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a b s t r a c t 

The scalability of model-related operations (e.g., model transformations), when they are to be applied 

in industrial model-driven engineering, becomes an important issue. However, there is a lack of an auto- 

mated performance testing framework for those operations, since the existing ones for ordinary programs 

are ill-suited. Such a framework is required to provide the function of creating and organizing test cases, 

and the ability of generating test input of large size automatically, because large scale models are not 

widely available, making it hard to test the performance and coverage of those operations without any 

bias. This paper proposes a performance testing framework, integrated with a random model generation 

algorithm, for model-related operations. The framework, based on a test model, can be used to specify 

and arrange test cases into test suites. And the model generation algorithm can generate a random model 

correctly and efficiently, according to the metamodel and user-defined constraints. Finally, we present two 

case studies, one experiment in randomness, and two experiments in generation efficiency to evaluate the 

framework and algorithm. Results show that the framework is competent to support performance testing 

of model-related operations, and the algorithm is random and efficient enough to generate test data for 

performance testing. 

© 2016 Elsevier Inc. All rights reserved. 

1. Introduction 

Model-Driven Engineering (MDE) employs models to drive the 

development and the maintenance of software systems. The model, 

the core artifact in MDE, serves as the abstraction of the soft- 

ware system. Then, a number of model-related operations , such as 

model refactoring, model synchronization, model composition, and 

model-to-code transformation, are applied to models to automate 

the development process. 

Due to the increasing complexity of the system, software mod- 

els are becoming larger and more complicated than they were ever 

before, consequently, consume much more processing time. How 

to query, analyze, convert, and merge large models efficiently has 

become a key factor. Especially in such an era of Big Data , handling 

big models extracted from volumes of codes or structural docu- 

ments within a reasonable time is an essential ability for those 

model-related operations. 

For example, when runtime model is applied to maintaining a 

running system Song et al. (2011) , a bidirectional model trans- 

formation is used to keep the runtime architecture model, which 

∗ Corresponding author. Tel.: +8613488778670. 

E-mail address: hexiao@ustb.edu.cn (X. He). 

reflects the logical structure of the running system, and the run- 

time system model, which reflects the actual structure, consistent. 

Developers can modify the runtime architecture model, and the 

changes will be propagated by the transformation to the runtime 

system model to affect the actual system. However, if the trans- 

formation could not be done efficiently, the system may have en- 

tered another state before the changes are produced by the trans- 

formation. Consequently, a system failure may come about when 

the changes are being applied, since the changes may not be valid 

anymore in the new system state. 

Hence, the performance of a model-related operation in MDE 

must be systematically evaluated before it is put into practice. 

Evaluating the performance enables us to find out the limitations 

and bottlenecks of those operations for further improvement. How- 

ever, there is a lack of tool support that can manage and facilitate 

performance testing of those operations. Besides, most of those op- 

erations are declarative, and are based on the type system of Meta 

Object Facility (MOF, Object Management Group (2011) ) or Ecore 

(an industrial implementation of MOF) 1 and Object Constraint 

1 Eclipse Modeling Project: https://www.eclipse.org/modeling/emf/ (Sep. 20, 

2015). 

http://dx.doi.org/10.1016/j.jss.2016.04.044 

0164-1212/© 2016 Elsevier Inc. All rights reserved. 
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Fig. 1. Iterative testing process of model-related operations. 

Language (OCL, Object Management Group (2012) ) rather than 

common programming languages. Due to those particularities, cur- 

rent performance testing tools for ordinary application systems are 

not directly applicable to them. 

One of the essential functions that must be provided by a per- 

formance testing tool is to generate large-size test data (i.e., the 

input model) automatically, since manually establishing an input 

model is an error-prone and time-consuming procedure. The ba- 

sic requirements of generating models used in performance test- 

ing are listed as follows: (1) Correct : The generated model should 

conform to the syntactic constraints. (2) Efficient : The input data 

should be generated efficiently in order to test the efficiency of a 

model transformation. (3) Randomized : The model should be gen- 

erated in a stochastic way to capture the average performance of 

an operation. (4) Configurable : The generation process should be 

configurable, e.g., users must be able to control the amount of 

elements. 

This paper proposes a testing framework that meets the ba- 

sic requirements of performance testing for model-related opera- 

tions. It provides the abilities of defining, organizing, and perform- 

ing the test cases. The paper also proposes a randomized model 

generation approach, which has been integrated into the frame- 

work to facilitate the test input generation. In this approach, all 

the elements and relationships are produced randomly within a 

reasonable amount of time. In addition, during this process, all 

metamodel-implied syntactic constraints and some semantic con- 

straints are taken into account to assure the correctness property. It 

also supports some user-defined constraints guiding the generation 

process for better configurability . Two case studies are presented in 

this paper to demonstrate how to employ this framework to eval- 

uate the performance of model-related operations. Besides, the re- 

sults of three experiments are also introduced to show that our 

approach is efficient in generating a large correct model randomly . 

The following paper is structured: Section 2 presents our per- 

formance testing framework; Section 3 defines some basic con- 

cepts and constraints for random model generation; Section 4 pro- 

poses a randomized and efficient model generation algorithm in- 

tegrated into the testing framework, used to produce test data 

automatically; Section 5 presents two case studies and three ex- 

periments to demonstrate the feasibility and the usability of our 

framework, and to evaluate the randomness and the efficiency of 

our model generation algorithm; Section 6 discusses some issues 

about our approach; Section 7 compares our approach with other 

related work; at last, conclusion and future work are presented. 

2. Performance test framework 

2.1. Framework overview 

Testing the model-related operation, which is actually a pro- 

gram, becomes more and more important in model-driven engi- 

neering. There are two basic roles involved in this iterative task: 

developers and test engineers. Fig. 1 shows how they interact with 

others. 

1. The developer submits their model-related operation (i.e., SUT) 

to the test engineer. 

2. The test engineer writes a test plan and creates initial test 

cases. 

3. For each test case, test engineer must construct a valid test in- 

put data. 

4. The test engineer selects some test cases and arranges them 

into a test suite, and performs it. 

5. The test engineer collects the results and reports them to the 

developer. 

6. The developer refines the program and then resubmits it to the 

test engineer. 

7. The test engineer performs the test suite again to evaluate how 

much the operation has been improved, and then he or she 

may append some new test cases to the test suite to test it in- 

crementally and iteratively. 

Hence, our framework, aiming at such a testing process, is re- 

quired to own the following abilities: (1) defining and storing the 

test cases; (2) constructing the test data automatically; (3) arrang- 

ing and performing test cases; (4) monitoring and analyzing the 

execution of a test case; (5) collecting and reporting results. 

The architecture of our test framework is presented in 

Fig. 2 . We have to emphasize that this framework is extensible, 

Fig. 2. Architecture of our test framework. 
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Fig. 3. Interactions among components. 

because it includes some replaceable components. There are six 

components: 

• Test controller serves as a control center, which is in charge of 

organizing the performance testing process. It requires three in- 

terfaces: 1) test case and test suite management interface; 2) 

test execution interface; 3) result report interface. When the 

user wants to manage test cases and suites, the controller will 

invoke the test suite management interface to serve the re- 

quired functions (as shown in Fig. 3 (a)). When a single test case 

or a test suite is to be performed, the controller will invoke 

the test execution interface to launch the SUT and to collect 

the results (as shown in Fig. 3 (b)). Note that to perform a test 

suite the execution interface will be requested once for each 

test case included in the test suite. After collecting the test re- 

sults, the controller will finally invoke the report interface to 

present them. 
• Test suite management , an implementation of test case and 

test suite management interface, provides the function of 

specifying cases and managing test suites based on the Test 

Model for model-related operations, which will be discussed in 

Section 2.2 . This component supports regression testing. It in- 

vokes a generator interface to produce test data when creating 

a test case ( Fig. 3 (a)). 
• Test data generator , which implements the generator interface, 

can be used to generate a large model randomly. This compo- 

nent is replaceable so that test engineers can employ other gen- 

eration strategies to produce test data. However, this paper pro- 

poses a randomized model generation algorithm for this spe- 

cific task, which is discussed in Sections 3 and 4 . 

• Execution adapter realizes the test execution interface. It can 

be reckoned as a bridge to the concrete execution engine on 

which the SUT can be executed. Model-related operations may 

not be implemented using general-propose programming lan- 

guages, such as Java and C++. Their execution might rely on var- 

ious kinds of execution engines. For example, a model compar- 

ison using EMF (Eclipse Modeling Framework) Compare 2 can 

be performed directly on JVM, while an ATL 3 transformation 

could only be executed on ATL Virtual Machine. This compo- 

nent is responsible for communicating with execution engines 

so as to invoke the SUT. It also requires a monitoring and anal- 

ysis interface to trace the runtime information and to analyze 

the performance of SUT. We have implemented a default execu- 

tion adapter, which can execute an SUT according to the launch 

configuration 

4 on Eclipse platform. It prepares the input data 

based on a test case and then invokes the launch configuration 

to perform the SUT. 
• Monitoring and analysis adapter , which implements a perfor- 

mance analysis interface, is invoked by Execution Adapter to 

monitor and analyze the performance of the SUT. A default 

adapter has been realized. It treats the SUT as a black box 

and calculates the span between the starting and the finishing 

time. It is also possible to realize a more fine-grained moni- 

tor for a particular kind of operations, for example, a moni- 

tor that can record the execution time of each rule in an ATL 

2 EMF Compare Project: https://www.eclipse.org/emf/compare/ . 
3 ATL Transformation Language: https://www.eclipse.org/atl/ . 
4 A program could be executed on Eclipse platform after a launch configuration 

has been established for it. 

For Research Only

https://www.eclipse.org/emf/compare/
https://www.eclipse.org/atl/


250 X. He et al. / The Journal of Systems and Software 121 (2016) 247–264 

Fig. 4. Definition of Test Model. 

transformation would be conducive to find out the performance 

bottleneck. 
• Report adapter is responsible for displaying the test result. The 

default implementation prints the results onto the console. It 

can be substituted for another one that can present results di- 

agrammatically. 

2.2. Test model 

The foundation of this framework is the Test Model , a domain- 

specific model of testing model-related operations. It is used to 

define and manage test cases. The test controller can interpret 

a test model and perform tests automatically. Fig. 4 shows its 

definition. 

TestProject is the root class of this domain model. When devel- 

opers submit a new SUT, test engineers would create an instance 

of TestProject . It has three attributes: name of this project, input- 

Base , and outputBase. inputBase and outputBase , whose types are 

URI (i.e., universal resource identifier), point to the folders contain- 

ing all the input model files and the expected output model files 

respectively. 

To test the SUT, we must execute it. As mentioned above, those 

model-related operations may only be executed on their own en- 

gines, and our framework must be able to invoke those engines. 

ExecutionSpecification in Fig. 4 is used to specify the essential infor- 

mation needed by ExecutionAdapter in Fig. 2 to configure an engine. 

Each subclass of ExecutionSpecification corresponds to a particular 

ExecutionAdapter which is responsible for interpreting the informa- 

tion contained in the configuration. LCBasedSpecification , a subclass 

of ExecutionSpecification depicted in Fig. 4 , is used by the default 

execution adapter mentioned in Section 2.1 , where the first two 

characters LC stand for launch configuration. Its attribute configu- 

rationName is the name of a launch configuration stored in Eclipse 

platform. The default execution adapter will invoke the configura- 

tion whose name is equal to this value. 

If the program associated with the launch configuration has in- 

puts from files, it is needed to specify where the inputs are read 

by creating instances of ExecutionParameter and linking them to the 

LCBasedSpecification element with inputs relationships. The name of 

ExecutionParameter is a unique identifier of the input file, and uri is 

the file path where the program will import data. It is also possi- 

ble to use ExecutionParameter to define output files of the program 

by connecting it to ExecutionParameter element with outputs rela- 

tionship, when the output is used for result analysis. 

A TestProject contains a number of TestCases . Without losing 

generality, a TestCase consists of an id , a set of actual inputs, and a 

set of expected outputs. 

Actual input of a TestCase is specified by TestData . Its uri speci- 

fies a file that serves as input of the SUT. It also refers to an Ex- 

ecutionParameter that serves as the formal parameter. When the 

TestCase is performed, the file indicated by uri of TestData will be 

copied to the location specified by the uri of the corresponding for- 

mal parameter so that the SUT can read it. 

Expected output of a TestCase is denoted by ExpectedOutput . It 

contains a set of URIs each of which denotes a file containing the 

expected output. If the SUT can produce one of those results, we 

think it is correct. Note that although comparing the actual output 

with the expected output is not necessary for performance testing, 

embedding this concept in the test model enables further func- 

tional testing using our framework. 

Each TestProject can include a number of TestSuites . Each Test- 

Suite consists of a set of TestExecutions , which represents one exe- 

cution of a TestCase . It has a Boolean attribute named passed in- 

dicating if the SUT passes through the TestCase . In the mode of 

regression test, our framework will copy all the TestCases referred 

by the previously created TestSuite to the newly established one so 

that those TestCases could be tested again. 

When constructing a TestCase , we must be able to generate the 

input data automatically. To do so, we can employ a test data gen- 

erator. GeneratorConfiguration specifies the configuration informa- 

tion of a certain test data generator. Each subclass of Generator- 

Configuration corresponds to an implementation of a data genera- 

tor, which can generate a test input according to the configuration. 

RandomDataGenerator is a subclass of GeneratorConfiguration that 

works with the default test data generator in our framework. It is 

related to a generation ConfigurationModel which will be defined in 

Section 4 . 

3. Definitions and generation constraints 

As mentioned in the previous section, one must be able to con- 

struct the test input automatically when creating a test case in 

our framework. To propose the model generation approach, this 

section defines some basic concepts and constraints used in this 

process. 

For Research Only
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3.1. Definitions 

Definition 1 (Metamodel) . Without losing generality, a metamodel 

M can be formally defined as follows: 

M = (T , H, A, R, C, assoc, mult, ≺) (1) 

In the definition, 

• T is the set of classes . Each class represents a type of elements. 
• H is the set of the abstract classes, and H ⊂ T . 
• A is the set of attributes. Each attribute a in A can be defined 

as a signature a : t c → d , where a is the identifier, t c ∈ T , and d 

is a primitive data type. The symbol I d denotes all the possible 

values whose types conform to d . 
• R is the set of references among types. Each reference represents 

a type of relationships among elements. 
• C is the set of containment references, and C ⊆R . 
• assoc is a function R → T 2 . It maps each reference r ∈ R to a pair 

〈 src, tar 〉 of classes, which indicates the source and the target of 

r . For simplicity, if assoc(r) = 〈 s, t〉 , r.source ≡ s and r.target ≡ t . 
• mult is a function R → N 

2 × N 

2 , which specifies the multiplicity 

of each reference, where N signifies all non-negative integers 

(including + ∞ ). For a reference r ∈ R, ls and us determine the 

lower and the upper bound of the source end of r respectively, 

and lt and ut determine the lower and the upper bound of the 

target end of r respectively, where (〈 ls, us 〉 , 〈 lt, ut〉 ) = mult(r) . 
• ≺, denoting the generalization hierarchy, is a partial order on 

T . If c 1 ≺c 2 , c 1 is a child (descendant) class of c 2 . If c 1 , c 2 , c 1 = 

c 2 ∨ c 1 ≺ c 2 . 

For any class c , 


 c ≡ { p| c � p} , � c ≡ { p| p � c} 
Definition 2 (Model) . A model M conforming to a metamodel M 

can be formally defined as follows: 

M = (E, L, type E , type L ) (2) 

where E is the element set, L is the relationship set, type E is a func- 

tion E → T mapping an element to its type, and type L is a function 

L → R mapping a relationship to its type. 

Supposing M = (E, L, type E , type L ) , we have the following defi- 

nitions: 

• For an element e and a class t , e ∈ t M ⇔ e ∈ E ∧ type E (e ) = t . 
• For an element e and a set of class X, e ∈ X M ⇔ e ∈ E ∧ type E ( e ) ∈ 

X . 
• For an element e ∈ t c M and an attribute a : t c → d, a ( e ) is the 

value of the attribute a of e . 
• For two elements a and b , and a reference r , we say 〈 a, b 〉 

∈ r M iff 〈 a, b〉 ∈ L ∧ type L (〈 a, b〉 ) = r. We also say 〈 a, b 〉 is a r - 

relationship. From the definition of inheritance, if 〈 a, b 〉 ∈ r M , 

t ype E (a ) ∈ � r.source M ∧ t ype E (b) ∈ � r.target M
• For a reference r , 

ran r (x ) ≡ {〈 x, y 〉 ∈ r M} , dom r (x ) ≡ {〈 y, x 〉 ∈ r M} 
• For a set of references Y , 

ran Y (x ) ≡ {〈 x, y 〉|〈 x, y 〉 ∈ r M ∧ r ∈ Y } , 
dom Y (x ) ≡ {〈 y, x 〉|〈 y, x 〉 ∈ r M ∧ r ∈ Y } 
If ∀ r ∈ Y ( type L ( e ) �∈ �r.source ), ran Y ( e ) is undefined; and if ∀ r ∈ 

Y ( type L ( e ) �∈ �r.target ), dom Y ( e ) is undefined. 
• For a set G of references, if 〈 x, y 〉 ∈ G L , we say x � G y ; if x � G y 

and y � G z, then x � G z. 

3.2. Generation constraints 

In this paper, model generation is regarded as a process of pro- 

ducing a model M = (E, L, type E , type L ) according to a metamodel 

M = (T , H, A, R, C, assoc, mult, ≺) and a set of options , i.e., some 

constraints . Those constraints are used to guide the generation 

process. 

Syntactic constraints. A generated model is said to be correct if it 

conforms to the syntactic and the semantic constraints imposed by 

the metamodel. A metamodel M imposes three kinds of syntactic 

constraints which can easily be extracted from the definitions pre- 

sented in Section 3.1 : 

• Element syntactic constraint : the element type must be valid, 

i.e., 

∀ e (e ∈ E → type E (e ) ∈ T − H) 

• Attribute syntactic constraint : the type of the attribute value 

must be valid, i.e., 

∀ a, e (a : t → d ∈ A ∧ e ∈ � t → a (e ) ∈ I d ) 

• Relationship syntactic constraint : the relationship type and the 

multiplicity must be valid, i.e., 

1. ∀〈 a, b 〉 ( 〈 a, b 〉 ∈ L → type L ( 〈 a, b 〉 ) ∈ R ); 

2. for each r ∈ R , when mult(r) = (〈 ls, us 〉 , 〈 lt, ut〉 ) 
∀ a (a ∈ � r.source 

M → lt ≤ | ran r (a ) | ≤ ut) , 

∀ b(b ∈ � r.target 
M → ls ≤ | dom r (b) | ≤ us ) 

Semantic constraints. A correct model must also conform to the se- 

mantic constraints implied by the metamodel, though they may 

not be defined explicitly. We identify four most common seman- 

tic constraints on any set G of references: 

• Reflexivity: G is non-reflexive implies ∀〈 e s , e t 〉 ( 〈 e s , e t 〉 ∈ G M → e s 
� = e t ). 

• Ordering: G is ordered implies for any two elements e 1 , e 2 in M 

the following condition always hold e 1 � G e 2 → ¬ e 2 � G e 1 . 
• Necessity : if G is target-necessary , when ran G ( a ) is defined, ∀ a ( a 

∈ E → | ran G ( a )| > 0). if G is source-necessary , when dom G ( b ) is 

defined, ∀ b ( b ∈ E → | dom G ( b )| > 0) 
• Uniqueness : if G is target-unique , when ran G ( a ) is defined, ∀ a ( a 

∈ E → | ran G ( a )| ≤ 1). if G is source-unique , when dom G ( b ) is 

defined, ∀ ( b ∈ E → | dom G ( b )| ≤ 1). 

The four constraints above can also be applied to a single refer- 

ence r by regarding r as a singleton list { r }. 

For example, the set C of all containment references is non- 

reflexive, ordered, source-necessary (except for the root element), 

and source-unique ; inheritance is non-reflexive and ordered . By de- 

fault, a reference is reflexive, not ordering, not necessary , and not 

unique . 

Range constraints. When the model is going to serve as the in- 

put of performance testing, we must control its size, including the 

amounts of elements and relationships, and the value domains of 

attributes. We term these kinds of constraints range constraints . 

Our approach supports three range constraints: 

• Element range constraint : for any class c, range c denotes an el- 

ement range constraint on c , which prescribes that |{ e ∈ c M }| 

must be a value contained in range c ; 
• Relationship Range Constraint : for any set G of references, range G 

denotes a relationship range constraint on G , which prescribes 

that |{ 〈 a, b 〉 | 〈 a, b 〉 ∈ G M }| must be a value contained in range G ; 
• Value Range Constraint : for any attribute a : t → d, range a de- 

notes a value range constraint, which limits the value domain 

of a , i.e., ∀ e ∈ � t M(e (a ) ∈ range a ) 
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Fig. 5. Approach overview. 

It is worthwhile to notice that range constraints might not al- 

ways be satisfied if they conflict with others. For instance, a re- 

lationship range constraint may be defined to restrict the amount 

of relationships. If the required amount is smaller or larger than 

the model could have, our approach would determine to break this 

constraint at runtime to create a correct output. 

4. Approach to test data generation 

The overview of our approach can be depicted as Fig. 5 with 

four major phases below: 

The first phase is to configure the generation. In this phase, 

users establish a configuration model, containing reference se- 

mantic constraints and user-defined constraints. User-defined con- 

straints include both range constraints and extra constraints. The 

configuration model and the metamodel are used to guide model 

production. 

The second phase is the element and attribute generation 

phase. Based on the syntactic and the range constraints, our ap- 

proach creates model elements and sets their attributes. 

In the third phase, all relationships will be generated. This 

phase contains three sub-phases: 1) instantiating containment ref- 

erences (i.e., ordered, non-reflexive, source-necessary, and source- 

unique references); 2) instantiating constrained references accord- 

ing to semantic constraints and range constraints derived from the 

configuration model; 3) instantiating normal references. Although 

there are three sub-phases, all of the three employ a unified algo- 

rithm with different parameters to handle relationship generation. 

The last phase is the validation phase. All user-defined extra 

constraints will be checked in this phase because our approach 

could not solve those constraints during model generation. If the 

produced model satisfies those constraints, it will be returned as 

the final result. Otherwise, our approach will return an empty 

model and report errors. 

4.1. Configuration 

This subsection discusses how to configure the model genera- 

tion process with a configuration model. Let us define the configu- 

ration model using Meta Object Facility (MOF, Object Management 

Group (2011) ) first. Its definition is shown in Fig. 6 . The class Con- 

figurationModel represents a configuration of our approach. It con- 

tains a reference to Class specifying the possible classes whose ele- 

ments can be roots. And the property uniqueRoot specifies if there 

should be only one root element in the generated model. A Config- 

urationModel can own four kinds of constraints, i.e., ElementRange- 

Constraints, RelationshipConstraints, GlobalRangeConstraints , and Ex- 

traConstraints . 

ElementRangeConstraint restricts the amount of elements own- 

ing the same type. The element type is specified by the rela- 

tionship class from ElementRangeConstraint to Class (defined in 

MOF). Each ElementRangeConstraint may also contain some At- 

tributeRangeConstraints each of which denotes a value range con- 

straint. The attribute to be constrained is specified by the relation- 

ship attribute . The class RelationshipConstriant , which combines the 

semantic constraint and relationship range constraints, is used to 

guide generating relationships. Note that containment references 

cannot be imposed any constraints explicitly because they are con- 

strained in a default manner. 

A GlobalRangeConstraint is used to specify default range con- 

straints, including the total size , the default element range , the de- 

fault relationship range , and the default value range (for different 

data types, e.g., integer and string). Total size specifies the total 

number of elements in the generated model. Default element range 

specifies the number of elements for any kind. If there is no ex- 

istence of an ElementRangeConstraint for a certain class, the de- 

fault range will be used. Default relationship range and default value 

range are similar to that case. 

ExtraConstraints represent the constraints not discussed in this 

paper. They must be written as OCL invariants. Our approach could 

not solve those constraints during model generation, which will be 

used to validate the generated model. 

ElementRangeConstraint, AttributeRangeConstraint, ReferenceCon- 

straint , and GlobalRangeConstraint are subclasses of Bound . For- 

mally, a Bound can be defined as a set {( v i , p i )}, where 
∑ 

i p i = 

1 ∧ p i ≥ 0 . Each pair ( v, p ) in the Bound can be interpreted as the 

probability of selecting the value v is p , where p is termed selection 

probability . To select a value from a Bound , generate a random non- 

Fig. 6. Configuration model. 
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negative number r first, and then return the value v i that satisfies 

�j < i p j ≤ r < �j ≤ i p j . 

In the configuration model, a Bound is specified in the textual 

form. Its grammar can be defined as follows: 

bound ::= bList 
item ::= bItem | pbItem 

pbItem ::= bItem : probability 
bItem ::= bList | bRange | literal 
bList ::= { it em ( , it em ) ∗ } 

bRange ::= [ l iteral .. l iteral ] 
literal ::= any constant f or a data type 

probability ::= a real number f rom 0 to 1 

where bList represents a list of possible values and bRange repre- 

sents a value range defined by a minimum and a maximum value. 

All the values in the same bRange share the same selection possi- 

bility. bItem represents an item (a literal, a list, or a range) whose 

possibility is not defined explicitly (its possibility is deduced from 

other items). 

The Bound specified in this form can be converted into the set 

of pairs based on which the value selection progress has been 

explained above. For example, {3,5:0.2,[7..9]:0.3} can be 

translated into 

{(3,0.5), (5,0.2), (7,0.1), (8,0.1), (9,0.1)} 

Please see Algorithm 11 in Appendix for more information. 

4.2. Element and attribute generation 

The second phase is to generate model elements and attributes. 

In short, for each non-abstract class t in the metamodel M , cre- 

ate s t elements. Then, for each attribute a of t and an element e , 

randomly assign a value to a ( e ), where s t denotes the number of 

t -elements in the produced model. The basic element generation 

algorithm is described in Algorithm 1 . 

Algorithm 1: GenerateElements(T) 

Input : T , the set of classes 

Output : E, the set of elements 

1 foreach t ∈ T do 

2 s t ← the number of elements to be generated; 

3 for i ← 0 ; i < s i ; i ← i + 1 do 

4 e ← a new instance of t; 

5 foreach a : t → t d do 

6 range a ← the value range constraint for a ; 

7 v al ← a value randomly selected from range a ; 

8 a (e ) ← v al; 

9 E ← E ∪ { e } ; 
10 return E; 

The algorithm is not difficult. However, the difficulty is to de- 

termine s t for each class t . If s t is not assigned properly, the model 

may not be correctly generated. It is because that the metamodel 

and the configuration model impose some constraints as follows: 

First, let 

S t ≡
∑ 

o∈� t 
s o 

Second, for any class t whose instances could not be root ele- 

ments, S t is determined by the number of all possible containers, 

i.e., 
∑ 

r∈ L C (t) 

(lt r × S r.source ) ≤ S t ≤
∑ 

r∈ U C (t) 

(ut r × S r.source ) 

where L C (t) = { r| r ∈ C ∧ r.target ∈ � t } , U C (t) = { r| r ∈ C ∧ r.target ∈ 


 t ∪ � t } , and for each r ∈ L C ( t ) ∪ U C ( t ), (〈 ls r , us r 〉 , 〈 lt r , ut r 〉 ) = 

mult(r) . 

Third, for two classes s, t, S s and S t are also constrained by 

the multiplicity of the non-containment reference r , where 〈 s, t〉 = 

assoc(r) and (〈 ls, us 〉 , 〈 lt, ut〉 ) = mult(r) , i.e.: 

ut × S s ≥ ls × S t ∧ us × S t ≥ lt × S s 

Fourth, for each class t, s t must be a value in range t , where 

range t denotes the bound specified by the corresponding Elemen- 

tRangeConstraint or the default element range if the ElementRange- 

Constraint is missing. Note that this requirement is flexible because 

our approach may break it to ensure the correctness. 

At last, if total size is defined as a GlobalRangeConstraint , the 

sum of all s t must meet this constraint. 

To generate a valid model randomly, we must solve those range 

constraints (i.e., determining the value of s t for each class t ). We 

can employ the constraint solver to find a random solution for a 

set of constraints. According to the solution, we can determine s t 
for each class t . 

4.3. Relationship generation 

The third phase is to generate the relationships of the model 

M , which is described in Algorithm 2 . It has three sub-phases, i.e., 

generating containment relationships (line 2), constrained relation- 

ships (line 5), and normal relationships (line 7), based on the se- 

mantics and the constraints defined in the configuration model. 

Algorithm 2: EntryOfGenerateRelationships( R, C ) 

Input : R , the set of references; C, the set of containment 

references 

1 L ← C; 

2 GenerateContainmentRelationships( C); 

3 foreach ReferenceConstraint cons in the configuration model do 

4 L ← L ∪ cons.r e fer ences ; 

5 GenerateConstrainedRelationships( cons ); 

6 foreach r ∈ R − L do 

7 GenerateOtherRelationships( r); 

First, let us consider the containment references. All contain- 

ment references are non-reflexive, ordered, source-unique, and 

source-necessary (except for the roots), so for all containment ref- 

erences we can handle them as Algorithm 3 . parents are all possi- 

Algorithm 3: GenerateContainmentRelationships( S ) 

Input : S, the containment reference set 

1 E ← the set of elements; 

2 RT ← the root classes specified in the configuration model; 

3 parents ← E; 

4 children ← E; 

5 possibleRoots ← { e | e ∈ E ∧ ∃ t(t ∈ RT ∧ type E (e ) � t) } ; 
6 if the model could have only one root element then 

7 numberO f Root ← 1 ; 

8 else 

9 numberO f Root ← an integer from 1 to | E| − 1 ; 

10 randomly remove numberO f Root elements included in 

possibleRoots from children ; 

11 size ← | E| − numberO f Root; 

12 GenerateRelationships( S, parents , children , true, true, false, 

false, false, true, size ); 
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ble container elements; children are all possible children elements. 

They are initialized by E , the element set of M (line 1 to 4). In 

line 5, we collect the possible root elements. From line 6 to 9, we 

calculate the number of root elements (i.e., numberOfRoots ) based 

on the value of uniqueRoot specified in the configuration model. In 

line 10, we select numberOfRoots elements from possibleRoots and 

remove them from children (a root does not require a parent). The 

actual generation logic is realized by calling GenerateRelationships 

(in line 12), according to the semantic constraints of containment 

references. We will discuss GenerateRelationships later. 

Second, we generate some relationships based on the Relation- 

shipConstraints defined in the configuration model. Since a Rela- 

tionshipConstraint specifies the semantic constraints and the range 

constraint on a set of references, we simply extract the necessary 

information and use it as the actual parameters of GenerateRefer- 

ences . This process can be described in Algorithm 4 . For each Re- 

lationshipConstraint , we collect the possible source and target el- 

ements (line 3 and 4), and randomly select the number of rela- 

tionships to be generated (line 5). Then, similar to Algorithm 3 , 

we call GenerateReferences and employ the information provided by 

the constraint as the parameter (line 6). 

Algorithm 4: GenerateConstrainedRelationships( cons ) 

Input : cons , a RelationshipConstraint 

1 E ← the set of elements; 

2 re f s ← the references related to cons ; 

3 src ← { e | e ∈ E ∧ ∃ r(r ∈ re f s ∧ type E (e ) � r.source ) } ; 
4 tar ← { e | e ∈ E ∧ ∃ r(r ∈ re f s ∧ type E (e ) � r.target) } ; 
5 size ← a value selected from the range constraint of cons ; 

6 GenerateRelationships( re f s , src, tar, cons.sourceUnique , 

cons.sourceNecessary , cons.targetUnique , cons.tar getNecessar y , 

cons.re f lexi v e , cons.unique , size ); 

In the last sub-phase, we handle the remainder references with 

default relationship constraints (i.e., reflexive and unordered). This 

procedure is described in Algorithm 5 . 

Algorithm 5: GenerateOtherRelationships( r ) 

Input : r, a reference 

Output : the produced relationships 

1 E ← the set of elements; 

2 src ← { e | e ∈ E ∧ type E (e ) � r.source } ; 
3 tar ← { e | e ∈ E ∧ type E (e ) � r.target} ; 
4 size ← a value selected from the range constraint for r; 

5 GenerateRelationships( { r} , src, tar, false, false, false, false, 

true, false, size ); 

As mentioned above, the core generation logic is realized 

by the function GenerateRelationships , which has been called in 

Algorithm 3, 4 , and 5 . The basic idea of GenerateRelationships is 

as follows: 1) randomly select a reference r ; 2) randomly pick a 

source element e s and a target element e t from the element set N 

constructed by Algorithm 1 ; 3) establish a r -relationship 〈 e s , e t 〉 in 

M . However, during this process, the following two problems must 

be tackled: 1) how to select e s and e t properly in order to satisfy 

all the constraints on relationships? 2) how to do if there is no 

valid e s or e t ? 

Before going on, we have to define two auxiliary functions Is- 

Forbidden and SelectCandidate. IsForbidden checks if two elements 

e s and e t can be connected with a r -relationship without violating 

reflexivity and ordering constraints (as described in Algorithm 6 ). 

IsCandidate is used to check if an element e can be the (source or 

Algorithm 6: IsForbidden( S, e s , e t , reflexive, ordered ) 

Input : S, is a reference set; e s and e t , the candidate source 

and target element; re f lexi v e and ord ered , semantic 

constraints on S 

Output : whether the two semantic constraints will be 

violated after 〈 e s , e t 〉 is created 

1 if re f lexi v e = false and e s = e t then return true; 

2 else if ordered = true and e t � S e s then return true; 

3 else return false; 

target) end of a r -relationship without breaking the upper bound, 

as well as the necessity and the uniqueness constraints. 

IsCandidate has two versions, i.e., IsSrcCandidate and IsTarCan- 

didate . Algorithm 7 presents IsSrcCandidate . It is responsible for 

checking if an element e can be the source end or not. If e has 

fulfilled the lower bound and there exists another element e ′ not 

satisfying the lower bound, e could not be a valid source (line 4, 6, 

and 7). It is our algorithm that gives the elements that do not sat- 

isfy the lower bound top priority to be used to create relationships. 

That is intended for ensuring all the elements reach their lower 

bounds. IsTarCandidate , which selects the target end, is similar to 

this algorithm. However, it uses dom �(e ) , ls r , and us r to replace 

ran �(e ) , lt r , and ut r respectively. 

Algorithm 7: IsSrcCandidate( r, e, unique, necessary ) 

Input : r, a reference; e , the element to be checked; necessary 

and unique , semantic constraints focused by this 

algorithm 

Output : whether the element that can be the source end of a 

new r-relationship 

1 S ← the reference set containing r; 

2 (〈 ls r , us r 〉 , 〈 lt r , ut r 〉 ) ← mult(r) ; 

3 U ← { candidate elements, each of which does not violate the 

upper bound and the semantic constraints, and has not been 

marked as an invalid candidate } ; 
4 C L ← { o| o ∈ U ∧ ((unique → | ran S (o) | = 0) ∧ (| ran r (o) | < 

lt r ) ∨ (necessary ∧ | ran G (o) | = 0))) } ; 
/* the candidate elements do not satisfy their lower 

bounds */ 

5 C U ← { o| o ∈ U ∧ ¬ unique ∧ lt r ≤ | ran r (o) | < 

ut r ∧ ¬ (necessary ∧ | ran S (o) | = 0) } ; 
/* the candidate elements satisfy the lower bounds but 

not satisfy their upper bounds */ 

6 if C L � = ∅ then return whether C L contains e ; 

7 else if C U � = ∅ then return whether C U contains e ; 

8 else return false; 

Now, let us consider the details of GenerateRelationships . It can 

be described briefly as Algorithm 8 . It will not stop producing re- 

lationships until the termination condition is satisfied. When pro- 

ducing a new relationship, it firstly tries to find two elements that 

can compose a valid r -relationship (line 5 and 6). During this pro- 

cess, it employs Algorithms 6 and 7 to select proper elements. For 

example, as shown in Fig. 7 (a), it is a simple metamodel contain- 

ing two classes A and B , and a containment reference r from A to B . 

The metamodel prescribes that each A element must be associated 

with at least one B element. As shown in Fig. 7 (b), it is an interme- 

diate result including two A and two B elements. A r -relationship 

〈 e 1 , e 3 〉 has been produced, and now we try to generate the sec- 

ond one. According to our algorithm (line 5), only e 2 and e 4 are the 

valid candidates. Otherwise, if we chose e 1 and e 4 , and established 

a relationship, we would not get a valid result because no other 
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Algorithm 8: GenerateRelationships( S, src, tar, srcUnique, src- 

Necessary, tarUnique, tarNecessary, reflexive, ordered, size ) 

Input : S, a reference set; src, the set of source elements; tar, 

the set of target elements; size , the number of 

relationships to be generated; srcUnique , srcNecessary , 

t arUnique , t arNecessary , re f lexi v e , and ord ered , the 

semantic constraints on S 

1 L ← the set of relationships of model M; 

2 repeat 

3 if S = ∅ then return L; 

4 r ← a reference selected from S randomly, which satisfies 

∀ e (lt r ≤ | ran r (e ) | ∧ ls r ≤ | dom r (e ) | ) → � r ′ ∃ e (| ran r ′ (e ) | < 

lt r ′ ∨ | dom r ′ (e ) | < ls r ′ ) ; 
5 e s , e t ← two elements selected from src and tar, where 

IsSrcCand id ate (r, e s , tarUnique, tar Necessar y ) ∧ 

IsT arCand id ate (r, e t , srcUnique, srcNecessary ) ∧ 

¬ IsF orbod d en (S, e s , e t , re f lexi v e, ord ered ) ; 

6 if such e s and e t can be found then L ← L ∪ {〈 e s , e t 〉} ; 
7 else if only e s exists then 

8 fix the model with 〈 e s , r〉 
9 else if only e t exists then 

10 fix the model with 〈 r, e t 〉 
11 else S ← S − { r} ; 
12 until all the elements in src and tar have satisfied their lower 

bounds and (all the elements have reached to their upper 

bounds or size relationships have been produced) ; 

Fig. 7. An example of element selection. 

B element can be associated with e 2 . Such an element selection 

strategy is intended for fulfilling the lower bound requirement. 

If the condition in line 5 is partially satisfied, i.e., there does 

not exist any e s or e t satisfying the condition (line 7 and 9), we 

tries to fix the model by removing an existing relationship so that 

two new relationships can be appended without breaking bound 

and semantic constraints. The fixing procedure, which is intended 

for adjusting the model to append a new relationship, will be dis- 

cussed in detail in the next subsection. If the fixing job fails, mark 

e s or e t as an invalid candidate of r . 

If the condition in line 5 is totally unsatisfied, remove r from S 

so that it would not be chose again. 

The algorithm will terminate when: 1) G is empty; 2) all ele- 

ments have reached to their upper bounds (i.e. no more relation- 

ship can be produced) or size relationships have been produced. 

And this algorithm does terminate, because during each iteration 

a new relationship will be produced, an element is removed from 

the candidate set, or a reference is removed. This means the ter- 

mination conditions will eventually be satisfied. 

4.4. Model fixing 

As shown in Algorithm 8 , it is possible that only e s or e t (but 

not both at the same time) is found. Note that such a phenomenon 

Fig. 8. The first exceptional base structure and an example. 

Fig. 9. The second exceptional base structure and an example. 

does not always create a problem. However, if it is caused by an 

improperly created relationship and hinders the subsequent gen- 

eration job, it must be fixed (line 8 and 10 in Algorithm 8 ). There 

are two base structures that, though not necessarily, might result 

in this problem. 

Before going on, we define a new concept named co-evolved ref- 

erences . 

Definition 3. Co-evolution A set G of references is source co- 

evolved, if and only if there exists a constant c 1 let ∀ e (| dom G ( e )| 

< c 1 ) hold; G is target co-evolved, if and only if there exists a con- 

stant c 2 let ∀ e (| ran G ( e )| < c 2 ) hold. 

Obviously, source-uniqueness and target-uniqueness are special 

cases of co-evolution . 

The first base structure. Fig. 8 (a) presents the first exceptional base 

structure: there are four classes (A, B, C, and D) and three refer- 

ences (r1, r2, and r3). When r2 and r3 are source co-evolved, and 

r1 and r3 are target co-evolved, a problem may take place when 

creating a r2-relationship for a D element or when creating a r1- 

relationship for a B element. 

For example, as shown in Fig. 8 (b), a problem arose when cre- 

ating a r2-relationship starting from e4, provided that r1, r2, and 

r3 are source-unique, and ∀ e (| ran { r 1, r 3} ( e )| ≤ 1). In this case, e3 is 

required by the attempt to creating a r2-relationship from e4, how- 

ever it has already been connected to e2 by a r3-relationship. Since 

e3 can only be connected to either e2 or e3 (source uniqueness), a 

conflict occurs. 

It is obvious that the r3-relationship is the cause of this prob- 

lem. To handle this conflict, a possible solution for this example, 

as shown in Fig. 8 (c), is as follows: 1) remove this r3-relationship 

to release e3; then 2) create a r2-relationship 〈 e 4, e 3 〉 and a 

r1-relationship 〈 e 1, e 2 〉 . The reason why we must create a r1- 

relationship is to ensure that the fixing procedure always increases 

the number of relationships. Such a fixing procedure is listed in 

Algorithm 9 . 

As mentioned above, for the structure in Fig. 8 (a), a problem 

may also happen when creating a r1-relationship for a B element. 

It is because that all the A elements may have been consumed 

by r3-relationships (r1 and r3 are target co-evolved). The solution 

to this case is similar to the former as shown in Algorithm 12 in 

Appendix . Actually, it can be regarded as a dual of Algorithm 9 by 

reverting the direction of all the references in Fig. 8 (a). 

The second base structure. The second exceptional base structure 

is related to ordering . As shown in Fig. 9 (a), there are three class 

(A, B, and C) and three references (r1, r2, and r3). If r1, r2, and 

r3 are ordered, source unique, and source necessary (actually, they 
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Algorithm 9: FixingModelForCase1( e s , r ) 

Input : e s , a candidate source element; r, a reference to be 

initialized 

1 E ← the set of elements in the model; 

2 L ← the set of relationship in the model; 

3 S ← the set of references being focused on; 

4 cons ← the relationship constraint on S; 

5 foreach 〈 e x , e y 〉 ∈ S the model do 

6 if ¬ IsF orbid d en (S, e s , e y , cons.re f lexi v e, cons.ord ered ) , and 

IsT arCand id ate (r, e y , cons.srcUnique, cons.srcNecessary ) , 

provided that 〈 e x , e y 〉 is removed then 

7 foreach e z ∈ E and r ′ ∈ S do 

8 if ¬ IsF orbid d en (S, e s , e z , cons.re f lexi v e, cons.ord ered ) 

and 

IsSrcCand id ate (r ′ , e x , cons.tarUnique, cons.tar Necessar y ) 

and 

IsT arCand id ate (r ′ , e z , cons.srcUnique, cons.srcNecessary ) , 

provided that 〈 e x , e y 〉 was removed then 

9 if the type constraints are satisfied then 

10 L ← L − 〈 e x , e y 〉 + {〈 e s , e y 〉 , 〈 e x , e z 〉} , where 

〈 e s , e y 〉 is a r-relationship and 〈 e x , e z 〉 a 
r’-relationship; 

11 return ; 

12 mark e s as an invalid source of r; 

are containment references), a problem may occur when creating 

a r1-relationship for an A element or creating a r2-relationship for 

a C element. 

Fig. 9 (b) shows an example. If we want to create a r1- 

relationship from e1 to e2, there would be a conflict because e2 

has been consumed by a r3-relationship from e3. This problem can 

also be interpreted from another point of view: assuming that we 

are going to create a r2-relationship for e3, there is a conflict be- 

cause all B elements have become the succeeding nodes of e3. 

However, the problem is interpreted, the possible solution, as 

shown in Fig. 9 (c), remains the same. In the figure, 〈 e 3 , e 2 〉 
is removed, and 〈 e 1 , e 2 〉 and 〈 e 2 , e 3 〉 are created. The fixing 

procedure is listed in Algorithm 10 . As for the case of creat- 

ing a r2-relationship for e3, the fixing procedure, as shown in 

Algorithm 13 in Appendix , is similar to the logic mentioned above. 

Structure conversion. The structures presented above are two basic 

cases, while a metamodel may contain more complex fragments 

that cannot be enumerated thoroughly. Fortunately, it is possible 

to convert complex cases into the two basic cases by applying a 

set of conversion operators. The problem that occurs in the orig- 

inal fragment will also happen after appropriate conversion, and 

the solutions that are designed for the basic cases are also appli- 

cable to the complex cases. The rest of this section proposes some 

conversion operators and demonstrates how to solve conflicts by 

converting a metamodel into basic cases using those operators. 

Operator 1 (Inheritance removal) . Assume that there are two 

classes c 1 and c 2 , where c 1 ≺c 2 . After applying this operator: 1) 

the inheritance between c 1 and c 2 is removed; 2) ∀ r i = 〈 c, c 2 〉 is 

split into r i = 〈 c, c 2 〉 and r ′ 
i 
= 〈 c, c 1 〉 ; 3) ∀ r o = 〈 c 2 , c〉 is split into 

r o = 〈 c 2 , o〉 and r ′ o = 〈 c 1 , o〉 . This operator is used to eliminate in- 

heritances. 

When a reference r is split into r and r ′ , its semantic constraints 

are preserved. Besides, two constraints, i.e., ∀ e (| ran { r,r ′ } (e ) | ≤ ut r ) 

and ∀ e (| dom { r,r ′ } (e ) | ≤ us r ) , are appended, provided that mult(r) = 

(〈 ls r , us r 〉 , 〈 lt r , ut r 〉 ) . If there has already been a constraint 

Algorithm 10: FixingModelForCase2( e s , r ) 

Input : e s , a candidate source element; r, a reference to be 

initialized 

1 E ← the set of elements in the model; 

2 L ← the set of relationship in the model; 

3 S ← the set of references being focused on; 

4 cons ← the relationship constraint on S; 

5 foreach e u ∈ E do 

6 if there exist e x , e y , e z ∈ E and r ′ ∈ S that e u � S e x , 

〈 e x , e y 〉 ∈ S L , and e y � S e z hold then 

7 if 

IsSrcCand id ate (r ′ , e z , cons.tarUnique, cons.tar.Necessary ) 

and 

IsT arCand id ate (r, e y , cons.srcUnique, cons.srcNecessary ) 

and 

IsT arCand id ate (r ′ , e u , cons.srcUnique, cons.srcNecessary ) 

and ¬ IsF orbid d en (S, e s , e y , cons.re f lexi v e, cons.ord ered ) , 

provided that 〈 e x , e y 〉 was removed then 

8 if the type constraints are satisfied then 

9 return ; 

10 mark e s as an invalid source of r; 

| ran { r , ...} | ≤ c (or | dom { r , ...} | ≤ c ), the constraint would turn into 

| ran { r,r ′ ,... } | ≤ c (or | dom { r,r ′ ,... } | ≤ c). 

Operator 2 (Reference folding) . Assume that there two classes c 1 , 

c 2 , and c 3 , and two references 〈 c 1 , c 2 〉 and 〈 c 2 , c 3 〉 . After applying 

this operator: 1) 〈 c 1 , c 2 〉 is hidden; 2) c 1 and c 2 are merged, in- 

cluding the references related to c 1 and c 2 . This operator is used 

to hide the unnecessary part that will not help to solve the con- 

flict. 

Operator 3 (Class division) . Assume that there is a class c and a 

reference 〈 c, c ′ 〉 (or 〈 c ′ , c 〉 ). After applying this operator: 1) c is 

split into c and c ′ ′ ; 2) 〈 c, c ′ 〉 (or 〈 c ′ , c 〉 ) turns into 〈 c ′ ′ , c ′ 〉 (or 〈 c ′ , 
c ′ ′ 〉 ). 

Note that the operators mentioned above are not intended to 

modify the metamodel but to make the solutions of the basic cases 

fit it. Fig. 10 shows some examples: 

• For Fig. 10 (a), a conflict may occur when a r2-relationship is be- 

ing created. After applying inheritance removal ( Fig. 10 (b))) and 

class division ( Fig. 10 (c)), we can convert Fig. 10 (a) into a struc- 

ture that is isomorphic to the first basic case so that we can 

use the the corresponding solution to handle it. 
• For Fig. 10 (d), we may encounter a problem when creating a 

r1-relationship targeting at a C element. Similar to the former 

example, after applying inheritance removal ( Fig. 10 (e)) and class 

division ( Fig. 10 (f)), we can use the solution of the first basic 

case to deal with it (note that during this process r 2 ′ should be 

ignored). 
• The third example as shown in Fig. 10 (g) shares some common 

ideas with the former two, while it is more complicated. It can 

also be converted into the first basic structure with inheritance 

removal ( Fig. 10 (h)) and class division ( Fig. 10 (i)) to solve the 

problem which we attempt to create a r 1-relationship targeting 

at a D element. 
• The last one, as shown in Fig. 10 (j) and Fig. 10 (k), demonstrates 

how to fold containment references. With the help of reference 

folding , we can fold a cycle of containment references into the 

second basic structure. 
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Fig. 10. Examples of model conversion. 

4.5. Constraint validation 

The final step of our approach is to validate if the model gen- 

erated fulfils all the constraints, including syntactic constraints, se- 

mantic constraints, and user-defined constraints. Violating any con- 

straint, the model will be rejected, and an error message will be 

reported to users. User-defined constraints (especially complex OCL 

constraints) are most likely to be violated. However, since our ap- 

proach mainly contributes to performance testing, such complex 

OCL constraints are not frequently required. Besides, if there is a 

conflict among relationship range constraints, our approach may 

also break them in order to generate a syntactically correct model. 

In most cases, our approach is able to produce a valid model. 

5. Evaluation 

This section presents two case studies, one experiment in ran- 

domness, two experiments in the time costs of our algorithm. The 

two performance experiments in Sections 5.3 and 5.4 were carried 

out on a computer with Intel i7 4770 CPU, 16GB RAM, and Win- 

dows 7. 

5.1. Case studies 

In this subsection, we present two case studies to demonstrate 

the feasibility and effectiveness of our test framework 5 . In the first 

case study, we used our framework to test the performance of an 

5 The prototype implementation, based on Eclipse, can be found at https:// 

bitbucket.org/ustbmde/model-generation.git . 

Table 1 

Metrics for the ATL transformations. 

Metrics JavaSource2Table JavaSource2Table(M) 

# Transformation Rules 4 4 

# Helpers 2 0 

# Attribute Helpers 1 0 

# Operation Helpers 1 0 

# Calls to allInstances() 1 3 

# Operations on Collections 1 0 

per Helper 

# Operations on Collections 1 .25 2 .25 

per Rule 

ATL transformation, while in the second we evaluated the perfor- 

mance of EMF Compare. 

Performance of ATL Transformation. Van Amstel et al. (2011) de- 

scribed a method for testing performance of model transforma- 

tions. This case study adopted their methodology to test an ATL 

transformation with the support of our performance testing frame- 

work and our model generation algorithm. The transformation to 

be tested is an ATL transformation named JavaSource2Table 6 , an 

open-source transformation from ATL Zoo. We also created a mod- 

ified transformation ( JavaSource2Table(M) ) from the original one by 

replacing all the helpers with inline expressions as a contrast in 

this study. Table 1 shows the metric values of the two transforma- 

tions. 

6 http://www.eclipse.org/atl/atlTransformations/#Java2Table (Sep. 20, 2015). 
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Table 2 

Performance testing results of JavaSource2Table and Java- 

Source2Table(M). 

Test Suite JavaSource2Table JavaSource2Table(M) 

Suite 1 (200) 0 .057 0 .175 

Suite 2 (400) 0 .213 1 .204 

Suite 3 (600) 0 .458 3 .962 

Suite 4 (800) 1 .144 9 .244 

Suite 5 (10 0 0) 1 .979 17 .791 

Suite 6 (1200) 3 .526 31 .640 

Suite 7 (1400) 5 .689 53 .248 

Suite 8 (1600) 9 .032 81 .093 

Suite 9 (1800) 13 .768 115 .644 

Suite 10 (20 0 0) 19 .467 158 .799 

To test the performance of the two transformations, a TestPro- 

ject was created in our testing framework, and a launch configu- 

ration for the ATL transformation was established in Eclipse. Then, 

the TestProject was associated with the launch configuration via a 

LCBasedSpecification . After that, we created a RandomDataGenerator 

and a ConfigurationModel for test data generation. 

A TestSuite element and 5 test cases were created in the test- 

ing framework. We appended the 5 test cases into the TestSuite . 

For each test case, our framework invoked the test data genera- 

tor implementing the algorithm proposed in Section 4 according to 

the ConfigurationModel specified before to generate an input model. 

The first 5 models had 200 elements each. Then, we established 

the second TestSuite and another 5 test cases for it. In the mean- 

time, the ConfigurationModel was modified to produce 5 new mod- 

els containing 400 elements each. This procedure was repeated un- 

til we created 10 TestSuites in total. 

We executed all the 10 TestSuites for the original transforma- 

tion. For each TestSuite , we collected all the execution times of 

the five test cases and calculated the average time cost. Then, we 

changed the executable in the launch configuration to the modified 

transformation, and ran all the ten TestSuites again. 

The result is presented in Table 2 . The integers in brackets in 

the first column indicate the numbers of elements in the input 

model. For the original transformation, it spent 0.057 seconds in 

average in producing an output in suite 1, and 19.467 seconds in 

average in suite 10. For the modified transformation, it spent 0.175 

seconds in average to produce an output in suite 1, and 158.799 

seconds in average in suite 10. 

It is evident that the modified transformation ran much slower 

than the original one when the model size increased. The only 

difference between the two transformations is that the modi- 

fied transformation uses inline expressions instead of ATL helpers 

( Table 1 ). Since ATL will cache the results of helpers , the original 

transformation is more efficient. This result is also consistent with 

the results in Van Amstel et al. (2011) . 

We spent half a day finishing this example, including establish- 

ing the configuration models, generating test inputs, executing the 

transformation, and calculating the results. According to our ex- 

perience, it would probably take us a couple of days to construct 

valid test inputs, if we do not use our approach and tool. This study 

also shows that our framework can support the performance test- 

ing method proposed by other researchers. Our framework facili- 

tates performance testing of model transformations. 

Performance of EMF Compare. Now assume that we want to evalu- 

ate the performance of EMF Compare, the state-of-art model com- 

parison tool. EMF Compare is able to compare the differences be- 

tween two models conforming to the same metamodel. 

We used three different metamodels, JavaSource, BibTex, and 

extlibrary to test the comparison efficiency. Both JavaSource and 

Table 3 

Performance testing results of EMF Compare. 

JavaSource BibTex Extlibrary 

Suite 1 (500) 1 .138 2 .381 3 .224 

Suite 2 (10 0 0) 4 .371 8 .694 12 .664 

Suite 3 (1500) 9 .953 22 .350 28 .822 

Suite 4 (20 0 0) 18 .321 37 .201 49 .482 

Suite 5 (2500) 29 .309 57 .520 76 .049 

Table 4 

Result of randomness experiment. 

#1 #2 #3 #4 #5 

JavaSource 0 .85% 0 .81% 0 .73% 0 .86% 0 .74% 

PetriNet 1 .32% 0 .97% 0 .62% 0 .72% 0 .51% 

extlibrary 0 .0014% 0 .0024% 0 .0059% 0 .0037% 0 .0050% 

BibTex were extracted from ATL Zoo, while extlibrary was ex- 

tracted from a standard example of EMF. 

For each metamodel, we constructed a TestProject . For each Test- 

Project , we created five TestSuites , each of which included 20 Test- 

Cases . For each TestCase , we generated 2 models to be compared 

by EMF Compare. 

We collected the time costs of executing those TestCases and 

calculated the average time costs for each TestSuite (in seconds). 

The results are shown in Table 3 . The integers in brackets in 

the leftmost column indicate the numbers of elements the input 

models of the same suite have. From the table, we can conclude 

that the time complexity of EMF Compare is approximately O ( N 

2 ), 

where N is the number of elements. 

This case demonstrated that not only model transformations 

but also other model-related operations, such as model compari- 

son, can be handled by our framework. 

5.2. Experiment in randomness 

Our model generation algorithm is a randomized approach. This 

means all the produced models are randomly constructed. The 

property of randomness is meaningful for estimating the average 

performance of a model-related operation. Hence, we conducted 

an experiment to evaluate the randomness of our approach. And 

we want to know if it is possible to make the similarity of any pair 

of produced models smaller than 5% . 

We selected three metamodels, i.e., JavaSource, BibTex, and 

extlibrary, which were already used previously. For each meta- 

model, five sets of models were generated. For each set, 20 models 

were generated. All the models belonging to the same model set 

were generated according to the identical configuration. However, 

models in different sets have different sizes. Then, for each pair of 

models in the same set, EMF Compare was used to find matches. 

The similarity of two models is defined by 

# match/ # total 

where # match is the number of the matches returned by EMF 

Compare and # total is the total number of elements in the model. 

At last, we computed the average similarity for each set, and result 

is listed in Table 4 . 

From the table, we can learn that it is possible to control the 

similarity of two generated models under 5% in our approach. Ac- 

cording to our experience, to achieve this goal, the size of every 

possible attribute-value range had better be ten times larger than 

the element amount. 
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Table 5 

JavaSource model generation performance of Alloy, EMFtoCSP, and ours. 

#1 #2 #3 #4 #5 #6 #7 #8 #9 #10 

Ours 0 .06 0 .12 0 .14 0 .18 0 .18 0 .9 0 .20 0 .23 0 .24 0 .26 

Alloy 0 .12 0 .77 2 .33 5 .23 9 .68 17 .38 29 .60 45 .04 61 .60 73 .33 

EMFC 72 .79 N/A N/A N/A N/A N/A N/A N/A N/A N/A 

Table 6 

PetriNet model generation performance of Alloy and ours. 

#1 #2 #3 #4 #5 #6 #7 #8 #9 #10 

Ours 0 .06 0 .11 0 .21 0 .32 0 .47 0 .65 0 .88 1 .15 1 .41 1 .76 

Alloy 222 .87 N/A N/A N/A N/A N/A N/A N/A N/A N/A 

5.3. Experiment in performance: Comparative studies 

In this experiment, we try to answer the question how faster 

can our approach generate a model than the solver-based approaches? 

Note that we did not compare our approach with other algorithm- 

based approaches. Their limitations have been discussed suffi- 

ciently in Wu et al. (2012) . And we will discuss them in Section 7 . 

First, a test was conducted to compare the efficiencies of 

EMFto-CSP Pérez et al. (2012) and Alloy Jackson et al. (20 0 0) with 

our approach’s. EMFtoCSP and Alloy, the state of the art model 

constraint satisfiability solvers, are also used to generate test in- 

puts for model transformations Sen et al. (2008) González et al., 

2012 ). All the three approaches are forced to generate models con- 

forming to the JavaSource metamodel ( Fig. 12 in Appendix ). And, 

there is no extra constraint. Note that for Alloy we equivalently 

translated the metamodel to the Alloy specification before the ex- 

periment. 

Then, every approach generated 10 models. And, each model 

was repeatedly generated 5 times to obtain the average time cost. 

Each model has a particular amount of elements: the i th model has 

5 × i ClassDeclarations , 20 × i MethodDefinitions , 125 × i Method- 

Invocations , and one JavaSource (the root element), i.e., 150 × i ele- 

ments except for the root. 

The result is listed in Table 5 . Each cell indicates the average 

time cost (in seconds) for an approach (row) to generate a model 

(column). During this experiment, the time costs of our approach 

ranged from 0.06 s to 0.23s; the time costs of Alloy ranged from 

0.12s to 45.04s. With regard to EMFtoCSP, it failed to produce any 

models (except for the first one) within a reasonable time (30 min- 

utes). 

A further test was carried out to compare the efficiencies of 

Alloy and our approach by using the PetriNet metamodel (since 

our approach is apparently better than EMFtoCSP in performance). 

Similar to the former experiment, the two approaches were asked 

to generate 10 models, whose sizes increased linearly. Each model 

was generated 10 times by each approach to obtain the average 

time costs (in seconds). The result is presented in Table 6 . From 

the table, the time cost of our approach ranged from 0.06 s to 1.76 s; 

Alloy spent 222.87 s producing the first PetriNet model (containing 

600 elements) but failed to produce any larger one. 

According to this experiment, it is evidently that our model 

generation approach is significantly more efficient than the other 

two. And, we believe that our approach also has performance ad- 

vantage compared to other solver-based approaches. 

However, we do not claim that our model generation algorithm 

can take the place of the constraint solver, e.g., Alloy. The qualita- 

tive analytic result is listed in Table 7 . 

Alloy supports first-order-logic-based constraints, while our ap- 

proach can only handle some predefined model constraints defined 

in Section 3.2 . These predefined constraints can be encoded in Al- 

loy codes. It means they are a subset of Alloy constraints. 

Table 7 

Qualitative comparison between Alloy and our approach. 

Alloy Our approach 

Constraint First-order-logic-based Predefined 

Efficiency Very low Fast 

Suitable testing method White-box Black-box 

Suitable testing goal Correctness Performance 

Correctness of produced model Yes Yes 

Randomness of produced model Difficult and inefficient Yes 

Alloy is more expressive and can handle more kinds of con- 

straints. It is suitable to white-box testing which verifies the cor- 

rectness of an MRO. However, it cannot produce a large model effi- 

ciently. It is infeasible to produce a model containing thousands of 

elements, which is used to test the performance of an MRO, with 

Alloy. As illustrated by this experiment, our algorithm produces a 

model significantly faster than Alloy does. Our algorithm is more 

suitable to performance testing of MROs. 

If we do not consider other constraints, both Alloy and our ap- 

proach can produce correct models. Besides, our approach can also 

produce random models (as tested in Section 5.2 ). Whereas, in Al- 

loy, it is difficult and inefficient to obtain random models due to 

its searching strategy. 

5.4. Experiment in performance: Algorithm complexity 

In this experiment, we try to answer the question what law does 

the performance of our algorithm follow? 

We employed our approach to generate a set of models accord- 

ing to 6 metamodels (without extra constraints). For each meta- 

model, our approach was required to produce 5 models, whose 

sizes ranged from 1 MB to 5 MB (approximately). And, every model 

was produced 5 times to obtain an average time cost (in seconds). 

The six metamodels are JavaSource, extlibrary, BibTex, PetriNet, 

TextualPathExp , and MySQL . The first three has been used previous; 

PetriNet, TextualPathExp , and MySQL were also extracted from the 

transformations in ATL Zoo. To control the size of the model, the 

element and relationship range constraints of each model are fixed 

integers. And, all the unnecessary spaces in the output XMI files 

were eliminated 

7 . 

The result of this experiment is shown in Table 8 . Apparently, 

for different metamodels, the time costs vary a lot. The perfor- 

mance curves for the six metamodels are depicted as in Fig. 11 . 

For JavaSource , the performance curve follows y = 8 . 2474 x 2 . 1843 ; 

for PetriNet , the curve follows y = 11 . 116 x 1 . 9961 ; for extlibrary , their 

curve follows y = 2 . 7509 x 2 . 0595 ; for BibTex , the curve follows y = 

13 . 415 x 2 . 1608 ; for TextualPathExp , the curve follows y = 41 . 332 x 2 . 36 ; 

for MySQL , the curve follows y = 6 . 0276 x 2 . 132 . 

7 In our previous work, we did not remove the spaces. Hence, we redid the ex- 

periment for the first three, i.e., the results are different from the old ones. 

For Research Only



260 X. He et al. / The Journal of Systems and Software 121 (2016) 247–264 

Fig. 11. Performance curves. 

Table 8 

Result of performance experiment 2. 

JavaS. PetriN. Extlib. BibTex TextualPE MySQL 

1 MB 8 .6 11 .1 2 .8 13 .6 43 .1 6 .27 

2 MB 35 .1 46 .5 10 .9 63 .4 204 .6 25 .35 

3 MB 93 .3 93 .7 27 .2 122 .3 531 .5 58 .97 

4 MB 155 .4 169 .2 48 .5 281 .6 1021 .9 118 .9 

5 MB 303 .4 293 .1 74 .9 454 .9 2032 .7 193 .41 

JavaS = JavaSource; PetriN = PetriNet; Extlib = Extlibrary; TextualPE = 

TextualPathExp 

From the result, we can learn the following things: 

1. When the model size increased linearly, the times cost followed 

a power law y = k × x p . 

2. The exponent p ranged from 1.9961 to 2.36, and its average 

value amounted to 2.14878 approximately. The exponent did 

not vary significantly. 

3. For different metamodels, the coefficient k changed drastically. 

This implies that it is influenced by the complexity of the meta- 

model. 

6. Discussion 

Algorithm correctness. Our model generation algorithm can pro- 

duce a model conforming to the syntactic constraints, semantic 

constraints, and user-defined range constraints, when there is no 

conflict . It will be complicated to prove this rigorously. We just 

discuss this qualitatively. First, our approach generates elements, 

attributes, and relationships based on the metamodel. Hence, the 

model produced satisfies the syntactic constraints (multiplicity 

constraints are considered below). Second, when producing rela- 

tionships, our approach also takes semantic constraints into ac- 

count. In line 5 of Algorithm 8 , the elements selected to create a 

new relationship must satisfy the four semantic constraints. And it 

is not difficult to prove that the fixing procedures in Algorithms 9, 

12, 10 , and 13 will not violate the any semantic constraints, since 

we always check them before creating any changes. If the range 

constraints do not contain any conflict, Algorithms 1 and 8 will 

not stop until all of them are fulfilled. 

Threats to validity. There are two major threats to the validity of 

our approach. For one thing, some advanced features in the meta- 

model may be an obstacle to applying our model generation algo- 

rithm. As defined in Section 3.1 , only basic features, such as classes, 

attributes, and unidirectional references, in a metamodel are able 

to be handled in this paper. Advanced features, including derived 

attributes, union and subset of references, multidirectional refer- 

ences, and package import, are not supported. When a metamodel 

includes one of such advanced features, it cannot be instantiated 

by our algorithm. Although some complex metamodels, such as 

UML metamodel, may have those features, in most cases, we can 

bypass those features by replacing them with basic features, ac- 

cording to our experiences. For another thing, some model-related 

operations may have special preconditions, which may be too com- 

plex to be written in OCL, on input models. For example, a model 

transformation can only handle structural workflow models, while 

the constraint that the model must be structural cannot be easily 

achieved by a random model generator. This means that our frame- 

work based on random model generation cannot deal with the op- 

erations having such special input preconditions. It will be our fu- 

ture work to investigate this problem in detail. 

7. Related work 

7.1. Model transformation testing 

Baudry et al. (2010) , discussed the barriers to testing model 

transformation, and test data generation is one of the challenges. 

This paper attempts to fill this gap by proposing a testing frame- 

work of model transformations and a random model generation al- 

gorithm. 

Küster et al. (2009) , proposed incremental development of 

model transformation chains based on automated testing. They 

defined four test design techniques and a test framework for 

transformation chain. Their test framework, based on JUnit, 
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supporting model comparison and invariant validation, is compara- 

ble to our framework. Both of the frameworks support automated 

testing of model transformations. However, instead of functional 

testing, our framework mainly focuses on performance testing. It 

also integrates with an automated test data generation algorithm, 

which is not addressed in their work. 

Giner and Pelechano (2009) , proposed a template of test case 

specifications to capture requirements for transformations, and to 

guide the development and documentation of model transforma- 

tions. The test model proposed in this paper shares some com- 

monalities with Giner’s template, in spite of that they employ dif- 

ferent concrete syntax to specify a test case. Our test model can 

also serve as a test case management mechanism, which enables 

us to arrange test cases into test suites. 

Shelburg et al. (2013) , presented an approach to regression test- 

ing for model transformations. They argued that a transformation 

that is changed owning to the evolution of the metamodel requires 

regression testing. To do so, they proposed a multi-objective opti- 

mization algorithm to generate test inputs that maximizes the cov- 

erage of the new metamodel by refactoring the existing one. We 

believe that our approach can cooperate with their approach. Our 

approach can be used to create and manage new test cases, while 

their approach can refactor the test cases to meet the requirements 

of regression testing. 

Guerra proposed a specification-driven test generation approach 

Guerra and Soeken (2013) . In this approach, one must specify 

the transformation properties (invariants, pre- and post-conditions) 

using a declarative specification language named PaMoMo. Then, 

those properties are solved by a proper constraint solver to de- 

rive the test input and the oracle function. Finot et al., discussed 

the oracle problem in transformation testing and developed a tech- 

nology called partial test oracle that employs a set of model frag- 

ments (partial oracle) to determine the correctness of the test out- 

put Finot et al. (2013) . Those effort s, which promoted transforma- 

tion testing, targeted at white-box and functional testing. However, 

the test framework and the test generation algorithm proposed in 

this paper concentrated on performance testing of model transfor- 

mations. 

Van Amstel and Van Den Brand (2011) , proposed three com- 

plementary techniques for the analysis of model transformations, 

including metrics collections, structure and dependency analy- 

sis, and metamodel coverage visualization. Their paper mainly 

focuses on static analysis of model transformations in order to 

improve maintainability. Our work discusses performance testing 

of model-related operations, including but not limited to model 

transformations. 

Van Amstel et al. (2011) also reported some experimental re- 

sults about the performance of QVT and ATL transformations. They 

compared the performance with different languages and engines, 

different im plementation styles, and different inputs. Their paper 

described the methodology of performance testing in MDE. Their 

results can be used as a guide to improving the performance of 

transformations. Our work differs from theirs. This paper concen- 

trates on the performance testing framework and the test input 

generation algorithm, which are ignored in their paper. However, 

we believe that the two papers complement one another. The 

framework and the model generation algorithm proposed in this 

paper can support the testing method described in their paper, as 

we have demonstrated in Section 5.1 . 

7.2. Model generation 

Model generation (or metamodel instance generation) 

broadly with two technical paradigms: solver-based and 

algorithm-based. 

Solver-based paradigm. The basic idea of solver-based approaches 

is as follows: 1) translate the metamodel and constraints into a 

formal specification that can be accepted by a model checker, a 

constraint solver, or a SAT/SMT solver; 2) employ those solvers to 

solve the specification and obtain a valid instance; 3) translate the 

instance found by solvers back to a model. 

Alloy Jackson et al. (20 0 0) is a mature model checker for re- 

lational logic. Since a model can be regarded as a set of ele- 

ments and relationships, research on model generation with Al- 

loy has been very active. Anastasakis et al. (2010) discussed how 

to translate a UML class diagram into Alloy. They proposed some 

rules to map the UML class diagram and the limited OCL con- 

straints onto Alloy Language. Sen et al. (2008) proposed a tool 

called Cartier to generate test models for testing model trans- 

formations. McQuillan and Power (2008) proposed a metamodel 

for the measurement of object-oriented systems. Users can define 

some metrics for an object-oriented system using this metamodel, 

and then the metrics are translated into Alloy to generate a valid 

model. 

ECL i PS e , proposed by Apt and Wallace (2007) , is a model con- 

straint solver. Cabot et al. (2008) proposed an approach to trans- 

lating a UML model with OCL constraints into ECL i PS e . Their ap- 

proach is supported by the tool EMFtoCSP Pérez et al. (2012) . 

And, it has been applied to test model generation González et al., 

2012 ). 

Soeken et al. (2010, 2011) also proposed an approach to verify 

a UML model with OCL constraints using a SAT solver. They em- 

ployed bit-vector theory to encode the metamodel and the con- 

straints. 

It is not difficult to find that solver-based approaches are more 

flexible because they can deal with more kinds of declarative and 

semantic constraints. They are suitable for model verification and 

white-box testing. However, they cannot generate large models ef- 

ficiently, compared to our algorithm-based approaches. Hence, they 

are less suitable to handle performance testing of model-related 

operations. 

Algorithm-based paradigm. Mougenot et al. (2009) proposed a uni- 

form generator of huge models based on Boltzmann method 

Duchon et al. (2004) . They translated a metamodel into a tree 

specification, where classes were nodes and containment refer- 

ences were edges. During the translation, multiplicities of contain- 

ment references are also considered. Then, they employed Boltz- 

mann method to generate a valid tree conforming to the specifica- 

tion. Their approach is quiet efficient. However, they did not dis- 

cuss how to generate non-containment references. Semantic con- 

straints are also neglected in their approach. So their approach 

might produce an invalid model, e.g., a class diagram containing 

an inheritance circle. 

Brottier et al. (2006) also proposed an algorithm of model gen- 

eration for testing model transformations. Their algorithm builds 

a model according to certain coverage criteria by combining a set 

of model fragments. However, they did not discuss how to create 

those fragments. 

Ehrig et al. (2009) introduced a graph-grammar-based model 

generation approach. In their approach, metamodels and con- 

straints are encoded as a set of graph transformation rules. By ex- 

ecuting those rules, a model can be generated. Even though graph- 

grammar based approach is also declarative syntactically, we do 

not adopt it because the most frequently-performed operation dur- 

ing graph transformation is graph pattern matching , which has been 

proven to be an NP-complete problem in theory and is the perfor- 

mance bottleneck to generate large model efficiently. On the con- 

trary, ours is more configurable and takes more constraints (such as 

semantic constraints) into account. 
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Preliminary study. Our preliminary study on the random model 

generation algorithm has been reported in our earlier paper He 

et al. (2014) published in COMPSAC’14. In the earlier paper, the 

basic ideas of the generation algorithm, as well as some experi- 

ment results, were presented. This paper, as an enhancement of 

our earlier, proposed a performance testing framework for model- 

related operations. The framework, based on a test model, provides 

the ability of specifying, managing, and performing test cases. The 

model generation algorithm is also integrated into the framework 

to produce test data. This paper also refined the model genera- 

tion algorithm and discussed the procedure of model fixing in de- 

tail. At last, more case studies and experiments were presented in 

Section 5 compared to the earlier paper. 

8. Conclusion and future work 

Since the scalability of the model-related operation gained lots 

of attentions, testing its performance has become a vital task in 

the model-driven engineering. The paper contributes to this field 

in the following three aspects: 

1. An extensible performance testing framework and a test model, 

which enable us to specify and organize test cases, and to carry 

out automated performance test; 

2. A model generation algorithm, which can help us generate ran- 

dom inputs, used for eliminate the average time cost, efficiently 

and correctly; 

3. Two case studies, one experiment in randomness, and two 

experiments in generation efficiency, which demonstrated 

the feasibility of our testing framework, and evaluated the 

randomness and the efficiency of our model generation 

algorithm. 

In the future, we will try to handle more kinds of constraints 

(especially more semantic constraints) in model generation. Then, 

we will study if our model generation algorithm can produce mod- 

els with restrictions, e.g., the process model that must be struc- 

tural, as mentioned in Section 6 , and will investigate to what ex- 

tent our approach can overcome this limitation. Third, we will try 

to improve the usability of our prototype tool. Fourth, we will carry 

out more case studies and experiments to quantify how much 

our approach is better than others. At last, we plan to investigate 

whether the framework and the generation algorithm are suitable 

for black-box testing of model-related operations or not, owning to 

the white-box testing technology for some operations may not be 

available at present. 
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Appendix 

Algorithm 11 shows how to do the translation. Given a Bound 

bound, Flatten ( bound , 1) returns the logic form. 

Fig. 12. JavaSource metamodel. 

The metamodel of JavaSource is depicted as Fig. 12 . It is directly 

extracted from the ATL transformation JavaSource2Table down- 

loaded from the ATL Zoo. 

Algorithm 11: Flatten(item, dPos) 

Input : item , the item to be flattened; dPos , the default 

possibility 

Output : the logic form of item 

1 switch type of item do 

2 case item is a literal 

3 return { (l iteral , dPos ) } ; 
4 case item is a bList 

5 pbi ← { e | e ∈ item ∧ e is a pbItem } ; 
6 aPos ← (1 − ∑ 

e ∈ pbi e.probability ) / | item | ; 
7 return 

⋃ 

e ∈ pbi Flatten( e , e.probability · dPos ) 

+ 
⋃ 

e ∈ item −pbi Flatten( e , aPos · dPos ); 

8 case item is a bRange 

9 aPos ← 1 / | item | ; 
10 return 

⋃ 

e ∈ item 

Flatten( e , aPos · dPos ); 

Algorithm 12: FixingModelForCase1’( r, e t ) 

Input : e t , a candidate target element; r, a reference to be 

initialized 

1 S ← the set of references being focused on; 

2 E ← the set of elements in the model; 

3 L ← the set of relationship in the model; 

4 cons ← the relationship constraint on S; 

5 foreach 〈 e x , e y 〉 ∈ S the model do 

6 if ¬ IsF orbid d en (S, e x , e t , cons.re f lexi v e, cons.ord ered ) , and 

IsSrcCand id ate (r, e x , cons.tarUnique, cons.tar Necessar y ) , 

provided that 〈 e x , e y 〉 is removed then 

7 foreach e z ∈ E and r ′ ∈ S do 

8 if ¬ IsF orbid d en (S, e z , e y , cons.re f lexi v e, cons.ord ered ) 

and 

IsSrcCand id ate (r ′ , e z , cons.tarUnique, cons.tar Necessar y ) 

and 

IsT arCand id ate (r ′ , e y , cons.srcUnique, cons.srcNecessary ) , 

provided that 〈 e x , e y 〉 was removed then 

9 if type constraints are satisfied then 

10 L ← L − 〈 e x , e y 〉 + {〈 e x , e t 〉 , 〈 e z , e y 〉} , where 

〈 e x , e t 〉 is a r-relationship and 〈 e z , e y 〉 a 
r’-relationship; 

11 return ; 

12 mark e t as an invalid target of r; 
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Algorithm 13: FixingModelForCase2’( r, e r ) 

Input : e t , a candidate target element; r, a reference to be 

initialized 

1 E ← the set of elements in the model; 

2 L ← the set of relationship in the model; 

3 S ← the set of references being focused on; 

4 cons ← the relationship constraint on S; 

5 foreach e u ∈ E do 

6 if there exist e x , e y , e z ∈ E and r ′ ∈ S that e t � S e x , 

〈 e x , e y 〉 ∈ S L , and e y � S e z hold then 

7 if 

IsSrcCand id ate (r, e z , cons.tarUnique, cons.tar.Necessary ) 

and 

IsT arCand id ate (r ′ , e y , cons.srcUnique, cons.srcNecessary ) 

and 

IsSrcCand id ate (r ′ , e u , cons.tarUnique, cons.tar Necessar y ) 

and ¬ IsF orbid d en (S, e u , e y , cons.re f lexi v e, cons.ord ered ) , 

provided that 〈 e x , e y 〉 was removed then 

8 if the type constraints are satisfied then 

9 L ← L − 〈 e x , e y 〉 + {〈 e u , e y 〉 , 〈 e z , e t 〉} , where 

〈 e u , e y 〉 is a r’-relationship and 〈 e z , e t 〉 a 
r-relationship; 

10 return ; 

11 mark e t as an invalid source of r; 
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