

Software Engineering Group
Department of Computer Science
Nanjing University
http://seg.nju.edu.cn

Technical Report No. NJU-SEG-2016-IJ-005

2016-IJ-005

An MDE Performance Testing Framework Based on Random

Model Generation

He Xiao, Zhang Tian, Hu Changjun, Ma Zhiyi, Weizhong Shao

Journal of Systems and Software 2016

Most of the papers available from this document appear in print, and the corresponding copyright is held by the

publisher. While the papers can be used for personal use, redistribution or reprinting for commercial purposes is

prohibited.

http://seg.nju.edu.cn/

The Journal of Systems and Software 121 (2016) 247–264

Contents lists available at ScienceDirect

The Journal of Systems and Software

journal homepage: www.elsevier.com/locate/jss

An MDE performance testing framework based on

random model generation

Xiao He

a , b , ∗, Tian Zhang

c , Chang-Jun Hu

a , Zhiyi Ma

b , Weizhong Shao

b

a School of Computer and Communication Engineering, University of Science and Technology Beijing, Beijing 10 0 083, P.R. China
b Key Laboratory of High Confidence Software Technologies of Ministry of Education (Peking University), Beijing 100871, P.R. China
c State Key Laboratory for Novel Software Technology, Nanjing University, Nanjing 210023, P.R. China

a r t i c l e i n f o

Article history:

Received 20 December 2014

Revised 22 September 2015

Accepted 20 April 2016

Available online 22 April 2016

Keywords:

Model-related operation

Performance testing

Model generation

Model-driven engineering

a b s t r a c t

The scalability of model-related operations (e.g., model transformations), when they are to be applied

in industrial model-driven engineering, becomes an important issue. However, there is a lack of an auto-

mated performance testing framework for those operations, since the existing ones for ordinary programs

are ill-suited. Such a framework is required to provide the function of creating and organizing test cases,

and the ability of generating test input of large size automatically, because large scale models are not

widely available, making it hard to test the performance and coverage of those operations without any

bias. This paper proposes a performance testing framework, integrated with a random model generation

algorithm, for model-related operations. The framework, based on a test model, can be used to specify

and arrange test cases into test suites. And the model generation algorithm can generate a random model

correctly and efficiently, according to the metamodel and user-defined constraints. Finally, we present two

case studies, one experiment in randomness, and two experiments in generation efficiency to evaluate the

framework and algorithm. Results show that the framework is competent to support performance testing

of model-related operations, and the algorithm is random and efficient enough to generate test data for

performance testing.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Model-Driven Engineering (MDE) employs models to drive the

development and the maintenance of software systems. The model,

the core artifact in MDE, serves as the abstraction of the soft-

ware system. Then, a number of model-related operations , such as

model refactoring, model synchronization, model composition, and

model-to-code transformation, are applied to models to automate

the development process.

Due to the increasing complexity of the system, software mod-

els are becoming larger and more complicated than they were ever

before, consequently, consume much more processing time. How

to query, analyze, convert, and merge large models efficiently has

become a key factor. Especially in such an era of Big Data , handling

big models extracted from volumes of codes or structural docu-

ments within a reasonable time is an essential ability for those

model-related operations.

For example, when runtime model is applied to maintaining a

running system Song et al. (2011) , a bidirectional model trans-

formation is used to keep the runtime architecture model, which

∗ Corresponding author. Tel.: +8613488778670.

E-mail address: hexiao@ustb.edu.cn (X. He).

reflects the logical structure of the running system, and the run-

time system model, which reflects the actual structure, consistent.

Developers can modify the runtime architecture model, and the

changes will be propagated by the transformation to the runtime

system model to affect the actual system. However, if the trans-

formation could not be done efficiently, the system may have en-

tered another state before the changes are produced by the trans-

formation. Consequently, a system failure may come about when

the changes are being applied, since the changes may not be valid

anymore in the new system state.

Hence, the performance of a model-related operation in MDE

must be systematically evaluated before it is put into practice.

Evaluating the performance enables us to find out the limitations

and bottlenecks of those operations for further improvement. How-

ever, there is a lack of tool support that can manage and facilitate

performance testing of those operations. Besides, most of those op-

erations are declarative, and are based on the type system of Meta

Object Facility (MOF, Object Management Group (2011)) or Ecore

(an industrial implementation of MOF) 1 and Object Constraint

1 Eclipse Modeling Project: https://www.eclipse.org/modeling/emf/ (Sep. 20,

2015).

http://dx.doi.org/10.1016/j.jss.2016.04.044

0164-1212/© 2016 Elsevier Inc. All rights reserved.

For Research Only

http://dx.doi.org/10.1016/j.jss.2016.04.044
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2016.04.044&domain=pdf
mailto:hexiao@ustb.edu.cn
https://www.eclipse.org/modeling/emf/
http://dx.doi.org/10.1016/j.jss.2016.04.044

248 X. He et al. / The Journal of Systems and Software 121 (2016) 247–264

Fig. 1. Iterative testing process of model-related operations.

Language (OCL, Object Management Group (2012)) rather than

common programming languages. Due to those particularities, cur-

rent performance testing tools for ordinary application systems are

not directly applicable to them.

One of the essential functions that must be provided by a per-

formance testing tool is to generate large-size test data (i.e., the

input model) automatically, since manually establishing an input

model is an error-prone and time-consuming procedure. The ba-

sic requirements of generating models used in performance test-

ing are listed as follows: (1) Correct : The generated model should

conform to the syntactic constraints. (2) Efficient : The input data

should be generated efficiently in order to test the efficiency of a

model transformation. (3) Randomized : The model should be gen-

erated in a stochastic way to capture the average performance of

an operation. (4) Configurable : The generation process should be

configurable, e.g., users must be able to control the amount of

elements.

This paper proposes a testing framework that meets the ba-

sic requirements of performance testing for model-related opera-

tions. It provides the abilities of defining, organizing, and perform-

ing the test cases. The paper also proposes a randomized model

generation approach, which has been integrated into the frame-

work to facilitate the test input generation. In this approach, all

the elements and relationships are produced randomly within a

reasonable amount of time. In addition, during this process, all

metamodel-implied syntactic constraints and some semantic con-

straints are taken into account to assure the correctness property. It

also supports some user-defined constraints guiding the generation

process for better configurability . Two case studies are presented in

this paper to demonstrate how to employ this framework to eval-

uate the performance of model-related operations. Besides, the re-

sults of three experiments are also introduced to show that our

approach is efficient in generating a large correct model randomly .

The following paper is structured: Section 2 presents our per-

formance testing framework; Section 3 defines some basic con-

cepts and constraints for random model generation; Section 4 pro-

poses a randomized and efficient model generation algorithm in-

tegrated into the testing framework, used to produce test data

automatically; Section 5 presents two case studies and three ex-

periments to demonstrate the feasibility and the usability of our

framework, and to evaluate the randomness and the efficiency of

our model generation algorithm; Section 6 discusses some issues

about our approach; Section 7 compares our approach with other

related work; at last, conclusion and future work are presented.

2. Performance test framework

2.1. Framework overview

Testing the model-related operation, which is actually a pro-

gram, becomes more and more important in model-driven engi-

neering. There are two basic roles involved in this iterative task:

developers and test engineers. Fig. 1 shows how they interact with

others.

1. The developer submits their model-related operation (i.e., SUT)

to the test engineer.

2. The test engineer writes a test plan and creates initial test

cases.

3. For each test case, test engineer must construct a valid test in-

put data.

4. The test engineer selects some test cases and arranges them

into a test suite, and performs it.

5. The test engineer collects the results and reports them to the

developer.

6. The developer refines the program and then resubmits it to the

test engineer.

7. The test engineer performs the test suite again to evaluate how

much the operation has been improved, and then he or she

may append some new test cases to the test suite to test it in-

crementally and iteratively.

Hence, our framework, aiming at such a testing process, is re-

quired to own the following abilities: (1) defining and storing the

test cases; (2) constructing the test data automatically; (3) arrang-

ing and performing test cases; (4) monitoring and analyzing the

execution of a test case; (5) collecting and reporting results.

The architecture of our test framework is presented in

Fig. 2 . We have to emphasize that this framework is extensible,

Fig. 2. Architecture of our test framework.

For Research Only

X. He et al. / The Journal of Systems and Software 121 (2016) 247–26 4 24 9

Fig. 3. Interactions among components.

because it includes some replaceable components. There are six

components:

• Test controller serves as a control center, which is in charge of

organizing the performance testing process. It requires three in-

terfaces: 1) test case and test suite management interface; 2)

test execution interface; 3) result report interface. When the

user wants to manage test cases and suites, the controller will

invoke the test suite management interface to serve the re-

quired functions (as shown in Fig. 3 (a)). When a single test case

or a test suite is to be performed, the controller will invoke

the test execution interface to launch the SUT and to collect

the results (as shown in Fig. 3 (b)). Note that to perform a test

suite the execution interface will be requested once for each

test case included in the test suite. After collecting the test re-

sults, the controller will finally invoke the report interface to

present them.
• Test suite management , an implementation of test case and

test suite management interface, provides the function of

specifying cases and managing test suites based on the Test

Model for model-related operations, which will be discussed in

Section 2.2 . This component supports regression testing. It in-

vokes a generator interface to produce test data when creating

a test case (Fig. 3 (a)).
• Test data generator , which implements the generator interface,

can be used to generate a large model randomly. This compo-

nent is replaceable so that test engineers can employ other gen-

eration strategies to produce test data. However, this paper pro-

poses a randomized model generation algorithm for this spe-

cific task, which is discussed in Sections 3 and 4 .

• Execution adapter realizes the test execution interface. It can

be reckoned as a bridge to the concrete execution engine on

which the SUT can be executed. Model-related operations may

not be implemented using general-propose programming lan-

guages, such as Java and C++. Their execution might rely on var-

ious kinds of execution engines. For example, a model compar-

ison using EMF (Eclipse Modeling Framework) Compare 2 can

be performed directly on JVM, while an ATL 3 transformation

could only be executed on ATL Virtual Machine. This compo-

nent is responsible for communicating with execution engines

so as to invoke the SUT. It also requires a monitoring and anal-

ysis interface to trace the runtime information and to analyze

the performance of SUT. We have implemented a default execu-

tion adapter, which can execute an SUT according to the launch

configuration

4 on Eclipse platform. It prepares the input data

based on a test case and then invokes the launch configuration

to perform the SUT.
• Monitoring and analysis adapter , which implements a perfor-

mance analysis interface, is invoked by Execution Adapter to

monitor and analyze the performance of the SUT. A default

adapter has been realized. It treats the SUT as a black box

and calculates the span between the starting and the finishing

time. It is also possible to realize a more fine-grained moni-

tor for a particular kind of operations, for example, a moni-

tor that can record the execution time of each rule in an ATL

2 EMF Compare Project: https://www.eclipse.org/emf/compare/ .
3 ATL Transformation Language: https://www.eclipse.org/atl/ .
4 A program could be executed on Eclipse platform after a launch configuration

has been established for it.

For Research Only

https://www.eclipse.org/emf/compare/
https://www.eclipse.org/atl/

250 X. He et al. / The Journal of Systems and Software 121 (2016) 247–264

Fig. 4. Definition of Test Model.

transformation would be conducive to find out the performance

bottleneck.
• Report adapter is responsible for displaying the test result. The

default implementation prints the results onto the console. It

can be substituted for another one that can present results di-

agrammatically.

2.2. Test model

The foundation of this framework is the Test Model , a domain-

specific model of testing model-related operations. It is used to

define and manage test cases. The test controller can interpret

a test model and perform tests automatically. Fig. 4 shows its

definition.

TestProject is the root class of this domain model. When devel-

opers submit a new SUT, test engineers would create an instance

of TestProject . It has three attributes: name of this project, input-

Base , and outputBase. inputBase and outputBase , whose types are

URI (i.e., universal resource identifier), point to the folders contain-

ing all the input model files and the expected output model files

respectively.

To test the SUT, we must execute it. As mentioned above, those

model-related operations may only be executed on their own en-

gines, and our framework must be able to invoke those engines.

ExecutionSpecification in Fig. 4 is used to specify the essential infor-

mation needed by ExecutionAdapter in Fig. 2 to configure an engine.

Each subclass of ExecutionSpecification corresponds to a particular

ExecutionAdapter which is responsible for interpreting the informa-

tion contained in the configuration. LCBasedSpecification , a subclass

of ExecutionSpecification depicted in Fig. 4 , is used by the default

execution adapter mentioned in Section 2.1 , where the first two

characters LC stand for launch configuration. Its attribute configu-

rationName is the name of a launch configuration stored in Eclipse

platform. The default execution adapter will invoke the configura-

tion whose name is equal to this value.

If the program associated with the launch configuration has in-

puts from files, it is needed to specify where the inputs are read

by creating instances of ExecutionParameter and linking them to the

LCBasedSpecification element with inputs relationships. The name of

ExecutionParameter is a unique identifier of the input file, and uri is

the file path where the program will import data. It is also possi-

ble to use ExecutionParameter to define output files of the program

by connecting it to ExecutionParameter element with outputs rela-

tionship, when the output is used for result analysis.

A TestProject contains a number of TestCases . Without losing

generality, a TestCase consists of an id , a set of actual inputs, and a

set of expected outputs.

Actual input of a TestCase is specified by TestData . Its uri speci-

fies a file that serves as input of the SUT. It also refers to an Ex-

ecutionParameter that serves as the formal parameter. When the

TestCase is performed, the file indicated by uri of TestData will be

copied to the location specified by the uri of the corresponding for-

mal parameter so that the SUT can read it.

Expected output of a TestCase is denoted by ExpectedOutput . It

contains a set of URIs each of which denotes a file containing the

expected output. If the SUT can produce one of those results, we

think it is correct. Note that although comparing the actual output

with the expected output is not necessary for performance testing,

embedding this concept in the test model enables further func-

tional testing using our framework.

Each TestProject can include a number of TestSuites . Each Test-

Suite consists of a set of TestExecutions , which represents one exe-

cution of a TestCase . It has a Boolean attribute named passed in-

dicating if the SUT passes through the TestCase . In the mode of

regression test, our framework will copy all the TestCases referred

by the previously created TestSuite to the newly established one so

that those TestCases could be tested again.

When constructing a TestCase , we must be able to generate the

input data automatically. To do so, we can employ a test data gen-

erator. GeneratorConfiguration specifies the configuration informa-

tion of a certain test data generator. Each subclass of Generator-

Configuration corresponds to an implementation of a data genera-

tor, which can generate a test input according to the configuration.

RandomDataGenerator is a subclass of GeneratorConfiguration that

works with the default test data generator in our framework. It is

related to a generation ConfigurationModel which will be defined in

Section 4 .

3. Definitions and generation constraints

As mentioned in the previous section, one must be able to con-

struct the test input automatically when creating a test case in

our framework. To propose the model generation approach, this

section defines some basic concepts and constraints used in this

process.

For Research Only

X. He et al. / The Journal of Systems and Software 121 (2016) 247–264 251

3.1. Definitions

Definition 1 (Metamodel) . Without losing generality, a metamodel

M can be formally defined as follows:

M = (T , H, A, R, C, assoc, mult, ≺) (1)

In the definition,

• T is the set of classes . Each class represents a type of elements.
• H is the set of the abstract classes, and H ⊂ T .
• A is the set of attributes. Each attribute a in A can be defined

as a signature a : t c → d , where a is the identifier, t c ∈ T , and d

is a primitive data type. The symbol I d denotes all the possible

values whose types conform to d .
• R is the set of references among types. Each reference represents

a type of relationships among elements.
• C is the set of containment references, and C ⊆R .
• assoc is a function R → T 2 . It maps each reference r ∈ R to a pair

〈 src, tar 〉 of classes, which indicates the source and the target of

r . For simplicity, if assoc(r) = 〈 s, t〉 , r.source ≡ s and r.target ≡ t .
• mult is a function R → N

2 × N

2 , which specifies the multiplicity

of each reference, where N signifies all non-negative integers

(including + ∞). For a reference r ∈ R, ls and us determine the

lower and the upper bound of the source end of r respectively,

and lt and ut determine the lower and the upper bound of the

target end of r respectively, where (〈 ls, us 〉 , 〈 lt, ut〉) = mult(r) .
• ≺, denoting the generalization hierarchy, is a partial order on

T . If c 1 ≺c 2 , c 1 is a child (descendant) class of c 2 . If c 1 , c 2 , c 1 =

c 2 ∨ c 1 ≺ c 2 .

For any class c ,

 c ≡ { p| c � p} , � c ≡ { p| p � c}
Definition 2 (Model) . A model M conforming to a metamodel M

can be formally defined as follows:

M = (E, L, type E , type L) (2)

where E is the element set, L is the relationship set, type E is a func-

tion E → T mapping an element to its type, and type L is a function

L → R mapping a relationship to its type.

Supposing M = (E, L, type E , type L) , we have the following defi-

nitions:

• For an element e and a class t , e ∈ t M ⇔ e ∈ E ∧ type E (e) = t .
• For an element e and a set of class X, e ∈ X M ⇔ e ∈ E ∧ type E (e) ∈

X .
• For an element e ∈ t c M and an attribute a : t c → d, a (e) is the

value of the attribute a of e .
• For two elements a and b , and a reference r , we say 〈 a, b 〉

∈ r M iff 〈 a, b〉 ∈ L ∧ type L (〈 a, b〉) = r. We also say 〈 a, b 〉 is a r -

relationship. From the definition of inheritance, if 〈 a, b 〉 ∈ r M ,

t ype E (a) ∈ � r.source M ∧ t ype E (b) ∈ � r.target M
• For a reference r ,

ran r (x) ≡ {〈 x, y 〉 ∈ r M} , dom r (x) ≡ {〈 y, x 〉 ∈ r M}
• For a set of references Y ,

ran Y (x) ≡ {〈 x, y 〉|〈 x, y 〉 ∈ r M ∧ r ∈ Y } ,
dom Y (x) ≡ {〈 y, x 〉|〈 y, x 〉 ∈ r M ∧ r ∈ Y }
If ∀ r ∈ Y (type L (e) �∈ �r.source), ran Y (e) is undefined; and if ∀ r ∈

Y (type L (e) �∈ �r.target), dom Y (e) is undefined.
• For a set G of references, if 〈 x, y 〉 ∈ G L , we say x � G y ; if x � G y

and y � G z, then x � G z.

3.2. Generation constraints

In this paper, model generation is regarded as a process of pro-

ducing a model M = (E, L, type E , type L) according to a metamodel

M = (T , H, A, R, C, assoc, mult, ≺) and a set of options , i.e., some

constraints . Those constraints are used to guide the generation

process.

Syntactic constraints. A generated model is said to be correct if it

conforms to the syntactic and the semantic constraints imposed by

the metamodel. A metamodel M imposes three kinds of syntactic

constraints which can easily be extracted from the definitions pre-

sented in Section 3.1 :

• Element syntactic constraint : the element type must be valid,

i.e.,

∀ e (e ∈ E → type E (e) ∈ T − H)

• Attribute syntactic constraint : the type of the attribute value

must be valid, i.e.,

∀ a, e (a : t → d ∈ A ∧ e ∈ � t → a (e) ∈ I d)

• Relationship syntactic constraint : the relationship type and the

multiplicity must be valid, i.e.,

1. ∀〈 a, b 〉 (〈 a, b 〉 ∈ L → type L (〈 a, b 〉) ∈ R);

2. for each r ∈ R , when mult(r) = (〈 ls, us 〉 , 〈 lt, ut〉)
∀ a (a ∈ � r.source

M → lt ≤ | ran r (a) | ≤ ut) ,

∀ b(b ∈ � r.target
M → ls ≤ | dom r (b) | ≤ us)

Semantic constraints. A correct model must also conform to the se-

mantic constraints implied by the metamodel, though they may

not be defined explicitly. We identify four most common seman-

tic constraints on any set G of references:

• Reflexivity: G is non-reflexive implies ∀〈 e s , e t 〉 (〈 e s , e t 〉 ∈ G M → e s
� = e t).

• Ordering: G is ordered implies for any two elements e 1 , e 2 in M

the following condition always hold e 1 � G e 2 → ¬ e 2 � G e 1 .
• Necessity : if G is target-necessary , when ran G (a) is defined, ∀ a (a

∈ E → | ran G (a)| > 0). if G is source-necessary , when dom G (b) is

defined, ∀ b (b ∈ E → | dom G (b)| > 0)
• Uniqueness : if G is target-unique , when ran G (a) is defined, ∀ a (a

∈ E → | ran G (a)| ≤ 1). if G is source-unique , when dom G (b) is

defined, ∀ (b ∈ E → | dom G (b)| ≤ 1).

The four constraints above can also be applied to a single refer-

ence r by regarding r as a singleton list { r }.

For example, the set C of all containment references is non-

reflexive, ordered, source-necessary (except for the root element),

and source-unique ; inheritance is non-reflexive and ordered . By de-

fault, a reference is reflexive, not ordering, not necessary , and not

unique .

Range constraints. When the model is going to serve as the in-

put of performance testing, we must control its size, including the

amounts of elements and relationships, and the value domains of

attributes. We term these kinds of constraints range constraints .

Our approach supports three range constraints:

• Element range constraint : for any class c, range c denotes an el-

ement range constraint on c , which prescribes that |{ e ∈ c M }|

must be a value contained in range c ;
• Relationship Range Constraint : for any set G of references, range G

denotes a relationship range constraint on G , which prescribes

that |{ 〈 a, b 〉 | 〈 a, b 〉 ∈ G M }| must be a value contained in range G ;
• Value Range Constraint : for any attribute a : t → d, range a de-

notes a value range constraint, which limits the value domain

of a , i.e., ∀ e ∈ � t M(e (a) ∈ range a)

For Research Only

252 X. He et al. / The Journal of Systems and Software 121 (2016) 247–264

Fig. 5. Approach overview.

It is worthwhile to notice that range constraints might not al-

ways be satisfied if they conflict with others. For instance, a re-

lationship range constraint may be defined to restrict the amount

of relationships. If the required amount is smaller or larger than

the model could have, our approach would determine to break this

constraint at runtime to create a correct output.

4. Approach to test data generation

The overview of our approach can be depicted as Fig. 5 with

four major phases below:

The first phase is to configure the generation. In this phase,

users establish a configuration model, containing reference se-

mantic constraints and user-defined constraints. User-defined con-

straints include both range constraints and extra constraints. The

configuration model and the metamodel are used to guide model

production.

The second phase is the element and attribute generation

phase. Based on the syntactic and the range constraints, our ap-

proach creates model elements and sets their attributes.

In the third phase, all relationships will be generated. This

phase contains three sub-phases: 1) instantiating containment ref-

erences (i.e., ordered, non-reflexive, source-necessary, and source-

unique references); 2) instantiating constrained references accord-

ing to semantic constraints and range constraints derived from the

configuration model; 3) instantiating normal references. Although

there are three sub-phases, all of the three employ a unified algo-

rithm with different parameters to handle relationship generation.

The last phase is the validation phase. All user-defined extra

constraints will be checked in this phase because our approach

could not solve those constraints during model generation. If the

produced model satisfies those constraints, it will be returned as

the final result. Otherwise, our approach will return an empty

model and report errors.

4.1. Configuration

This subsection discusses how to configure the model genera-

tion process with a configuration model. Let us define the configu-

ration model using Meta Object Facility (MOF, Object Management

Group (2011)) first. Its definition is shown in Fig. 6 . The class Con-

figurationModel represents a configuration of our approach. It con-

tains a reference to Class specifying the possible classes whose ele-

ments can be roots. And the property uniqueRoot specifies if there

should be only one root element in the generated model. A Config-

urationModel can own four kinds of constraints, i.e., ElementRange-

Constraints, RelationshipConstraints, GlobalRangeConstraints , and Ex-

traConstraints .

ElementRangeConstraint restricts the amount of elements own-

ing the same type. The element type is specified by the rela-

tionship class from ElementRangeConstraint to Class (defined in

MOF). Each ElementRangeConstraint may also contain some At-

tributeRangeConstraints each of which denotes a value range con-

straint. The attribute to be constrained is specified by the relation-

ship attribute . The class RelationshipConstriant , which combines the

semantic constraint and relationship range constraints, is used to

guide generating relationships. Note that containment references

cannot be imposed any constraints explicitly because they are con-

strained in a default manner.

A GlobalRangeConstraint is used to specify default range con-

straints, including the total size , the default element range , the de-

fault relationship range , and the default value range (for different

data types, e.g., integer and string). Total size specifies the total

number of elements in the generated model. Default element range

specifies the number of elements for any kind. If there is no ex-

istence of an ElementRangeConstraint for a certain class, the de-

fault range will be used. Default relationship range and default value

range are similar to that case.

ExtraConstraints represent the constraints not discussed in this

paper. They must be written as OCL invariants. Our approach could

not solve those constraints during model generation, which will be

used to validate the generated model.

ElementRangeConstraint, AttributeRangeConstraint, ReferenceCon-

straint , and GlobalRangeConstraint are subclasses of Bound . For-

mally, a Bound can be defined as a set {(v i , p i)}, where
∑

i p i =

1 ∧ p i ≥ 0 . Each pair (v, p) in the Bound can be interpreted as the

probability of selecting the value v is p , where p is termed selection

probability . To select a value from a Bound , generate a random non-

Fig. 6. Configuration model.

For Research Only

X. He et al. / The Journal of Systems and Software 121 (2016) 247–264 253

negative number r first, and then return the value v i that satisfies

�j < i p j ≤ r < �j ≤ i p j .

In the configuration model, a Bound is specified in the textual

form. Its grammar can be defined as follows:

bound ::= bList
item ::= bItem | pbItem

pbItem ::= bItem : probability
bItem ::= bList | bRange | literal
bList ::= { it em (, it em) ∗ }

bRange ::= [l iteral .. l iteral]
literal ::= any constant f or a data type

probability ::= a real number f rom 0 to 1

where bList represents a list of possible values and bRange repre-

sents a value range defined by a minimum and a maximum value.

All the values in the same bRange share the same selection possi-

bility. bItem represents an item (a literal, a list, or a range) whose

possibility is not defined explicitly (its possibility is deduced from

other items).

The Bound specified in this form can be converted into the set

of pairs based on which the value selection progress has been

explained above. For example, {3,5:0.2,[7..9]:0.3} can be

translated into

{(3,0.5), (5,0.2), (7,0.1), (8,0.1), (9,0.1)}

Please see Algorithm 11 in Appendix for more information.

4.2. Element and attribute generation

The second phase is to generate model elements and attributes.

In short, for each non-abstract class t in the metamodel M , cre-

ate s t elements. Then, for each attribute a of t and an element e ,

randomly assign a value to a (e), where s t denotes the number of

t -elements in the produced model. The basic element generation

algorithm is described in Algorithm 1 .

Algorithm 1: GenerateElements(T)

Input : T , the set of classes

Output : E, the set of elements

1 foreach t ∈ T do

2 s t ← the number of elements to be generated;

3 for i ← 0 ; i < s i ; i ← i + 1 do

4 e ← a new instance of t;

5 foreach a : t → t d do

6 range a ← the value range constraint for a ;

7 v al ← a value randomly selected from range a ;

8 a (e) ← v al;

9 E ← E ∪ { e } ;
10 return E;

The algorithm is not difficult. However, the difficulty is to de-

termine s t for each class t . If s t is not assigned properly, the model

may not be correctly generated. It is because that the metamodel

and the configuration model impose some constraints as follows:

First, let

S t ≡
∑

o∈� t
s o

Second, for any class t whose instances could not be root ele-

ments, S t is determined by the number of all possible containers,

i.e.,
∑

r∈ L C (t)

(lt r × S r.source) ≤ S t ≤
∑

r∈ U C (t)

(ut r × S r.source)

where L C (t) = { r| r ∈ C ∧ r.target ∈ � t } , U C (t) = { r| r ∈ C ∧ r.target ∈

 t ∪ � t } , and for each r ∈ L C (t) ∪ U C (t), (〈 ls r , us r 〉 , 〈 lt r , ut r 〉) =

mult(r) .

Third, for two classes s, t, S s and S t are also constrained by

the multiplicity of the non-containment reference r , where 〈 s, t〉 =

assoc(r) and (〈 ls, us 〉 , 〈 lt, ut〉) = mult(r) , i.e.:

ut × S s ≥ ls × S t ∧ us × S t ≥ lt × S s

Fourth, for each class t, s t must be a value in range t , where

range t denotes the bound specified by the corresponding Elemen-

tRangeConstraint or the default element range if the ElementRange-

Constraint is missing. Note that this requirement is flexible because

our approach may break it to ensure the correctness.

At last, if total size is defined as a GlobalRangeConstraint , the

sum of all s t must meet this constraint.

To generate a valid model randomly, we must solve those range

constraints (i.e., determining the value of s t for each class t). We

can employ the constraint solver to find a random solution for a

set of constraints. According to the solution, we can determine s t
for each class t .

4.3. Relationship generation

The third phase is to generate the relationships of the model

M , which is described in Algorithm 2 . It has three sub-phases, i.e.,

generating containment relationships (line 2), constrained relation-

ships (line 5), and normal relationships (line 7), based on the se-

mantics and the constraints defined in the configuration model.

Algorithm 2: EntryOfGenerateRelationships(R, C)

Input : R , the set of references; C, the set of containment

references

1 L ← C;

2 GenerateContainmentRelationships(C);

3 foreach ReferenceConstraint cons in the configuration model do

4 L ← L ∪ cons.r e fer ences ;

5 GenerateConstrainedRelationships(cons);

6 foreach r ∈ R − L do

7 GenerateOtherRelationships(r);

First, let us consider the containment references. All contain-

ment references are non-reflexive, ordered, source-unique, and

source-necessary (except for the roots), so for all containment ref-

erences we can handle them as Algorithm 3 . parents are all possi-

Algorithm 3: GenerateContainmentRelationships(S)

Input : S, the containment reference set

1 E ← the set of elements;

2 RT ← the root classes specified in the configuration model;

3 parents ← E;

4 children ← E;

5 possibleRoots ← { e | e ∈ E ∧ ∃ t(t ∈ RT ∧ type E (e) � t) } ;
6 if the model could have only one root element then

7 numberO f Root ← 1 ;

8 else

9 numberO f Root ← an integer from 1 to | E| − 1 ;

10 randomly remove numberO f Root elements included in

possibleRoots from children ;

11 size ← | E| − numberO f Root;

12 GenerateRelationships(S, parents , children , true, true, false,

false, false, true, size);

For Research Only

254 X. He et al. / The Journal of Systems and Software 121 (2016) 247–264

ble container elements; children are all possible children elements.

They are initialized by E , the element set of M (line 1 to 4). In

line 5, we collect the possible root elements. From line 6 to 9, we

calculate the number of root elements (i.e., numberOfRoots) based

on the value of uniqueRoot specified in the configuration model. In

line 10, we select numberOfRoots elements from possibleRoots and

remove them from children (a root does not require a parent). The

actual generation logic is realized by calling GenerateRelationships

(in line 12), according to the semantic constraints of containment

references. We will discuss GenerateRelationships later.

Second, we generate some relationships based on the Relation-

shipConstraints defined in the configuration model. Since a Rela-

tionshipConstraint specifies the semantic constraints and the range

constraint on a set of references, we simply extract the necessary

information and use it as the actual parameters of GenerateRefer-

ences . This process can be described in Algorithm 4 . For each Re-

lationshipConstraint , we collect the possible source and target el-

ements (line 3 and 4), and randomly select the number of rela-

tionships to be generated (line 5). Then, similar to Algorithm 3 ,

we call GenerateReferences and employ the information provided by

the constraint as the parameter (line 6).

Algorithm 4: GenerateConstrainedRelationships(cons)

Input : cons , a RelationshipConstraint

1 E ← the set of elements;

2 re f s ← the references related to cons ;

3 src ← { e | e ∈ E ∧ ∃ r(r ∈ re f s ∧ type E (e) � r.source) } ;
4 tar ← { e | e ∈ E ∧ ∃ r(r ∈ re f s ∧ type E (e) � r.target) } ;
5 size ← a value selected from the range constraint of cons ;

6 GenerateRelationships(re f s , src, tar, cons.sourceUnique ,

cons.sourceNecessary , cons.targetUnique , cons.tar getNecessar y ,

cons.re f lexi v e , cons.unique , size);

In the last sub-phase, we handle the remainder references with

default relationship constraints (i.e., reflexive and unordered). This

procedure is described in Algorithm 5 .

Algorithm 5: GenerateOtherRelationships(r)

Input : r, a reference

Output : the produced relationships

1 E ← the set of elements;

2 src ← { e | e ∈ E ∧ type E (e) � r.source } ;
3 tar ← { e | e ∈ E ∧ type E (e) � r.target} ;
4 size ← a value selected from the range constraint for r;

5 GenerateRelationships({ r} , src, tar, false, false, false, false,

true, false, size);

As mentioned above, the core generation logic is realized

by the function GenerateRelationships , which has been called in

Algorithm 3, 4 , and 5 . The basic idea of GenerateRelationships is

as follows: 1) randomly select a reference r ; 2) randomly pick a

source element e s and a target element e t from the element set N

constructed by Algorithm 1 ; 3) establish a r -relationship 〈 e s , e t 〉 in

M . However, during this process, the following two problems must

be tackled: 1) how to select e s and e t properly in order to satisfy

all the constraints on relationships? 2) how to do if there is no

valid e s or e t ?

Before going on, we have to define two auxiliary functions Is-

Forbidden and SelectCandidate. IsForbidden checks if two elements

e s and e t can be connected with a r -relationship without violating

reflexivity and ordering constraints (as described in Algorithm 6).

IsCandidate is used to check if an element e can be the (source or

Algorithm 6: IsForbidden(S, e s , e t , reflexive, ordered)

Input : S, is a reference set; e s and e t , the candidate source

and target element; re f lexi v e and ord ered , semantic

constraints on S

Output : whether the two semantic constraints will be

violated after 〈 e s , e t 〉 is created

1 if re f lexi v e = false and e s = e t then return true;

2 else if ordered = true and e t � S e s then return true;

3 else return false;

target) end of a r -relationship without breaking the upper bound,

as well as the necessity and the uniqueness constraints.

IsCandidate has two versions, i.e., IsSrcCandidate and IsTarCan-

didate . Algorithm 7 presents IsSrcCandidate . It is responsible for

checking if an element e can be the source end or not. If e has

fulfilled the lower bound and there exists another element e ′ not

satisfying the lower bound, e could not be a valid source (line 4, 6,

and 7). It is our algorithm that gives the elements that do not sat-

isfy the lower bound top priority to be used to create relationships.

That is intended for ensuring all the elements reach their lower

bounds. IsTarCandidate , which selects the target end, is similar to

this algorithm. However, it uses dom �(e) , ls r , and us r to replace

ran �(e) , lt r , and ut r respectively.

Algorithm 7: IsSrcCandidate(r, e, unique, necessary)

Input : r, a reference; e , the element to be checked; necessary

and unique , semantic constraints focused by this

algorithm

Output : whether the element that can be the source end of a

new r-relationship

1 S ← the reference set containing r;

2 (〈 ls r , us r 〉 , 〈 lt r , ut r 〉) ← mult(r) ;

3 U ← { candidate elements, each of which does not violate the

upper bound and the semantic constraints, and has not been

marked as an invalid candidate } ;
4 C L ← { o| o ∈ U ∧ ((unique → | ran S (o) | = 0) ∧ (| ran r (o) | <

lt r) ∨ (necessary ∧ | ran G (o) | = 0))) } ;
/* the candidate elements do not satisfy their lower

bounds */

5 C U ← { o| o ∈ U ∧ ¬ unique ∧ lt r ≤ | ran r (o) | <

ut r ∧ ¬ (necessary ∧ | ran S (o) | = 0) } ;
/* the candidate elements satisfy the lower bounds but

not satisfy their upper bounds */

6 if C L � = ∅ then return whether C L contains e ;

7 else if C U � = ∅ then return whether C U contains e ;

8 else return false;

Now, let us consider the details of GenerateRelationships . It can

be described briefly as Algorithm 8 . It will not stop producing re-

lationships until the termination condition is satisfied. When pro-

ducing a new relationship, it firstly tries to find two elements that

can compose a valid r -relationship (line 5 and 6). During this pro-

cess, it employs Algorithms 6 and 7 to select proper elements. For

example, as shown in Fig. 7 (a), it is a simple metamodel contain-

ing two classes A and B , and a containment reference r from A to B .

The metamodel prescribes that each A element must be associated

with at least one B element. As shown in Fig. 7 (b), it is an interme-

diate result including two A and two B elements. A r -relationship

〈 e 1 , e 3 〉 has been produced, and now we try to generate the sec-

ond one. According to our algorithm (line 5), only e 2 and e 4 are the

valid candidates. Otherwise, if we chose e 1 and e 4 , and established

a relationship, we would not get a valid result because no other

For Research Only

X. He et al. / The Journal of Systems and Software 121 (2016) 247–264 255

Algorithm 8: GenerateRelationships(S, src, tar, srcUnique, src-

Necessary, tarUnique, tarNecessary, reflexive, ordered, size)

Input : S, a reference set; src, the set of source elements; tar,

the set of target elements; size , the number of

relationships to be generated; srcUnique , srcNecessary ,

t arUnique , t arNecessary , re f lexi v e , and ord ered , the

semantic constraints on S

1 L ← the set of relationships of model M;

2 repeat

3 if S = ∅ then return L;

4 r ← a reference selected from S randomly, which satisfies

∀ e (lt r ≤ | ran r (e) | ∧ ls r ≤ | dom r (e) |) → � r ′ ∃ e (| ran r ′ (e) | <

lt r ′ ∨ | dom r ′ (e) | < ls r ′) ;
5 e s , e t ← two elements selected from src and tar, where

IsSrcCand id ate (r, e s , tarUnique, tar Necessar y) ∧

IsT arCand id ate (r, e t , srcUnique, srcNecessary) ∧

¬ IsF orbod d en (S, e s , e t , re f lexi v e, ord ered) ;

6 if such e s and e t can be found then L ← L ∪ {〈 e s , e t 〉} ;
7 else if only e s exists then

8 fix the model with 〈 e s , r〉
9 else if only e t exists then

10 fix the model with 〈 r, e t 〉
11 else S ← S − { r} ;
12 until all the elements in src and tar have satisfied their lower

bounds and (all the elements have reached to their upper

bounds or size relationships have been produced) ;

Fig. 7. An example of element selection.

B element can be associated with e 2 . Such an element selection

strategy is intended for fulfilling the lower bound requirement.

If the condition in line 5 is partially satisfied, i.e., there does

not exist any e s or e t satisfying the condition (line 7 and 9), we

tries to fix the model by removing an existing relationship so that

two new relationships can be appended without breaking bound

and semantic constraints. The fixing procedure, which is intended

for adjusting the model to append a new relationship, will be dis-

cussed in detail in the next subsection. If the fixing job fails, mark

e s or e t as an invalid candidate of r .

If the condition in line 5 is totally unsatisfied, remove r from S

so that it would not be chose again.

The algorithm will terminate when: 1) G is empty; 2) all ele-

ments have reached to their upper bounds (i.e. no more relation-

ship can be produced) or size relationships have been produced.

And this algorithm does terminate, because during each iteration

a new relationship will be produced, an element is removed from

the candidate set, or a reference is removed. This means the ter-

mination conditions will eventually be satisfied.

4.4. Model fixing

As shown in Algorithm 8 , it is possible that only e s or e t (but

not both at the same time) is found. Note that such a phenomenon

Fig. 8. The first exceptional base structure and an example.

Fig. 9. The second exceptional base structure and an example.

does not always create a problem. However, if it is caused by an

improperly created relationship and hinders the subsequent gen-

eration job, it must be fixed (line 8 and 10 in Algorithm 8). There

are two base structures that, though not necessarily, might result

in this problem.

Before going on, we define a new concept named co-evolved ref-

erences .

Definition 3. Co-evolution A set G of references is source co-

evolved, if and only if there exists a constant c 1 let ∀ e (| dom G (e)|

< c 1) hold; G is target co-evolved, if and only if there exists a con-

stant c 2 let ∀ e (| ran G (e)| < c 2) hold.

Obviously, source-uniqueness and target-uniqueness are special

cases of co-evolution .

The first base structure. Fig. 8 (a) presents the first exceptional base

structure: there are four classes (A, B, C, and D) and three refer-

ences (r1, r2, and r3). When r2 and r3 are source co-evolved, and

r1 and r3 are target co-evolved, a problem may take place when

creating a r2-relationship for a D element or when creating a r1-

relationship for a B element.

For example, as shown in Fig. 8 (b), a problem arose when cre-

ating a r2-relationship starting from e4, provided that r1, r2, and

r3 are source-unique, and ∀ e (| ran { r 1, r 3} (e)| ≤ 1). In this case, e3 is

required by the attempt to creating a r2-relationship from e4, how-

ever it has already been connected to e2 by a r3-relationship. Since

e3 can only be connected to either e2 or e3 (source uniqueness), a

conflict occurs.

It is obvious that the r3-relationship is the cause of this prob-

lem. To handle this conflict, a possible solution for this example,

as shown in Fig. 8 (c), is as follows: 1) remove this r3-relationship

to release e3; then 2) create a r2-relationship 〈 e 4, e 3 〉 and a

r1-relationship 〈 e 1, e 2 〉 . The reason why we must create a r1-

relationship is to ensure that the fixing procedure always increases

the number of relationships. Such a fixing procedure is listed in

Algorithm 9 .

As mentioned above, for the structure in Fig. 8 (a), a problem

may also happen when creating a r1-relationship for a B element.

It is because that all the A elements may have been consumed

by r3-relationships (r1 and r3 are target co-evolved). The solution

to this case is similar to the former as shown in Algorithm 12 in

Appendix . Actually, it can be regarded as a dual of Algorithm 9 by

reverting the direction of all the references in Fig. 8 (a).

The second base structure. The second exceptional base structure

is related to ordering . As shown in Fig. 9 (a), there are three class

(A, B, and C) and three references (r1, r2, and r3). If r1, r2, and

r3 are ordered, source unique, and source necessary (actually, they

For Research Only

256 X. He et al. / The Journal of Systems and Software 121 (2016) 247–264

Algorithm 9: FixingModelForCase1(e s , r)

Input : e s , a candidate source element; r, a reference to be

initialized

1 E ← the set of elements in the model;

2 L ← the set of relationship in the model;

3 S ← the set of references being focused on;

4 cons ← the relationship constraint on S;

5 foreach 〈 e x , e y 〉 ∈ S the model do

6 if ¬ IsF orbid d en (S, e s , e y , cons.re f lexi v e, cons.ord ered) , and

IsT arCand id ate (r, e y , cons.srcUnique, cons.srcNecessary) ,

provided that 〈 e x , e y 〉 is removed then

7 foreach e z ∈ E and r ′ ∈ S do

8 if ¬ IsF orbid d en (S, e s , e z , cons.re f lexi v e, cons.ord ered)

and

IsSrcCand id ate (r ′ , e x , cons.tarUnique, cons.tar Necessar y)

and

IsT arCand id ate (r ′ , e z , cons.srcUnique, cons.srcNecessary) ,

provided that 〈 e x , e y 〉 was removed then

9 if the type constraints are satisfied then

10 L ← L − 〈 e x , e y 〉 + {〈 e s , e y 〉 , 〈 e x , e z 〉} , where

〈 e s , e y 〉 is a r-relationship and 〈 e x , e z 〉 a
r’-relationship;

11 return ;

12 mark e s as an invalid source of r;

are containment references), a problem may occur when creating

a r1-relationship for an A element or creating a r2-relationship for

a C element.

Fig. 9 (b) shows an example. If we want to create a r1-

relationship from e1 to e2, there would be a conflict because e2

has been consumed by a r3-relationship from e3. This problem can

also be interpreted from another point of view: assuming that we

are going to create a r2-relationship for e3, there is a conflict be-

cause all B elements have become the succeeding nodes of e3.

However, the problem is interpreted, the possible solution, as

shown in Fig. 9 (c), remains the same. In the figure, 〈 e 3 , e 2 〉
is removed, and 〈 e 1 , e 2 〉 and 〈 e 2 , e 3 〉 are created. The fixing

procedure is listed in Algorithm 10 . As for the case of creat-

ing a r2-relationship for e3, the fixing procedure, as shown in

Algorithm 13 in Appendix , is similar to the logic mentioned above.

Structure conversion. The structures presented above are two basic

cases, while a metamodel may contain more complex fragments

that cannot be enumerated thoroughly. Fortunately, it is possible

to convert complex cases into the two basic cases by applying a

set of conversion operators. The problem that occurs in the orig-

inal fragment will also happen after appropriate conversion, and

the solutions that are designed for the basic cases are also appli-

cable to the complex cases. The rest of this section proposes some

conversion operators and demonstrates how to solve conflicts by

converting a metamodel into basic cases using those operators.

Operator 1 (Inheritance removal) . Assume that there are two

classes c 1 and c 2 , where c 1 ≺c 2 . After applying this operator: 1)

the inheritance between c 1 and c 2 is removed; 2) ∀ r i = 〈 c, c 2 〉 is

split into r i = 〈 c, c 2 〉 and r ′
i
= 〈 c, c 1 〉 ; 3) ∀ r o = 〈 c 2 , c〉 is split into

r o = 〈 c 2 , o〉 and r ′ o = 〈 c 1 , o〉 . This operator is used to eliminate in-

heritances.

When a reference r is split into r and r ′ , its semantic constraints

are preserved. Besides, two constraints, i.e., ∀ e (| ran { r,r ′ } (e) | ≤ ut r)

and ∀ e (| dom { r,r ′ } (e) | ≤ us r) , are appended, provided that mult(r) =

(〈 ls r , us r 〉 , 〈 lt r , ut r 〉) . If there has already been a constraint

Algorithm 10: FixingModelForCase2(e s , r)

Input : e s , a candidate source element; r, a reference to be

initialized

1 E ← the set of elements in the model;

2 L ← the set of relationship in the model;

3 S ← the set of references being focused on;

4 cons ← the relationship constraint on S;

5 foreach e u ∈ E do

6 if there exist e x , e y , e z ∈ E and r ′ ∈ S that e u � S e x ,

〈 e x , e y 〉 ∈ S L , and e y � S e z hold then

7 if

IsSrcCand id ate (r ′ , e z , cons.tarUnique, cons.tar.Necessary)

and

IsT arCand id ate (r, e y , cons.srcUnique, cons.srcNecessary)

and

IsT arCand id ate (r ′ , e u , cons.srcUnique, cons.srcNecessary)

and ¬ IsF orbid d en (S, e s , e y , cons.re f lexi v e, cons.ord ered) ,

provided that 〈 e x , e y 〉 was removed then

8 if the type constraints are satisfied then

9 return ;

10 mark e s as an invalid source of r;

| ran { r , ...} | ≤ c (or | dom { r , ...} | ≤ c), the constraint would turn into

| ran { r,r ′ ,... } | ≤ c (or | dom { r,r ′ ,... } | ≤ c).

Operator 2 (Reference folding) . Assume that there two classes c 1 ,

c 2 , and c 3 , and two references 〈 c 1 , c 2 〉 and 〈 c 2 , c 3 〉 . After applying

this operator: 1) 〈 c 1 , c 2 〉 is hidden; 2) c 1 and c 2 are merged, in-

cluding the references related to c 1 and c 2 . This operator is used

to hide the unnecessary part that will not help to solve the con-

flict.

Operator 3 (Class division) . Assume that there is a class c and a

reference 〈 c, c ′ 〉 (or 〈 c ′ , c 〉). After applying this operator: 1) c is

split into c and c ′ ′ ; 2) 〈 c, c ′ 〉 (or 〈 c ′ , c 〉) turns into 〈 c ′ ′ , c ′ 〉 (or 〈 c ′ ,
c ′ ′ 〉).

Note that the operators mentioned above are not intended to

modify the metamodel but to make the solutions of the basic cases

fit it. Fig. 10 shows some examples:

• For Fig. 10 (a), a conflict may occur when a r2-relationship is be-

ing created. After applying inheritance removal (Fig. 10 (b))) and

class division (Fig. 10 (c)), we can convert Fig. 10 (a) into a struc-

ture that is isomorphic to the first basic case so that we can

use the the corresponding solution to handle it.
• For Fig. 10 (d), we may encounter a problem when creating a

r1-relationship targeting at a C element. Similar to the former

example, after applying inheritance removal (Fig. 10 (e)) and class

division (Fig. 10 (f)), we can use the solution of the first basic

case to deal with it (note that during this process r 2 ′ should be

ignored).
• The third example as shown in Fig. 10 (g) shares some common

ideas with the former two, while it is more complicated. It can

also be converted into the first basic structure with inheritance

removal (Fig. 10 (h)) and class division (Fig. 10 (i)) to solve the

problem which we attempt to create a r 1-relationship targeting

at a D element.
• The last one, as shown in Fig. 10 (j) and Fig. 10 (k), demonstrates

how to fold containment references. With the help of reference

folding , we can fold a cycle of containment references into the

second basic structure.

For Research Only

X. He et al. / The Journal of Systems and Software 121 (2016) 247–264 257

Fig. 10. Examples of model conversion.

4.5. Constraint validation

The final step of our approach is to validate if the model gen-

erated fulfils all the constraints, including syntactic constraints, se-

mantic constraints, and user-defined constraints. Violating any con-

straint, the model will be rejected, and an error message will be

reported to users. User-defined constraints (especially complex OCL

constraints) are most likely to be violated. However, since our ap-

proach mainly contributes to performance testing, such complex

OCL constraints are not frequently required. Besides, if there is a

conflict among relationship range constraints, our approach may

also break them in order to generate a syntactically correct model.

In most cases, our approach is able to produce a valid model.

5. Evaluation

This section presents two case studies, one experiment in ran-

domness, two experiments in the time costs of our algorithm. The

two performance experiments in Sections 5.3 and 5.4 were carried

out on a computer with Intel i7 4770 CPU, 16GB RAM, and Win-

dows 7.

5.1. Case studies

In this subsection, we present two case studies to demonstrate

the feasibility and effectiveness of our test framework 5 . In the first

case study, we used our framework to test the performance of an

5 The prototype implementation, based on Eclipse, can be found at https://

bitbucket.org/ustbmde/model-generation.git .

Table 1

Metrics for the ATL transformations.

Metrics JavaSource2Table JavaSource2Table(M)

Transformation Rules 4 4

Helpers 2 0

Attribute Helpers 1 0

Operation Helpers 1 0

Calls to allInstances() 1 3

Operations on Collections 1 0

per Helper

Operations on Collections 1 .25 2 .25

per Rule

ATL transformation, while in the second we evaluated the perfor-

mance of EMF Compare.

Performance of ATL Transformation. Van Amstel et al. (2011) de-

scribed a method for testing performance of model transforma-

tions. This case study adopted their methodology to test an ATL

transformation with the support of our performance testing frame-

work and our model generation algorithm. The transformation to

be tested is an ATL transformation named JavaSource2Table 6 , an

open-source transformation from ATL Zoo. We also created a mod-

ified transformation (JavaSource2Table(M)) from the original one by

replacing all the helpers with inline expressions as a contrast in

this study. Table 1 shows the metric values of the two transforma-

tions.

6 http://www.eclipse.org/atl/atlTransformations/#Java2Table (Sep. 20, 2015).

For Research Only

https://bitbucket.org/ustbmde/model-generation.git
http://www.eclipse.org/atl/atlTransformations/#Java2Table

258 X. He et al. / The Journal of Systems and Software 121 (2016) 247–264

Table 2

Performance testing results of JavaSource2Table and Java-

Source2Table(M).

Test Suite JavaSource2Table JavaSource2Table(M)

Suite 1 (200) 0 .057 0 .175

Suite 2 (400) 0 .213 1 .204

Suite 3 (600) 0 .458 3 .962

Suite 4 (800) 1 .144 9 .244

Suite 5 (10 0 0) 1 .979 17 .791

Suite 6 (1200) 3 .526 31 .640

Suite 7 (1400) 5 .689 53 .248

Suite 8 (1600) 9 .032 81 .093

Suite 9 (1800) 13 .768 115 .644

Suite 10 (20 0 0) 19 .467 158 .799

To test the performance of the two transformations, a TestPro-

ject was created in our testing framework, and a launch configu-

ration for the ATL transformation was established in Eclipse. Then,

the TestProject was associated with the launch configuration via a

LCBasedSpecification . After that, we created a RandomDataGenerator

and a ConfigurationModel for test data generation.

A TestSuite element and 5 test cases were created in the test-

ing framework. We appended the 5 test cases into the TestSuite .

For each test case, our framework invoked the test data genera-

tor implementing the algorithm proposed in Section 4 according to

the ConfigurationModel specified before to generate an input model.

The first 5 models had 200 elements each. Then, we established

the second TestSuite and another 5 test cases for it. In the mean-

time, the ConfigurationModel was modified to produce 5 new mod-

els containing 400 elements each. This procedure was repeated un-

til we created 10 TestSuites in total.

We executed all the 10 TestSuites for the original transforma-

tion. For each TestSuite , we collected all the execution times of

the five test cases and calculated the average time cost. Then, we

changed the executable in the launch configuration to the modified

transformation, and ran all the ten TestSuites again.

The result is presented in Table 2 . The integers in brackets in

the first column indicate the numbers of elements in the input

model. For the original transformation, it spent 0.057 seconds in

average in producing an output in suite 1, and 19.467 seconds in

average in suite 10. For the modified transformation, it spent 0.175

seconds in average to produce an output in suite 1, and 158.799

seconds in average in suite 10.

It is evident that the modified transformation ran much slower

than the original one when the model size increased. The only

difference between the two transformations is that the modi-

fied transformation uses inline expressions instead of ATL helpers

(Table 1). Since ATL will cache the results of helpers , the original

transformation is more efficient. This result is also consistent with

the results in Van Amstel et al. (2011) .

We spent half a day finishing this example, including establish-

ing the configuration models, generating test inputs, executing the

transformation, and calculating the results. According to our ex-

perience, it would probably take us a couple of days to construct

valid test inputs, if we do not use our approach and tool. This study

also shows that our framework can support the performance test-

ing method proposed by other researchers. Our framework facili-

tates performance testing of model transformations.

Performance of EMF Compare. Now assume that we want to evalu-

ate the performance of EMF Compare, the state-of-art model com-

parison tool. EMF Compare is able to compare the differences be-

tween two models conforming to the same metamodel.

We used three different metamodels, JavaSource, BibTex, and

extlibrary to test the comparison efficiency. Both JavaSource and

Table 3

Performance testing results of EMF Compare.

JavaSource BibTex Extlibrary

Suite 1 (500) 1 .138 2 .381 3 .224

Suite 2 (10 0 0) 4 .371 8 .694 12 .664

Suite 3 (1500) 9 .953 22 .350 28 .822

Suite 4 (20 0 0) 18 .321 37 .201 49 .482

Suite 5 (2500) 29 .309 57 .520 76 .049

Table 4

Result of randomness experiment.

#1 #2 #3 #4 #5

JavaSource 0 .85% 0 .81% 0 .73% 0 .86% 0 .74%

PetriNet 1 .32% 0 .97% 0 .62% 0 .72% 0 .51%

extlibrary 0 .0014% 0 .0024% 0 .0059% 0 .0037% 0 .0050%

BibTex were extracted from ATL Zoo, while extlibrary was ex-

tracted from a standard example of EMF.

For each metamodel, we constructed a TestProject . For each Test-

Project , we created five TestSuites , each of which included 20 Test-

Cases . For each TestCase , we generated 2 models to be compared

by EMF Compare.

We collected the time costs of executing those TestCases and

calculated the average time costs for each TestSuite (in seconds).

The results are shown in Table 3 . The integers in brackets in

the leftmost column indicate the numbers of elements the input

models of the same suite have. From the table, we can conclude

that the time complexity of EMF Compare is approximately O (N

2),

where N is the number of elements.

This case demonstrated that not only model transformations

but also other model-related operations, such as model compari-

son, can be handled by our framework.

5.2. Experiment in randomness

Our model generation algorithm is a randomized approach. This

means all the produced models are randomly constructed. The

property of randomness is meaningful for estimating the average

performance of a model-related operation. Hence, we conducted

an experiment to evaluate the randomness of our approach. And

we want to know if it is possible to make the similarity of any pair

of produced models smaller than 5% .

We selected three metamodels, i.e., JavaSource, BibTex, and

extlibrary, which were already used previously. For each meta-

model, five sets of models were generated. For each set, 20 models

were generated. All the models belonging to the same model set

were generated according to the identical configuration. However,

models in different sets have different sizes. Then, for each pair of

models in the same set, EMF Compare was used to find matches.

The similarity of two models is defined by

match/ # total

where # match is the number of the matches returned by EMF

Compare and # total is the total number of elements in the model.

At last, we computed the average similarity for each set, and result

is listed in Table 4 .

From the table, we can learn that it is possible to control the

similarity of two generated models under 5% in our approach. Ac-

cording to our experience, to achieve this goal, the size of every

possible attribute-value range had better be ten times larger than

the element amount.

For Research Only

X. He et al. / The Journal of Systems and Software 121 (2016) 247–264 259

Table 5

JavaSource model generation performance of Alloy, EMFtoCSP, and ours.

#1 #2 #3 #4 #5 #6 #7 #8 #9 #10

Ours 0 .06 0 .12 0 .14 0 .18 0 .18 0 .9 0 .20 0 .23 0 .24 0 .26

Alloy 0 .12 0 .77 2 .33 5 .23 9 .68 17 .38 29 .60 45 .04 61 .60 73 .33

EMFC 72 .79 N/A N/A N/A N/A N/A N/A N/A N/A N/A

Table 6

PetriNet model generation performance of Alloy and ours.

#1 #2 #3 #4 #5 #6 #7 #8 #9 #10

Ours 0 .06 0 .11 0 .21 0 .32 0 .47 0 .65 0 .88 1 .15 1 .41 1 .76

Alloy 222 .87 N/A N/A N/A N/A N/A N/A N/A N/A N/A

5.3. Experiment in performance: Comparative studies

In this experiment, we try to answer the question how faster

can our approach generate a model than the solver-based approaches?

Note that we did not compare our approach with other algorithm-

based approaches. Their limitations have been discussed suffi-

ciently in Wu et al. (2012) . And we will discuss them in Section 7 .

First, a test was conducted to compare the efficiencies of

EMFto-CSP Pérez et al. (2012) and Alloy Jackson et al. (20 0 0) with

our approach’s. EMFtoCSP and Alloy, the state of the art model

constraint satisfiability solvers, are also used to generate test in-

puts for model transformations Sen et al. (2008) González et al.,

2012). All the three approaches are forced to generate models con-

forming to the JavaSource metamodel (Fig. 12 in Appendix). And,

there is no extra constraint. Note that for Alloy we equivalently

translated the metamodel to the Alloy specification before the ex-

periment.

Then, every approach generated 10 models. And, each model

was repeatedly generated 5 times to obtain the average time cost.

Each model has a particular amount of elements: the i th model has

5 × i ClassDeclarations , 20 × i MethodDefinitions , 125 × i Method-

Invocations , and one JavaSource (the root element), i.e., 150 × i ele-

ments except for the root.

The result is listed in Table 5 . Each cell indicates the average

time cost (in seconds) for an approach (row) to generate a model

(column). During this experiment, the time costs of our approach

ranged from 0.06 s to 0.23s; the time costs of Alloy ranged from

0.12s to 45.04s. With regard to EMFtoCSP, it failed to produce any

models (except for the first one) within a reasonable time (30 min-

utes).

A further test was carried out to compare the efficiencies of

Alloy and our approach by using the PetriNet metamodel (since

our approach is apparently better than EMFtoCSP in performance).

Similar to the former experiment, the two approaches were asked

to generate 10 models, whose sizes increased linearly. Each model

was generated 10 times by each approach to obtain the average

time costs (in seconds). The result is presented in Table 6 . From

the table, the time cost of our approach ranged from 0.06 s to 1.76 s;

Alloy spent 222.87 s producing the first PetriNet model (containing

600 elements) but failed to produce any larger one.

According to this experiment, it is evidently that our model

generation approach is significantly more efficient than the other

two. And, we believe that our approach also has performance ad-

vantage compared to other solver-based approaches.

However, we do not claim that our model generation algorithm

can take the place of the constraint solver, e.g., Alloy. The qualita-

tive analytic result is listed in Table 7 .

Alloy supports first-order-logic-based constraints, while our ap-

proach can only handle some predefined model constraints defined

in Section 3.2 . These predefined constraints can be encoded in Al-

loy codes. It means they are a subset of Alloy constraints.

Table 7

Qualitative comparison between Alloy and our approach.

Alloy Our approach

Constraint First-order-logic-based Predefined

Efficiency Very low Fast

Suitable testing method White-box Black-box

Suitable testing goal Correctness Performance

Correctness of produced model Yes Yes

Randomness of produced model Difficult and inefficient Yes

Alloy is more expressive and can handle more kinds of con-

straints. It is suitable to white-box testing which verifies the cor-

rectness of an MRO. However, it cannot produce a large model effi-

ciently. It is infeasible to produce a model containing thousands of

elements, which is used to test the performance of an MRO, with

Alloy. As illustrated by this experiment, our algorithm produces a

model significantly faster than Alloy does. Our algorithm is more

suitable to performance testing of MROs.

If we do not consider other constraints, both Alloy and our ap-

proach can produce correct models. Besides, our approach can also

produce random models (as tested in Section 5.2). Whereas, in Al-

loy, it is difficult and inefficient to obtain random models due to

its searching strategy.

5.4. Experiment in performance: Algorithm complexity

In this experiment, we try to answer the question what law does

the performance of our algorithm follow?

We employed our approach to generate a set of models accord-

ing to 6 metamodels (without extra constraints). For each meta-

model, our approach was required to produce 5 models, whose

sizes ranged from 1 MB to 5 MB (approximately). And, every model

was produced 5 times to obtain an average time cost (in seconds).

The six metamodels are JavaSource, extlibrary, BibTex, PetriNet,

TextualPathExp , and MySQL . The first three has been used previous;

PetriNet, TextualPathExp , and MySQL were also extracted from the

transformations in ATL Zoo. To control the size of the model, the

element and relationship range constraints of each model are fixed

integers. And, all the unnecessary spaces in the output XMI files

were eliminated

7 .

The result of this experiment is shown in Table 8 . Apparently,

for different metamodels, the time costs vary a lot. The perfor-

mance curves for the six metamodels are depicted as in Fig. 11 .

For JavaSource , the performance curve follows y = 8 . 2474 x 2 . 1843 ;

for PetriNet , the curve follows y = 11 . 116 x 1 . 9961 ; for extlibrary , their

curve follows y = 2 . 7509 x 2 . 0595 ; for BibTex , the curve follows y =

13 . 415 x 2 . 1608 ; for TextualPathExp , the curve follows y = 41 . 332 x 2 . 36 ;

for MySQL , the curve follows y = 6 . 0276 x 2 . 132 .

7 In our previous work, we did not remove the spaces. Hence, we redid the ex-

periment for the first three, i.e., the results are different from the old ones.

For Research Only

260 X. He et al. / The Journal of Systems and Software 121 (2016) 247–264

Fig. 11. Performance curves.

Table 8

Result of performance experiment 2.

JavaS. PetriN. Extlib. BibTex TextualPE MySQL

1 MB 8 .6 11 .1 2 .8 13 .6 43 .1 6 .27

2 MB 35 .1 46 .5 10 .9 63 .4 204 .6 25 .35

3 MB 93 .3 93 .7 27 .2 122 .3 531 .5 58 .97

4 MB 155 .4 169 .2 48 .5 281 .6 1021 .9 118 .9

5 MB 303 .4 293 .1 74 .9 454 .9 2032 .7 193 .41

JavaS = JavaSource; PetriN = PetriNet; Extlib = Extlibrary; TextualPE =

TextualPathExp

From the result, we can learn the following things:

1. When the model size increased linearly, the times cost followed

a power law y = k × x p .

2. The exponent p ranged from 1.9961 to 2.36, and its average

value amounted to 2.14878 approximately. The exponent did

not vary significantly.

3. For different metamodels, the coefficient k changed drastically.

This implies that it is influenced by the complexity of the meta-

model.

6. Discussion

Algorithm correctness. Our model generation algorithm can pro-

duce a model conforming to the syntactic constraints, semantic

constraints, and user-defined range constraints, when there is no

conflict . It will be complicated to prove this rigorously. We just

discuss this qualitatively. First, our approach generates elements,

attributes, and relationships based on the metamodel. Hence, the

model produced satisfies the syntactic constraints (multiplicity

constraints are considered below). Second, when producing rela-

tionships, our approach also takes semantic constraints into ac-

count. In line 5 of Algorithm 8 , the elements selected to create a

new relationship must satisfy the four semantic constraints. And it

is not difficult to prove that the fixing procedures in Algorithms 9,

12, 10 , and 13 will not violate the any semantic constraints, since

we always check them before creating any changes. If the range

constraints do not contain any conflict, Algorithms 1 and 8 will

not stop until all of them are fulfilled.

Threats to validity. There are two major threats to the validity of

our approach. For one thing, some advanced features in the meta-

model may be an obstacle to applying our model generation algo-

rithm. As defined in Section 3.1 , only basic features, such as classes,

attributes, and unidirectional references, in a metamodel are able

to be handled in this paper. Advanced features, including derived

attributes, union and subset of references, multidirectional refer-

ences, and package import, are not supported. When a metamodel

includes one of such advanced features, it cannot be instantiated

by our algorithm. Although some complex metamodels, such as

UML metamodel, may have those features, in most cases, we can

bypass those features by replacing them with basic features, ac-

cording to our experiences. For another thing, some model-related

operations may have special preconditions, which may be too com-

plex to be written in OCL, on input models. For example, a model

transformation can only handle structural workflow models, while

the constraint that the model must be structural cannot be easily

achieved by a random model generator. This means that our frame-

work based on random model generation cannot deal with the op-

erations having such special input preconditions. It will be our fu-

ture work to investigate this problem in detail.

7. Related work

7.1. Model transformation testing

Baudry et al. (2010) , discussed the barriers to testing model

transformation, and test data generation is one of the challenges.

This paper attempts to fill this gap by proposing a testing frame-

work of model transformations and a random model generation al-

gorithm.

Küster et al. (2009) , proposed incremental development of

model transformation chains based on automated testing. They

defined four test design techniques and a test framework for

transformation chain. Their test framework, based on JUnit,

For Research Only

X. He et al. / The Journal of Systems and Software 121 (2016) 247–264 261

supporting model comparison and invariant validation, is compara-

ble to our framework. Both of the frameworks support automated

testing of model transformations. However, instead of functional

testing, our framework mainly focuses on performance testing. It

also integrates with an automated test data generation algorithm,

which is not addressed in their work.

Giner and Pelechano (2009) , proposed a template of test case

specifications to capture requirements for transformations, and to

guide the development and documentation of model transforma-

tions. The test model proposed in this paper shares some com-

monalities with Giner’s template, in spite of that they employ dif-

ferent concrete syntax to specify a test case. Our test model can

also serve as a test case management mechanism, which enables

us to arrange test cases into test suites.

Shelburg et al. (2013) , presented an approach to regression test-

ing for model transformations. They argued that a transformation

that is changed owning to the evolution of the metamodel requires

regression testing. To do so, they proposed a multi-objective opti-

mization algorithm to generate test inputs that maximizes the cov-

erage of the new metamodel by refactoring the existing one. We

believe that our approach can cooperate with their approach. Our

approach can be used to create and manage new test cases, while

their approach can refactor the test cases to meet the requirements

of regression testing.

Guerra proposed a specification-driven test generation approach

Guerra and Soeken (2013) . In this approach, one must specify

the transformation properties (invariants, pre- and post-conditions)

using a declarative specification language named PaMoMo. Then,

those properties are solved by a proper constraint solver to de-

rive the test input and the oracle function. Finot et al., discussed

the oracle problem in transformation testing and developed a tech-

nology called partial test oracle that employs a set of model frag-

ments (partial oracle) to determine the correctness of the test out-

put Finot et al. (2013) . Those effort s, which promoted transforma-

tion testing, targeted at white-box and functional testing. However,

the test framework and the test generation algorithm proposed in

this paper concentrated on performance testing of model transfor-

mations.

Van Amstel and Van Den Brand (2011) , proposed three com-

plementary techniques for the analysis of model transformations,

including metrics collections, structure and dependency analy-

sis, and metamodel coverage visualization. Their paper mainly

focuses on static analysis of model transformations in order to

improve maintainability. Our work discusses performance testing

of model-related operations, including but not limited to model

transformations.

Van Amstel et al. (2011) also reported some experimental re-

sults about the performance of QVT and ATL transformations. They

compared the performance with different languages and engines,

different im plementation styles, and different inputs. Their paper

described the methodology of performance testing in MDE. Their

results can be used as a guide to improving the performance of

transformations. Our work differs from theirs. This paper concen-

trates on the performance testing framework and the test input

generation algorithm, which are ignored in their paper. However,

we believe that the two papers complement one another. The

framework and the model generation algorithm proposed in this

paper can support the testing method described in their paper, as

we have demonstrated in Section 5.1 .

7.2. Model generation

Model generation (or metamodel instance generation)

broadly with two technical paradigms: solver-based and

algorithm-based.

Solver-based paradigm. The basic idea of solver-based approaches

is as follows: 1) translate the metamodel and constraints into a

formal specification that can be accepted by a model checker, a

constraint solver, or a SAT/SMT solver; 2) employ those solvers to

solve the specification and obtain a valid instance; 3) translate the

instance found by solvers back to a model.

Alloy Jackson et al. (20 0 0) is a mature model checker for re-

lational logic. Since a model can be regarded as a set of ele-

ments and relationships, research on model generation with Al-

loy has been very active. Anastasakis et al. (2010) discussed how

to translate a UML class diagram into Alloy. They proposed some

rules to map the UML class diagram and the limited OCL con-

straints onto Alloy Language. Sen et al. (2008) proposed a tool

called Cartier to generate test models for testing model trans-

formations. McQuillan and Power (2008) proposed a metamodel

for the measurement of object-oriented systems. Users can define

some metrics for an object-oriented system using this metamodel,

and then the metrics are translated into Alloy to generate a valid

model.

ECL i PS e , proposed by Apt and Wallace (2007) , is a model con-

straint solver. Cabot et al. (2008) proposed an approach to trans-

lating a UML model with OCL constraints into ECL i PS e . Their ap-

proach is supported by the tool EMFtoCSP Pérez et al. (2012) .

And, it has been applied to test model generation González et al.,

2012).

Soeken et al. (2010, 2011) also proposed an approach to verify

a UML model with OCL constraints using a SAT solver. They em-

ployed bit-vector theory to encode the metamodel and the con-

straints.

It is not difficult to find that solver-based approaches are more

flexible because they can deal with more kinds of declarative and

semantic constraints. They are suitable for model verification and

white-box testing. However, they cannot generate large models ef-

ficiently, compared to our algorithm-based approaches. Hence, they

are less suitable to handle performance testing of model-related

operations.

Algorithm-based paradigm. Mougenot et al. (2009) proposed a uni-

form generator of huge models based on Boltzmann method

Duchon et al. (2004) . They translated a metamodel into a tree

specification, where classes were nodes and containment refer-

ences were edges. During the translation, multiplicities of contain-

ment references are also considered. Then, they employed Boltz-

mann method to generate a valid tree conforming to the specifica-

tion. Their approach is quiet efficient. However, they did not dis-

cuss how to generate non-containment references. Semantic con-

straints are also neglected in their approach. So their approach

might produce an invalid model, e.g., a class diagram containing

an inheritance circle.

Brottier et al. (2006) also proposed an algorithm of model gen-

eration for testing model transformations. Their algorithm builds

a model according to certain coverage criteria by combining a set

of model fragments. However, they did not discuss how to create

those fragments.

Ehrig et al. (2009) introduced a graph-grammar-based model

generation approach. In their approach, metamodels and con-

straints are encoded as a set of graph transformation rules. By ex-

ecuting those rules, a model can be generated. Even though graph-

grammar based approach is also declarative syntactically, we do

not adopt it because the most frequently-performed operation dur-

ing graph transformation is graph pattern matching , which has been

proven to be an NP-complete problem in theory and is the perfor-

mance bottleneck to generate large model efficiently. On the con-

trary, ours is more configurable and takes more constraints (such as

semantic constraints) into account.

For Research Only

262 X. He et al. / The Journal of Systems and Software 121 (2016) 247–264

Preliminary study. Our preliminary study on the random model

generation algorithm has been reported in our earlier paper He

et al. (2014) published in COMPSAC’14. In the earlier paper, the

basic ideas of the generation algorithm, as well as some experi-

ment results, were presented. This paper, as an enhancement of

our earlier, proposed a performance testing framework for model-

related operations. The framework, based on a test model, provides

the ability of specifying, managing, and performing test cases. The

model generation algorithm is also integrated into the framework

to produce test data. This paper also refined the model genera-

tion algorithm and discussed the procedure of model fixing in de-

tail. At last, more case studies and experiments were presented in

Section 5 compared to the earlier paper.

8. Conclusion and future work

Since the scalability of the model-related operation gained lots

of attentions, testing its performance has become a vital task in

the model-driven engineering. The paper contributes to this field

in the following three aspects:

1. An extensible performance testing framework and a test model,

which enable us to specify and organize test cases, and to carry

out automated performance test;

2. A model generation algorithm, which can help us generate ran-

dom inputs, used for eliminate the average time cost, efficiently

and correctly;

3. Two case studies, one experiment in randomness, and two

experiments in generation efficiency, which demonstrated

the feasibility of our testing framework, and evaluated the

randomness and the efficiency of our model generation

algorithm.

In the future, we will try to handle more kinds of constraints

(especially more semantic constraints) in model generation. Then,

we will study if our model generation algorithm can produce mod-

els with restrictions, e.g., the process model that must be struc-

tural, as mentioned in Section 6 , and will investigate to what ex-

tent our approach can overcome this limitation. Third, we will try

to improve the usability of our prototype tool. Fourth, we will carry

out more case studies and experiments to quantify how much

our approach is better than others. At last, we plan to investigate

whether the framework and the generation algorithm are suitable

for black-box testing of model-related operations or not, owning to

the white-box testing technology for some operations may not be

available at present.

Acknowledgements

This work was supported by the National Program on

Key Basic Research Project of China (973 Program) (Grant

No. 2013CB329601), the National High Technology Research

and Development Program of China (863 Program) (Grant No.

2012AA011202), the National Natural Science Foundation of China

(Grant Nos. 6130 0 0 09 , 61272159) , China Postdoctoral Science Foun-

dation funded project (Grant No. 2013M540050), Fundamental Re-

search Funds for the Central Universities (Grant No. FRF-TP-14-

040A2).

The authors are also grateful to Ms. Tingxian Qiu from Chi-

nada and Prof. Xuedong Shi from Beijing Information Science

and Technology University for their efforts of polishing this

paper.

Appendix

Algorithm 11 shows how to do the translation. Given a Bound

bound, Flatten (bound , 1) returns the logic form.

Fig. 12. JavaSource metamodel.

The metamodel of JavaSource is depicted as Fig. 12 . It is directly

extracted from the ATL transformation JavaSource2Table down-

loaded from the ATL Zoo.

Algorithm 11: Flatten(item, dPos)

Input : item , the item to be flattened; dPos , the default

possibility

Output : the logic form of item

1 switch type of item do

2 case item is a literal

3 return { (l iteral , dPos) } ;
4 case item is a bList

5 pbi ← { e | e ∈ item ∧ e is a pbItem } ;
6 aPos ← (1 − ∑

e ∈ pbi e.probability) / | item | ;
7 return

⋃

e ∈ pbi Flatten(e , e.probability · dPos)

+
⋃

e ∈ item −pbi Flatten(e , aPos · dPos);

8 case item is a bRange

9 aPos ← 1 / | item | ;
10 return

⋃

e ∈ item

Flatten(e , aPos · dPos);

Algorithm 12: FixingModelForCase1’(r, e t)

Input : e t , a candidate target element; r, a reference to be

initialized

1 S ← the set of references being focused on;

2 E ← the set of elements in the model;

3 L ← the set of relationship in the model;

4 cons ← the relationship constraint on S;

5 foreach 〈 e x , e y 〉 ∈ S the model do

6 if ¬ IsF orbid d en (S, e x , e t , cons.re f lexi v e, cons.ord ered) , and

IsSrcCand id ate (r, e x , cons.tarUnique, cons.tar Necessar y) ,

provided that 〈 e x , e y 〉 is removed then

7 foreach e z ∈ E and r ′ ∈ S do

8 if ¬ IsF orbid d en (S, e z , e y , cons.re f lexi v e, cons.ord ered)

and

IsSrcCand id ate (r ′ , e z , cons.tarUnique, cons.tar Necessar y)

and

IsT arCand id ate (r ′ , e y , cons.srcUnique, cons.srcNecessary) ,

provided that 〈 e x , e y 〉 was removed then

9 if type constraints are satisfied then

10 L ← L − 〈 e x , e y 〉 + {〈 e x , e t 〉 , 〈 e z , e y 〉} , where

〈 e x , e t 〉 is a r-relationship and 〈 e z , e y 〉 a
r’-relationship;

11 return ;

12 mark e t as an invalid target of r;

For Research Only

http://dx.doi.org/10.13039/501100001809
http://dx.doi.org/10.13039/501100002858

X. He et al. / The Journal of Systems and Software 121 (2016) 247–264 263

Algorithm 13: FixingModelForCase2’(r, e r)

Input : e t , a candidate target element; r, a reference to be

initialized

1 E ← the set of elements in the model;

2 L ← the set of relationship in the model;

3 S ← the set of references being focused on;

4 cons ← the relationship constraint on S;

5 foreach e u ∈ E do

6 if there exist e x , e y , e z ∈ E and r ′ ∈ S that e t � S e x ,

〈 e x , e y 〉 ∈ S L , and e y � S e z hold then

7 if

IsSrcCand id ate (r, e z , cons.tarUnique, cons.tar.Necessary)

and

IsT arCand id ate (r ′ , e y , cons.srcUnique, cons.srcNecessary)

and

IsSrcCand id ate (r ′ , e u , cons.tarUnique, cons.tar Necessar y)

and ¬ IsF orbid d en (S, e u , e y , cons.re f lexi v e, cons.ord ered) ,

provided that 〈 e x , e y 〉 was removed then

8 if the type constraints are satisfied then

9 L ← L − 〈 e x , e y 〉 + {〈 e u , e y 〉 , 〈 e z , e t 〉} , where

〈 e u , e y 〉 is a r’-relationship and 〈 e z , e t 〉 a
r-relationship;

10 return ;

11 mark e t as an invalid source of r;

References

Anastasakis, K. , Bordbar, B. , Georg, G. , Ray, I. , 2010. On challenges of model transfor-

mation from UML to Alloy. Softw. Syst. Model. 9 (1), 69–86 .
Apt, K.R. , Wallace, M. , 2007. Constraint Logic Programming using ECLiPSe. Cam-

bridge University Press, New York .
Baudry, B. , Ghosh, S. , Fleurey, F. , France, R. , Le Traon, Y. , Mottu, J.-M. , 2010. Bar-

riers to systematic model transformation testing. Commun. ACM 53 (6), 139–

143 .
Brottier, E. , Fleurey, F. , Steel, J. , Baudry, B. , Le Traon, Y. , 2006. Metamodel-based test

generation for model transformations: an algorithm and a tool. In: Software
Reliability Engineering, 2006. ISSRE’06. 17th International Symposium on. IEEE,

pp. 85–94 .
Cabot, J. , Clarisó, R. , Riera, D. , 2008. Verification of UML/OCL class diagrams us-

ing constraint programming. In: Software Testing Verification and Validation

Workshop, 2008. ICSTW’08. IEEE International Conference on. IEEE, pp. 73–
80 .

Duchon, P. , Flajolet, P. , Louchard, G. , Schaeffer, G. , et al. , 2004. Boltzmann samplers
for the random generation of combinatorial structures. Comb. Probab. Comput.

13 (4-5), 577–625 .
Ehrig, K. , Küster, J.M. , Taentzer, G. , 2009. Generating instance models from meta

models. Softw. Syst. Model. 8 (4), 479–500 .

Finot, O. , Mottu, J.-M. , Suny, G. , Attiogb, C. , 2013. Partial test oracle in model trans-
formation testing. In: Duddy, K., Kappel, G. (Eds.), Theory and Practice of Model

Transformations. In: Lecture Notes in Computer Science, vol. 7909. Springer,
Berlin Heidelberg, pp. 189–204 .

Giner, P. , Pelechano, V. , 2009. Test-driven development of model transformations.
In: Schrr, A., Selic, B. (Eds.), Model Driven Engineering Languages and Systems.

In: Lecture Notes in Computer Science, vol. 5795. Springer, Berlin Heidelberg,
pp. 748–752 .

González, C.A. , Cabot, J. , 2012. Atltest: a white-box test generation approach for ATLl

transformations. In: Model Driven Engineering Languages and Systems. Springer,
pp. 449–464 .

Guerra, E. , Soeken, M. , 2013. Specification-driven model transformation testing.
Springer, Berlin Heidelberg, pp. 1–22 .

He, X. , Zhang, T. , Ma, Z. , Shao, W. , 2014. Randomized model generation for perfor-
mance testing of model transformations. In: 38th Annual International Com-

puter Software and Applications Conference (COMPSAC’14). IEEE, pp. 11–20 .

Jackson, D. , Schechter, I. , Shlyakhter, I. , 20 0 0. Alcoa: the alloy constraint analyzer. In:
Software Engineering, 20 0 0. Proceedings of the 20 0 0 International Conference

on. IEEE, pp. 730–733 .
Küster, J.M. , Gschwind, T. , Zimmermann, O. , 2009. Incremental development of

model transformation chains using automated testing. In: Model Driven Engi-
neering Languages and Systems. Springer, Berlin, Heidelberg, pp. 733–747 .

McQuillan, J.A. , Power, J.F. , 2008. A metamodel for the measurement of object-ori-

ented systems: an analysis using alloy. In: Software Testing, Verification, and
Validation, 2008 1st International Conference on. IEEE, pp. 288–297 .

Mougenot, A. , Darrasse, A. , Blanc, X. , Soria, M. , 2009. Uniform random generation
of huge metamodel instances. In: Model Driven Architecture-Foundations and

Applications. Springer, Berlin, Heidelberg, pp. 130–145 .
Object Management Group, 2011. OMG Meta Object Facility (MOF) Core Specifica-

tion Version 2.4.1.

Object Management Group, 2012. OMG Object Constraint Language (OCL) Specifica-
tion Version 2.3.1.

Pérez, C.A.G. , Buettner, F. , Clarisó, R. , Cabot, J. , et al. , 2012. Emftocsp: a tool for the
lightweight verification of EMF models. Formal Methods in Software Engineer-

ing: Rigorous and Agile Approaches (FormSERA) .
Sen, S. , Baudry, B. , Mottu, J.-M. , 2008. On combining multi-formalism knowledge to

select models for model transformation testing. In: Software Testing, Verifica-

tion, and Validation, 2008 1st International Conference on. IEEE, pp. 328–337 .
Shelburg, J. , Kessentini, M. , Tauritz, D. , 2013. Regression testing for model trans-

formations: a multi-objective approach. In: Ruhe, G., Zhang, Y. (Eds.), Search
Based Software Engineering. In: Lecture Notes in Computer Science, vol. 8084.

Springer, Berlin Heidelberg, pp. 209–223 .
Soeken, M. , Wille, R. , Drechsler, R. , 2011. Encoding ocl data types for sat-based ver-

ification of UML/OCL models. In: Tests and Proofs. Springer, Berlin, Heidelberg,

pp. 152–170 .
Soeken, M. , Wille, R. , Kuhlmann, M. , Gogolla, M. , Drechsler, R. , 2010. Verifying

UML/OCL models using boolean satisfiability. In: Proceedings of the Conference
on Design, Automation and Test in Europe. European Design and Automation

Association, pp. 1341–1344 .
Song, H. , Huang, G. , Chauvel, F. , Xiong, Y. , Hu, Z. , Sun, Y. , Mei, H. , 2011. Supporting

runtime software architecture: a bidirectional-transformation-based approach. J.
Syst. Softw. 84 (5), 711–723 .

Van Amstel, M. , Bosems, S. , Kurtev, I. , Pires, L.F. , 2011. Performance in model trans-

formations: experiments with ATL and QVT. In: Theory and Practice of Model
Transformations. Springer, Berlin, Heidelberg, pp. 198–212 .

Van Amstel, M.F. , Van Den Brand, M.G. , 2011. Model transformation analysis: staying
ahead of the maintenance nightmare. In: Theory and Practice of Model Trans-

formations. Springer, pp. 108–122 .
Wu, H. , Monahan, R. , Power, J.F. , 2012. Metamodel instance generation: a systematic

literature review. Softw. Eng. . arXiv preprint arXiv:1211.6322.

For Research Only

http://refhub.elsevier.com/S0164-1212(16)30029-2/sbref0001
http://refhub.elsevier.com/S0164-1212(16)30029-2/sbref0001
http://refhub.elsevier.com/S0164-1212(16)30029-2/sbref0001
http://refhub.elsevier.com/S0164-1212(16)30029-2/sbref0001
http://refhub.elsevier.com/S0164-1212(16)30029-2/sbref0001
http://refhub.elsevier.com/S0164-1212(16)30029-2/sbref0002
http://refhub.elsevier.com/S0164-1212(16)30029-2/sbref0002
http://refhub.elsevier.com/S0164-1212(16)30029-2/sbref0002
http://refhub.elsevier.com/S0164-1212(16)30029-2/sbref0003
http://refhub.elsevier.com/S0164-1212(16)30029-2/sbref0003
http://refhub.elsevier.com/S0164-1212(16)30029-2/sbref0003
http://refhub.elsevier.com/S0164-1212(16)30029-2/sbref0003
http://refhub.elsevier.com/S0164-1212(16)30029-2/sbref0003
http://refhub.elsevier.com/S0164-1212(16)30029-2/sbref0003
http://refhub.elsevier.com/S0164-1212(16)30029-2/sbref0003
http://refhub.elsevier.com/S0164-1212(16)30029-2/sbref0004
http://refhub.elsevier.com/S0164-1212(16)30029-2/sbref0004
http://refhub.elsevier.com/S0164-1212(16)30029-2/sbref0004
http://refhub.elsevier.com/S0164-1212(16)30029-2/sbref0004
http://refhub.elsevier.com/S0164-1212(16)30029-2/sbref0004
http://refhub.elsevier.com/S0164-1212(16)30029-2/sbref0004
http://refhub.elsevier.com/S0164-1212(16)30029-2/sbref0005
http://refhub.elsevier.com/S0164-1212(16)30029-2/sbref0005
http://refhub.elsevier.com/S0164-1212(16)30029-2/sbref0005
http://refhub.elsevier.com/S0164-1212(16)30029-2/sbref0005
http://refhub.elsevier.com/S0164-1212(16)30029-2/sbref0006
http://refhub.elsevier.com/S0164-1212(16)30029-2/sbref0006
http://refhub.elsevier.com/S0164-1212(16)30029-2/sbref0006
http://refhub.elsevier.com/S0164-1212(16)30029-2/sbref0006
http://refhub.elsevier.com/S0164-1212(16)30029-2/sbref0006
http://refhub.elsevier.com/S0164-1212(16)30029-2/sbref0006
http://refhub.elsevier.com/S0164-1212(16)30029-2/sbref0007
http://refhub.elsevier.com/S0164-1212(16)30029-2/sbref0007
http://refhub.elsevier.com/S0164-1212(16)30029-2/sbref0007
http://refhub.elsevier.com/S0164-1212(16)30029-2/sbref0007
http://refhub.elsevier.com/S0164-1212(16)30029-2/sbref0008
http://refhub.elsevier.com/S0164-1212(16)30029-2/sbref0008
http://refhub.elsevier.com/S0164-1212(16)30029-2/sbref0008
http://refhub.elsevier.com/S0164-1212(16)30029-2/sbref0008
http://refhub.elsevier.com/S0164-1212(16)30029-2/sbref0008
http://refhub.elsevier.com/S0164-1212(16)30029-2/sbref0009
http://refhub.elsevier.com/S0164-1212(16)30029-2/sbref0009
http://refhub.elsevier.com/S0164-1212(16)30029-2/sbref0009
http://refhub.elsevier.com/S0164-1212(16)30029-2/sbref0010
http://refhub.elsevier.com/S0164-1212(16)30029-2/sbref0010
http://refhub.elsevier.com/S0164-1212(16)30029-2/sbref0010
http://refhub.elsevier.com/S0164-1212(16)30029-2/sbref0011
http://refhub.elsevier.com/S0164-1212(16)30029-2/sbref0011
http://refhub.elsevier.com/S0164-1212(16)30029-2/sbref0011
http://refhub.elsevier.com/S0164-1212(16)30029-2/sbref0012
http://refhub.elsevier.com/S0164-1212(16)30029-2/sbref0012
http://refhub.elsevier.com/S0164-1212(16)30029-2/sbref0012
http://refhub.elsevier.com/S0164-1212(16)30029-2/sbref0012
http://refhub.elsevier.com/S0164-1212(16)30029-2/sbref0012
http://refhub.elsevier.com/S0164-1212(16)30029-2/sbref0013
http://refhub.elsevier.com/S0164-1212(16)30029-2/sbref0013
http://refhub.elsevier.com/S0164-1212(16)30029-2/sbref0013
http://refhub.elsevier.com/S0164-1212(16)30029-2/sbref0013
http://refhub.elsevier.com/S0164-1212(16)30029-2/sbref0014
http://refhub.elsevier.com/S0164-1212(16)30029-2/sbref0014
http://refhub.elsevier.com/S0164-1212(16)30029-2/sbref0014
http://refhub.elsevier.com/S0164-1212(16)30029-2/sbref0014
http://refhub.elsevier.com/S0164-1212(16)30029-2/sbref0015
http://refhub.elsevier.com/S0164-1212(16)30029-2/sbref0015
http://refhub.elsevier.com/S0164-1212(16)30029-2/sbref0015
http://refhub.elsevier.com/S0164-1212(16)30029-2/sbref0016
http://refhub.elsevier.com/S0164-1212(16)30029-2/sbref0016
http://refhub.elsevier.com/S0164-1212(16)30029-2/sbref0016
http://refhub.elsevier.com/S0164-1212(16)30029-2/sbref0016
http://refhub.elsevier.com/S0164-1212(16)30029-2/sbref0016
http://refhub.elsevier.com/S0164-1212(16)30029-2/sbref0017
http://refhub.elsevier.com/S0164-1212(16)30029-2/sbref0017
http://refhub.elsevier.com/S0164-1212(16)30029-2/sbref0017
http://refhub.elsevier.com/S0164-1212(16)30029-2/sbref0017
http://refhub.elsevier.com/S0164-1212(16)30029-2/sbref0017
http://refhub.elsevier.com/S0164-1212(16)30029-2/sbref0017
http://refhub.elsevier.com/S0164-1212(16)30029-2/sbref0018
http://refhub.elsevier.com/S0164-1212(16)30029-2/sbref0018
http://refhub.elsevier.com/S0164-1212(16)30029-2/sbref0018
http://refhub.elsevier.com/S0164-1212(16)30029-2/sbref0018
http://refhub.elsevier.com/S0164-1212(16)30029-2/sbref0019
http://refhub.elsevier.com/S0164-1212(16)30029-2/sbref0019
http://refhub.elsevier.com/S0164-1212(16)30029-2/sbref0019
http://refhub.elsevier.com/S0164-1212(16)30029-2/sbref0019
http://refhub.elsevier.com/S0164-1212(16)30029-2/sbref0020
http://refhub.elsevier.com/S0164-1212(16)30029-2/sbref0020
http://refhub.elsevier.com/S0164-1212(16)30029-2/sbref0020
http://refhub.elsevier.com/S0164-1212(16)30029-2/sbref0020
http://refhub.elsevier.com/S0164-1212(16)30029-2/sbref0021
http://refhub.elsevier.com/S0164-1212(16)30029-2/sbref0021
http://refhub.elsevier.com/S0164-1212(16)30029-2/sbref0021
http://refhub.elsevier.com/S0164-1212(16)30029-2/sbref0021
http://refhub.elsevier.com/S0164-1212(16)30029-2/sbref0021
http://refhub.elsevier.com/S0164-1212(16)30029-2/sbref0021
http://refhub.elsevier.com/S0164-1212(16)30029-2/sbref0022
http://refhub.elsevier.com/S0164-1212(16)30029-2/sbref0022
http://refhub.elsevier.com/S0164-1212(16)30029-2/sbref0022
http://refhub.elsevier.com/S0164-1212(16)30029-2/sbref0022
http://refhub.elsevier.com/S0164-1212(16)30029-2/sbref0022
http://refhub.elsevier.com/S0164-1212(16)30029-2/sbref0022
http://refhub.elsevier.com/S0164-1212(16)30029-2/sbref0022
http://refhub.elsevier.com/S0164-1212(16)30029-2/sbref0022
http://refhub.elsevier.com/S0164-1212(16)30029-2/sbref0023
http://refhub.elsevier.com/S0164-1212(16)30029-2/sbref0023
http://refhub.elsevier.com/S0164-1212(16)30029-2/sbref0023
http://refhub.elsevier.com/S0164-1212(16)30029-2/sbref0023
http://refhub.elsevier.com/S0164-1212(16)30029-2/sbref0023
http://refhub.elsevier.com/S0164-1212(16)30029-2/sbref0024
http://refhub.elsevier.com/S0164-1212(16)30029-2/sbref0024
http://refhub.elsevier.com/S0164-1212(16)30029-2/sbref0024
http://refhub.elsevier.com/S0164-1212(16)30029-2/sbref0025
http://refhub.elsevier.com/S0164-1212(16)30029-2/sbref0025
http://refhub.elsevier.com/S0164-1212(16)30029-2/sbref0025
http://refhub.elsevier.com/S0164-1212(16)30029-2/sbref0025
http://refhub.elsevier.com/S0164-1212(16)30029-2/sbref0025

264 X. He et al. / The Journal of Systems and Software 121 (2016) 247–264

Dr. Xiao is an assistant professor at School of Computer and Communication Engineering, University of Science and Technology Beijing. He is now a visiting professor in
Johann Bernoulli Institute for Mathematics and Computer Science, Faculty of Mathematics and Natural Sciences, University of Groningen. He gained his doctorate in computer

science from Peking University in 2012. His main research interests include model transformation languages, model generation, metamodeling and domain-specific modeling.

Dr. Tian Zhang is an associate professor at the Computer Science and Technology Department of Nanjing University, China. At the same time, he is also a research fellow

at the State Key Laboratory for Novel Software Technology. He obtained the permanent position in Nanjing University after graduation. His overall research interests relate

to model driven aspects of software engineering, with the aim of facilitating the rapid and reliable development and maintenance of both large and small software systems.
Currently, he is in charge of two NNSF projects of China and a Jiangsu Province Research Foundation.

Dr. Chang-Jun Hu is a full professor at school of Computer and Communication Engineering, University of Science and Technology Beijing. He gained his doctorate in

computer science from Peking University in 2001. He obtained the permanent position in University of Science and Technology Beijing in 2004. His main research interests
include domain-specific software engineering, parallel computing, and data engineering.

Dr. Zhiyi Ma is an associate professor at Department of Computer Science and Technology, Peking University. He received the Ph.D. degree in computer science in 1999. His

research interests focus on metamodeling, software modeling method, and model transformation. He is the author of eleven books and more than 100 academic papers.

Prof. Weizhong Shao is a full professor at Peking University. His main research interests include object-oriented technology and UML, operation systems, component-based
systems.

For Research Only

