-algebraic sets Θ, Ψ(�) and Ge in
Definition 3 are represented as follows:

Θ : = {x ∈ R
n | θ1(x) ≥ 0, . . . , θq(x) ≥ 0},

Ψ(�) : = {x ∈ R
n |ψ�,1(x) ≥ 0, . . . , ψ�,r(x) ≥ 0},

Ge : = {x ∈ R
n | ge,1(x) ≥ 0, . . . , ge,s(x) ≥ 0},

where � ∈ L, e ∈ E, and θi(x), ψ�,j(x), ge, k(x) are polynomials. In addition,
hereafter we assume that the above semi-algebraic sets are compact.

Given a semi-algebraic hybrid system H with prespecified unsafe state set
Xu = � × Xu, we say that the system H is safe if all trajectories of H starting
from the initial state set �0 × Θ, can not evolve to any state specified by Xu.
Given a semi-algebraic hybrid system H, the problem of verifying the safety
property is to decide that whether H is safe, or, any state specified by Xu is not
reachable. Here we also assume that Xu is a compact semi-algebraic set, defined
by

Xu(�) := {x ∈ R
n | ζ�,1(x) ≥ 0, . . . , ζ�,p(x) ≥ 0, },

where ζ�,i ∈ R[x], 1 ≤ i ≤ p.

3 Computational Method for Barrier Certificates

For safety verification of (continuous or hybrid) dynamical systems, the notion of
barrier certificates [16] plays an important role. A barrier certificate maps all the
states in the reachable set to non-negative reals and all the states in the unsafe
set to negative reals, thus can be employed to prove safety of dynamical systems.
Utilizing barrier certificates has the benefit of avoiding explicit computation of
the exact reachable set which is usually not tractable for nonlinear continuous
and hybrid systems. In other words, a barrier certificate can be regarded as the
over-approximation of the reachable set, and most importantly, is a boundary
between the reachable set and the given unsafe state set. In the sequel, we
propose a new computational method for generating the barrier certificates for
safety verification of dynamical systems.

3.1 Barriers Certificates

As stated in [13], the key point in generating barrier certificates is how to estab-
lish verification conditions that are as less conservative as possible and how to
efficiently compute the barrier certificates satisfying these verification conditions.
Taking them into account, the idea that introduces auxiliary polynomials to offer
relaxed verification conditions for barrier certificates of continuous and hybrid
systems can be applied.

Theorem 1. Let S : 〈Θ, f , Ψ〉 be a semi-algebraic continuous system, and Xu

be the given unsafe state set. Let λ(x) be a given polynomial. If there exists a
polynomial B(x) ∈ R[x], which satisfies the following conditions:
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(i) B(x) ≥ 0∀x ∈ Θ,
(ii) Ḃ(x)−λ(x)B(x) > 0 ∀x ∈ Ψ , here Ḃ(x) denotes the Lie-derivative of B(x)

along the vector field f , i.e., Ḃ(x) =
∑n

i=1
∂B
∂xi

· fi(x),
(iii) B(x) < 0∀x ∈ Xu,

then B(x) is a barrier certificate of system S, and the safety of S is guaranteed.

Proof. Condition (ii) indicates that Ḃ(x) > 0 if B(x) = 0. Therefore, by condi-
tion (i) and (ii), B(x) cannot become negative during the continuous evolution
of S. Condition (iii) implies that all trajectories starting from Θ can not enter
Xu. We can conclude B(x) is a barrier certificate of S, which can guarantee the
safety of the system. �

Clearly, the existence of such a barrier certificate in Theorem 1 suffices to
guarantee the safety property of the given semi-algebraic continuous system.
Likewise, Theorem 1 can be generalized to attack safety verification of semi-
algebraic hybrid systems.

Theorem 2. Let H : 〈L, X, F , Ψ,E,G,R,Θ, �0〉 be a semi-algebraic hybrid
system, Xu be the unsafe assertion. Let λ�(x) be given polynomials for all � ∈ L,
and γe(x) be given nonnegative polynomials for all e ∈ E. If there exists a
polynomial B�(x) ∈ R[x] for each location � ∈ L, which satisfies the following
conditions:

(i) B�0(x) ≥ 0∀x ∈ Θ,
(ii) Ḃ�(x) − λ�(x)B�(x) > 0 ∀x ∈ Ψ(�), here Ḃ�(x) denotes the Lie-derivative

of B�(x) along the vector field f�, i.e., Ḃ�(x) =
∑n

i=1
∂B�

∂xi
· f�,i(x),

(iii) B�′(x′) − γe(x)B�(x) ≥ 0∀x′ = Re(x) ∀x ∈ Ge, ∀e = (�, �′) ∈ E,
(iv) B�(x) < 0∀x ∈ Xu(�),

then B�(x) is a barrier certificate at the location �, and the safety of the system
H is guaranteed.

Proof. By condition (i), B�0(x) is nonnegative on Θ. Condition (ii) indicates
that Ḃ�(x) > 0 if B�(x) > 0, thus yielding that B�(x) is always nonnegative
during the continuous flow. Since γe is nonnegative, condition (iii) guarantees
that B�(x) cannot become negative during every discrete transition. Moreover,
condition (iv) shows that all reachable states of H cannot intersect with the
unsafe region Xu. �

Remark 1. Our verification conditions of barrier certificates in Theorems 1 and
2 are also called as the polynomial-scale consecution of the inductive invariants
defined in [23], which is less conservative than the constant-scale consecution
given in [13].
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3.2 Computation of Barrier Certificates

In this section, we consider how to construct barrier certificates given in
Theorems 1 and 2 for semi-algebraic dynamical systems. Investigating Theo-
rems 1 and 2, it turns out that all verification conditions can be encoded as
nonnegativity constraints for polynomials over the corresponding semi-algebraic
sets. For the given degree bound, one may construct the template of the barrier
polynomial B�(x) whose coefficients are parameters. In this case, our objective
is to find real-valued coefficients of B�(x), satisfying the verification conditions,
which is a typical quantifier elimination with polynomial equalities and inequal-
ities constraints. Some symbolic methods, such as QEPCAD [7] and REDLOG
[10] are available to offer mathematical proofs of the existence of the barrier
certificate, at the cost of high computational complexity. To alleviate this com-
putational intractability, we can apply SOS relaxation based approach [16] to
compute B�(x), which starts with sufficient verification conditions by means of
SOS representations, proceeds by dealing with SDP. Remark that SDP primarily
relies on numerical interior-point SDP solvers running in fixed precision.

These limits may prevent the SOS relaxation based method from yielding
valid B�(x). This paper follows another route: rather than applying SOS repre-
sentations, we offer an alternative one for the nonnegativity of polynomials over
compact semi-algebraic sets, and take advantage of this representation to pro-
pose new sufficient verification conditions for building the barrier certificates of
dynamical systems. Notably, benefited from the above strategy, safety verifica-
tion of dynamical systems can be converted into a tractable linear programming.

Let K be a compact semi-algebraic set defined by:

K = {x ∈ R
n | g1(x) ≥ 0, . . . , gm(x) ≥ 0}, (2)

where gj(x) ∈ R[x] for j = 1, · · · ,m. Since K is compact, one may compute
g∗ := max

x∈K

gj(x) for every j = 1, . . . ,m. Let g̃j(x) be the normalized polynomial

of gj(x) with respect to K, namely,

g̃j(x) =
{

gj(x)/g∗, if g∗ > 0,
gj(x), if g∗ = 0.

(3)

For convenience, we introduce the following polynomial vector notation.
Given a compact semi-algebraic set (2) with polynomials g1, . . . , gm, denote by
g̃ the polynomial vector:

g̃ = [g̃1, . . . , g̃m, 1 − g̃1, . . . , 1 − g̃m]T , (4)

and g̃α stands for the polynomial product of the form:

g̃α =
m∏

j=1

g̃
αj

j (1 − g̃j)αm+j , (5)

where α ∈ N
2m.

Now we recap an alternative representation of a nonnegative polynomial on
the compact semi-algebraic set.
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Theorem 3 (Krivine-Vasilescu-Handelman’s(KVH) Positivstellensatz)[14]. Let
K be a compact semi-algebraic set as in (2), and let g̃j(x) be the normalized poly-
nomial gj(x) as in (3) for each j. Suppose the family {gj , (1 − gj)}m

j=0 generate
R[x] where g0 ≡ 1. If f(x) ∈ R[x] is strictly positive on K, then f(x) can be
represented as

f(x) =
∑

α∈N2m

cαg̃α (6)

where cα ∈ R≥0.

Remark 2. Following [14], if the polynomials {gj , 1 − gj}m
j=0 cannot generate

R[x], one can augment some linear functions such that the updated set of poly-
nomials can generate R[x]. To be more precise, let xk ≤ min{xk|x ∈ K} for all
k = 1, · · · , n. Then, with x �→ gm+k(x) := xk − xk, the updated K can generate
R[x] by plugging the (redundant) constraints gm+k ≥ 0, k = 1, · · · , n. Consider
K is compact, lower bounds {xk} on xk can be obtained or are known. For more
details, the reader refers to [14].

Assumption 1. For every compact semi-algebraic set K in this paper, the poly-
nomials {gj}m

j=0 can generate R[x], where g1 ≥ 0, . . . , gm ≥ 0 are the inequalities
of K as in (2).

From Theorem 3, the existence of the representation as in (6) provides a suffi-
cient and necessary condition for the strict positiveness of f(x) on the compact
set K. However, the number of the polynomial products in (6) is infinite, which
means that generating its representation is computationally hard. To illustrate
the computational applicability, we turn to selecting partial polynomial products
in the representation (6) by fixing a priori (much smaller) degree bound D, in
the following way. For the given positive integer D ∈ Z>0, we pick α ∈ N

2m such
that deg(g̃α) ≤ D. This strategy gives a sufficient condition for the nonnegativity
of the given polynomial on the compact semi-algebraic set.

Theorem 4. Let K be a compact semi-algebraic set as in (2), and let D be
a positive integer. Let g̃j(x) be the normalized polynomial gj(x) as in (3) for
each j. If f(x) ∈ R[x] can be written as

f(x) =
∑

deg(g̃α)≤D

cα g̃α with cα ≥ 0, (7)

then f(x) is nonnegative on K.

Proof. g̃j(x) is the normalized polynomial with respect to K, which follows that
g̃j(x) and 1 − g̃j(x) are nonnegative on K for each j. The desired result can be
easily obtained from cα ≥ 0. �

The representation (7) ensures that f(x) is nonnegative on K. Observing the
verification conditions in Theorems 1 and 2, we can see that all conditions can
be rewritten as a unified type, namely, the nonnegativity of polynomials on the
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compact semi-algebraic set. From Theorem 4, the original verification conditions
can be relaxed as more tractable ones by the representations as (7). Let us now
demonstrate by an example on how to convert the verification condition into the
associated nonnegative representation.

Example 1. Consider the first verification condition in Theorem 1, B(x) ≥
0∀x ∈ Θ. Let θ̃j(x) be the normalized polynomial of θj(x) with respect to
Θ for each j, 1 ≤ j ≤ q. Let θ̃ be the normalized polynomial vector

θ̃ = [θ̃1, · · · , θ̃q, 1 − θ̃1, . . . , 1 − θ̃q]T .

Following Theorem 4, B(x) ≥ 0∀x ∈ Θ can be converted into the conservative
one with the given degree bound D ∈ Z>0, namely,

B(x) =
∑

deg(θ̃α)≤D

cαθ̃α, cα ∈ R≥0 =⇒ B(x) ≥ 0∀x ∈ Θ. �

As demonstrated in Example 1, we next provide a more tractable verification
condition for the barrier certificates of continuous systems and hybrid systems.
For notational convenience, throughout the rest of this paper, we will use θ̃, ψ̃,
ζ̃ to denote the normalized polynomial vectors with respect to Θ, Ψ and Xu,
respectively.

Theorem 5. Let S : 〈Θ, f , Ψ〉 be a semi-algebraic continuous system, and Xu be
the given unsafe state set. Let D be a positive integer. If there exist B(x), λ(x) ∈
R[x], which satisfy the following conditions:

1. B(x) =
∑

deg(θ̃α)≤D

cα θ̃α, cα ≥ 0,

2. Ḃ(x) − λ(x)B(x) − ε1 =
∑

deg(ψ̃β)≤D

cβ ψ̃β , cβ ≥ 0, ε1 > 0,

3. −B(x) − ε2 =
∑

deg(ζ̃ω)≤D

cω ζ̃ω, cω ≥ 0, ε2 > 0,

then the safety of the system S is guaranteed.

Proof. Theorem 4 indicates that the conditions (1–3) can imply the conditions
(i–iii) in Theorem 1, respectively. Thus, the safety of the system S is proved. �

Theorem 6. Let H : 〈L, X, F , Ψ,E,G,R,Θ, �0〉 be a semi-algebraic hybrid
system, Xu be the unsafe assertion. Let D be a positive integer. If there exist
B�(x), λ�(x) ∈ R[x] for each � ∈ L, and nonnegative polynomial γe(x) ∈ R[x]
for each e ∈ E, which satisfy

1. B�0(x) =
∑

deg(θ̃
α�0 )≤D

cα�0
θ̃α�0 , cα�0

≥ 0 ,

2. Ḃ�(x) − λ�(x)B�(x) − ε�,1 =
∑

deg(ψ̃β� )≤D

cβ�
ψ̃β�

� , cβ�
≥ 0, ε�,1 > 0,
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3. B�′(Re(x)) − γe(x)B�(x) =
∑

deg(g̃μe )≤D

cμe
g̃μe

e , cμe
≥ 0,

4. −B�(x) − ε�,2 =
∑

deg(ζ̃ω� )≤D

cω�
ζ̃ω�

� , cω�
≥ 0, ε�,2 > 0,

then the safety of the system H is guaranteed.

Proof. Simiar to the proof of Theorem 5. �
Theorems 5 and 6 produce the sufficient conditions for generating the barrier
certificates of continuous and hybrid systems, respectively. With unknown mul-
tipliers λ(x), λ�(x), γe(x) and unknown barrier certificates B(x), B�(x), some
nonlinear terms that are products of the coefficients of unknown polynomials will
occur in the constraints in Theorems 5 and 6, which yields a non-convex bilinear
matrix inequalities (BMI) problem. To alleviate this computational intractabil-
ity, provided that the multipliers λ�(x) and γe(x) are given in advance, the
problem of generating the above barrier certificates can be transformed into the
linear programming problem. To keep it concise, we only sketch the case of con-
tinuous systems, but the transformation procedure extends to the case of hybrid
systems without much difficulty.

To start with, a key step is to parameterize B(x) and the power products
associated to each expression in the conditions (1–3) of Theorem 5. For the
given degree d of B(x), we first predetermine a template of B(x) by setting
its coefficients as parameters, i.e., B(x) =

∑

α
bιxι, where xι = xι1

1 · · · xιn
n , ι =

(ι1, . . . , ιn) ∈ Z
n
≥0 with

∑n
i=1 ιi ≤ d, and bι’s are unknown coefficients. Let b

be the coefficient vector of B(x). In the sequel, we write B(x) as B(x,b) for
clarity. Denote by cα, cβ , cω the parameter vectors appearing in the conditions
(1-3) of Theorem 5, respectively, and let c = [cT

α , cT
β , cT

ω ]T . For the given degree
bound D, it follows from Theorem 5 that generating a barrier certificate can be
transformed into the following optimization problem:

find b
s.t. B(x,b) =

∑

deg(θ̃α)≤D

cα θ̃α,

Ḃ(x,b) − λ(x)B(x,b) − ε1 =
∑

deg(ψ̃β)≤D

cβ ψ̃β ,

−B(x,b) − ε2 =
∑

deg(ζ̃ω)≤D

cω ζ̃ω,

cα, cβ , cω ≥ 0,

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(8)

where λ(x) is a prespecified polynomial, and ε1, ε2 ∈ R>0 are prespecified small
positive numbers. We can rewrite the equality constraints in (8) as a linear
system with the variables b, c by sorting the coefficients with respect to the
variables x. By doing so, (8) is equivalent to the following linear programming
problem:

find y
s.t. A · y ≥ 0,

}

(9)
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where y = (bT , cT )T and A is a numerical matrix. Problem (9) can be solved by
using conventional algorithms such as the interior-point method [6]. If (9) is fea-
sible, the result yields a barrier certificate B(x), which suffices to verify the safety
of the continuous system S. Our LP relaxation is based on the predetermined
degree bound D. Once (9) is infeasible, one may improve the relaxation precision
and then increase the possibility to find the barrier certificate by increasing the
degree bound D. Detailed procedures are summarized in Algorithm 1.

Remark 3. Theorem 6 guarantees that λ� can be any constants or polynomials,
and γe can be any nonnegative constants or polynomials. To ease computation,
one prefers to set them as simple as possible. Here we choose λ� from 0,±1,±(1+
x2
1+ · · ·+x2

n), and γe from 0, 1, 1+x2
1+ · · ·+x2

n, respectively. Like computing the
fractional SOS representations of nonnegative polynomials, one may also choose
the denominator as (1 + x2

1 + · · · + x2
n)k for some integer exponent k.

Algorithm 1. Search for polynomial barrier certificates
Input: Semi-algebraic continuous system S, or hybrid system H; the degree

bound d of the barrier certificate; the degree bound D of the
representation (7).

Output: The barrier certificate {B�(x)}.
1 forall the � ∈ L do
2 Parameterized B�(x) by polynomials of degree d

3 Construct the power-products with degree D of the polynomials defining the
semi-algebraic sets in Theorem 2.

4 Set up the linear programming of the form (9) and apply an LP solver to
compute its solutions.

5 if the problem (9) is feasible then
6 return {B�(x)}.

7 else
8 return “we cannot find the barrier certificates with the degree bound d.”

Remark 4. Like SOS relaxation method, our method cannot guarantee that the
polynomial barrier certificates will always be found due to the limitation on
presetting the degree bounds d and D. It is also difficult to predetermine whether
such polynomial barrier certificates exist. Therefore, if our algorithm fails to
yield any barrier certificate, it does not mean that the given hybrid system has
no polynomial barrier certificates with the given degree bound, or that the given
system is unsafe.

3.3 Complexity Analysis

In the section, we analyze the complexity of Algorithm 1, and further com-
pare it with SOS relaxation method. Let n, |L| and |E| be the numbers of
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system variables, locations and discrete transitions in the given hybrid system
H, respectively. And let df be the maximal degree of the polynomial vector fields
of H, and let dv be the maximal degree among the polynomial lists, which are
used to define the compact semi-algebraic sets appearing in H. The linear pro-
gramming problem (9) implies the predetermined degree bound D must satisfy
D ≥ d + df . Suppose that the numbers of the polynomials defining the com-
pact semi-algebraic sets in H are bounded by sp. Therefore, the number of the
decision variables, denoted by Vl, of the linear programming problem (9) is

Vl =
(

n + d

d

)

+ (1 + 2|L| + |E|)
(

2sp + D

D

)

, (10)

where the first term is the number of coefficients b, and the second one is the
number of coefficients c. Meanwhile, the number of constraints, denoted by Cl,
in (9) is

Cl =
(

n + D

D

)

+ (1 + 2|L| + |E|)
(

2sp + D

D

)

, (11)

where the first term is the number of equality constraints associated with coeffi-
cients b and c, and the second one is the number of nonnegative constraints of
coefficients c.

As is well known, the complexity of an LP using interior-point algorithms is
approximately O(V2

l Cl) [6]. Taking this together with (10) and (11), we get the
complexity of Algorithm 1 based on the LP solver is approximately O(n2d+D).

We also called the SOS relaxation (cf. (36)–(39) in [16]) to search for the
barrier certificate of the hybrid system H. Similarly, let D be the predetermined
degree bound for all involved SOS polynomial multipliers. Then, the number of
decision variables, denoted by Vs, in the SDP associated with the SOS relax-
ation is

Vs = (sp + 1) (1 + 2|L| + |E|) N(N + 1)
2

, (12)

where N =
(
n+D/2

D/2

)
is the number of monomials in a polynomial of degree D/2.

Meanwhile, the number of constraints, denoted by Cs, in the SDP associated
with the SOS relaxation is

Cs = (1 + 2|L| + |E|)
(

n + D

D

)

. (13)

It is known that the complexity of SDP-solving via interior-point algorithms is
approximately O(C3

s+V3
s Cs+C2

sV2
s ) [6]. From (12) and (13), we get the complexity

of calling the SDP solver to search for a barrier certificate is approximately
O(n4D).

4 Experiments

In this section, we first demonstrate the application of our methods by two
examples and then compare our LP relaxation method with the SOS relaxation
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method with respect to ability and efficiency on 10 examples. We used examples
of high computational complexity from related works in the experiments [4,5,8,
16–19,22,24].

Example 2. Consider the following nonlinear continuous system [22]
⎡

⎢
⎢
⎣

ẋ1

ẋ2

ẋ3

ẋ4

⎤

⎥
⎥
⎦ =

⎡

⎢
⎢
⎣

−x1 + x3
2 − 3x3x4

−x1 − x3
2

x1x4 − x3

x1x3 − x3
4

⎤

⎥
⎥
⎦ ,

with the location invariant Ψ = {x ∈ R
4 : −1 ≤ x1, x2, x3, x4 ≤ 1}. We will

verify that all trajectories of the system starting from the initial set Θ = {x ∈
R

4 : 0 ≤ x1, x2, x3, x4 ≤ 0.5}. will never enter the unsafe set Xu = {x ∈ R
4 :

−1 ≤ x1, x2, x3, x4 ≤ −0.5}.
Let the degree bound D of the representation (7) be 8, and λ(x) in Theorem 5

be 1, respectively. Our algorithm succeeds to yield the barrier certificate

B(x) = −12.9713x4
1 − 16.6808x4

2 − 93.4687x4
3 − 0.5426x4

4 + . . . + 779.0477
︸ ︷︷ ︸

70 terms

.

Therefore, the safety of the above system is verified. �

Fig. 1. The hybrid automata of the system in Example 3

Example 3. Consider the hybrid automata of the system depicted in Fig. 1,
where

f1(x) =

⎡

⎣
−x2

−x1 + x3

x1 + (2x2 + 3x3)(1 + x2
3)

⎤

⎦ , f2(x) =

⎡

⎣
−x2

−x1 + x3

−x1 − 2x2 − 3x3

⎤

⎦ .

Our task is to verify that the system will never enter the unsafe set

Xu(�2) = {x ∈ R
3 : x1 ≥ 5}.
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Let the degree bound D of the representation (7) be 6, and λ�1 = −0.2, λ�2 =
0, and γ(�1,�2) = γ(�2,�1) = 1. Applying Algorithm 1, we obtain the polynomial
barrier certificate with degree 2:

B�1(x) = −48.0832x2
1 − 0.6225x2

2 − 0.0005x2
3 + · · · + 1075.8714

︸ ︷︷ ︸
10 terms

,

B�2(x) = −0.8002x1
2 + 0.4692x2

2 + 0.5978x2
3 + · · · + 423.7896

︸ ︷︷ ︸
10 terms

.

Meanwhile, we apply the SOS relaxation based method to compute a barrier
certificate with degree < 4. However, the SDP solver cannot return any barrier
certificate. As discussed above, our LP relaxation based approach can find the
barrier certificate that the SOS relaxation based method cannot yield. �

We compared our LP relaxation based method with the SOS relaxation based
one over a set of benchmarks gathered from the related works. Table 1 shows the
result. Here, the LP problems were settled by the linprog command in Matlab
while the SDP problems were solved by the Matlab toolbox SeDuMi [29]. The
experiments were performed on Intel(R) Core(TM) at 2.60 GHz with 8 GB of
memory under Windows 8.

In Table 1, n and |L| denote the number of the system variables and the
number of the locations; df denotes the maximal degree of the polynomials in
the vector fields; dl(B) and ds(B) denote the degrees of the barrier certificates
obtained from LP and SDP solvers, respectively; Dl and Ds are the degree
bounds of the nonnegative representation derived from the LP relaxation and
SOS relaxation, respectively; Vl and Vc denote the numbers of the decision vari-
ables of the LP and SDP, respectively; Tl and Ts represent the entire computation
times in seconds spent by LP and SDP solvers, respectively.

Table 1. Algorithm performance on benchmarks

Examples n |L| df LP SDP

dl(B) Dl Vl Tl(s) ds(B) Ds Vs Ts(s)

Ex.1 from [18] 2 1 2 3 6 164 0.0221 3 6 292 0.1870

Ex.2 from [16] 2 1 3 4 6 328 0.0782 4 8 597 0.1179

Ex.3 from [8] 2 1 3 2 4 91 0.0140 2 6 299 0.1129

Ex.4 from [18] 2 1 1 3 4 129 0.0053 4 6 287 0.1193

Ex.5 from [18] 2 1 2 2 4 56 0.0073 2 4 95 0.1358

Ex.6 from [24] 3 1 2 4 6 917 0.1051 4 6 942 0.2187

Ex.7 from [19] 3 1 3 4 6 1379 0.1444 4 8 2977 0.2421

Ex.8 from [5] 3 1 2 4 6 890 0.0966 1 4 225 0.1815

Ex.9 from [4] 2 3 1 2 2 156 0.0941 2 2 278 0.1820

Ex.10 from [17] 3 2 3 2 4 370 0.0331 4 8 5952 0.8481

For Research Only



A Linear Programming Relaxation Based Approach 735

For 7 of the examples, both LP relaxation and SOS relaxation can successfully
find the barrier certificates of polynomial forms with the same degree. However,
as discussed in the Sect. 3.3, the number of decision variables in LP relaxation is
much smaller than that in SOS relaxation. Plus the more efficiency LP solvers
provide, our LP relaxation based method is much more efficient than the SOS
relaxation method. For Ex.4 and Ex.10, SOS relaxation based method cannot
find polynomial barrier certificates whose degrees are less than 4, whereas our
LP relaxation method can yield two barrier certificates with the degrees 3 and
2, respectively. Ex.8 displays the opposite case where SOS relaxation performs
better.

In fact, LP relaxation and SOS relaxation use different sufficient conditions
for polynomial positivity and give different encodings of barrier certificate gen-
eration. Theoretically, for the given degree bound of the polynomial, there are
cases where the SOS relaxation can find a barrier certificate, however, the LP
relaxation cannot, and vice versa. Even for the cases that can be solved by both
of them, there is no theoretical result predicting which method will produce bar-
rier certificates of lower-degree. Thus, our LP relaxation based method and the
SOS relaxation based method complement each other.

5 Related Work

A barrier certificate is a special kind of inductive invariant, thus research on
safety verification using inductive invariants is related to our work. Sankara-
narayanan et al. presented methods adopting the ideal theory over polynomial
rings and quantifier elimination to automatically generate algebraic invariants
for algebraic hybrid systems [21,23]. Sturm and Tiwari presented the applica-
tion of quantifier elimination to formal verification and synthesis of continu-
ous and switched dynamical systems [30]. Based on Gröbner basis manipula-
tions, Rodŕıguez-Carbonell constructed polynomial invariants (a set of polyno-
mial equations) for linear hybrid systems [20]. Platzer et al. adopted iterative
fixedpoint calculations to find differential invariants, a boolean combination of
multiple polynomial inequalities, to verify semi-algebraic hybrid systems [15].
Gulwani et al. defined a similar invariant with a different inductive condition
and used the Farkas’s theory and SMT solvers to solve it [11]. Sogokon et al.
combined semi-algebraic abstractions with deductive verification method to gen-
erate semi-algebraic invariants for polynomial continuous systems [28].

For barrier certificates with convex conditions, the technique of sum-of-
squares decomposition of semidefinite polynomials provides much better effi-
ciency and thus is quite popular. Prajna et al. generated barrier certificates for
semi-algebraic hybrid systems [16,17]. Kong et al. proposed a method to gener-
ate a barrier certificate defined over an exponential condition for semi-algebraic
hybrid systems by SDP [13]. Dai et al. utilized different weaker conditions flexibly
to synthesize different kinds of barrier certificates with more expressiveness effi-
ciently using SDP [9]. Yang et al. presented a hybrid symbolic-numeric method
to compute the exact inequality invariants of polynomial hybrid systems via
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SOS relaxation [31]. Sloth et al. proposed compositional conditions for barrier
certificates to verify the safety property of a group of interconnected hybrid
systems [27].

LP relaxation based techniques have been successfully applied in stability
analysis of nonlinear systems. Ahmadi et al. introduced two different positive
representations: DSOS and SDSOS to take the place of SOS, and combined linear
programming and second order cone programming to solve them [1]. Sankara-
narayanan et al. investigated the stability of continuous systems with polyhedral
domains. They used the Handelman positive representation to synthesize Lya-
punov functions [22,25]. Ben Sassi et al. used polyhedra templates to analyse
the reachability of polynomial systems. They reduced the problem of reachability
analysis to a set of optimization problems involving polynomials over bounded
polyhedra, then adopted the Bernstein expansions of polynomials to build LP
relaxations [26]. In the paper, we treat the more general semi-algebraic hybrid
systems and generate barrier certificates using KVH positivstellensatz. It is the
first attempt to use LP relaxation for computing barrier certificates.

6 Conclusion

We have presented a linear programming (LP) relaxation based approach for gen-
erating barrier certificates of semi-algebraic hybrid systems. The main feature of
this approach is that it uses an LP relaxation to encode the set of nonnegativity
constraints associated with the barrier certificates. Thanks to the low computa-
tional complexity and the high numerical stability of LP, our approach is more
efficient than the popular SOS relaxation based methods when treating barrier
certificates with convex conditions. The conclusion is supported by a theoreti-
cal analysis on complexity and the experiments taken on a set of benchmarks
gathered from the literature.
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