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Abstract Source instru atfon an important role in dynamic program analysis.
However, current instrumentati lehentations require programmers to write ad hoc
rules that are often too complex €@ usé@and maintain. To address this complexity, we divide
the task of source instrumentation 5: first, the source points are queried, into
which code fragments should be pla dly, the code fragments including con-

textual information are generated and planged into e code through the queried points.
According to this idea, we present a new met edon declarative code queries, which
makes it easier to specify instrumentations te information collected from
expressive code queries. The JIns language provide ouf method is constructed fol-
lowing an SQL-like style, which is well known an@ wid by programmers. We

evaluate the method in terms of the reduced complexity @ instrufiien n specifications
for several common instrumentation tasks.

Keywords Source query - Code instrumentation - Java

1 Introduction

Most dynamic program analysis requires instrumentation, that is, inserting exec 0
fragments into the investigated program to perceive its behavior at runtime.

T. Zhang (0<)) - J. Zhao - X. Li
National Key Laboratory for Novel Software Technology, Nanjing University, Nanjing, China
e-mail: ztluck@nju.edu.cn

X. Zheng
School of Information Technology, Nanjing University of Chinese Medicine, Nanjing, China
e-mail: zhengxiaomei@njutcm.edu.cn

Y. Zhang

Department of Computer Science and Technology, Beijing Electronic Science and Technology
Institute, Beijing, China

e-mail: zhangyan@sei.pku.edu.cn

@ Springer



144 Software Qual J (2015) 23:143-170

instrumentation techniques have been widely used in various software quality assurance
tasks such as debugging, testing, code review, and end-user behavior analysis.

Instrumentation can be accomplished either by modifying the binary code or by mod-
ing the source code. Although mostly used in practice, binary code instrumentation
ires programmers to consider low-level details of the implementation, such as method
and data memory addresses, and their relocating offsets before or after the instrumentation.
hezefore, high-level programming language source code instrumentation is preferred by

errors.
ent source code instrumentation tools are often too complex to specify an

1. Locating or anch@ring ecution point for instrumentation; and
2. Constructing anSns ion code fragment using the contexts of the selected
points.
In this paper, we propos deglarative approach to specify any source code instru-
mentation using a language, JINg, w. h enables programmers both select instrumentation

locations and construct the conte

rumentation code fragments.
(SQL) does for database queries, the JIns

defines a view of the code. The query-based g g inStrumentation helps one anchor the
ectgeontext-dependent information
from the code. When the search returns, instrufént tements can be composed
including the searching results.

Comparing to the state of the art of source instrugi€ntatiofy te

approach has two major advantages:

e Code queries are declarative and expressive. Using predic

search requirements declaratively that can match with statemenfs.
. Instrumentations are fine- grained and context-sensitive. The JIns langu

instrumentation anchors to be located, and the results of the search are used t0'€@
some context-sensitive instrumentations.

The proposed declarative query-based instrumentation method has been implemente
for the Java programming language, and the corresponding prototype instrumentation too
is provided as a set of Eclipse plugins.

The rest of this paper is organized as follows: Sects. 2 and 3 introduce respectively the
features of query and instrumentation parts of the JIns language. Section 4 provides a
solution to calculate the instrumentation running time. Section 5 details the implementation
of JIns language and shows the usage of JIns prototype tool. We evaluate the effectiveness
of the JIns approach through two case studies in Sect. 6. In addition, Sect. 7 compares the
JIns approach with related work, and finally, Sect. 8 draws conclusion that the declarative
JIns approach reduces the complexity of Java code instrumentation, and plans the future
work.
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Fig. 1 Properties and 1 public void show () {

relationships in program 2 for (int i = 0; i < a.size();i++) {
3 a.get(i).trim();
4 }
5%}

structural relationship
method invocations.

programs, such as multilevel class inheritances and multilevel

2.1 Properties and relati@gship ject-oriented programs

An object-oriented program cafl be\@ivided into several elements. For example, a Java
program consists of classes, inter 4 statements, and objects. Each element has
its own properties and several relation her elements.

Figure 1 lists a fragment of Java sotlice, code. ose the statement in Lines 2—4 is
identified by s, we can use the follow propert digdte that the statement is a for-loop:

s.specifyTypef¥fo

In the condition part of this for-loop statement, there i objegt ca
the object is identified by 0. We refer the relationship betWeen the
the object as use:

a, and suppose
op statement and

(where s.specifyType=’for’ and o.name

2.2 The general JIns query language

For arbitrary properties and structures, we need a more expressive query languag c
specify any structural relationships in programs. The JIns code query is designed to lgéate
arbitrary instrumentation points of source code in the declarative style similar to that of the
SQL.

The language allows programmers to specify the type of target code element to be found
such as a class, a method, a statement, or an object. The language also provides pro-
grammers a way to express the query conditions that the target code elements should
satisfy. To describe complex contexts, JIns provides other code elements in two types of
clauses, respectively, for property conditions and relationship conditions. Programmers can
combine the conditions with operators, such as logical connectors and quantifiers, such as
“&&, Il “exist,” “all”.

The following production rules describe the grammar of JIns language:
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S = find Id : T satisfying CS
T = object
| statement
| method
| class
| inter face
CS = {exist Id: T} {all Id: T} where CE
CFE = CFE && CE
|CE || CE
|1 CE
| (CE)
| I&.ATT = 'value’
| Id REL Id
TT = name
| dataType
| speci ficType
| returnType

aramsType
tend
se
c
s
cal

A query command has two parts: targe aration and conditions. The query starts
with the keyword find, and then, the tar e el t Id of the type T is specified in the
form of Id : T. The conditions are defined b tef) the keyword satisfying.

The type T can be one of object, statement, , cl or interface. The identifier Id
is used in the conditions defined in the nontermi the identifiers in conditions
should be declared before being used and unique in€he a mmand. For example,

“s1:statement” defines a statement element that can bgieither @ si
compound statement, and this identifier “S1” can be usedii e fi

The nonterminal CS describes search conditions which the't
satisfy. The rules are defined based on first-order logic with the"quangi
and the expression CE holds with code element Id; whose type is

In the nonterminal CE, Id.Att =' value’ and Id, Rel Id, are atomic
expressions, which can be used to construct more complex conditions using
“7 “,” and “&&,” The first atomic expression, Id.Att = “value,” 1
expression that returns true only if the attribute Aft of the code element Id
“value.” And the second, Id; Rel Id,, describes the relationship between the code elem
Id; and Id,, which returns frue only if the relationship Rel holds.

statement or a
ing conditions.

lement should
rs exist and all,

2.3 JIns language details relating to object-oriented language

In Sect. 2.1, the main elements of object-oriented languages, typically Java, are classified
into the five kinds, such as class, interface, object, statement, and method. We also defined
the properties of each element and the corresponding meanings of properties’ values.
Object elements have three properties: (1) name, representing the identifier of an object
in a program; (2) dataType, representing the type of an object, for example, if an object is
declared as private Map m = new HashMap(), the dataType of object m is Map; (3)
specificType, representing the scope of an object. The value “field” of specificType means
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that the object is a field of a class, the value “local” means that the object is a local
variable of the program, and the value “parameter” means that the object is a parameter
of a method.

The following expression constrains objects with the name “initList,”, and at the same
ti they are not the parameters being passed in:

o.name=’initList’
&& 'o.specificType=’parameter’

e ments have only one property, specifyType, representing the type of a
state in programsg Its value can be “single,” meaning that the statement does not
contain any substatg 5, or “while,” meaning that the statement is a while loop. Sim-
ilarly, other valyg

in programs; (2) retufiType, representing the type of returned values, e.g., the returnType
of String.split(Strin ”; (3) argumentsTypes, representing the list of argu-
ments’ type of a method,ffor le, “String, String” is the value of argumentsTypes of
i ificType, representing the modifier of a method.
The above four properties aregto d to describe the signature of a method. For

example, int Integer.parselnt(Siting) ca atched by the following expression:
m.name=’parseln
&& m.returnT =’int

&& m.argumentsTy tgdng’
&& m.specifyType cupublic’

Class and interface elements both have only pro Nuame, representing the
identifier of the element.
We also define a series of relationship between differefit code e

e extends relationship has three forms: (1) class element exte

element, meaning that a class implements an interface.
e isin relationship has four forms: (1) statement element isln state

statement or a compound statement, and the second statement must be a
statement that means the specifyType value of the second element cannot be “sin
(2) statement element is/n method element, representing that a statement is in a
method; (3) method element, statement element or object element is/n class element§
representing that one of these elements is in a class. For object element, either local
object or field can be used in this relationship; and (4) method element is/n interface
element, representing that a method element is in an interface element.

e use relationship has three forms: (1) statement element use object element, representing
that a statement element use an object element. This relationship is similar to an object
isIn a statement, but the former does not contain any conditions that an object declared
in a declaration statement; (2) method element use object element, representing that a
method element uses an object element. This relationship often used to describe some
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methods using some constants defined in other class; (3) class element use object
element, representing that a class element use an object element.

e change relationship also has three forms: (1) statement element change object element,

representing that a statement changes an object’s value; (2) method element change

ject element, representing that a method modifies an object’s value; and (3) class
element change object element, representing that a class changes an object’s value.

gll relationship has two forms: (1) statement element call method element,

représenting that a method element is called in a statement element; (2) method

t call method element, representing that a method calls another method to

its function.

Alldhese relationships could also be obtained using the static analysis on source code.

In addition to locating ing ation points, another difficulty of automated instrumen-
mentation fragments according to the context of their

3.1 Context-sensitive instrumentationyi ivated example

Suppose that a programmer wants to €heck
List in their loop conditions, change the o
to pick up the proper for-statements, i.e., thos
conditions. Then, she would like to insert diffc¥e
after different for-statements. The inserted fragme
for-statements.

Figure 2 illustrates a sample Java code fragment with tWo for-stat
the requirements, both for-statements are qualified becau
objects of List<String>, in their loop conditions. Hence, the i

the for-statements, using objects of
s after looping. Normally, she has
ects whose type is List in the loop
st ation fragments before and

vary.according to the context of

nts. According to
iables a and b,

b (Fig. 2, Line 13). The final code fragment with 1nserted instrumentations is
Fig. 3.

3.2 Contextualizing the instrumentation templates

This section introduces a method for constructing instrumentation statements using the set
of execution points obtained by code queries in Sect. 2.

Since an instrumentation statement must be relevant to the program context specified by
a query, we extend the query part of JIns language to integrate a template of instru-
mentation statements. The extension takes advantage of the queried results to substitute
placeholders in the template with code element variables in the query.

The example shown in Fig. 3 illustrates the instrumented code with different insertion
fragments for the different for-statements, where Lines 7-8 and Lines 14—17 are the first
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Fig. 2 For-statements that use lprivate List<String> a, b;
List objects 2//...

3 public void fun() {

4 /7.

5 for (int i =0, j =0

6 ; 1 < a.size() && j < b.size()
7 ;o++i, ++5) o

8 String tmpl = a.get(i).trim();
9 String tmp2 = b.get(j).trim();

10 b.set(j, tmpl + tmp2);
11}
12 //. ..
13 for (int i = 0; i < b.size(); ++i) {
14 System.out.println(b.get(i));
15}
16 }
Fig. 3 For-statements with ublic void fun () {
instrumentation int __lenal__;
__lenbl__;
__lena2__;

enb2__;

a.size();
.size ();

.

11 s H+1S

12 // the as Lines 8-10 in Fig. 2
13}

14 __lena2__ = a. e()

15 __lenb2__ = b. e();

16 assert __lenal__=%= 5

17 assert lenbl__==

18 // same as Line 12 1in

19 __lenbl__ = b.size();

20 for (int i = 0; i < b.size()
21 // the same as Line 14 1in
22}

23 __lenb2__ = Db.size;

24 assert __lenbl__ == __lenb2__;
25}

part of instrumentation, and Line 19 and Lines 23-24 are the second part of the instru-
mentation. The differences between the two parts of instrumentations are mainly con-
cerning to the identifiers of the java.util.List objects inside the for-statements. The reason
is obvious: the contexts of instrumentation points are different. Therefore, the context
information is required to generate the corresponding instrumentation code.

In this case, the java.util.List objects, a and b, could be captured by the JIns query
command shown in Fig. 4. The quantified variable, declared by exist o:object, will be
bound to the objects matched by the conditions defined in where block. Line 2-5 defines
four conditions with the variable o for java.util.List objects in the for-statements.
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Fig. 4 Query command example 1 find s:statement satisfying exist o:object
2 where o.dataType="java.lang.List"

&& o.specificType="field"

&& s.specificType="for"

&& s use o

g W

As a result, the first for-statement matches with the objects a and b, and the second for-
t matches with the object b. In this way, the contextualization requirement of
trumentation is solved by recording the context information.

emplates with instrumentation language
We make the follo lﬁ ension to the production rules in Sect. 2.2:

= find Id : T satisfying CS IS
insert before Id IN 1S
insert after Id IN 1S

NULL
ST ring STR
; R
| Strigg
| %I dRAtt%

The nonterminal IS represents an instrume mafand. It starts with the keyword
insert. The keywords before and after indicate tfat stfimentation template will be
inserted before and after the code element Id, defi earld the query part of JIns

plate, which is
ercent signs will

command. The nonterminal /N represents an instrumentatjon statefiien
between a pair of single quotation marks. The content betWeen the
be substituted by the value of code element attributes.

The instrumentation template provides a way for constru€ting instrumentation
statements. It uses the code elements collected in query procesgand substi the
arguments in templates with the values of those matched elements. The que
should have defined all these elements in the form like Id:T, while the
templates must be declared in the form of Id.Att.

guments

1find s:statement

2 satisfying exist o:object

3 where o.dataType=’java.util.List’
4 && o.specificType=’field’

5 && s.specificType=’for’

6 && s use o

7 insert before s

8 ’int __len%o.name%l__=%o.name%.size();’

9 insert after s

10 ’int __len%o.name%2__=%o.name’%.size();

11 assert(__len%o.name%1__==__len’%o.name%2__);’

Fig. 5 Instrumentation command example
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The example in Fig. 5 shows a command that can achieve the required instrumentation
in Fig. 3. The instrumentation templates with parameters containing the context infor-
mation could be used to verify whether the size of java.util.List objects have been changed

er the loop:

int __len%o.name’%1__=%o.name%.size();
int __len%o.name%2__=%o.name%.size();
assert (__len%o.name%1l__==__len%o.name%2__);

starting with the keyw@rd'tsert, Line 7-11. The location anchor for the code to be inserted

is the variable s. g insertion code, Line 8 and 10-11, o.name will be
replaced by the real oObj in the matching process of the query command.

4 Time measurement of mstr@

In many domains, specially real-ti bedded systems, time performance of
implanted fragments needs to be paid aften during testing or analyzing phases.
For example, when a real-time programme extract the run-time path of an
embedded system, she may plant some “prin e ments in the source and then
execute it. Normally, the traces are obtained so hat run-time information could be
analyzed. Unfortunately, the planted code also costs tiffic to which may disturb the

original execution and even cause some unexpected resu

More interesting is that the time effect may vary largelySaccordin
to be planted. These locations could be indicated as time Sen
(2000) gave the detailed discussion on how to detect such kind
instrumenting fragments on source code.

e location where

provide in JIns the way to measure the running time of its constructed fragments.
section provides a method to calculate the running time of instrumentation, so to
evaluate their time performance.

4.1 Calculating the running time of instrumentation

Currently, execution time is usually calculated using static analysis techniques. For
example, static methods and tools have dominated WCET(Worst-Case Execution Time)
estimation of software in hard real-time systems (Wilhelm et al. 2008). It is believed that
the best way to acquire the accurate executing time of a program is calculating at hardware
level, i.e., calculating the instructions on specific CPUs.

Despite many of their advantages, static analysis techniques usually offer heavyweight
methods to calculate and estimate the running time of instrumented code fragments. In
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addition, the result of calculation is still the estimation, and real executions may vary in
different scenarios. Moreover, when testing and debugging programs, the actual and instant
running time that the planted fragments cost is more meaningful to developers. Therefore,

provide a lightweight but effective mechanism in JIns to calculate the running time of
instiumentations.

The command calculating time consumption is provided by extending JIns with a
ord calculate. Users can add calculate after the insert clause to acquire the running
serted fragment. As shown in Fig. 6, on Line 9 the calculate keyword is used to
e planted code of Line 8 will be calculated the time of its execution.
is aim, we design a timer module that records running time and calculates
agged fragments. The timer module is implemented by a RunTime

Yo public methods, start() and end(). Method start() is used to
% !

gfore instrumentation, and end() will calculate the time of

0 : d it. We implement both methods with System.nanoTime()
of JDK API, which getirns a long integer representing the current time of system in
nanosecond. When the JI reter meets the keyword calculate, it will insert Run-
Time.start() before and .end() after the inserted code.

1find s:statem
2 satisfying ex
3 where o.dataTyp
4 && o.specificTyp
5 && s.specificTypeée
6 && s use o

7 insert before s

8 ’int __len%o.name%1__
9 calculate

10 insert after s

11 ’int __len%o.name%2__=%o.nam
12 assert(__len%o.name%1__==__

Fig. 6 JIns command with time calculation (Method 1)

1find s:statement

2 satisfying exist o:object

3 where o.dataType=’java.util.List’

4 && o.specificType=’field’

5 &% s.specificType=’for’

6 && s use o

7 insert before s

8 >RunTime.start ("Before Y%s.contenti");
9 int __len%o.name%1l__=%o.name%.size();

10 RunTime.end("Before %s.content%");’

11 insert after s

12 >RunTime.start ("After Y%s.content%");

13 int __len’o.name%2__=%o.name%.size();

14 assert(__len’%o.name’%1__==__len%o.name%2__);
15 RunTime.end ("After Y%s.content%");’

Fig. 7 JIns command with time calculation (Method 2)
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1find s:statement

2 satisfying exist o:object

3 where o.dataType=’java.util.List’

4 && o.specificType=’field’

5 && s.specificType=’for’

6 && s use o

7 insert before s

8 ’int __len%o.name¥%1l__=%o.name’%.size();’
calculate

0O insert after s
int __len’%o.name%2__=%o.name%.size ();

__len%o.name%1__==__len%o.name%2__);’

1 public O {

2 RunTimél s ("Before for");

3 int __ v a.size();

4 RunTime.end("Befldre for");

5 for (int i i 0; i < a.size();
6 ++i, ++j)

7 String tmpl =W( ing)a.get(i)).trim();
8 String tmp2 = tri .get(j)).trim();
9 b.set(j, tmpl + t

10 }

11 RunTime.start ("After r'"d

12 int __lena2__ = a.size ()

13 assert __lenal__ == __lena2y ;

14 RunTime.end ("After for");

15 RunTime.start ("Before for");

16 int __lenbl__ = b.size();

17 RunTime.end ("Before for");

18 for (int i = 0; i < b.size(); ++i) {
19 System.out.println(b.get(i));

20 }

21 RunTime.start ("After for");

22 int __lenb2__ = b.size();

23 assert __lenbl__ == __lenb2__;

24 RunTime.end("After for");

25 }

Fig. 9 Target code with instrumentation

Users could also declare explicitly RunTime.start() and RunTime.end() in a Jins
command to trace the exact time instance and then calculate the corresponding running
time. As illustrated in Fig. 7, Line 8-10 and Line 12—15 could record and calculate the
executing time of Line 9 and Line 13-14, respectively.
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Table 1 Running time of instrumentations in Fig. 9

ID Run 1st Run 2nd Run 3th Run 4th Run 5th Avg. time Proportion

(ns) (ns) (ns) (ns) (ns) (ns) (%)
N; 41,489 40,207 74,424 41,061 40,634 47,563 16
No. 2" 7,699 8,555 8,126 8,127 8,126 8,127 3
17,536 17,536 18,820 17,536 17,536 17,793 6
7,271 7,272 7,271 7,271 7,271 2
306,679 319,511 292,136 299,408 301,033

culation

% ple of JIns instrumentation command is presented containing

the above sections, and
calculation. The whole
instrumented by this JIns

Figure 9 shows the instrum

o not explain the command lines and focus on the time
d is shown in Fig. 8. The target source to be
example in Fig. 2.

after the execution of the command in Fig. 8.

When executing the program, th nj of each instrumented fragment is calcu-
lated. Based on every single time duration nted fragments, the statistics of the entire
instrumentation with proportions coul iven, a8illustrated in Table 1.

Table 1 lists the running time of the four in ions in Fig. 9 at Line 2—4 (denoted
as No.1), Line 11-14 (No. 2), Line 14-15 ( Line 21-24 (No. 4), respectively.
From Table 1, it could be easily found that the i tation code costs the most
time, on the average 16 % of the total executing tim i is helpful for developers
to know clearly on what degree each instrumented code di§furbs the original source along
the time dimension. In this case, the location of the first ins@gumented e is also known as
the time sensitive points (Tang et al. 2000). This infor very useful in
maintaining the system in future.

5 JIns implementation

The JIns prototype based on Java programming language is composed of four
Source Information Generation, Code Query, Instrumentation Statement Customizati;
and Instrumentation. The Source Information Generation component collects infor
from Java source code and builds the intermediate structures of code. After analyzing code
query commands, the Code Query component processes the query and obtains the query
results with a set of contextual code elements. Then, the Instrumentation Statement Cus-
tomization component generates concrete statements from the specified JIns template that
programmers defined. Finally, the Instrumentation inserts concrete statements into the
target source code.

5.1 Source information generation

We designed an element collector EC to extract and store all information in program, such
as objects, statements, methods, classes, and interfaces from the abstract syntax trees
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(ASTs) of Java source code. This information also includes the location of every code
element such as offset of the element in source file, which is to be used in the later
navigation. The data structure Codelnfo is similar to an AST, except that some unnecessary

ormation is omitted. Inside the Codelnfo, we designed five indices in order to speed up
seafghing process.

Fig. 10 shows the process of Source Information Generation. Initially, it generates all
om source files. Every node in an AST stands for a code structure. If a node is one
g structures, i.e., object, statement, method, class, and interface, the corresponding
urg will be created in EC. Then, the sub-AST will be traversed to find other code

ve relationships with the current node.

Query Command,
Output:
An instance of Quety

1: Match the keyword find
2: Match the target element\am Q.target
3: Match the keyword satisfying

4: while Match the keyword exi null || Match the keyword all # null do
5: Construct the predicate objec ofSETinggafter the keyword
6: Store the predicate into the list whichi % predicates
7: end while
8: Match the keyword where
9: while !finish the scanning process do

10: if Match ATT conditional expression then

11: Construct an instance of AttrCondition

12: Store it into the list which named Q.condition

13: else if Match REL conditional expression then

14: Construct an instance of RelCondition

15: Store it into the list which named Q.condidionLex

16: else if Match operator then

17: Construct an instance of Operator

18: Store it into the list which named Q.condidionLex

19: else

20: return

21: end if

22: end while
23: return Q

Parsing and Preprocessing The process of parsing and preprocessing scans the y
command from the head of string and check if it is in coincidence with the grammar.
Algorithm 1 shows the main steps of the process. At the same time, all the declarations o
elements, in the form of “Id:T,” are recorded during the process. More specifically, the
alias name Id and type T are recorded and capsulated into the separated elements so as to
be searched respectively. After all, the process transforms the conditional expression CE to
a list that contains Rel, Attr, and operators.

A Java class Query is designed to encapsulate the searching functions of a JIns
command, which is the implementation of the JIns query command described in Sect. 2. In
the class Query, Query.target represents the code elements which should be found,
Query.predicate stores all predicates used in the conditional expressions, and
Query.conditionLex stores all the conditional expressions.
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JDT AST

Travel the AST
nodes

‘!

Aode is an

Property of Relationship

its root is curre the CE of the CE

node

Create a type Travel the AST

instance in EC again
Fig. 10 Process of source information generafion
Querying the Target Code Element If G eck and Preprocess are finished
without finding any syntax errors, querying proc 1t tarted. This process follows
the conditions that are specified in the query comma sear target element set. In the
previous step, EC has collected five types of code elements, the game type is in one

to compute the intersection of sets and the union of sets, etc:

A list of conditional expressions is also built in the previou
Precedence Grammar to analyze the list and conduct relevant set operafion. First, we define
priority of every operator as shown in Table 2. Then, Algorithm 2 is uSed to ana ist.

defined as “obj:object,” and the current operation is “clazz.name='‘Main’ &
type=‘int’“. Thus, the tool will remove any elements that are not named “Main” in the set
Sclazz» and remove any elements whose type are not “int* in the set Soy;. After that, it wi
compute the intersection of Scj,,, and Sy to create a new set S,,. Similarly, it may compute
another conditional expression using the operator “Il,” e.g., “S,, Il Q. After getting the set of
S, it computes the union of S, and S,,. Following the above steps, the final result is obtained.

5.2 Instrumentation statement customization
Next, real statements to be inserted into the target source code are constructed according to

the instrumentation templates specified by users. First, the set S, is analyzed which contains
all code elements satisfying programmers’ query conditions. In the specified templates
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Table 2 Priority of operators

! [ && ( ) #
< > > < > >
Il < > < < > >
&& < > < < > >
< < < < = E
< > > E > >
E E E E E =

V"E=E Status

defined in user’s
stored in the
source code.

mand, arguments like “%o.name%“ are substituted using values
stituted string is the statement to be inserted into the target

Algorithm 2 Query o) n Operator Precedence Grammar
Input:

Element collector EC

conditional expression list condi
Output:

The elements which satisfy the users’ spgcifica

1: Initialize the stack of operator op_stack

2: Initialize the stack of operand r_stack

3: for all Lex object [ in the conditionLexr do

4: if [ is an ATT or a REL then

5: Push [ into the r_stack

6: else if [ is an Operator then

7 if I’s priority larger than top(op_stack) then
8: Push [ into op_stack

9: else if I’s priority equals with top(op-stack) then
10: Pop op_stack
11: else
12: Pop r_stack, and do set operation
13: end if
14: end if
15: end for

16: return element pop up from r_stack

5.3 Code insertion

In fact, code insertion to the target program is implemented not on the original source code.
It is happened on a copy of the target program file. The original program file, assuming the
name as“filename.java,” is renamed as “filename.java.bak_0” before instrumentations.

After all the customized instrumentation statements being generated, the target source
code elements are marked with these instrumentations. These markers record the offsets of
statements to be instrumented in the source file as well as the corresponding line numbers
of statements.

Programmers are allowed to preview and confirm the inserted contents. If the instru-
mentation code is correct, they proceed with the real instrumentation. Otherwise, the
instrumented code can roll back, and programmers could rewrite the command again.
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Users can perform instrumentations many times on a program. Each time the currently
file is renamed by adding a suffix “.bak_i”. Therein, the number “i” is the number of times
being instrumented. The original program file is renamed by adding the suffix “.back_0.”

e benefits of the renaming mechanism are as follows: (1) the history of instrumentations
could be tracked so as to roll back to a certain version; and (2) in the case of system crash,

users could pick up manually the proper version to resume.

ing of the prototype

pe tool is currently designed for Java source code instrumentation and also

on which users could
also provides a functj
the projects, current selected resources.

After closing the com e tool will search all locations satisfying the query
command in a table, as sho . 1'b. Each line contains the location Id and type of
the relevant code element, cofitentfof code element and the concrete information of
location. If programmers find tha locations are not wanted, they could use

trash operation at the top right of view back the query operation.

contents to be inserted into the source code. In'th or wifidow containing the source file,

these markers are on the left side: red arrows 1€ate that the instrumentation
statements will be inserted before the line, while thefblue arkers indicate that the
instrumentation statements will be inserted after the line.

If programmers believe that the locations and the cont@ats of t rumentations are

correct, they could choose the insert operation indicated by the pesfifcon om top right of the
viewer. As a result, code fragments will be inserted into the soufce fil gure 11d shows
the example after instrumentation.

Query @SS ({21 problems | @ Javadoc (S Declaration £ DFFs View QS CadeQuenii3

Searched 1 Java file(s). Collect Time: 10ms. Parse Time: Oms. Run Time: Oms.

| Query | Instrument

D Type Content

Please enter the query statement and instrument content: E Statement for (int i

i < asize(; i++) { ((String)a.get(i)trim(;}

| - 2 Statement for (int i=0;

© All opened project(s)

basize(; i++) { System.out.printin(b.get());)

Current project

Selected resouces
public void show() {

A [ cancel

public void show() {
for (int i = 0; i< a.size(); i++) { /
((String) a.get(i)).vrim(): System. out

) for (int
System. o

ntln(a.size()):

;i< b.size(); 1+4) {

.princin(b.get(i));

for (int i = 0; i < b.size(); i++) {
System.out.printin(b.get(i));

} c System.out.println(a.size()); D
] )

- e - -

Fig. 11 Process of source information generation
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6 Evaluation

This section evaluates the provided prototype tool by comparing some other instrumen-
ion tools widely used, such as BCEL 'and Soot (Valle-Rai et al. 2000). To illustrate the

AGTCG is a tool
running the progg

according to specific goverage criterion, AGTCG tool could reduce the number of test case

sets to only containigg th ing the test adequacy criteria. One important part in the
core of AGTCG is captfir execution traces of programs, which is conducted by
calling an existing binar; teeodgimstrumentation tool, named BCEL.

Algorithm 3 Algorithm of AGTC

Input:
Clist: A list of Class names in an activit;
Mlist: A list of Method names in an activity dj
Jlist: A list of JAVA code files

Output:

Java code file with instrumentation

1: for each JAVA code file jcf € Jlist do

2 while curToken = jcf.nextToken()! = NULL do
3 if curToken == “class” then

4: curToken = jcf.nextToken();

5: if curToken is in the Clist then

6: curClass = curToken;

7 else

8: curClass = NULL;

9: end if
10: end if
11: if curClass! = NULL&curToken € Mlist then
12: Insert log.write(curClass, curToken, “begin”);
13: tempToken = curToken;
14: Locate the curToken to the end of the method;
15: Insert log.write(curClass, tempToken, “end”);
16: end if
17: end while
18: end for

From an UML activity diagram, AGTCG finds classes and methods to be analyzed, and
stores them into several lists. Then, it searches the related byte-code files. When all these
conditions are met, it traverses these files one by one to find if these classes or methods are
in the lists. If yes, it will insert probes into the byte-code file. At last, it executes the
program with instrumentations and obtains the execution traces.

! http://jakarta.apache.org/bcel/
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The instrumentation module of AGTCG is implemented by calling BCEL APIs. For the
reason that BCEL only provides several APIs to dealing with byte-code of Java program,
authors have to design their instrumentation algorithms and then implement them by

mselves. The Algorithm 3 shows the process of instrumentation with BCEL in AGTCG.
Steps, 12 and 15 are implemented by calling a series of BCEL APIs. There are a lot of byte-
code details in the source code, such as constant pool copy, INVOKEVIRTUAL instruc-
Al OAD instruction. In fact, the total of instrumentation code in AGTCG is over

rast, JIns command could be built to accomplish the same goal instead of BCEL
; e ntences. For each method in the MList, two JIns commands can be used
insteadgfdefined respectively on Line 1-8 and Line 10-17 in Fig. 12. These two query

the original executiomy €specially in real-time systems, and may even cause some unex-
pected results. Though it i cessary of calculating time cost in the case of AGTCG,
still, we present the statigfic e consumptions in Table 3 to show the time effect of
the instrumented code.

The values in Table 3 are Calgulafed by running the case study of AGTCG in (Mingsong
et al. 2006). There are 14 instrumentation points matched by the JIns query command, and
the ID numbers are assigned acc < er of their appearance in the source code.

by AGTCG itself. The 4th test case
(0533002, 002007, false, 175, true, 22.43 % because it covers 13 paths among
[ d

re cafeulated in nanosecond, and the
o tufie.
As shown in Table 3, the statistics of time consumptions ir proportion reflect the

impact of each inserted code on the time dimension. Mos
except No. 6 and No. 14, consume very little time less the

tal running time.

left inserted fragments, No. 6 and No. 14, cost more time than ot
maximum time consumption costs over two hundreds times of No. the minimpum time
so much lies in the difference of the corresponding instrumentation points. E
Li et al. gave the detailed discussion about it in (Tang et al. 2000).

According to the statistics of the time effect by instrumentations, developer
know precisely that on what extend each inserted code disturbs the executing time of
original program. For example, as shown in Table 3, the instrumentation No. 14 consfifhes
on the average 2.09 % of the total executing time. Therefore, the developers should kee
vigilant about this point in testing, debugging, and maintenance of the system.

6.2 JDAMA: SOQT vs. JIns

JDAMA (Java Database Application Mutation Analyzer) is a mutation testing tool for Java
programs that interacts with a database via the JDBC interface. The tool extends the
mutation testing approach for SQL provided by Tuya et al. (2006), Javier and de la (2007),
through analyzing and dynamically running byte-code programs with instrumentations.
The instrumentation module of JDAMA is inherited from BodyTransformer, an abstract
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161

find s:statement

&& s isIn m
&& m isIn c
insert before s[0]

0 ~NOo O WN -

calculate

o

find s:statement

’log.write (%,c.name,

satisfying exist m:method exist c:class
where m.name=‘method’

%m.name%,

atisfying exist m:method exist c:class

.name=’method’
ecifyType=’return’
Iin m & m isIn

"begin“);

).
>

15 er s

16 ; .write (c.name’, %m.name%, "end");’;

17 callcu
Fig. 12 JIns instrumentatiorgcom
Table 3 Running time of each inst
1D Run Run Run Avg. Proportion

1st (ns) 2nd (ns) 5th (ns) Time (ns) (%)
No. 1 1812882ns 592597 711778 413163 833409.4 0.04 %
No. 2 446268 474409 421107 565 424087.25 0.02 %
No.3 336357 368800 70087615 53782 500644.75 0.02 %
No.4 401576 435012 601204 435012 40, 455604.2 0.02 %
No.5 410514 368469 359862 363503 193 2 0.02 %
No. 6 351254 11234173 343309 337349 73.4 0.12 %
No.7 90994023 5157576 342316 346288 363173 25 0.07 %
No. 8 325432 324107 426404 389988 309872 0.6
No.9 482685 3360585 343639 350261 394292 6292.4
No. 10 348606 7277350 361848 765410 483347 1847312
No. 11 478547 489968 506852 445937 471429 478546.5
No. 12 412169 492285 344302 31029876 502879 437908.7
No. 13 322452 318480 380388 315830 303912 328212.4 019
No. 14 94293693 75868245 24175289 34836398 7858360 47406397 2.09
TT 10773674479 171276284 149953403 177807095 42740776 2263090407 100.00%

YTIT Totle time of running instrumented program

class in Soot, and implements its method internalTranform(). The method internal-
Tranform() is also used to add a method invocation after each query execution point.

In the instrumentation module of JDAMA, the byte-code instructions of target program
is traversed, and the instrumentation points are located by the method executeQue-
ry(String queryStr). Then, the context information is collected by some code developed
by users. After that, the method MutantChecker(String, int) is called to insert code into

the points.
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Before re-implementing the instrumentation module using JIns, we illustrated the
pattern of instrumentation process in JDAMA in detail as the follows: (1) iterate the byte-
code instructions of the target program; (2) retrieve execution points at the signature
a.sql.Statement: java.sql.ResultSet executeQuery(java. lang.String), and (3) add
vocation of MutantChecker(String, int) method after each execution point in the
class file. This function call has two arguments, i.e., the concrete query being executed and
upigue number identifying the execution point. After instrumentation, JDAMA saves the
iffermediate program files in Jimple (Valle-Rai et al. 2000) format, which could be seen

@ nsion based on Java source. Figure 13 shows a simple example fragment of code

0 instrumentation, and Fig. 14 shows the case after instrumentation in form

entation process in JDAMA is very similar to that of JIns, e.g.,
they both perforg tations in the steps of querying locations, generating con-

textualized cog g code to target programs, but JDAMA leaves the job of
programming to user: the contrary, JIns provides a high level of language and hides
away the job of imp

To accomplish th mentation goal, a much simpler way of using JIns
command could be used Wstead? a hown in Fig. 15. It is obviously that, in terms of

lines of code, the JIns command iS¥far fess then those using Soot APIs in JDAMA.

7 Related work

Existing instrumentation techniques can be ided into two categories: instru-
mentation based on specific points in sour msgand instrumentation based on
generic instructions in binaries.

AOP tools are representative of the former Tool§based ales et al. 1997)

. Aspect] ? is a
entation work by

can insert instrumentations into program according to p
heavyweight implementation of AOP. Users can complet

branch and scope limiting. These joinpoints provide great conv
limit the flexibility in instrumentation points selection. For examp

can perform instrumentation at the statement level to offer more flexibility t
respect to instrumentations.

loop invariants, and one wants to check if the size of the List objects is changed in the
statements. The probes must be inserted before and after the for-statements. Aspect] cdfinot
finish this instrumentation work.

In the example, users must find out all the for-statements satisfying the specification. In
coverage-oriented testing method, it requires to get the exhaustive execution traces of a
program. The instrumentation module must insert probes for if-else branches, loop state-
ments, and some special code blocks. Aspect] cannot implement instrumentation at the
statement level.

In addition, JIns is a declarative approach that aims at providing users a high-level
language, simple, and expressive, to specify query and instrumentation requirements. By

2 http://eclipse.org/aspectj/
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1 public static void findByPrice(Connection con,

2 int x, int y) throws SQLException,

3 Exception {

4 String queryStr;

5 if(x == 0) {

6 queryStr = "SELECT cof_name FROM

7 coffees WHERE price = " +

3 yo+ ot

} else {

0 queryStr = "SELECT sup_name, cof_name
FROM coffees, suppliers WHERE

2 fees.sup_id = suppliers.sup_id

13 rice <= u+y.+n ;u;

14

15 stmt=con.createStatement () ;

16 et rs=stmt.

17 execfite queryStr);
18 // ... [€o hat outputs the result set
19}

Fig. 13 Code fragment to be analyzgd in YRAMA

using Aspect] as an instrumentation t@0 mainly work at the programming level,
similar to the cases discussed in Sect. §

We can categorize others as Non-AOP fo eypare mainly implemented based on
binary (or byte-code) instructions. For exam ndgNethecote and Seward 2007),
Pin (Luk et al. 2005), Nuntia (van der et al. 2! . B Wetc. The common feature of
these tools is that they all manipulate the instruct f pr such that instrumenta-

tions can be inserted between instructions. Therefore, th re flexible than
others based on source code. Meanwhile, they can reach t ini verse influence to
time and space performance and do not require the availa
feature also causes some disadvantages.

First, binary instrumentation approach cannot focus on instrumentafion at the statement
level in the source code. For example, it cannot distinguish among for-statem ble-
statement and do-while-statement from Java byte-code, because all of these
compiled to IF instructions. For the same reason, continue-statement and brga
cannot be distinguished, either.

Second, users must know the details of program binary/byte-code. For example, B
can recount instruction’s offset in the process of instrumentation, but programmer:
need to know some details of JVM instructions, e.g., the constants pool. Therefore, these
tools cannot help programmers locate the instrumentation points at a high level o
abstraction

In addition, designing instrumentation programs require familiarity to the APIs provided
by the libraries specific to different tools. As a consequence, the instrumentations using
such APIs are not succinct. For example, using BCEL to rewrite a field in class requires
around 200 lines of extra code, which may extend to over 400 lines in Valgrind.

SQL-like language is easy-to-use The JIns Language makes use of predicate logic
expression to describe the instrumentation location. The most important issue of the
process is how to identify the relationships between instrumentation locations and other
program elements. Some other tools also provide such kind of functionality. For example,
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1 public static void findByPrice
2 (java.sql.Connection, int, int)
3 throws java.sql.SQLException,
4 java.lang.Exception {
java.sql.Connection r0;
int i0, i1, i2, $i3, $i4, ib5, $i6, $i7;
7 java.lang.StringBuilder $r1, $r2, $r3, $r5, $r6, $r7;
8 java.lang.String r4, $ri3, $ri19;

java.sql.Statement $r8;
java.sqgl.ResultSet r9;
] .sql.ResultSetMetaData r10;

a
12 java.lang.StringBuffer $ril, ri12, $ri7, ri8;
13 java.iglBrintStream $ri6, $r22;

14 boolg D, ;

15 r0 : java.sql.Connection;

16 i0

17 i1

18 if io

19 $r1 jagadlang.StringBuilder;

20 specialin java.lang.StringBuilder :\\

21 void <init>(java.
22 FROM COFFEES WHER

ing)>(" SELECT cof_name\\
")

23 $r2 = virtuali java.lang.StringBuilder:
24 java.lang.StringBuildexy ad (int) >(il);
25 $r3 = virtualinvoke .lang.StringBuilder:

a . lang.String)>(";");
.StringBuilder:

26 java.lang.StringBuilder
27 r4 = virtualinvoke $r3.
28 java.lang.String toString()>
29 goto labell;

30 labelO:

31 $r5 = new java.lang.StringBuildeg;
32 specialinvoke $r5.<java.lang.St

33 <init>(java.lang.String)>("SELECT sup_
34 FROM coffees, suppliers WHERE coffees.s
35 suppliers.sup_id AND price <= ");

void

36 $r6 = virtualinvoke $rb5.<java.lang.StringBuilde
37 java.lang.StringBuilder append(int)>(il);

38 $r7 = virtualinvoke $r6.<java.lang.StringBui

39 java.lang.StringBuilder append(java.lang.String)>
40 r4 = virtualinvoke $r7.<java.lang.StringBuilde
41 java.lang.String toString()>(Q);

42 labell:

43 $r8 = interfaceinvoke r0.<java.sql.Connection:
44 java.sql.Statement createStatement ()>();

45 r9 = interfaceinvoke $r8.<java.sql.Statement:
46 java.sql.ResultSet executeQuery(java.lang.String)>(r4);
47 staticinvoke <instrumenter.Mutation: void

48 MutantChecker (java.lang.String,int)>(r4, 1);

49 //...Jimple code that uses result set

50 return;

51 }

Fig. 14 Jimple code fragment after instrument in JDAMA
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1find s:statement

2satisfying exist m:method

3 where m.name=’executeQuery’

4 && m.returnType=’java.sql.ResultSet’

5 && m.argumentsType=’java.lang.String’

6 && s call m

7 insert after s

8 ’instrumenter .Mutation

9 .MutantChecker ()m.arguments [0]%, 1);°’

ﬂ 5
Fig. 15, S instrumentation commands for JDAMA
CrocoPat (Beyeunft @
RSF(Rigi(Miilg d a8

However, Crocopat d
it is not possible ¢t
instrumentations.

s RML to describe relationships with program and uses
nsky 1988) standard format) file to store the relationships.
form instrumentations. Since it is a set-oriented calculator,

languages are instructive Some other XML-
are also very popular to programmers, such as

icy could provide similar declarative source
query and instrumentation capabili 8 e XML representation of program ASTs.
XQuery is designed by W3C (World Wi b Consortium) as a query and functional
programming language to query collectioms of XMIf\data. XSLT (Extensible Stylesheet
Language Transformations) is another langua eloped by W3C for transforming
\ 0 documents, they have done
quite well of navigation and manipulation amonggnodés through XPath. Hence, they are
very instructive to developers designing new query®lang well-structured data.
However, if we want to use XQuery/XSLT in Java sour strumentation, a
tured APIs and

mentation well. Aspect] and InsECTJ cannot instrument without crosscutti
are not suitable to loop statements. The typical application of this tools is A
ming. By using BCEL and Soot, users can read instrumented binary code that, I s 1
hard to be comprehended.

Another category of tools and methods are designed for code query (Alves et al. 2011),
such as CPPX/FETCH(Du et al. 2007), CrocoPat, Grok (Holt 2008), and TXL (Cord
2006). CPPX/FETCH is a fact extractor, which can be piped to Crocopat/Grok to query
about the code using the Rigi standard format. Crocopat and Grok can compute regular
expressions as well as transitive closures. In contrast, TXL is a transformation language
which can be applied to instrumentation, though it requires language grammar program-
ming that are not trivial for end-programmers to use.

3 http://http://www.w3.org/
4 http://www.w3.org/TR/xs1t20/
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Most existing instrument tools dedicate themselves in providing more powerful and
effective API to complete instrumentation. However, they ignore how to declaratively
describe instrumentation points and constructing instrumentation statements. This situation

uires programmers to go through hundreds of pages to perform even a small instru-
mefgation task. New program errors are likely to be caused by such programming tasks. By
the design, JIns is a simple, flexible, and effective instrumentation interface to end-

0 mers.

nd future work

We have presented lemented instrumentation approach based on a new code query

query results. The anguage is designed for fine-grained and context-sensitive
instrumentation tasks
d. As indicated by two nontrivial practical case studies,
our framework has beenSgvalu inst the widely used instrumentation frameworks
such as BCEL and SOOT, a ingsighlificant savings in terms of lines of specifications.

Our future work is planned _first, we plan to support more programming
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