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Abstract Source instrumentation plays an important role in dynamic program analysis.

However, current instrumentation implementations require programmers to write ad hoc

rules that are often too complex to use and maintain. To address this complexity, we divide

the task of source instrumentation into two steps: first, the source points are queried, into

which code fragments should be planted; secondly, the code fragments including con-

textual information are generated and planted into source code through the queried points.

According to this idea, we present a new method based on declarative code queries, which

makes it easier to specify instrumentations using contextual information collected from

expressive code queries. The JIns language provided by our method is constructed fol-

lowing an SQL-like style, which is well known and widely used by programmers. We

evaluate the method in terms of the reduced complexity of instrumentation specifications

for several common instrumentation tasks.

Keywords Source query � Code instrumentation � Java

1 Introduction

Most dynamic program analysis requires instrumentation, that is, inserting executable code

fragments into the investigated program to perceive its behavior at runtime. Such
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instrumentation techniques have been widely used in various software quality assurance

tasks such as debugging, testing, code review, and end-user behavior analysis.

Instrumentation can be accomplished either by modifying the binary code or by mod-

ifying the source code. Although mostly used in practice, binary code instrumentation

requires programmers to consider low-level details of the implementation, such as method

and data memory addresses, and their relocating offsets before or after the instrumentation.

Therefore, high-level programming language source code instrumentation is preferred by

programmers given that it can be automated to avoid introducing syntax, type checking,

and semantic errors.

However, current source code instrumentation tools are often too complex to specify an

instrumentation. Specifically, we consider two related requirements for source code

instrumentations: (1) programmers shall be able to flexibly select the points of program

execution to anchor the instrumented code; (2) an instrument statement shall be sensitive to

the context of selected anchors. Accordingly, our instrumentation solution has two parts:

1. Locating or anchoring an execution point for instrumentation; and

2. Constructing an instrumentation code fragment using the contexts of the selected

points.

In this paper, we proposed a declarative approach to specify any source code instru-

mentation using a language, JIns, which enables programmers both select instrumentation

locations and construct the context-sensitive instrumentation code fragments.

Similar to what the structured query language (SQL) does for database queries, the JIns
language simplifies the task of specifying the search requirements for code structures and

defines a view of the code. The query-based source instrumentation helps one anchor the

source location for the instrumentation, as well as collect context-dependent information

from the code. When the search returns, instrumentation statements can be composed

including the searching results.

Comparing to the state of the art of source instrumentation techniques, the JIns
approach has two major advantages:

• Code queries are declarative and expressive. Using predicate logic expressions, JIns
provides expressive yet simple query rules for code, making it suitable to specify the

search requirements declaratively that can match with statements.

• Instrumentations are fine-grained and context-sensitive. The JIns language expresses

instrumentation as parameterized templates whose arguments are replaced by the

matching query results. This allows more flexible and fine-grain (statement-level)

instrumentation anchors to be located, and the results of the search are used to construct

some context-sensitive instrumentations.

The proposed declarative query-based instrumentation method has been implemented

for the Java programming language, and the corresponding prototype instrumentation tool

is provided as a set of Eclipse plugins.

The rest of this paper is organized as follows: Sects. 2 and 3 introduce respectively the

features of query and instrumentation parts of the JIns language. Section 4 provides a

solution to calculate the instrumentation running time. Section 5 details the implementation

of JIns language and shows the usage of JIns prototype tool. We evaluate the effectiveness

of the JIns approach through two case studies in Sect. 6. In addition, Sect. 7 compares the

JIns approach with related work, and finally, Sect. 8 draws conclusion that the declarative

JIns approach reduces the complexity of Java code instrumentation, and plans the future

work.
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2 The JIns approach: code query

Code query is fundamental to many tasks in software engineering (Verbaere et al. 2008).

Most query tools are designed to help developers understanding varied and complex

relationships in code structures. One representative tool is grep, a full-text search utility

program that searches files or standard inputs for the lines matching some given regular

expressions. Although efficient, string-based regular expressions cannot describe certain

structural relationships in programs, such as multilevel class inheritances and multilevel

method invocations.

2.1 Properties and relationships in object-oriented programs

An object-oriented program can be divided into several elements. For example, a Java

program consists of classes, interfaces, methods, statements, and objects. Each element has

its own properties and several relationships to other elements.

Figure 1 lists a fragment of Java source code. Suppose the statement in Lines 2–4 is

identified by s, we can use the follow property to indicate that the statement is a for-loop:

In the condition part of this for-loop statement, there is an object called a, and suppose

the object is identified by o. We refer the relationship between the for-loop statement and

the object as use:

2.2 The general JIns query language

For arbitrary properties and structures, we need a more expressive query language that can

specify any structural relationships in programs. The JIns code query is designed to locate

arbitrary instrumentation points of source code in the declarative style similar to that of the

SQL.

The language allows programmers to specify the type of target code element to be found

such as a class, a method, a statement, or an object. The language also provides pro-

grammers a way to express the query conditions that the target code elements should

satisfy. To describe complex contexts, JIns provides other code elements in two types of

clauses, respectively, for property conditions and relationship conditions. Programmers can

combine the conditions with operators, such as logical connectors and quantifiers, such as

‘‘&&,‘‘ ‘‘||,’’ ‘‘exist,’’ ‘‘all‘‘.

The following production rules describe the grammar of JIns language:

Fig. 1 Properties and
relationships in program
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A query command has two parts: target declaration and conditions. The query starts

with the keyword find, and then, the target code element Id of the type T is specified in the

form of Id : T . The conditions are defined by CS after the keyword satisfying.

The type T can be one of object, statement, method, class, or interface. The identifier Id

is used in the conditions defined in the nonterminal CE. All the identifiers in conditions

should be declared before being used and unique in the a whole command. For example,

‘‘s1:statement‘‘ defines a statement element that can be either a single statement or a

compound statement, and this identifier ‘‘s1’’ can be used in the following conditions.

The nonterminal CS describes search conditions which the target code element should

satisfy. The rules are defined based on first-order logic with the quantifiers exist and all,
and the expression CE holds with code element Idi whose type is Ti.

In the nonterminal CE; Id:Att ¼0 value0 and Id1 Rel Id2 are atomic conditional

expressions, which can be used to construct more complex conditions using the operators

‘‘!,’’ ‘‘||,’’ and ‘‘&&,’’ The first atomic expression, Id.Att = ‘‘value,’’ is a property

expression that returns true only if the attribute Att of the code element Id evaluates as

‘‘value.’’ And the second, Id1 Rel Id2, describes the relationship between the code elements

Id1 and Id2, which returns true only if the relationship Rel holds.

2.3 JIns language details relating to object-oriented language

In Sect. 2.1, the main elements of object-oriented languages, typically Java, are classified

into the five kinds, such as class, interface, object, statement, and method. We also defined

the properties of each element and the corresponding meanings of properties’ values.

Object elements have three properties: (1) name, representing the identifier of an object

in a program; (2) dataType, representing the type of an object, for example, if an object is

declared as private Map m = new HashMap(), the dataType of object m is Map; (3)

specificType, representing the scope of an object. The value ‘‘field’’ of specificType means
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that the object is a field of a class, the value ‘‘local’’ means that the object is a local

variable of the program, and the value ‘‘parameter’’ means that the object is a parameter

of a method.

The following expression constrains objects with the name ‘‘initList,’’, and at the same

time, they are not the parameters being passed in:

Statement elements have only one property, specifyType, representing the type of a

statement in programs. Its value can be ‘‘single,’’ meaning that the statement does not

contain any substatements, or ‘‘while,’’ meaning that the statement is a while loop. Sim-

ilarly, other values can be used to indicate ‘‘‘for,’’ ‘‘if’’ statements, etc.

Method elements have four properties: (1) name, representing the identifier of a method

in programs; (2) returnType, representing the type of returned values, e.g., the returnType

of String.split(String) is ‘‘String[]’’; (3) argumentsTypes, representing the list of argu-

ments’ type of a method, for example, ‘‘String, String’’ is the value of argumentsTypes of

String.replace(String, String); (4) specificType, representing the modifier of a method.

The above four properties are to be used to describe the signature of a method. For

example, int Integer.parseInt(String) can be matched by the following expression:

Class and interface elements both have only one property: name, representing the

identifier of the element.

We also define a series of relationship between different code elements:

• extends relationship has three forms: (1) class element extends class element, meaning

that a class inherits from another; (2) interface element extends interface element,

meaning that an interface extends another interface; (3) class element extends interface

element, meaning that a class implements an interface.

• isIn relationship has four forms: (1) statement element isIn statement element,

representing that a statement is in another statement. The first statement can be a single

statement or a compound statement, and the second statement must be a compound

statement that means the specifyType value of the second element cannot be ‘‘single’’;

(2) statement element isIn method element, representing that a statement is in a

method; (3) method element, statement element or object element isIn class element,

representing that one of these elements is in a class. For object element, either local

object or field can be used in this relationship; and (4) method element isIn interface

element, representing that a method element is in an interface element.

• use relationship has three forms: (1) statement element use object element, representing

that a statement element use an object element. This relationship is similar to an object

isIn a statement, but the former does not contain any conditions that an object declared

in a declaration statement; (2) method element use object element, representing that a

method element uses an object element. This relationship often used to describe some
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methods using some constants defined in other class; (3) class element use object

element, representing that a class element use an object element.

• change relationship also has three forms: (1) statement element change object element,

representing that a statement changes an object’s value; (2) method element change

object element, representing that a method modifies an object’s value; and (3) class

element change object element, representing that a class changes an object’s value.

• call relationship has two forms: (1) statement element call method element,

representing that a method element is called in a statement element; (2) method

element call method element, representing that a method calls another method to

accomplish its function.

All these relationships could also be obtained using the static analysis on source code.

3 The JIns approach: contextualization

In addition to locating instrumentation points, another difficulty of automated instrumen-

tation is to construct different instrumentation fragments according to the context of their

locations in the target programs.

3.1 Context-sensitive instrumentation in a motivated example

Suppose that a programmer wants to check whether the for-statements, using objects of

List in their loop conditions, change the size of these lists after looping. Normally, she has

to pick up the proper for-statements, i.e., those using objects whose type is List in the loop

conditions. Then, she would like to insert different instrumentation fragments before and

after different for-statements. The inserted fragments may vary according to the context of

for-statements.

Figure 2 illustrates a sample Java code fragment with two for-statements. According to

the requirements, both for-statements are qualified because they use variables a and b,

objects of List\String[, in their loop conditions. Hence, the instrumentation code frag-

ments are to be inserted before and after each of them, respectively.

It is typical to check the equality of two variables using the assertion technique.

Therefore, some intermediate variables and assertions need to be generated and inserted to

the corresponding instrumentation points. The first for-statement uses java.util.List objects

named a and b (Fig. 2, Line 6) in its loop condition, and the second uses the object named

b (Fig. 2, Line 13). The final code fragment with inserted instrumentations is shown in

Fig. 3.

3.2 Contextualizing the instrumentation templates

This section introduces a method for constructing instrumentation statements using the set

of execution points obtained by code queries in Sect. 2.

Since an instrumentation statement must be relevant to the program context specified by

a query, we extend the query part of JIns language to integrate a template of instru-

mentation statements. The extension takes advantage of the queried results to substitute

placeholders in the template with code element variables in the query.

The example shown in Fig. 3 illustrates the instrumented code with different insertion

fragments for the different for-statements, where Lines 7–8 and Lines 14–17 are the first
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part of instrumentation, and Line 19 and Lines 23–24 are the second part of the instru-

mentation. The differences between the two parts of instrumentations are mainly con-

cerning to the identifiers of the java.util.List objects inside the for-statements. The reason

is obvious: the contexts of instrumentation points are different. Therefore, the context

information is required to generate the corresponding instrumentation code.

In this case, the java.util.List objects, a and b, could be captured by the JIns query

command shown in Fig. 4. The quantified variable, declared by exist o:object, will be

bound to the objects matched by the conditions defined in where block. Line 2–5 defines

four conditions with the variable o for java.util.List objects in the for-statements.

Fig. 2 For-statements that use
List objects

Fig. 3 For-statements with
instrumentation
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As a result, the first for-statement matches with the objects a and b, and the second for-

statement matches with the object b. In this way, the contextualization requirement of

source instrumentation is solved by recording the context information.

3.3 Specifying templates with instrumentation language

We make the following extension to the production rules in Sect. 2.2:

The nonterminal IS represents an instrumentation command. It starts with the keyword

insert. The keywords before and after indicate that an instrumentation template will be

inserted before and after the code element Id, defined earlier in the query part of JIns
command. The nonterminal IN represents an instrumentation statement template, which is

between a pair of single quotation marks. The content between the two percent signs will

be substituted by the value of code element attributes.

The instrumentation template provides a way for constructing the instrumentation

statements. It uses the code elements collected in query process and substitutes the

arguments in templates with the values of those matched elements. The query language

should have defined all these elements in the form like Id:T, while the arguments in

templates must be declared in the form of Id.Att.

Fig. 4 Query command example

Fig. 5 Instrumentation command example
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The example in Fig. 5 shows a command that can achieve the required instrumentation

in Fig. 3. The instrumentation templates with parameters containing the context infor-

mation could be used to verify whether the size of java.util.List objects have been changed

after the loop:

In Fig. 5, Lines 1–6 are command lines for matching the source code and locating the

instrumentation points. It is the query part of the whole command. In this part, some

instrumentation variables are declared, such as s:statement, o:object, which is to be used

to generate instrumentation code. Following the code, query part is the instrumentation part

starting with the keyword insert, Line 7–11. The location anchor for the code to be inserted

is the variable s. When generating insertion code, Line 8 and 10–11, o.name will be

replaced by the real objects bound in the matching process of the query command.

4 Time measurement of instrumentation

In many domains, specially real-time and embedded systems, time performance of

implanted fragments needs to be paid much attention during testing or analyzing phases.

For example, when a real-time programmer wants to extract the run-time path of an

embedded system, she may plant some ‘‘print-out‘‘ code fragments in the source and then

execute it. Normally, the traces are obtained so that the run-time information could be

analyzed. Unfortunately, the planted code also costs time to execute, which may disturb the

original execution and even cause some unexpected results.

More interesting is that the time effect may vary largely according to the location where

to be planted. These locations could be indicated as time sensitive points. Tang et al.

(2000) gave the detailed discussion on how to detect such kind of time sensitive points by

instrumenting fragments on source code.

Therefore, it makes sense if the execution time of every single planted fragment could

be measured when dynamically executing the instrumented programs, especially in the

real-time-related domains. Though there are still some other aspects, such as memory

occupancy and potential bad effects to data integrity, we focus on time dimension and

provide in JIns the way to measure the running time of its constructed fragments. This

section provides a method to calculate the running time of instrumentation, so as to

evaluate their time performance.

4.1 Calculating the running time of instrumentation

Currently, execution time is usually calculated using static analysis techniques. For

example, static methods and tools have dominated WCET(Worst-Case Execution Time)

estimation of software in hard real-time systems (Wilhelm et al. 2008). It is believed that

the best way to acquire the accurate executing time of a program is calculating at hardware

level, i.e., calculating the instructions on specific CPUs.

Despite many of their advantages, static analysis techniques usually offer heavyweight

methods to calculate and estimate the running time of instrumented code fragments. In
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addition, the result of calculation is still the estimation, and real executions may vary in

different scenarios. Moreover, when testing and debugging programs, the actual and instant

running time that the planted fragments cost is more meaningful to developers. Therefore,

we provide a lightweight but effective mechanism in JIns to calculate the running time of

instrumentations.

The command calculating time consumption is provided by extending JIns with a

keyword calculate. Users can add calculate after the insert clause to acquire the running

time of inserted fragment. As shown in Fig. 6, on Line 9 the calculate keyword is used to

specify that the planted code of Line 8 will be calculated the time of its execution.

To achieve this aim, we design a timer module that records running time and calculates

the execution time of flagged fragments. The timer module is implemented by a RunTime
class containing mainly two public methods, start() and end(). Method start() is used to

record the time stamp before instrumentation, and end() will calculate the time of

instrumentation cost and record it. We implement both methods with System.nanoTime()
of JDK API, which returns a long integer representing the current time of system in

nanosecond. When the JIns interpreter meets the keyword calculate, it will insert Run-
Time.start() before and RunTime.end() after the inserted code.

Fig. 6 JIns command with time calculation (Method 1)

Fig. 7 JIns command with time calculation (Method 2)
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Users could also declare explicitly RunTime.start() and RunTime.end() in a JIns
command to trace the exact time instance and then calculate the corresponding running

time. As illustrated in Fig. 7, Line 8–10 and Line 12–15 could record and calculate the

executing time of Line 9 and Line 13–14, respectively.

Fig. 8 JIns command with calculation

Fig. 9 Target code with instrumentation
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4.2 A sample of time calculation

In this section, a simple sample of JIns instrumentation command is presented containing

time calculation clause for the planting code. In addition, the statistics of the running time

are also demonstrated. In fact, the fragments of this sample have been presented in some of

the above sections, and hence, we do not explain the command lines and focus on the time

calculation. The whole JIns command is shown in Fig. 8. The target source to be

instrumented by this JIns command is the example in Fig. 2.

Figure 9 shows the instrumented code after the execution of the command in Fig. 8.

When executing the program, the running time of each instrumented fragment is calcu-

lated. Based on every single time duration of planted fragments, the statistics of the entire

instrumentation with proportions could be given, as illustrated in Table 1.

Table 1 lists the running time of the four instrumentations in Fig. 9 at Line 2–4 (denoted

as No.1), Line 11–14 (No. 2), Line 14–15 (No. 3), and Line 21–24 (No. 4), respectively.

From Table 1, it could be easily found that the first instrumentation code costs the most

time, on the average 16 % of the total executing time. This result is helpful for developers

to know clearly on what degree each instrumented code disturbs the original source along

the time dimension. In this case, the location of the first instrumented code is also known as

the time sensitive points (Tang et al. 2000). This information is also very useful in

maintaining the system in future.

5 JIns implementation

The JIns prototype based on Java programming language is composed of four components:

Source Information Generation, Code Query, Instrumentation Statement Customization,

and Instrumentation. The Source Information Generation component collects information

from Java source code and builds the intermediate structures of code. After analyzing code

query commands, the Code Query component processes the query and obtains the query

results with a set of contextual code elements. Then, the Instrumentation Statement Cus-

tomization component generates concrete statements from the specified JIns template that

programmers defined. Finally, the Instrumentation inserts concrete statements into the

target source code.

5.1 Source information generation

We designed an element collector EC to extract and store all information in program, such

as objects, statements, methods, classes, and interfaces from the abstract syntax trees

Table 1 Running time of instrumentations in Fig. 9

ID Run 1st
(ns)

Run 2nd
(ns)

Run 3th
(ns)

Run 4th
(ns)

Run 5th
(ns)

Avg. time
(ns)

Proportion
(%)

No. 1 41,489 40,207 74,424 41,061 40,634 47,563 16

No. 2 7,699 8,555 8,126 8,127 8,126 8,127 3

No. 3 17,536 17,536 18,820 17,536 17,536 17,793 6

No. 4 7,271 7,271 7,272 7,271 7,271 7,271 2

Total 287,431 306,679 319,511 292,136 299,408 301,033
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(ASTs) of Java source code. This information also includes the location of every code

element such as offset of the element in source file, which is to be used in the later

navigation. The data structure CodeInfo is similar to an AST, except that some unnecessary

information is omitted. Inside the CodeInfo, we designed five indices in order to speed up

searching process.

Fig. 10 shows the process of Source Information Generation. Initially, it generates all

ASTs from source files. Every node in an AST stands for a code structure. If a node is one

of the five structures, i.e., object, statement, method, class, and interface, the corresponding

data structure will be created in EC. Then, the sub-AST will be traversed to find other code

elements that have relationships with the current node.

Parsing and Preprocessing The process of parsing and preprocessing scans the query

command from the head of string and check if it is in coincidence with the grammar.

Algorithm 1 shows the main steps of the process. At the same time, all the declarations of

elements, in the form of ‘‘Id:T,’’ are recorded during the process. More specifically, the

alias name Id and type T are recorded and capsulated into the separated elements so as to

be searched respectively. After all, the process transforms the conditional expression CE to

a list that contains Rel, Attr, and operators.

A Java class Query is designed to encapsulate the searching functions of a JIns
command, which is the implementation of the JIns query command described in Sect. 2. In

the class Query, Query.target represents the code elements which should be found,

Query.predicate stores all predicates used in the conditional expressions, and

Query.conditionLex stores all the conditional expressions.
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Querying the Target Code Element If Grammar Check and Preprocess are finished

without finding any syntax errors, querying process will then be started. This process follows

the conditions that are specified in the query command S to search the target element set. In the

previous step, EC has collected five types of code elements, and each of the same type is in one

of the five index lists. The query process constructs a set and follows the priority of operators

to compute the intersection of sets and the union of sets, etc.

A list of conditional expressions is also built in the previous step. So we use Operator

Precedence Grammar to analyze the list and conduct relevant set operation. First, we define

priority of every operator as shown in Table 2. Then, Algorithm 2 is used to analyze the list.

After parsing source code, the tool builds a list of sets of code elements, such as S0; S1. . .Sn.

Each set is a copy of EC that contains some information we needed. Then, it computes every

condition according to the priority of operators. For example, suppose that the target element

(to be matched in the source code) is defined as ‘‘clazz:class,‘‘ one of the context variables is

defined as ‘‘obj:object,’’ and the current operation is ‘‘clazz.name=‘Main’ && obj.
type=‘int’‘‘. Thus, the tool will remove any elements that are not named ‘‘Main’’ in the set

Sclazz, and remove any elements whose type are not ‘‘int‘‘ in the set Sobj. After that, it will

compute the intersection of Sclazz and Sobj to create a new set Sp. Similarly, it may compute

another conditional expression using the operator ‘‘||,’’ e.g., ‘‘Sp || Q’’. After getting the set of

Sq, it computes the union of Sp and Sq. Following the above steps, the final result is obtained.

5.2 Instrumentation statement customization

Next, real statements to be inserted into the target source code are constructed according to

the instrumentation templates specified by users. First, the set Sr is analyzed which contains

all code elements satisfying programmers’ query conditions. In the specified templates

Fig. 10 Process of source information generation

156 Software Qual J (2015) 23:143–170

123

For Research Only



defined in user’s JIns command, arguments like ‘‘%o.name%‘‘ are substituted using values

stored in the set Sr. The substituted string is the statement to be inserted into the target

source code.

5.3 Code insertion

In fact, code insertion to the target program is implemented not on the original source code.

It is happened on a copy of the target program file. The original program file, assuming the

name as‘‘filename.java,’’ is renamed as ‘‘filename.java.bak_0’’ before instrumentations.

After all the customized instrumentation statements being generated, the target source

code elements are marked with these instrumentations. These markers record the offsets of

statements to be instrumented in the source file as well as the corresponding line numbers

of statements.

Programmers are allowed to preview and confirm the inserted contents. If the instru-

mentation code is correct, they proceed with the real instrumentation. Otherwise, the

instrumented code can roll back, and programmers could rewrite the command again.

Table 2 Priority of operators

! || && ( ) #

! \ [ [ \ [ [
|| \ [ \ \ [ [
&& \ [ \ \ [ [
( \ \ \ \ = E

) \ [ [ E [ [
# E E E E E =

1 E = Error Status
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Users can perform instrumentations many times on a program. Each time the currently

file is renamed by adding a suffix ‘‘.bak_i’’. Therein, the number ‘‘i’’ is the number of times

being instrumented. The original program file is renamed by adding the suffix ‘‘.back_0.’’

The benefits of the renaming mechanism are as follows: (1) the history of instrumentations

could be tracked so as to roll back to a certain version; and (2) in the case of system crash,

users could pick up manually the proper version to resume.

5.4 Running of the prototype

The JIns prototype tool is currently designed for Java source code instrumentation and also

implemented using Java. The tool implementation is based on the extension mechanism of

the Eclipse IDE. To analyze Java source code, we reuse the JDT framework and extend its

markers mechanism to successfully display instrumentation points.

The task of instrumentation with the prototype begins from an input UI (see Fig. 11a),

on which users could enter the JIns query and instrumentation commands in the text box. It

also provides a function to specify the scope of the query and instrument based on either all

the projects, current project, or the selected resources.

After closing the command dialog, the tool will search all locations satisfying the query

command in a table, as shown in Fig. 11b. Each line contains the location Id and type of

the relevant code element, content of code element and the concrete information of

location. If programmers find that the matched locations are not wanted, they could use

trash operation at the top right of viewer to roll back the query operation.

In the editor view, JIns tool shows the planting markers with the source file on the left

margin, as illustrated in Fig. 11c. These markers show inserting locations as well as

contents to be inserted into the source code. In the editor window containing the source file,

these markers are on the left side: red arrows markers indicate that the instrumentation

statements will be inserted before the line, while the blue arrow markers indicate that the

instrumentation statements will be inserted after the line.

If programmers believe that the locations and the contents of the instrumentations are

correct, they could choose the insert operation indicated by the pen icon on top right of the

viewer. As a result, code fragments will be inserted into the source file. Figure 11d shows

the example after instrumentation.

Fig. 11 Process of source information generation
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6 Evaluation

This section evaluates the provided prototype tool by comparing some other instrumen-

tation tools widely used, such as BCEL 1 and Soot (Valle-Rai et al. 2000). To illustrate the

flexibility, simplicity, and expressiveness of JIns, two typical cases of dynamic analysis

are presented by accomplishing the same aims with JIns, BCEL, and Soot. For example,

using JIns in the case of AGTCG(Mingsong et al. 2006) comparing to BCEL, and using

JIns for JDAMA (Chixiang and Phyllis2011) comparing to Soot.

6.1 AGTCG: BCEL versus JIns

AGTCG is a tool for automatic test case generation from UML activity diagrams. By

running the program with randomly generated unit test cases, it gets the corresponding

program execution traces. Then by comparing these traces with the given activity diagram

according to specific coverage criterion, AGTCG tool could reduce the number of test case

sets to only containing those meeting the test adequacy criteria. One important part in the

core of AGTCG is capturing the execution traces of programs, which is conducted by

calling an existing binary (bytecode) instrumentation tool, named BCEL.

From an UML activity diagram, AGTCG finds classes and methods to be analyzed, and

stores them into several lists. Then, it searches the related byte-code files. When all these

conditions are met, it traverses these files one by one to find if these classes or methods are

in the lists. If yes, it will insert probes into the byte-code file. At last, it executes the

program with instrumentations and obtains the execution traces.

1 http://jakarta.apache.org/bcel/
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The instrumentation module of AGTCG is implemented by calling BCEL APIs. For the

reason that BCEL only provides several APIs to dealing with byte-code of Java program,

authors have to design their instrumentation algorithms and then implement them by

themselves. The Algorithm 3 shows the process of instrumentation with BCEL in AGTCG.

Steps 12 and 15 are implemented by calling a series of BCEL APIs. There are a lot of byte-

code details in the source code, such as constant pool copy, INVOKEVIRTUAL instruc-

tion, ALOAD instruction. In fact, the total of instrumentation code in AGTCG is over

1,400 lines.

In contrast, JIns command could be built to accomplish the same goal instead of BCEL

within several sentences. For each method in the MList, two JIns commands can be used

instead, defined respectively on Line 1-8 and Line 10–17 in Fig. 12. These two query

processes can perform all instrumentations instead of a complex algorithm and hundreds of

lines of code when BCEL was used.

As we have discussed in Sect. 4, time consumptions of inserted fragments may disturb

the original execution, especially in real-time systems, and may even cause some unex-

pected results. Though it is not necessary of calculating time cost in the case of AGTCG,

still, we present the statistics of time consumptions in Table 3 to show the time effect of

the instrumented code.

The values in Table 3 are calculated by running the case study of AGTCG in (Mingsong

et al. 2006). There are 14 instrumentation points matched by the JIns query command, and

the ID numbers are assigned according the order of their appearance in the source code.

After the replacement of BCEL with JIns to implementing the instrumentation module of

AGTCG, we test it using 200 test cases provided by AGTCG itself. The 4th test case

(0533002, 002007, false, 175, true, 22.43) is chosen because it covers 13 paths among

18 total paths. In the table, values of time consumed are calculated in nanosecond, and the

proportion is the average time of the total executing time.

As shown in Table 3, the statistics of time consumptions and their proportion reflect the

impact of each inserted code on the time dimension. Most of the instrumented fragments,

except No. 6 and No. 14, consume very little time less then 0.1 % of the total running time.

Hence, these instrumentations might be ignored even in some real-time systems. While the

left inserted fragments, No. 6 and No. 14, cost more time than others, especially No. 14, the

maximum time consumption costs over two hundreds times of No. 13, the minimum time

consumption. The reason that the executing time of different instrumented code may vary

so much lies in the difference of the corresponding instrumentation points. E. Tang and X.

Li et al. gave the detailed discussion about it in (Tang et al. 2000).

According to the statistics of the time effect by instrumentations, developers are able to

know precisely that on what extend each inserted code disturbs the executing time of the

original program. For example, as shown in Table 3, the instrumentation No. 14 consumes

on the average 2.09 % of the total executing time. Therefore, the developers should keep

vigilant about this point in testing, debugging, and maintenance of the system.

6.2 JDAMA: SOOT vs. JIns

JDAMA (Java Database Application Mutation Analyzer) is a mutation testing tool for Java

programs that interacts with a database via the JDBC interface. The tool extends the

mutation testing approach for SQL provided by Tuya et al. (2006), Javier and de la (2007),

through analyzing and dynamically running byte-code programs with instrumentations.

The instrumentation module of JDAMA is inherited from BodyTransformer, an abstract
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class in Soot, and implements its method internalTranform(). The method internal-
Tranform() is also used to add a method invocation after each query execution point.

In the instrumentation module of JDAMA, the byte-code instructions of target program

is traversed, and the instrumentation points are located by the method executeQue-
ry(String queryStr). Then, the context information is collected by some code developed

by users. After that, the method MutantChecker(String, int) is called to insert code into

the points.

Fig. 12 JIns instrumentation commands for AGTCG

Table 3 Running time of each instrumentation in AGTCG

ID Run
1st (ns)

Run
2nd (ns)

Run
3th (ns)

Run
4th (ns)

Run
5th (ns)

Avg.
Time (ns)

Proportion
(%)

No. 1 1812882ns 592597 711778 636627 413163 833409.4 0.04 %

No. 2 446268 474409 421107 78601142 354565 424087.25 0.02 %

No. 3 336357 368800 70087615 343640 953782 500644.75 0.02 %

No. 4 401576 435012 601204 435012 405217 455604.2 0.02 %

No. 5 410514 368469 359862 363503 360193 372508.2 0.02 %

No. 6 351254 11234173 343309 337349 1172282 2687673.4 0.12 %

No. 7 90994023 5157576 342316 346288 363173 1552338.25 0.07 %

No. 8 325432 324107 426404 389988 309872 355160.6 0.02 %

No. 9 482685 3360585 343639 350261 394292 986292.4 0.04 %

No. 10 348606 7277350 361848 765410 483347 1847312.2 0.08%

No. 11 478547 489968 506852 445937 471429 478546.5 0.02%

No. 12 412169 492285 344302 31029876 502879 437908.75 0.02%

No. 13 322452 318480 380388 315830 303912 328212.4 0.01%

No. 14 94293693 75868245 24175289 34836398 7858360 47406397 2.09%

TT 10773674479 171276284 149953403 177807095 42740776 2263090407 100.00%

1 TT Totle time of running instrumented program
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Before re-implementing the instrumentation module using JIns, we illustrated the

pattern of instrumentation process in JDAMA in detail as the follows: (1) iterate the byte-

code instructions of the target program; (2) retrieve execution points at the signature

java.sql.Statement: java.sql.ResultSet executeQuery(java. lang.String), and (3) add

an invocation of MutantChecker(String, int) method after each execution point in the

class file. This function call has two arguments, i.e., the concrete query being executed and

a unique number identifying the execution point. After instrumentation, JDAMA saves the

intermediate program files in Jimple (Valle-Rai et al. 2000) format, which could be seen

as an extension based on Java source. Figure 13 shows a simple example fragment of code

before JDAMA instrumentation, and Fig. 14 shows the case after instrumentation in form

of Jimple code.

At first sight, the instrumentation process in JDAMA is very similar to that of JIns, e.g.,

they both perform instrumentations in the steps of querying locations, generating con-

textualized code, and inserting code to target programs, but JDAMA leaves the job of

programming to users. On the contrary, JIns provides a high level of language and hides

away the job of implementations.

To accomplish the same instrumentation goal, a much simpler way of using JIns
command could be used instead, as is shown in Fig. 15. It is obviously that, in terms of

lines of code, the JIns command is far less then those using Soot APIs in JDAMA.

7 Related work

Existing instrumentation techniques can be broadly divided into two categories: instru-

mentation based on specific points in source programs and instrumentation based on

generic instructions in binaries.

AOP tools are representative of the former Tools based on AOP(Kiczales et al. 1997)

can insert instrumentations into program according to predefined points. AspectJ 2 is a

heavyweight implementation of AOP. Users can complete some instrumentation work by

using AspectJ upon predefined crosscutting joinpoints: caller/callee, variable get/set, if

branch and scope limiting. These joinpoints provide great convenience for users, but also

limit the flexibility in instrumentation points selection. For example, instrumentations at

the statement level cannot be always applied in AspectJ. On the other hand, our approach

can perform instrumentation at the statement level to offer more flexibility than AOP with

respect to instrumentations.

For example, in Fig. 3, two for-statements use java.util.List objects as a part of their

loop invariants, and one wants to check if the size of the List objects is changed in the for-

statements. The probes must be inserted before and after the for-statements. AspectJ cannot

finish this instrumentation work.

In the example, users must find out all the for-statements satisfying the specification. In

coverage-oriented testing method, it requires to get the exhaustive execution traces of a

program. The instrumentation module must insert probes for if-else branches, loop state-

ments, and some special code blocks. AspectJ cannot implement instrumentation at the

statement level.

In addition, JIns is a declarative approach that aims at providing users a high-level

language, simple, and expressive, to specify query and instrumentation requirements. By

2 http://eclipse.org/aspectj/
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using AspectJ as an instrumentation tool, users mainly work at the programming level,

similar to the cases discussed in Sect. 6.

We can categorize others as Non-AOP tools They are mainly implemented based on

binary (or byte-code) instructions. For example, Valgrind (Nethecote and Seward 2007),

Pin (Luk et al. 2005), Nuntia (van der et al. 2007), BCEL, etc. The common feature of

these tools is that they all manipulate the instructions of program such that instrumenta-

tions can be inserted between instructions. Therefore, these tools are more flexible than

others based on source code. Meanwhile, they can reach the minimum adverse influence to

time and space performance and do not require the availability of source code. But the

feature also causes some disadvantages.

First, binary instrumentation approach cannot focus on instrumentation at the statement

level in the source code. For example, it cannot distinguish among for-statement, while-

statement and do-while-statement from Java byte-code, because all of these statements are

compiled to IF instructions. For the same reason, continue-statement and break-statement

cannot be distinguished, either.

Second, users must know the details of program binary/byte-code. For example, BCEL

can recount instruction’s offset in the process of instrumentation, but programmers still

need to know some details of JVM instructions, e.g., the constants pool. Therefore, these

tools cannot help programmers locate the instrumentation points at a high level of

abstraction

In addition, designing instrumentation programs require familiarity to the APIs provided

by the libraries specific to different tools. As a consequence, the instrumentations using

such APIs are not succinct. For example, using BCEL to rewrite a field in class requires

around 200 lines of extra code, which may extend to over 400 lines in Valgrind.

SQL-like language is easy-to-use The JIns Language makes use of predicate logic

expression to describe the instrumentation location. The most important issue of the

process is how to identify the relationships between instrumentation locations and other

program elements. Some other tools also provide such kind of functionality. For example,

Fig. 13 Code fragment to be analyzed in JDAMA

Software Qual J (2015) 23:143–170 163

123

For Research Only



Fig. 14 Jimple code fragment after instrument in JDAMA
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CrocoPat (Beyer 2006) uses RML to describe relationships with program and uses

RSF(Rigi(Miiller and Klashinsky 1988) standard format) file to store the relationships.

However, Crocopat does not perform instrumentations. Since it is a set-oriented calculator,

it is not possible to preserve the ordering in the results as required by the code

instrumentations.

XML-based query and transformation languages are instructive Some other XML-

based query and transformation languages are also very popular to programmers, such as

XQery (W3C XML Query 3) and XSLT4. They could provide similar declarative source

query and instrumentation capabilities based on the XML representation of program ASTs.

XQuery is designed by W3C (World Wide Web Consortium) as a query and functional

programming language to query collections of XML data. XSLT (Extensible Stylesheet

Language Transformations) is another language also developed by W3C for transforming

XML documents into other XML documents. As for XML documents, they have done

quite well of navigation and manipulation among nodes through XPath. Hence, they are

very instructive to developers designing new query languages for well-structured data.

However, if we want to use XQuery/XSLT in Java source query and instrumentation, a

solid bridge between Java ASTs and XML should be built, including matured APIs and

IDEs. Unfortunately, such kind of bridges are still under construction.

Table 4 shows some tools in relation to us. Some of them are not designed for

instrumentation, such as BCEL, Soot, and AspectJ. All of these can perform the instru-

mentation in method level, but most of them can not perform the statement-level instru-

mentation well. AspectJ and InsECTJ cannot instrument without crosscuttings, therefore,

are not suitable to loop statements. The typical application of this tools is API program-

ming. By using BCEL and Soot, users can read instrumented binary code that, however, is

hard to be comprehended.

Another category of tools and methods are designed for code query (Alves et al. 2011),

such as CPPX/FETCH(Du et al. 2007), CrocoPat, Grok (Holt 2008), and TXL (Cordy

2006). CPPX/FETCH is a fact extractor, which can be piped to Crocopat/Grok to query

about the code using the Rigi standard format. Crocopat and Grok can compute regular

expressions as well as transitive closures. In contrast, TXL is a transformation language

which can be applied to instrumentation, though it requires language grammar program-

ming that are not trivial for end-programmers to use.

Fig. 15 JIns instrumentation commands for JDAMA

3 http://http://www.w3.org/
4 http://www.w3.org/TR/xslt20/

Software Qual J (2015) 23:143–170 165

123

For Research Only

http://http://www.w3.org/
http://www.w3.org/TR/xslt20/


T
a

b
le

4
C

o
m

p
ar

is
o

n
o

f
so

m
e

co
m

m
o
n

in
st

ru
m

en
ta

ti
o

n
to

o
ls

D
es

ig
n

ed
fo

r
In

st
ru

m
en

ta
ti

o
n

M
et

h
o

d
L

ev
el

S
ta

te
m

en
t

L
ev

el
In

st
ru

ct
io

n
L

ev
el

U
se

r
In

te
rf

ac
e

R
ea

d
ab

il
it

y
In

st
ru

m
en

ta
ti

o
n

M
o

d
e

V
al

g
ri

n
d
(N

et
h
ec

o
te

an
d

S
ew

ar
d

2
0

0
7
)

Y
es

Y
es

N
o

Y
es

A
P

I
P

ro
g
ra

m
m

in
g

N
o

D
y

n
am

ic

P
in

(L
u

k
et

al
.

2
0

0
5
)

Y
es

Y
es

N
o

Y
es

A
P

I
P

ro
g
ra

m
m

in
g

N
o

D
y

n
am

ic

B
C

E
L

N
o

Y
es

N
o

Y
es

A
P

I
P

ro
g
ra

m
m

in
g

P
ar

tl
y

S
ta

ti
c

S
o

o
t

(V
al

le
-R

ai
et

al
.

2
0

0
0
)

N
o

Y
es

Y
es

N
o

A
P

I
P

ro
g
ra

m
m

in
g

P
ar

tl
y

S
ta

ti
c

A
sp

ec
tJ

N
o

Y
es

P
ar

tl
y

N
o

A
sp

ec
tJ

L
an

g
u
ag

e
N

o
D

y
n
am

ic

In
sE

C
T

J
(S

ee
si

n
g

an
d

O
rs

o
2

0
0

5
)

Y
es

Y
es

P
ar

tl
y

N
o

A
P

I
P

ro
g
ra

m
m

in
g

N
o

D
y

n
am

ic

C
P

P
X

/F
E

T
C

H
(D

u
et

al
.

2
0

0
7
)

N
o

Y
es

Y
es

N
o

S
Q

L
Q

u
er

y
Y

es
S

ta
ti

c

C
ro

co
P

at
(B

ey
er

2
0

0
6
)

N
o

N
o

N
o

N
o

R
el

at
io

n
Q

u
er

y
Y

es

G
ro

k
(H

o
lt

2
0

0
8
)

N
o

N
o

N
o

N
o

G
ro

k
Q

u
er

y
Y

es

T
X

L
(C

o
rd

y
2

0
0

6
)

N
o

Y
es

Y
es

N
o

G
ra

m
m

ar
Q

u
er

y
N

o
S

ta
ti

c

JI
n

s
Y

es
Y

es
Y

es
N

o
JI

n
s

C
o
m

m
an

d
Y

es
S

ta
ti

c

166 Software Qual J (2015) 23:143–170

123

For Research Only



Most existing instrument tools dedicate themselves in providing more powerful and

effective API to complete instrumentation. However, they ignore how to declaratively

describe instrumentation points and constructing instrumentation statements. This situation

requires programmers to go through hundreds of pages to perform even a small instru-

mentation task. New program errors are likely to be caused by such programming tasks. By

the design, JIns is a simple, flexible, and effective instrumentation interface to end-

programmers.

8 Conclusions and future work

We have presented an implemented instrumentation approach based on a new code query

technology for Java programs. The tool solves two related issues: to query the instru-

mentation points declaratively and to instantiate the instrumentation templates using the

query results. The JIns language is designed for fine-grained and context-sensitive

instrumentation tasks. Through a streamlined Eclipse tool support, the complexity of code

instrumenting can be greatly reduced. As indicated by two nontrivial practical case studies,

our framework has been evaluated against the widely used instrumentation frameworks

such as BCEL and SOOT, achieving significant savings in terms of lines of specifications.

Our future work is planned as follows: first, we plan to support more programming

languages, such as C/C??. Also, we plan to provide more instrumentation templates for

programmers to further reduce adverse influence of time and space performance.
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