
	
	
	

Software	Engineering	Group	
Department	of	Computer	Science	
Nanjing	University	
http://seg.nju.edu.cn	

	
	
	
	

Technical	Report	No.	NJU-SEG-2019-IC-007	

2019-IC-007	

	
	

Global optimization of numerical programs via prioritized

stochastic algebraic transformations	
Xie	Wang,	Huaijin	Wang,	Zhendong	Su,	Enyi	Tang,	Xin	Chen,	Weijun	Shen,	Zhenyu	Chen,	

Linzhang	Wang,	Xianpei	Zhang,	Xuandong	Li	

	
	
	
	

International	Conference	on	Software	Engineering	
	
	
	
	
	
	
	

Most of the papers available from this document appear in print, and the corresponding copyright is held by the

publisher. While the papers can be used for personal use, redistribution or reprinting for commercial purposes is

prohibited.

Global Optimization of Numerical Programs
via Prioritized Stochastic Algebraic Transformations

Xie Wang1 Huaijin Wang1 Zhendong Su2,3 Enyi Tang1∗ Xin Chen1

Weijun Shen1 Zhenyu Chen1 Linzhang Wang1 Xianpei Zhang1 Xuandong Li1

1State Key Laboratory of Novel Software Technology, Software Institute of Nanjing University, Nanjing, China
2Department of Computer Science, Swiss Federal Institute of Technology (ETH), Zürich, Switzerland

3Department of Computer Science, University of California, Davis, USA

*corresponding author: eytang@nju.edu.cn

Abstract—Numerical code is often applied in the safety-critical,
but resource-limited areas. Hence, it is crucial for it to be
correct and efficient, both of which are difficult to ensure. On
one hand, accumulated rounding errors in numerical programs
can cause system failures. On the other hand, arbitrary/infinite-
precision arithmetic, although accurate, is infeasible in practice
and especially in resource-limited scenarios because it performs
thousands of times slower than floating-point arithmetic. Thus,
it has been a significant challenge to obtain high-precision, easy-
to-maintain, and efficient numerical code. This paper introduces
a novel global optimization framework to tackle this challenge.

Using our framework, a developer simply writes the infinite-
precision numerical program directly following the problem’s
mathematical requirement specification. The resulting code is cor-
rect and easy-to-maintain, but inefficient. Our framework then
optimizes the program in a global fashion (i.e., considering the
whole program, rather than individual expressions or statements
as in prior work), the key technical difficulty this work solves.
To this end, it analyzes the program’s numerical value flows
across different statements through a symbolic trace extraction
algorithm, and generates optimized traces via stochastic algebraic
transformations guided by effective rule selection. We first evalu-
ate our technique on numerical benchmarks from the literature;
results show that our global optimization achieves significantly
higher worst-case accuracy than the state-of-the-art numerical
optimization tool. Second, we show that our framework is also
effective on benchmarks having complicated program structures,
which are challenging for numerical optimization. Finally, we
apply our framework on real-world code to successfully detect
numerical bugs that have been confirmed by developers.

I. INTRODUCTION

Numerical programs are often key components of safety-

critical systems, so it is crucial for them to get correct. As many

of such systems are restricted with limited resources, such as

a very limited energy budget for an on-board satellite system,

it is also important for numerical programs to be efficient.

However, both the correctness and the efficiency of numerical

programs are difficult to ensure. On one hand, accumulated

rounding errors in numerical programs can cause system

failures. On the other hand, numerical software with arbitrary-

precision arithmetic performs thousands of times slower than

the traditional fixed-precision floating point programs, which

makes it infeasible in the resource-limited scenario. Hence,

experts need to elaborately design stable numerical programs

to make sure of their correctness and efficiency.

Unfortunately, the elaborately designed numerical programs

are difficult to maintain. Numerical experts often introduce

complicated tricks in them. For example, a lot of numerical

algorithms are not as intuitive as its original mathematical re-

quirement specification because numerical experts use different

ways of calculation to make sure that the representation and

rounding errors are accumulated as less as possible. Further-

more, experts also introduce precision-specific operations that

are difficult to understand by developers who do not familiar

with numerical programming. Our goal is to address such

maintenance problems.

In this paper, we propose a global optimization framework

(shown in Figure 1) that transforms numerical programs directly

following the mathematical requirement specification to the

efficient fixed-precision programs with numerically stable

algorithms. Using our framework, a developer just needs to

simply write a numerical program following the mathematical

specification from the software requirements. When the input

program is easy to maintain, we call it a direct numerical
program written in infinite-precision arithmetic. Then our

framework changes the calculation of the direct program and

generates an efficient equivalent program in fixed-precision

floating-point arithmetic with stable numerical algorithms.

The framework decouples the knowledge of numerical

calculation from the software development. In other words,

developers do not need to focus on the details in numerical

programming, but just thinking in terms of the real number,

which makes their programs intuitive and easy to maintain. Our

optimization framework considers its floating-point approxima-

tion on computers by the optimization rules from numerical

experts, who focus on the numerical analysis techniques and

make our framework incrementally powerful.

Our optimization is global. It not only rewrites individual

expressions or statements, but optimizes the unstable calculation

flows of the whole program. The global optimization framework

brings two major challenges: 1) Different from a local numeri-

cal expression, a numerical program often contains multiple

branches with complicated constraints. A global numerical
optimization needs not only to rewrite the numerical operations
with high local error in a program, but also reduce the
cumulative floating-point errors with constraints. 2) A global

1131

2019 IEEE/ACM 41st International Conference on Software Engineering (ICSE)

1558-1225/19/$31.00 ©2019 IEEE
DOI 10.1109/ICSE.2019.00116

Authorized licensed use limited to: Nanjing University. Downloaded on June 09,2020 at 13:01:32 UTC from IEEE Xplore. Restrictions apply.

For Research Only

Global Numerical
Optimization
Framework

z3 =
z1 + z2
|z1 + z2|

mathematical specification
from the software requirements

IComplex midarc(IComplex z1,IComplex z2){
 if(abs(z1)!=1 || abs(z2)!=1)
 throw PreConditionException;
 REAL r = real(z1) + real(z2);
 REAL i = imag(z1) + imag(z2);
 IComplex sum(r,i);
 IComplex z3 = sum / abs(sum);
 return z3;
}

direct numerical program
(written in infinite-precision arithmetic,
easy to maintain,
however, may be unstable in finite-precision arithmetic)

optimized numerical program
(in fixed-precision floating-point arithmetic
with numerically stable algorithms)

software developers
(may not be familiar with numerical analysis,
just program directly following the
mathematical requirement specification)

optimization rules

where z1, z2, z3 ∈ C ∧ |z1| = |z2| = 1

FComplex midarc(FComplex z1,FComplex z2){
 if((abs(z1)-1)>epsi || (abs(z2)-1)>epsi)
 throw PreConditionException;
 double r = real(z1) + real(z2);
 double i = imag(z1) + imag(z2);
 FComplex sum(r,i); FComplex z3;
 if(abs(sum)<epsi){
 double theta1 =
 arg(real(z1), imag(z1));
 double theta2 =
 arg(real(z2), imag(z2));
 double theta3 = (theta1+theta2)/2;
 if(abs(theta1-theta2)<pi) {
 z3 =
 FComplex(cos(theta3),sin(theta3));
 }else{
 z3 =
 FComplex(-cos(theta3),-sin(theta3));
 }
 }else{
 z3 = sum / abs(sum);
 }
 return z3;
}

Fig. 1: Illustration of the Optimization Framework for Globally Rewriting Numerical Programs

numerical flow is often much longer than a local numerical

expression. That is, more potential numerical rewrites consist

in a global flow, which leads to vaster search space than just

rewriting local numerical expressions.

To overcome the first challenge, we propose a symbolic

trace extraction algorithm inspired by the symbolic execution

technique [1], [2]. The algorithm connects the numerical

operations in different statements together, and transforms the

input numerical program to an intermediate representation (IR)

that records the numerical traces with their corresponding

path constraints. To overcome the second challenge, we

present a stochastic algebraic transformation guided by an

effective rule selection strategy. The strategy characterizes the

floating-point domain knowledge as prioritized preconditions

of transformation rules, and prioritizes the transformation in

consideration of both its precondition and success rate.

State of the Art Numerical verification and analysis are

extensively studied topics [3], [4], [5], [6], [7], [8]. Most

of these researches provide techniques that compute error

bounds, detect numerical instabilities, or elaborately design

stable numerical programs manually. Herbie [9] is a state-of-

the-art transformation tool that rewrites a local expression to

improve its accuracy. But it can not handle a numerical program

with path constraints and program structures. To the best of

our knowledge, none of the previous work has considered a

global optimization framework that automatically rewrites the

whole program to a stable one.

The main contributions of this paper are as follows:

• We propose a global optimization framework that trans-

forms infinite precision numerical programs to the stable

and efficient fixed-precision implementations. It is the

first framework that automatically takes global numerical

errors into consideration to our knowledge.

• We carefully design the framework with a symbolic trace

extraction algorithm, a numerical intermediate representa-

tion (IR), and a stochastic algebraic transformation. With

these techniques, our framework overcomes the major

challenges in the global numerical optimization.

• We first evaluate our optimization on groups of numerical

benchmarks from the literature. Results show that our

global optimization achieves significantly higher worst-

case accuracy than the state-of-the-art numerical opti-

mization tool, which is also effective on benchmarks

having complicated program structures. Furthermore, we

apply our framework on real-world projects of an open

source graphics library and a driving tool for 3D printers,

and successfully detect numerical bugs that have been

confirmed by developers.

II. FLOATING-POINT BACKGROUND & NUMERICAL ERRORS

According to IEEE 754 [10], each floating-point number

represents a numerical value in the form of

(−1)s(1 +m)2e (1)

where s is the sign bit (zero or one), m is the significand

(also called the mantissa), e is the exponent. The floating-point

standard also defines a variety of precisions: double-precision

floats are defined with a 52 bit significand and an 11 bit

exponent, while single-precision floats are are defined with a

23 bit significand and an 8 bit exponent.

When the floating-point format bounds the number of bits in

its representation, the precision limitations are the root cause of

the numerical errors [11]. Our framework uses infinite-precision

arithmetic [12] to evaluate the errors that are introduced by a

fixed-precision floating-point program. The infinite-precision

arithmetic expands the precision automatically on an arbitrary-

precision floating-point format, such as GNU MPFR [13]. It

increases the working precision until the observed bits of the

1132

Authorized licensed use limited to: Nanjing University. Downloaded on June 09,2020 at 13:01:32 UTC from IEEE Xplore. Restrictions apply.

For Research Only

significand (such as the first 52 bits of the computed answer for

evaluating a double-precision program) does not change any

more. As the infinite-precision arithmetic achieves a sufficiently

large working precision, we treat the output as the exact result

in its observed bits of the significand.

Metrics are necessary to evaluate the errors between the

floating-point outputs and the exact results. The absolute

and relative error functions are natural measures, but they

will suffer from ill-suited cases in evaluating floating-point

values [14]. Following a few recent practices [15], [9] in

floating-point evaluation, we also use the (base-2 logarithm of

the) number of floating-point values between the exact result

x and approximate result x̂ as the error metric E , which we

call error in bits in this paper:

E(x, x̂) = log2

∣∣∣∣{n|n ∈ FP ∧min(x, x̂) ≤ n ≤ max(x, x̂)}
∣∣∣∣

Error in bits E represents uniformly the entire range of floating-

point values including the Inf and NaN values. Intuitively,

it measures the number of most-significant bits that x and x̂
agree on. Note that the significand 0x00FF and 0x0100 just

have 1 bit error, not 9 bits. The metric E is still available if x
and x̂ have a different sign bit or exponent bits. So the range

of error in bits for double-precision values is [0,64], and [0,32]

for single-precision values.

III. MOTIVATING EXAMPLE

In Figure 1, we have presented a midarc example from

Guo et al. [16], which calculates the midpoint z3 of an arc

(z1, z2) in the complex plane.

As z1, z2, z3 are complex numbers and |z1| = |z2| = 1, the

arc (z1, z2) is a segment of the unit circle in the complex

plane (shown in Figure 2). z3 is the midpoint of the arc

(z1, z2), and can be calculated according to the equation:

z2

z1

z3

0 Re

Im

1

Fig. 2: The Argand Diagram of

our Example that Calculates the

Midpoint z3 of the Arc (z1, z2)

z3 =
z1 + z2
|z1 + z2| (2)

Following Equation 2

and the basic arithmetic

rules of complex num-

bers, software develop-

ers can implement the

midarc program direct-

ly as the code snippet in

Figure 3. The code in Fig-

ure 3 is intuitive and easy

to maintain, however it is

not an efficient and stable

numerical implementation. First, state-of-the-art implementa-

tions of infinite-precision arithmetic perform thousands times

slower than fixed-precision floating-point programs. So we

need the efficient fixed-precision implementation. Second, a

fixed-precision floating-point program can be unstable if it

follows the direct algorithm in Figure 3. The instability occurs

1 IComplex midarc(IComplex z1,IComplex z2){
2 if(abs(z1)!=1 || abs(z2)!=1)
3 throw PreConditionException;
4 REAL r = real(z1) + real(z2);
5 REAL i = imag(z1) + imag(z2);
6 IComplex sum(r,i); //sum=z1+z2
7 IComplex z3 = sum / abs(sum);
8 return z3;
9 }

Fig. 3: The Direct Numerical Program for Calculating the

Midpoint z3 in Infinite Precision Arithmetic

1 FComplex midarc(FComplex z1,FComplex z2){
2 if((abs(z1)-1)>epsi || (abs(z2)-1)>epsi)
3 throw PreConditionException;
4 double r = real(z1) + real(z2);
5 double i = imag(z1) + imag(z2);
6 FComplex sum(r,i); FComplex z3;
7 if(abs(sum)<epsi){
8 double theta1 = arg(real(z1), imag(z1));
9 double theta2 = arg(real(z2), imag(z2));

10 double theta3 = (theta1+theta2)/2;
11 if(abs(theta1-theta2)<pi) {
12 z3 = FComplex(cos(theta3),sin(theta3));
13 }else{
14 z3 = FComplex(-cos(theta3),-sin(theta3));
15 }
16 }else{
17 z3 = sum / abs(sum);
18 }
19 return z3;
20 }

Fig. 4: The Optimized Fixed-Precision Numerical Program for

Calculating the Midpoint z3

when |z1 + z2| < ε, where ε is a positive real value close to

0.

When |z1 + z2| is very small, both the addition at line 4 and

line 5 in Figure 3 cause serious massive cancellations if we

calculate it in finite-precision arithmetic. The error is further

enlarged by the division at line 7 because the divisor is also

very small, which is equal to |z1 + z2|. Hence, when we run

the program with double-precision floating point arithmetic on

an Apple MacBook Pro with Intel Core i7 2.9GHz, where the

input z1 = eiπ/4, z2 = −z1 ∗ e−iεπ and ε = 10−16, it outputs

z3 = −0.5547 + 0.8321i with about 51 bits error in both the

real part and the imaginary part. It is obviously wrong since

the correct z3 ≈ −0.7071 + 0.7071i.

When every local expression in Figure 3 (such as

imag(z1)+imag(z2), sum/abs(sum)) does not have

a rewriting form to make the program numerically stable,

existing local optimization techniques are not effective in this

problem. Our framework optimizes the code globally. It extracts

a numerical IR that connects the numerical calculation flows

together with a symbolic trace extraction algorithm. Inspired

by symbolic execution [1], [2], the symbolic trace extraction

algorithm propagates symbolic states through every execution

path, and records constraints between numerical variables.

1133

Authorized licensed use limited to: Nanjing University. Downloaded on June 09,2020 at 13:01:32 UTC from IEEE Xplore. Restrictions apply.

For Research Only

TABLE I: Transformation Rules that Match the Path & Variable

Constraints in Equation 3

No. Rule

#1 A+B � B +A

#2 (A+B)2 � A2 + 2AB +B2

#3

R1+R2 �√
(R1+R2)2+(I1+I2)2cos(θ1+arg(m1+m2 cos(θ2−θ1),m2 sin(θ2−θ1)))

where m1=
√

R2
1+I21 ,m2=

√
R2

2+I22 , θ1=arg(R1, I1), θ2=arg(R2, I2)

#4
if (R2

1+I21 ==R2
2+I22 ∧ |arg(R1, I1)−arg(R2, I2)|<π∧ |R1+R2|<ε)

R1+R2 � √
(R1+R2)2+(I1+I2)2 cos(

arg(R1,I1)+arg(R2,I2)
2

)

#5
if (R2

1+I21 ==R2
2+I22 ∧ |arg(R1, I1)−arg(R2, I2)|≥π∧ |R1+R2|<ε)

R1+R2 � −
√

(R1+R2)2+(I1+I2)2 cos(
arg(R1,I1)+arg(R2,I2)

2
)

...

When the algorithm unfolds the subfunction such as abs,

the collected global trace is:

if (
√
z1.Re2 + z1.Im2 == 1∧ √

z2.Re2 + z2.Im2 == 1) (3)

z3.Re :=
z1.Re+ z2.Re√

(z1.Re+ z2.Re)2 + (z1.Im+ z2.Im)2

z3.Im :=
z1.Im+ z2.Im√

(z1.Re+ z2.Re)2 + (z1.Im+ z2.Im)2

where z1.Re refers to the memory object returned by

real(z1) that stores the real component of the complex

value z1, whereas z2.Re, z3.Re, z1.Im, z2.Im and z3.Im
refer to the corresponding memory objects.

After comparing the outputs between the infinite-precision

program and the corresponding fixed-precision program with

a heuristic sampling strategy, our framework locates the input

regions that trigger the numerical instabilities. The framework

focuses the optimization on these unstable input regions,

and yields a new optimized branch with the path constraint

derived from these regions in the output program. In our

example, the path constraint of the new optimized branch

is abs(sum)<epsi, where epsi is a small value close to

0.

The insight of our optimization is to find the numerically

stable forms for the calculations under the unstable regions of

the input program. Our framework substitutes these optimized

forms in the new branch of the output program. Unfortunately,

if the framework cannot find them, it will keep the infinite-

precision calculations in the new optimized branch to make

sure the correctness of the output program. Meanwhile, the

output program is still efficient in other stable input regions

since the calculations under these regions are transformed to

the fixed-precision floating-point arithmetic directly.

Our framework searches the numerically stable forms

for optimization with a stochastic algebraic transformation,

which rewrites the global calculations in a rule-based manner.

Specifically, it rewrites the global constraint in the numerical IR

with a database of transformation rules from numerical experts.

As a global numerical constraint is often more complicated

than a local expression, our framework records the optimization

success count for every rule in the database, and applies

it as a gauge of the probability for selecting the rule in

future. Furthermore, we refine the optimization rules with

prioritized preconditions to further introduce the floating-point

domain knowledge in the transformation. These transformation

strategies significantly increase the chance of finding the

effective stable forms in the large search space for the global

numerical optimization.

Table I depicts some of the rules that can be applied in

our example. We define sub-procedures for complicate rules

such as Rule #3 (the polar form conversion rule for the real-

part addition). Rule #4 and Rule #5 are special cases of Rule

#3 with preconditions. Some of the preconditions such as

R2
1+I

2
1 ==R2

2+I
2
2 guarantee the correctness of the rule. So we

call them the correctness preconditions. Other preconditions

boxed in Table I are prioritized preconditions that significantly

increase the chance to apply the corresponding rule if any of

them is satisfied. The insight of a prioritized precondition is

the prior knowledge numerical experts already know that a

transformation should be effective under such condition. This

information is fundamental in the rule-based transformation

and effectively reduces the search space of rule selection in

our framework. When the constraints restrict the application

of Rule #4 and Rule #5, they have a high success rate when

applied in the optimization.

As the derived target path constraint in our example matches

the prioritized preconditions in Rule #4 and Rule #5, our

stochastic transformation applies them in Equation 3. With

the same procedure of the imaginary-part addition and a few

post procedures such as simplification and code generation,

our framework optimizes the code to a stable fixed-precision

program shown in Figure 4. When we run it in double precision

with the same input z1 = eiπ/4, z2 = −z1 ∗ e−iεπ and ε =
10−16, we get the correct output z3 = −0.7071 + 0.7071i.

IV. GLOBAL NUMERICAL OPTIMIZATION

This section presents the technical details of our global

numerical optimization framework. Figure 5 depicts its main

workflow consists of 4 stages: 1) The symbolic trace extraction

stage transforms the input program to the numerical IR that

globally connects numerical operations in different statements

together. 2) The instability analysis stage generates the unstable

input regions that need to be optimized. 3) The stochastic

algebraic transformation stage generates the optimized traces

from the unstable traces in the numerical IR. 4) With a code

generation stage, the verified optimized traces are merged

together and finally translated to the optimized program. The

rest of this section further describes the procedures in every

stage separately.

A. Numerical IR & Symbolic Trace Extraction

Our numerical IR provides a global view of the input

numerical program. It denotes every execution path with

1134

Authorized licensed use limited to: Nanjing University. Downloaded on June 09,2020 at 13:01:32 UTC from IEEE Xplore. Restrictions apply.

For Research Only

direct
numerical
program

Symbolic
Trace

Extraction

Instability
Analysis

numerical
IR

unstable
input

regions

Stochastic
Algebraic

Transformation
verified

optimized
traces

optimized
numerical
program

Code
Generation

Verification of Optimized Traces

A:

B:

C: D:

Fig. 5: Main Workflow of the Global Numerical Optimization

Framework

numerical calculations in the input program by a numerical

trace t, so syntactically the numerical IR is a set of traces.

Every trace consists of a path constraint t.c, and a set of

variable constraints t.V . A variable constraint is in the form

of v := e, where e is often a long expression that records all

the numerical updates of the output numerical variable v along

the corresponding execution path.

For example, the numerical IR of Figure 3 should have two

numerical traces when the code contains two execution paths.

But for one of the paths (with the path constraint abs(z1)!=1
|| abs(z2)!=1) does not contain any numerical calculation,

our numerical IR just records the trace of the other path. Equa-

tion 3 depicts the information in the trace with the path con-

straint
√
z1.Re2+z1.Im2 ==1

∧√
z2.Re2+z2.Im2 ==1

and two variable constraints that updates z3.Re and z3.Im
separately.

Inspired by the symbolic execution technique [1], [2], [17],

[18], [19], we present a symbolic trace extraction algorithm

to generate the numerical IR. It replaces each input numerical

value of the program with a symbol that initially represents

“anything” (denoted by �). Then it executes the program step

by step, collects operations on the symbols, and generates

constraints for the numerical IR.

Algorithm 1 depicts the symbolic trace extraction technique.

At the entry of the program P , our algorithm initializes an

execution state es that holds all the input symbols (line 1).

For the code in Figure 3, z1.Re, z1.Im, z2.Re, and z2.Im
are initialized as symbols when the code accepts complex

numbers. For further propagating the execution state, every

state es records 4 fields (ins, sym, out, c), where 1) es.ins
records the instruction that es is currently propagated in the

input program, 2) es.sym refers to a map that collects the

corresponding variable constraints of all the symbols at the

current step (such as {z1.Re → �, z1.Im → �, ...} when

es is just initialized), 3) es.out records the output symbols

(such as z3.Re, z3.Im), and 4) es.c holds the current path

constraint (such as abs(z1)!=1 || abs(z2)!=1 when

es is propagated to line 3 of Figure 3).

Algorithm 1 maintains a set of execution states ES (line 2),

and processes it with a loop (lines 3-25). In each iteration, it

propagates a step forward of a randomly selected execution

state es (line 4) by processing its current instruction es.ins

Algorithm 1 Symbolic Trace Extraction

Input: P //input numerical program

Output: IR //syntactically a set of numerical traces

1: es ← initialState(P); IR ← ∅;

2: ES ← {es}; //ES is a state set

3: while ES �= ∅ do
4: es← selectRandom(ES); //es is the current state

5: es.ins.forward();

6: switch es.ins.Type

7: case v := exp ∧ v ∈ FP: //an update of v
8: e ← symSubstitute(exp, es.sym);

9: es.sym.update(v → e);

10: case fork: //such as the if statement

11: {es1, es2}← forkExecution(es);

12: ES ← ES - {es} ∪ {es1, es2};
13: case OUTPUT(v) ∧ v ∈ FP: //such as printf(v)

14: es.out ← es.out ∪ {v};
15: case P .EXIT:

16: new trace t (es.c, ∅); //initialize a new trace

17: for all v ∈ es.out do
18: t.V ← t.V ∪ {v := es.sym(v)};
19: end for
20: IR ← IR ∪ {t};
21: ES ← ES - {es};
22: default: //same as default symbolic execution

23: es.execInstruction(es.ins);

24: end switch
25: end while

(lines 5-24). When the current instruction updates a numerical

variable v with an expression exp (line 7), it substitutes

the variable constraint in es.sym for every symbol in the

exp (line 8), and writes the substituted expression back to

es.sym as a new variable constraint of v (line 9). This

operation connects multiple numerical updates in different

statements together. For example, when the algorithm prop-

agates an execution state es to line 7 of Figure 3 and

unfolds the assignment of the complex number, it encounters

a real-part update of z3. In this case, es.ins is z3.Re :=
sum.Re/abs(sum.Re,sum.Im). When es has already been

propagated through lines 4-6 of Figure 3, es.sym(sum.Re) is

z1.Re + z2.Re, and es.sym(sum.Im) is z1.Im + z2.Im.

So the algorithm substitutes the variable constraints in es.sym
for the expression in es.ins, and further maps z3.Re to

(z1.Re + z2.Re)/abs(z1.Re + z2.Re,z1.Im + z2.Im).
After unfolding the subfunction abs, the expression will further

be transformed to the form in Equation 3.

We fork the execution states (line 11 of Algorithm 1) to

collect variable constraints in multiple execution paths, because

every state just holds the constraints for one path. When es
encounters a branch condition b (or a fork instruction), it

generates new execution states es1 and es2 following both

the true and false directions separately. es1 and es2 are

the same as es except their path constraints, where es1.c is

updated to es.c ∧ b, and es2.c is updated to es.c ∧ ¬b.

1135

Authorized licensed use limited to: Nanjing University. Downloaded on June 09,2020 at 13:01:32 UTC from IEEE Xplore. Restrictions apply.

For Research Only

Lines 13-14 of Algorithm 1 collect the output variables, and

lines 15-21 extract information from the execution state to build

a trace in IR when the current execution state is propagated

to an exit of the program. By default, the trace extraction

algorithm executes the current instruction as the same way of

symbolic execution [2], [17], which unfolds subprocedures in

the program automatically (lines 22-23).

B. Instability Analysis in Heuristic

It is not necessary to optimize the program at the inputs

that already make the program stable in fixed-precision

arithmetic. So our framework integrates an instability analysis

to distinguish the unstable input regions from its input space.

Meanwhile, our framework also uses it to verify if an optimized

transformation improves the accuracy of the program.

With a few trials on different instability analysis approaches,

we integrate a sampling-based heuristic technique in our

framework for the practicality. Because the framework keeps

the infinite-precision calculations at the unknown input regions,

our optimization is still sound even if the sampling-based

technique misses some unstable inputs.

Our sampling-based instability analysis starts from 128

random samples uniformly from the floating-point bit patterns.

It separately samples the sign bit, exponent bits, significand

bits, and then combines them together. This sampling strategy

generates very small values, very large values, and values of

normal size with both positive and negative signs. When some

inputs are empirically easy to trigger instabilities in numerical

software, we also integrate an additional group of sample

points with the following guided strategy: Let ε=5×10−10

and I={−e,−π,−2,−1,−π/2, 0, π/2, 1, 2, π, e}, ∀i ∈ I , we

uniformly select 10 sample points in the range of (i− ε, i+ ε),

including i. These sample points will be further refined with

the feedback of program evaluation, which strongly improves

the robustness of the instability analysis.

For every sample input, we evaluate the accuracy by

executing it in both the fixed-precision and infinite-precision

arithmetic (described in Section II), and mark it as a stable

input if the accuracy is acceptable. Otherwise it is marked

as a unstable input. Then our framework tries to build input

regions by refining the sampling process. It resamples more

points around the marked inputs to seek the boundary between

the stable and unstable regions, and derives the constraint

of regions heuristically in a template-matching way. In this

paper, we represent the constraint of unstable input regions

by cu, the constraint of stable input regions by cs, and

other unknown input regions by cuk. For example, when our

framework performs instability analysis on Figure 3, it obtains

a series of unstable inputs that matches a linear template

−ε < AX1 + BX2 + C < ε, where A = B = 1, C = 0,

X1 = z1.Re, X2 = z2.Re as well as X1 = z1.Im,

X2 = z2.Im. Our framework follows the template to generate

cu = |z1.Re+z2.Re|<ε ∧ |z1.Im+z2.Im|<ε, which is

equivalent to the path constraint of the new optimized branch

in Section III. If the inputs does not match any template, the

Algorithm 2 Main Optimization Procedure

Input: IRin //input IR

Output: IRopt //optimized IR

1: IRopt ← {ts}; //initialized as the stable input trace

2: for every t ∈ IRin

∧
(t.c∧cu �= false) do

3: for every v := e ∈ t.V do
4: E ← {e}; //build an equivalent set

5: do
6: e ← selectRandom(E);

7: 〈e′, c′, rule〉 ← stochasticTransform(e, t.c∧cu);

8: if stableVerification(e′,c′) then
9: new trace t′ (c′, {v := e′}); //optimized trace

10: rule.succ++; //increase the success count

11: else
12: E ← E ∪ {e′};
13: end if
14: while t′ = NIL ∧ !TIME OUT

15: IRopt ← IRopt ∪ {t′}; //update optimized traces

16: IRin ← IRin − {t} ∪ (t.c ∧ ¬c′, t.V);
17: end for
18: end for

Algorithm 3 Stochastic Algebraic Transformation

Input: e, c
Output: 〈e′, c′, rule〉

1: R ← {rule|(∃e0∈ SubExp(e), e0.match(rule.i))∧
(rule.cp ∧ c �= false)} //a rule candidate set

2: for every r ∈ R do
3: if r.pp ∧ c �= false then //update the priority

4: prior(r) ← r.succ × pfactor;

5: else
6: prior(r) ← r.succ;

7: end if
8: end for
9: rule ← prioritizedRandom(R, prior); //select the rule

10: return 〈simplify(rule.apply(e)), rule.cp ∧ c, rule〉;

input regions i ∈ (i1, i2) ∪ (i′1, i
′
2) can also build a constraint

by themselves such as (i1 < i < i2) ∨ (i′1 < i < i′2).
The stable input regions create a optimized trace ts natively,

where ts.c is cs, ts.V is the original updates in the input

program with the fixed-precision arithmetic.

C. Stochastic Algebraic Transformation

Our framework transforms the global variable constraints

in the numerical IR with a rule-based manner. A rule in

our framework is specified as a 5-tuple (cp, pp, i, o, succ),
where cp represents a correctness precondition, pp represents a

prioritized precondition, i denotes its input pattern, o denotes

its output pattern, and succ is the success count of finding

stable optimizations when applying the current rule, which is

initialized by 1.

If a subexpression e0 of the global constraint expression

e matches the input pattern of a rule rule.i (line 1 of

Algorithm 3), our framework applies the rule on e (line 10 of

Algorithm 3) by substituting the corresponding output pattern

rule.o for e0 in the constraint expression. For example, the

1136

Authorized licensed use limited to: Nanjing University. Downloaded on June 09,2020 at 13:01:32 UTC from IEEE Xplore. Restrictions apply.

For Research Only

rule A+B � B +A performs commutative law of addition

when A and B matches any subexpressions.

Some complicated transformations are only valid under

conditions, which is defined by the correctness precondi-

tions. For example, Rule #4 in Table I is only valid when

R2
1+I21 ==R2

2+I22 is true. So we disjunct it rule.cp with

the input path condition c (line 10 of Algorithm 3) to generate

the optimized path constraint when applying the corresponding

rule.

The insight of a prioritized precondition pp in a rule is

a floating-point domain knowledge that the rule should be

especially effective under such condition. For example, (A+
B) + C � A+ (B + C) is always correct in real arithmetic,

but it will improve the accuracy of floating-point arithmetic

only when A > B ∧A > C. Hence, we put it as a prioritized

precondition of the rule, and significantly increase the chance

of choosing the rule by multiply its priority with a factor

pfactor (line 4 of Algorithm 3) when the precondition is

satisfied. The default value of pfactor is 100.

The default priority of selecting a rule in our framework

is its success count rule.succ. When it is initialized as 1,

every rule has a chance to be selected in the transformation.

Higher success count means the rule is empirically more useful

in the transformation, which leads to more chances to be

selected. When a number of rules r1, r2, r3...rn are prepared

for being applied on the current global constraint expression,

the probability of selecting a rule ri (line 9 of Algorithm 3)

is: prior(ri)/
∑n

x=1 prior(rx).

Our framework integrates an extensible rule database, which

contains 258 rules in the current version. The database includes

both the simple transformations such as the commutative,

associative, distributive laws, and several complicated rules

such as the complex number transformations and the facts of

trigonometry, exponents, logarithms and gamma functions. The

database can be extended with more rules to support other types

of floating-point transformation. With the help of prioritized

preconditions, numerical experts are easy to express the domain

knowledge of floating-point arithmetic in the database.

Algorithm 2 depicts the main optimization process that

transfers the input numerical IR to the optimized IR, while

Algorithm 3 defines the function stochasticTransform
that is called at line 7 of Algorithm 2 to perform a stochastic

transformation on a global constraint expression. Algorithm 2

initializes the optimized IR with the native stable trace ts
(line 1), and tries to optimize every trace in the input IR. For

every global variable constraint in the trace, it builds an set of

expressions E that are equivalent to the original expression e
in real arithmetic (line 4), and seeks the stable optimization of

e by stochastically transforming a form in E (line 7). When

the transformed expression e′ is verified to be stable under its

optimized path constraint c′ with infinite-precision arithmetic

(line 9), it creates an verified optimized trace t′ and adds it into

the optimized IR (line 15). It also removes the corresponding

optimized trace from the input IR for further optimizing other

traces (line 16).

D. Code Generation & Post Analysis

The final stage of our framework generates the output

program from the optimized IR. It translates every trace t
in the optimized IR as a branch in the output program with

fixed-precision arithmetic, which sets the branch condition

as t.c and updates every target variable with the optimized

procedure in the trace. Furthermore, our framework also keeps

the unoptimized traces in IRin at the end of the output program

with infinite-precision arithmetic, which ensures the soundness

of the optimized program.

Our framework also integrates a post analysis to reduce

code clones in the output program. It merges traces with the

same path constraint or variable constraints. If parts of variable

constraints are the same with another trace, the post analysis

pushes down the branch condition to make the output program

short and easy to read. With the post analysis, our framework

generates clean outputs such as the code in Figure 4. Since the

post analysis does not affect the soundness and efficiency of

the output program, it is an optional module in the optimization

framework.

V. EVALUATION AND RESULTS

We implement our optimization framework1 in a loosely

coupled manner with a front-end that converts the direct

numerical program to the numerical intermediate representation

(IR), and a back-end that performs the stochastic algebraic

transformation and generates the optimized program. In our

front-end, we analyze the structures of the input program with

the ROSE compiler [20], and implement our symbolic trace

extraction module based on KLEE [2]. We implement our

back-end with the python language based on the SymPy

library. We parse the syntax of every rule with ANTLR4 and

evaluate the infinite-precision program with the latest version

of iRRAM [12] library.

We conduct several experiments to evaluate our optimization

framework, and intend to answer the following key research

questions:

RQ1: Does our optimization achieve higher floating-point

accuracy when compared with the state-of-the-art nu-

merical optimization tool?

RQ2: Can our framework globally optimize numerical soft-

ware with complicated program structures (such as

loops)?

RQ3: Is our optimization framework helpful for real-world

software?

We get several observations in our evaluation: For RQ1,

our optimization significantly improves the worst case floating-

point accuracy of numerical expressions when compared with

the state-of-the-art numerical optimization tool. For RQ2,

our framework is effective in optimizing numerical software

with complicated program structures, which are challenging

for numerical optimization. For RQ3, our framework detects

and provides fixing advices of numerical bugs in real-world

1The framework is available at http://seg.nju.edu.cn/eytang/numopt.

1137

Authorized licensed use limited to: Nanjing University. Downloaded on June 09,2020 at 13:01:32 UTC from IEEE Xplore. Restrictions apply.

For Research Only

3frac
2atan
2frac
2isqrt
2log
2cbrt
2sqrt
exp2
expax
logs

invcot
tanhf
sintan
cos2

quad2p
quadp
quad2m
2nthrt
quadm
2tan
2sin
expq2
expm1
sqrtexp
2cos
expq3
logq
qlog

0 8 16 24 32 40 48 56 64

(a) Double Precision

3frac
2atan
2frac
2isqrt
2log
2cbrt
2sqrt
exp2
expax
logs

invcot
tanhf
sintan
cos2

quad2p
quadp
quad2m
2nthrt
quadm
2tan
2sin
expq2
expm1
sqrtexp
2cos
expq3
logq
qlog

0 8 16 24 32

(b) Single Precision

Fig. 6: Observed Worst-Case Bits Corrected by Herbie (Longer Arrow to the Right is Better)

Every row shows the improvement in bit-error achieved by Herbie on the worst input of 4096 random input points for a single benchmark.

The thick arrow points from the accuracy of the fixed-precision input program to the accuracy of Herbie’s output. Accuracy is measured by

the number of correct bits when comparing the value to infinite-precision arithmetic.

3frac
2atan
2frac
2isqrt
2log
2cbrt
2sqrt
exp2
expax
logs

invcot
tanhf
sintan
cos2

quad2p
quadp
quad2m
2nthrt
quadm
2tan
2sin
expq2
expm1
sqrtexp
2cos
expq3
logq
qlog

0 8 16 24 32 40 48 56 64

(a) Double Precision

3frac
2atan
2frac
2isqrt
2log
2cbrt
2sqrt
exp2
expax
logs

invcot
tanhf
sintan
cos2

quad2p
quadp
quad2m
2nthrt
quadm
2tan
2sin
expq2
expm1
sqrtexp
2cos
expq3
logq
qlog

0 8 16 24 32

(b) Single Precision

Fig. 7: Observed Worst-Case Bits Corrected by Our Optimization Framework (Longer Arrow to the Right is Better)

Every row shows the improvement in bit-error achieved by Our Optimization on the worst input of 4096 random input points for a single

benchmark. The thick arrow begins at the same accuracy of the input program as Figure 6, and ends at the accuracy of the output of our

optimization.

software, which has been confirmed by developers of open

source projects. The rest of this section depicts more details

in every experiment.

A. RQ1: Accuracy Improvement on Local Optimization

Herbie2 is the state-of-the-art numerical transformation tool.

Since it mainly aims to optimize local numerical expressions,

authors of Herbie have evaluated it [9] on 28 classic benchmarks

from Hamming’s Numerical Methods for Scientists and Engi-
neers [21]. The results show that Herbie is good at improving

average accuracy for various numerical expressions. To avoid a

bias in our experiment, we also conduct our evaluation on these

2https://github.com/uwplse/herbie

benchmarks3 with the same experiment parameters except the

following setups:

Instead of using average accuracy, we make our evaluation

more rigorous. That is, we evaluate our optimization with the

worst accuracy of all the output values for a numerical program.

If a system has a high worst case accuracy, it must also have

a high average accuracy, but the reverse is not true. As we can

only get a random subset of the numerical outputs, we call

our measurement the observed worst case accuracy. In our

point of view, the worst case accuracy is important because it

3When our optimization framework accepts input programs instead of
numerical expressions, we capsulate every numerical expression in the
benchmark with a main function.

1138

Authorized licensed use limited to: Nanjing University. Downloaded on June 09,2020 at 13:01:32 UTC from IEEE Xplore. Restrictions apply.

For Research Only

TABLE II: Specification of the Infinite-precision Benchmark

Programs for our Global Optimization

Program Specification

analytic evaluate 1/220 with a simple iterative algorithm

e_example calculate Euler's number e≈2.718... with ∑ 1/݅!݊݅=0

float_ext evaluate 2 + ∑ 1/√݅100,000݅=1

gamma
generate the Euler-Mascheroni constant γ≈0.577...
with Stirling's approximation

harmonic
evaluate the sum of the first 5E+07 terms of the
harmonic series

itsyst
iteratively evaluate 1+݅ݔ = −1)݅ݔ3.75 with (݅ݔ
different inputs and calculation orders.

jmmuler
iteratively evaluate xi+2=3000/(1130-xi(111-xi+1))
with different inputs and calculation orders.

lambov calculate the remainder of taylor series

is very dangerous for a safety-critical numerical software to

have only a small number of inaccurate outputs, which will

still cause system failures and serious consequences.

Since both Herbie’s and our optimization are based on

probabilistic mechanism, we repeat 10 times of both the

tools for every benchmark and show the result of the worst

optimization in Figure 6 and Figure 7. Hence, the results

in these figures describe the worst situation for users when

they use the optimizations. From the results, our optimization

framework has a significant advantage in improving the worst-

case accuracy. Such observation is for several reasons: 1) Our

transformation strategies for global optimization also fits in

finding better transformation rules for the local optimization.

2) Different from Herbie that often infers inaccurate path

constraints with a regime algorithm on optimized expressions,

our framework derives the constraints directly from the input

program and further refines the constraints by the rich context

in our optimization rule.

B. RQ2: Effectiveness on Global Optimization

The iRRAM library attaches a group of infinite-precision test

programs. After omitting the trivial example programs such as

the one just transferring string inputs to the infinite-precision

values, we collect 8 of these infinite-precision programs that

contain complicated program structures as our benchmark to

evaluate our global optimization. All these programs contain

at least a loop to calculate the numerical results, some of them

introduce complicated iterative refinement algorithms such as

Stirling’s approximation. Table II specifies these benchmarks

that involve various aspects of numerical calculations.

Our framework optimizes the benchmarks to double-

precision programs. Figure 8 depicts the observed worst case ac-

curacy improvement from the direct double-precision programs

with the original algorithms to our optimized programs. The

experiment setup is the same as Figure 7. When analytic
and e_example are stable in their original algorithms,

our framework cannot further improve their accuracies. In

lambov
jmmuler
itsyst

harmonic
gamma
float_ext
e_example
analytic

0 8 16 24 32 40 48 56 64

Fig. 8: Observed Worst-Case Bits Corrected by our Global

Optimization (Longer Arrow to the Right is Better)

9.
7E

+0
3

6.
3E

+0
3

5.
3E

1.
7E

+0
5

3.
5E

+0
5

2.
5E

+0
5

5.
4E

+0
5

6.
1E

+0
4

1.
5E

+0
3

2.
5E

+0
3

3.
1E

+0
5

4.
0E

+0
3

3.
4E

+0
3

6.
7E

+0
3

2.
7E

+0
3

5.
8E

+0
4

9.
7E

+0
3

6.
3E

+0
3

5.
3E

+0
6

1.
7E

+0
5

3.
5E

+0
5

2.
5E

+0
5

5.
4E

+0
5

6.
1E

+0
4

1.
5E

+0
3

2.
5E

+0
3

3.
1E

+0
5

4.
0E

+0
3

3.
4E

+0
3

6.
7E

+0
3

2.
7E

+0
3

5.
8E

+0
4

analytic

e_example

float_ext

gamma

harmonic
itsyst

jmmuller

lambov

0.0

2.0x105

4.0x105

5.0x106
5.2x106
5.4x106
5.6x106

Average Execution Time (μs) Input Program (Left Column)
 Optimized Program (Right Column)

Fig. 9: Average Execution Time of the Input Benchmark

Programs and the Corresponding Optimized Programs

fact, our framework rewrites e_example from
∑n

i=0 1/i! to∑0
i=n 1/i! in order to alleviate the annihilation of adding a big

number to small numbers. But the accuracy is not improved

in the optimized program because the factorial result i! grows

too fast that make
∑i′

i=n 1/i! still very small. For other cases,

our framework yields useful transformations that obviously

improve the accuracies of the optimized programs.

Figure 9 shows the average execution time of the input

programs and their corresponding optimized programs. When

we optimize the benchmark from the infinite-precision arith-

metic to the double-precision arithmetic, most cases have a

significant speed-up. The benchmark lambov just has a small

speed-up from 61 milliseconds to 58 milliseconds because

the optimized program still relies on some calculations in the

infinite-precision arithmetic of this case.

C. RQ3: Case Study on Real-World Programs

We make a prospect that numerical developers just need

to write easy-maintained infinite-precision programs, and

implement the framework to generate the corresponding fixed-

precision optimizations. However, many current real-world

programs are still written directly in fixed-precision floating-

point arithmetic with numerical instabilities. Our framework

can also help these programs to detect and fix the numerical

bugs. This section describes two cases that our framework

1139

Authorized licensed use limited to: Nanjing University. Downloaded on June 09,2020 at 13:01:32 UTC from IEEE Xplore. Restrictions apply.

For Research Only

improves the accuracy for an open source graphics library

Clipper, and a driving tool Slic3r for three-dimensional

(3D) printers.

For every real-world project, we replace the float and

double types in its source code with the REAL type in the

iRRAM library, and introduce a pre-defined header to make

the project look like an infinite-precision program. Then we

input the project into our framework at the function level and

check if the optimization fixes numerical bugs.

Our framework detects and provides fixing advices of two

numerical bugs in the Clipper library. One of them is caused

by the cumulative errors when the library calculates the area of

a polygon, and the other bug is caused by a massive cancellation

when the library computes the distance from a point to a line.

We report both of the bugs4 and get the confirmation email

from its developer. Our framework also detects a numerical

instability in Slic3r when it tries to lift the extruder of a

3D printer, and the bug is also reported5 and get confirmed.

VI. RELATED WORK

Improving the correctness and efficiency for numerical

software is a popular topic with a long research history.

Numerical experts have proposed a great number of theoretical

approaches and technical tricks to help developers write

stable programs [3], [22], [23], [4], [5]. In this section, we

mainly survey some closely related recent work on numerical

optimization and analysis.

Numerical Accuracy Improvement A few recent researches

focus on improving the accuracy of floating-point expressions

by rewriting them to the forms with smaller rounding errors.

Martel presents an abstract semantics [24], [25], which defines

a numerical transformation on a set of abstract operations. It

does not support large database of rules in numerical rewriting

because the technique is bound to a brute-force search, which

limits the program transformations that can be found. Tang et al.

propose expression perturbation [26], which rewrites numerical

expressions in a program with commutative, associative, and

distributive laws for finding a form with higher accuracy.

Panchekha et al. present Herbie [9], a state-of-the-art numerical

transformation tool that rewrites input expressions with a

database of transformation rules and a heuristic estimation

that localizes rounding errors in the expression with dynamic

sampling. Sanchez-Stern et al. further combines Herbie with

Valgrind (named Herbgrind) [27], which dynamically detects

and reduces numerical error at a significant part (which is

called the root cause part in their paper) in the program.

Speedup of Floating-point Programs Schkufza et al. imple-

ment an aggressive optimization of floating-point computations

as an extension to STOKE [15], which generates reduced

precision implementations of numerical binaries with a Markov

chain Monte Carlo(MCMC) sampling. Lam et al. [28] present

a framework that builds mixed-precision configurations of

4Bugs #180 and #184 at https://sourceforge.net/p/polyclipping/bugs/
5https://github.com/slic3r/Slic3r/issues/4497

existing double-precision binaries with identification of code

regions that can use lower precision. Rubio-González et al.

present Precimonious [29], a dynamic program analysis tool

that decreases the precision of intermediate numerical values

(precision tuning) to speed up floating-point calculations. They

further improve the efficiency of precision tuning with Blame

Analysis [30] and a scalable hierarchical search that exploits

the community structure of floating-point variables [31]. None

of these techniques concern about transforming the numerical

program to a form with higher accuracy.

Numerical Verification and Error Detection Verification

of a numerical program is difficult [32] when it does not

always adhere to the IEEE 754 standard [10]. Darulova and

Kuncak [33] tracks the guaranteed range of floating point values

in a program. Franco et. al conduct an empirical study of numer-

ical bugs from 5 widely-used numerical libraries [34]. Goubault

et al. [35], [36], [6] track the error of floating-point operations,

algorithms, and computations with abstract interpretation. Barr

et al. [37] detect floating-point overflows and underflows with

an SMT solver. Then Darulova et al. [7] also use an SMT

solver to prove error bounds in numerical computation. Benz

et al. present FPDebug [8], which find numerical accuracy

problems with a dynamic testing in higher precision. Chiang

et al. [38] develop a heuristic search algorithm to generate

test inputs that cause significant floating-point inaccuracies.

Zou et al. [39] further propose a genetic algorithm to find the

inaccurate inputs. Bao et al. [11] propose a technique to detect

the floating-point error inflation that causes different execution

paths. Later they integrate the technique in RAIVE [40], a

vectorized executor. Tang et al. [41] present a framework to

detect and diagnose numerical instabilities automatically in

software. None of the above techniques optimize floating point

computations in a program.

VII. CONCLUSION

This paper presents a global optimization framework that

helps numerical developers to obtain high-precision, easy-

to-maintain, and efficient numerical software. Using our

framework, a developer simply writes the infinite-precision

numerical program directly following the problem’s mathemat-

ical requirement specification. Our framework then optimizes

the input program in a global fashion, which analyzes the

program’s numerical value flows across different statements

through a symbolic trace extraction algorithm, and generates

optimized traces via stochastic algebraic transformations guided

by effective rule selection.

ACKNOWLEDGMENT

This research is supported by National Key R&D Program

of China (Grant No. 2017YFB1001801) and National Natural

Science Foundation of China (Grant No. 61772260, 61632015,

61561146394, and 61402222). Zhendong Su was supported

in part by United States National Science Foundation Grants

1528133 and 1618158.

1140

Authorized licensed use limited to: Nanjing University. Downloaded on June 09,2020 at 13:01:32 UTC from IEEE Xplore. Restrictions apply.

For Research Only

REFERENCES

[1] J. C. King, “Symbolic execution and program testing,” Commun. ACM,
vol. 19, no. 7, pp. 385–394, Jul. 1976.

[2] C. Cadar, D. Dunbar, and D. Engler, “KLEE: unassisted and automatic
generation of high-coverage tests for complex systems programs,” in
Proceedings of the 8th USENIX Conference on Operating Systems
Design and Implementation, 2008, pp. 209–224.

[3] N. Higham, Accuracy and stability of numerical algorithms, 2nd ed.
Society for Industrial and Applied Mathematics, 2002.

[4] W. Miller and D. Spooner, “Software for roundoff analysis, ii,” ACM
Transactions on Mathematical Software, vol. 4, no. 4, pp. 369–387, 1978.

[5] J. H. Wilkinson, Rounding Errors in Algebraic Processes. Dover, 1994.
[6] E. Goubault and S. Putot, “Static analysis of finite precision computations,”

in 12th International Conference on Verification, Model Checking, and
Abstract Interpretation, 2011, pp. 232–247.

[7] E. Darulova and V. Kuncak, “Sound compilation of reals,” in Proceedings
of the 41st ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, 2014, pp. 235–248.

[8] F. Benz, A. Hildebrandt, and S. Hack, “A dynamic program analysis
to find floating-point accuracy problems,” in Proceedings of the 33rd
ACM SIGPLAN Conference on Programming Language Design and
Implementation, 2012, pp. 453–462.

[9] P. Panchekha, A. Sanchez-Stern, J. R. Wilcox, and Z. Tatlock,
“Automatically improving accuracy for floating point expressions,” in
Proceedings of the 36th ACM SIGPLAN Conference on Programming
Language Design and Implementation, 2015, pp. 1–11.

[10] American National Standards Institute, IEEE standard for binary floating-
point arithmetic, Std., 1985.

[11] T. Bao and X. Zhang, “On-the-fly detection of instability problems in
floating-point program execution,” in Proceedings of the 2013 ACM
SIGPLAN International Conference on Object Oriented Programming
Systems Languages and Applications, 2013, pp. 817–832.

[12] N. Müller, “The iRRAM: exact arithmetic in C++,” in Computability
and Complexity in Analysis, ser. Lecture Notes in Computer Science,
vol. 2064, 2001, pp. 222–252.

[13] L. Fousse, G. Hanrot, V. Lefèvre, P. Pélissier, and P. Zimmermann,
“MPFR: A multiple-precision binary floating-point library with correct
rounding,” ACM Transactions on Mathematical Software, vol. 33, no. 2,
Jun. 2007.

[14] N. Toronto and J. McCarthy, “Practically accurate floating-point math,”
Computing in Science Engineering, vol. 16, no. 4, pp. 80–95, 2014.

[15] E. Schkufza, R. Sharma, and A. Aiken, “Stochastic optimization of
floating-point programs with tunable precision,” in Proceedings of the
35th ACM SIGPLAN Conference on Programming Language Design and
Implementation, 2014, pp. 53–64.

[16] C.-H. Guo, N. J. Higham, and F. Tisseur, “An improved arc algorithm
for detecting definite Hermitian pairs,” SIAM Journal on Matrix Analysis
and Applications, vol. 31, no. 3, pp. 1131–1151, Sep. 2009.

[17] C. Cadar, V. Ganesh, P. M. Pawlowski, D. L. Dill, and D. R. Engler,
“EXE: automatically generating inputs of death,” in Proceedings of the
13th ACM Conference on Computer and Communications Security,
2006, pp. 322–335.

[18] P. Godefroid, N. Klarlund, and K. Sen, “DART: Directed automated
random testing,” in Proceedings of the 2005 ACM SIGPLAN Conference
on Programming Language Design and Implementation, 2005, pp.
213–223.

[19] Y. Li, Z. Su, L. Wang, and X. Li, “Steering symbolic execution to less
traveled paths,” in Proceedings of the 2013 ACM SIGPLAN international
conference on Object oriented programming systems languages &
applications, 2013, pp. 19–32.

[20] D. Quinlan, “ROSE: Compiler support for object-oriented frameworks,”
Parallel Processing Letters, vol. 10, pp. 215–226, 2000.

[21] R. W. Hamming, Numerical Methods for Scientists and Engineers, 2nd ed.
New York: Dover, 1987.

[22] W. Miller, “Toward mechanical verification of properties of roundoff
error propagation,” in Proceedings of the ACM Symposium on Theory of
Computing, 1973, pp. 50–58.

[23] W. Miller, “Software for roundoff analysis,” ACM Transactions on
Mathematical Software, vol. 1, no. 2, pp. 108–128, 1975.

[24] M. Martel, “Semantics-Based transformation of arithmetic expressions,”
in Static Analysis Symposium, 2007, pp. 298–314.

[25] M. Martel, “Program transformation for numerical precision,” in Proceed-
ings of ACM SIGPLAN Workshop on Partial Evaluation and Program
Manipulation, 2009, pp. 101–110.

[26] E. Tang, E. Barr, X. Li, and Z. Su, “Perturbing numerical calculations for
statistical analysis of floating-point program (in)stability,” in Proceedings
of the 19th international symposium on Software testing and analysis,
2010, pp. 131–142.

[27] A. Sanchez-Stern, P. Panchekha, S. Lerner, and Z. Tatlock, “Finding
root causes of floating point error,” in Proceedings of the 39th
ACM SIGPLAN Conference on Programming Language Design and
Implementation, 2018, pp. 256–269.

[28] M. O. Lam, J. K. Hollingsworth, B. R. de Supinski, and M. P. Legendre,
“Automatically adapting programs for mixed-precision floating-point
computation,” in Proceedings of the 27th International ACM Conference
on International Conference on Supercomputing, 2013, pp. 369–378.

[29] C. Rubio-González, C. Nguyen, H. D. Nguyen, J. Demmel, W. Kahan,
K. Sen, D. H. Bailey, C. Iancu, and D. Hough, “Precimonious: Tuning
assistant for floating-point precision,” in Proceedings of the International
Conference on High Performance Computing, Networking, Storage and
Analysis, 2013, pp. 27:1–27:12.

[30] C. Rubio-González, C. Nguyen, B. Mehne, K. Sen, J. Demmel,
W. Kahan, C. Iancu, W. Lavrijsen, D. H. Bailey, and D. Hough,
“Floating-point precision tuning using blame analysis,” in Proceedings of
the 38th International Conference on Software Engineering, 2016, pp.
1074–1085.

[31] H. Guo and C. Rubio-González, “Exploiting community structure
for floating-point precision tuning,” in Proceedings of the 27th ACM
SIGSOFT International Symposium on Software Testing and Analysis,
ser. ISSTA 2018. New York, NY, USA: ACM, 2018, pp. 333–343.

[32] D. Monniaux, “The pitfalls of verifying floating-point computations,”
ACM Trans. Program. Lang. Syst., vol. 30, no. 3, pp. 12:1–12:41, May
2008.

[33] E. Darulova and V. Kuncak, “Trustworthy numerical computation in
Scala,” in Proceedings of the 2011 ACM International Conference on
Object Oriented Programming Systems Languages and Applications,
2011, pp. 325–344.

[34] A. Di Franco, H. Guo, and C. Rubio-González, “A comprehensive
study of real-world numerical bug characteristics,” in Proceedings of
the 32Nd IEEE/ACM International Conference on Automated Software
Engineering, 2017, pp. 509–519.

[35] E. Goubault, “Static analyses of the precision of floating-point operations,”
in Proceedings of the 8th International Static Analysis Symposium, 2001,
pp. 234–259.

[36] E. Goubault and S. Putot, “Static analysis of numerical algorithms,” in
Proceedings of the 13th International Static Analysis Symposium, 2006,
pp. 18–34.

[37] E. T. Barr, T. Vo, V. Le, and Z. Su, “Automatic detection of floating-point
exceptions,” in Proceedings of the 40th annual ACM SIGPLAN-SIGACT
symposium on Principles of programming languages, 2013, pp. 549–560.

[38] W.-F. Chiang, G. Gopalakrishnan, Z. Rakamaric, and A. Solovyev,
“Efficient search for inputs causing high floating-point errors,” in
Proceedings of the 19th ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, 2014, pp. 43–52.

[39] D. Zou, R. Wang, Y. Xiong, L. Zhang, Z. Su, and H. Mei, “A
genetic algorithm for detecting significant floating-point inaccuracies,” in
Proceedings of 37th International Conference on Software Engineering,
2015, pp. 20–22.

[40] W.-C. Lee, T. Bao, Y. Zheng, X. Zhang, K. Vora, and R. Gupta, “RAIVE:
Runtime assessment of floating-point instability by vectorization,” in
Proceedings of the 2015 ACM SIGPLAN International Conference on
Object-Oriented Programming, Systems, Languages, and Applications,
2015, pp. 623–638.

[41] E. Tang, X. Zhang, N. T. Müller, Z. Chen, and X. Li, “Software
numerical instability detection and diagnosis by combining stochastic and
infinite-precision testing,” IEEE Transactions on Software Engineering,
vol. 43, no. 10, pp. 975–994, Oct. 2017.

1141

Authorized licensed use limited to: Nanjing University. Downloaded on June 09,2020 at 13:01:32 UTC from IEEE Xplore. Restrictions apply.

For Research Only

