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Software Numerical Instability Detection and
Diagnosis by Combining Stochastic and

Infinite-Precision Testing
Enyi Tang , Xiangyu Zhang, Norbert Th. M€uller, Zhenyu Chen, and Xuandong Li

Abstract—Numerical instability is a well-known problem that may cause serious runtime failures. This paper discusses the reason of

instability in software development process, and presents a toolchain that not only detects the potential instability in software, but also

diagnoses the reason for such instability. We classify the reason of instability into two categories. When it is introduced by software

requirements, we call the instability caused by problem. In this case, it cannot be avoided by improving software development, but

requires inspecting the requirements, especially the underlying mathematical properties. Otherwise, we call the instability caused by

practice. We design our toolchain as four loosely-coupled tools, which combine stochastic arithmetic with infinite-precision testing.

Each tool in our toolchain can be configured with different strategies according to the properties of the analyzed software. We evaluate

our toolchain on subjects from literature. The results show that it effectively detects and separates the instabilities caused by problems

from others. We also conduct an evaluation on the latest version of GNU Scientific Library, and the toolchain finds a few real bugs in the

well-maintained and widely deployed numerical library. With the help of our toolchain, we report the details and fixing advices to the

GSL buglist.

Index Terms—Numerical analysis, infinite-precision arithmetic, stochastic arithmetic, software testing

Ç

1 INTRODUCTION

THE rapid advancement of technology makes modern
personal computers and devices powerful in comput-

ing. Hence, complex numerical algorithms become afford-
able and are widely applied in our daily software. Ensuring
the correctness of numerical computing is important for
software reliability. On the other hand, it is also very chal-
lenging. In particular, the unique and complex computation
logic in numerical computing often poses new challenges in
software testing and verification. Furthermore, truncations
due to the limited representation precision happen all the
time in numerical computing so that numerical errors are
inevitably accumulated during propagation of values. Thus,
for modern numerical software, we need not only methods
of numerical analysis, but also tools that help us build and
test numerical programs, especially their stabilities in the
presence of numerical errors.

Given its importance, a lot of recent work tries to address
the problem from different aspects. For example, J�ez�equel

et al. build a tool called CADNA [1], which automatically
detects numerical instabilities with a stochastic method.
Martel implements an optimizer that statically transforms
numerical programs to more stable forms [2], [3]. Barr et al.
[4] analyze the relationship of inputs and numerical excep-
tions by symbolic execution. Based on these researches, we
present a new toolchain of numerical testing in this paper,
which is designed according to the modularity principles in
software development process. Different from the existing
tools, our toolchain not only automatically detects the
potential instabilities in numerical programs, but also diag-
noses the reason for the instabilities.

Software development process is often composed of a few
distinct phases such as requirement analysis, software
design, implementation, software testing, deployment and
maintenance. Numerical instabilities can be introduced at
any phases before software testing. Here we define numeri-
cal instabilities as problems in which internal errors caused by
truncation or external input errors due to precision limitation in
raw data collection lead to substantial output variations. In the
presence of instabilities, it is often hard to trust the data proc-
essing results. Our toolchain focuses on testing instabilities,
Fig. 1 presents the various aspects in numerical computing
that cause instabilities. The mathematical properties of the
problem aimed by the software may entail instabilities. In
this case, the instabilities cannot be avoided by improving
software development, so we call them numerical instabil-
ities caused by problem. Improper software design and imple-
mentation can also introduce instabilities. We call them
numerical instabilities caused by practice in our toolchain,
because we can fix them by improving our development
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practice. As well as detecting numerical instabilities in soft-
ware, our toolchain automatically diagnoses them by catego-
rizing the instabilities. The diagnostic information is useful
for developers to fix the instabilities. If the instabilities are
caused by problem, developers should think about improv-
ing their software at a higher level, which means redefining
the software requirements to mitigate or get around the
instability inducing mathematical properties. Otherwise
they can improve the software itself with better numerical
design and programming practices.

The insight of our toolchain is that we combine the tech-
niques of stochastic and infinite-precision testing. Stochastic
testing estimates the accumulated numerical errors during
the propagation of values in software. While we randomly
introduce small changes in numerical computation, the fluc-
tuation range of program outputs can help us estimate the
magnitude of numerical errors accumulated during the exe-
cution. Then we use infinite-precision arithmetic (IPA) to
generate the exact output of numerical computing to show
the properties of mathematical problems and diagnose the
source of instabilities—caused by problem or by practice.
The infinite-precision arithmetic iterates the computing pro-
cess to make sure each numerical output is precise enough
for the computing logic. Different from traditional floating-
point arithmetic with a fixed number of digits to represent a
value, infinite-precision arithmetic works by increasing the
number of digits on demand through dynamic memory
allocation. It has an iteration module to make sure the allo-
cated memory is larger enough for every numerical value in
the program.

For flexibility, we design our toolchain as four loosely-
coupled tools: ipatrans, fpstoc, ipstoc and ediagno.
The tool ipatrans first tranforms numerical programs to
the infinite-precision arithmetic, which can produce the
exact output for every numerical computation and perform
as the test oracle in our testing. Then fpstoc and ipstoc

separately apply the stochastic perturbation on both the
fixed-precision floating-point arithmetic (FPFA) and the
infinite-precision arithmetic. The result of perturbing FPFA
shows us if the program implementation is stable, while
perturbation on IPA shows if the instability is caused by the
mathematical properties of the problem. Finally, ediagno
statistically synthesizes the data together to provide the con-
clusions. When the program is unstable and it is caused by
practice, the toolchain also provides localization and fixing
hints of the instabilities. The flexible design of our toolchain
is convenient for applying new strategies in testing. For
example, users can apply other strategies of stochastic or

infinite-precision arithmetic in the toolchain. We evaluate
our toolchain on a set of test subjects from the literature,
and also the GNU Scientific Library. The results show that
the toolchain is able to detect and diagnose the instabilities
in real-world programs, and further find real bugs in the lat-
est version of GNU Scientific Library. With the help of our
toolchain, we report the details and fixing advices to the
buglist of the library.

The major contributions of this paper are the following.

� We design a numerical testing toolchain that closely
couples with the process of software development.
The toolchain is able to detect numerical instabilities
in software and diagnose the reason in causing such
instabilities.

� We implement our toolchain with four loosely-cou-
pled tools by combining the techniques of stochastic
and infinite-precision testing. The implementation is
flexible and easy to be updated with different
strategies.

� We evaluate our approach on a few test subjects
from the literature and also the GNU Scientific
Library. Our toolchain successfully detects and diag-
noses instabilities in the subjects. The newly identi-
fied bugs are reported to the buglist of the subjects.

The rest of this paper is organized as follows: Section 2
introduces a number of definitions related to instability and
presents an illustrative example in industry that uses our
toolchain. Then in Section 3, we discuss the technical details
of the toolchain. Evaluation results and their discussion can
be found in Section 4. Section 5 shows the related work of
this paper. And finally we give our conclusion and talk
about some future work in Section 6.

2 DEFINITIONS AND AN EXAMPLE

This section first introduces a number of definitions related
to numerical instability, such as instability caused by problem
and instability caused by practice. We also show insights of
the differences between the two kinds of instabilities. Then
we provide a real world example to illustrate the usage of
our techniques.

2.1 Definitions Related to Instability

Software engineers develop numerical software to solve
numerical problems. Formally, we denote the problem with
a mathematical function f that maps the input x to its solu-
tion fðxÞ. Software engineers also need an algorithm to
solve the problem f . In this paper, we denote the numerical

Fig. 1. Categories of aspects that cause numerical instabilities in software.
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algorithm over the input x with a finite sequence of steps
f1; f2; f3; . . . ; fn, where fðxÞ ¼ fnðfn�1ð. . . f2ðf1ðxÞÞ . . .Þ:1 Let
f̂ be a numerical program that implements f with the corre-
sponding algorithm. Hence we have f̂ðxÞ ¼ f̂nðf̂n�1
ð. . . f̂2ðf̂1ðxÞÞ . . .Þ, where f̂i is the numerical code that imple-
ments the step fið1 � i � nÞ in the algorithm.

When small changes at the input or at an intermediate
value, which means the value provided to a step f̂i, cause
f̂ðxÞ to change substantially, we say the program f̂ is unsta-
ble, or the program contains instability problems. Such insta-
bility might be a property of themathematical function itself.
For example, the mathematical solution fðxÞ changes sub-
stantially when the argument x changes just a little. In this
case, no matter how we improve the algorithm or the imple-
mentation to make the program f̂ more precise to the func-
tion f , the instability must always exist since it is an essential
property of f . Instabilities in a numerical program can also
be caused by the implementation. For example,when trunca-
tion errors accumulate drastically in a numerical algorithm,
the program becomes unstable. But sometimes experts use a
stable algorithm to avoid such instabilities because such
instabilities depend on the algorithm or the implementation.
Generally, if the program f̂ is unstable when small changes
at the argument x or the corresponding algorithm step fi
also cause the mathematical solution fðxÞ to change a lot, we
say the instability is caused by problem. Otherwise, we say the
instability is caused by practice.

A typical example of instability caused by problem is the
ill-conditioned problem, where small input changes cause
the solution to change a lot. No matter which algorithm or
implementation software engineers choose, the instability
must always exist in the program that implements such a
problem. In this case, software engineers can only persuade
users to compute other problems that satisfy their require-
ments or devote more computing resources in computing
such a problem and make sure the results are correct.

Instabilities caused by practice also occur in the imple-
mentations of numerical programs. For example, because
the truncation errors accumulated in some program steps
(such as f̂i) grow quickly, the program f̂ becomes unstable.
When we examine only the underlying mathematical prob-
lem fðxÞ without taking the truncation errors into account,
the instability cannot be detected. Such instability problems
can be fixed by a new implementation in computing f̂ that
goes through the unstable step f̂i. Specifically, software
engineers should substitute the subsequence of steps
around f̂i (together with f̂i itself) with another mathemati-
cal equivalent but stable implementation f 01; f

0
2; . . . ; f

0
m.

Our toolchain detects instabilities in numerical software
and diagnoses if it is caused by practice with two measure-
ments, the implementational condition number (ICN) and the
statistical condition number (SCN). Intuitively, ICN measures
how the program output f̂ðxÞ changes along with small per-
turbations of inputs or intermediate values, whereas SCN
measures how the problem solution fðxÞ changes. Hence, a
large ICN means the program is unstable. Furthermore, a

large SCN implies the instability is caused by problem,
whereas a large ICN with a small SCN suggests the instabil-
ity is caused by practice.

2.2 An Illustrative Example

Different types of numerical instabilities exist in the real
world, hence our technique ought to be practical and useful.
Here we provide a real world example from the area of
power electronics, and introduces the usage of our toolchain.
The requirement of the example is derived from circuit
design. Designers often use numerical programs to simulate
their circuit before real manufacture. Problems in the circuit
itself as well as improper implementation of the simulation
program may cause numerical instabilities. Our toolchain
detects instabilities in simulation, and further diagnoses if it
is a requirement problem (from the circuit specification), or a
coding problem (from the software implementation).

Fig. 2 presents the circuit of a forward converter
designed by some amateur in power electronics. Forward
converter is a kind of hardware that uses a transformer to
increase or decrease the DC (Direct Current) voltage [5].
The circuit in Fig. 2 has an error. It is a common practice to
add a magnetizing inductance Lm across an ideal trans-
former to simulate the effects of real winding. However in
this case, it is wrong to have the inductance, causing numer-
ical instabilities during simulation.

Since the physical characteristics of the circuit is beyond
the scope of our paper, we provide the key simulation code
that induces the numerical instability in Fig. 4a. The code
snippet computes the voltage across the magnetizing induc-
tance Lm of the circuit. The simulation is set up by provid-
ing the specific parameter values that correspond to the
elements in the circuit. Unfortunately, the simulation is
unstable even with the default setup.

By default, the circuit simulation is set up with the
voltage source Vs ¼ 325 V, the magnetizing inductance
Lm ¼ 5:0 mH, the ideal transformer with the windings
N1 : N2 ¼ 12 : 1, the filter inductanceL ¼ 50:0 mH, the capac-
itance C ¼ 400:0 mF, and the output resistance Ro ¼ 1:0 V.
For the metal-oxide-semiconductor field-effect transistor
(MOS-FET) that serves as a switch in the circuit, the circuit
designer uses a drain-source resistanceRds ¼ 8:0 MV to sim-
ulate the leakage of the cut-off state in the MOS-FET. The
control signal for the MOS-FET is generated by the pulse
generator (PG) as a square wave input with the frequency of
20 kHz, and the duty cycle (duty ratio)D ¼ 0:4. Hence in the
simulation code, the variable values are Vs = 325, Lm = 5E-

6, D = 0.4, Period = 5E-5, Acd = 1.0, Gds = 1.25E-7

+Acd, N1 = 12, N3 = 12.

Fig. 2. Circuit of a forward converter with error.

1. In practice, the algorithm of f may consist of complicated control
flow such as branches and loops. However for a specific input x, we
always get a deterministic trace of the algorithm. Here we consider a
trace as a finite sequence of steps and treat an algorithm as a set of
traces corresponding to different inputs.
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When analyzing the code in Fig. 4a with our toolchain,
we get ICN = 6:751� 106 and SCN = 6:215� 105. From the
result, the code in Fig. 4a is unstable and the instability is
from the software requirement. Particularly, when the code
simulates the behavior of the circuit, it needs to compute
the voltage in a continuous time period. So the input time
can be any value in its domain, including a value near
D*Period. This causes serious massive cancellation and
the error is further enlarged by the later calculation, which
makes the program particularly unstable. As shown in
Fig. 5a, the massive cancellation is caused by an impulse
voltage in the circuit. Hence, no matter how accurate the
code is, the instabililty always exists in the simulation. As
software engineers cannot fix the problem, they ask the cir-
cuit designer to inspect the requirements (the circuit).

The circuit designer corrects the error with a new cir-
cuit [6], which is shown in Fig. 3. The simulation code that
computes the voltage across the magnetizing inductance Lm

of the new circuit is in Fig. 4b. However, the code is still
unstable due to improper implementation, since the last
operation of the expression at line 6 may also cause cancella-
tion when time is close to (N1+N3)*D*Period/N1,
together with the expression D*Period/(Gds-Acd)-Lm

that subtracts a small number from a large one. When ana-
lyzing the new code in Fig. 4b with our toolchain, we get
ICN = 1:478� 107 and SCN = 0.00917, which indicates that

the instability is caused by practice and can be mitigated or
avoided by better implementation. Such result is in accor-
dance with the theoretical values in Fig. 5b, which shows
that the impulse voltage problem has been avoided. Our
toolchain also provides hints for fixing the numerical imple-
mentation. With the hints, the software developer replaces
the numerical expression at lines 6-8 with (Period*D*N1/

(Gds-Acd)/N1+Period*D*N3/(Gds-Acd)/N1-time/

(Gds-Acd))/Lm-Lm*N1/Lm/N1-Lm*N3/Lm/N1, which is
mathematically equivalent to the expression in Fig. 4b but
makes the code numerically stable. The ICN of the replaced
expression is 2.119.

In short, the instability in Fig. 4a is caused by problem
because the root cause is the impulse voltage shown in
Fig. 5a. As the impulse voltage is a physical characteristic of
the circuit, we cannot improve it by just changing the imple-
mentation. In contrast, the instability in Fig. 4b is caused by
practice because the improper code causes it. Only when
both kinds of instabilities are avoided, the numerical com-
putation becomes stable.

3 APPROACH AND IMPLEMENTATION

This section presents the technical details of our toolchain.2

3.1 Main Workflow

Fig. 6 presents the main workflow of our toolchain. It con-
tains four loosely-coupled tools that work in sequence:
ipatrans, fpstoc, ipstoc and ediagno. The source
code of the subject program that mainly contains fixed-
precision floating point arithmetic is first provided to ipa-

trans. The tool transfers the fixed-precision floating point

Fig. 5. Theoretical voltage across the magnetizing inductance Lm in a
cycle of the circuits.

Fig. 3. Circuit of the corrected forward converter.

Fig. 4. Simplified simulation code of computing the voltage across the
magnetizing inductance Lm in the circuits.

2. The toolchain is available at http://seg.nju.edu.cn/~eytang/
numericaltoolchain.tar.gz
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arithmetic in the program to infinite-precision arithmetic
automatically. Although the transferred infinite-precision
program is much slower than the original one, it is precise
and acts well as our test oracle in the later step for instability
diagnosing. Then we provide two stochastic transformation
tools: fpstoc and ipstoc. The tool fpstoc extends the
fixed-precision floating point arithmetic with a stochastic
approach, while ipstoc performs similar transformation
on the infinite-precision program. A few different strategies
such as the CESTAC method [7], [8] can be applied in this
step. For generalization we choose the plain strategy in our
implementation. The plain strategy systematically alters
each input and intermediate value with uniformly distrib-
uted random numbers in a small but controllable range
around it. Although the CESTAC method is more efficient,
the plain strategy directly changes the values and provides
the exact statistical results in general situation. With the
transformation of fpstoc and ipstoc, the transformed
programs output the results with random perturbation on
numerical values during execution. We hence call them sto-
chastic programs. The infinite precision stochastic program
introduces random values at each algorithm step, but com-
putes every step precisely without rounding errors. Hence
it shows the underlying mathematical properties of the
problem. However, the fixed-precision stochastic program
introduces random values with rounding errors at each
step, which shows the properties of the program. The tool
ediagno drives the testing procedure and generates the
statistical results based on the outputs of the execution of
the transformed programs. If the outputs of the fixed-preci-
sion stochastic vary a lot from the original results, the
numerical software is unstable. In this case, ediagno

checks the corresponding outputs of the infinite-precision
stochastic program. Since infinite-precision arithmetic pro-
duces the exact results of the algorithm, the outputs of the
infinite-precision stochastic program explain the property
of the mathematical problems implied in the software
requirements. Particularly, if the outputs of the infinite-pre-
cision stochastic program also vary a lot, the numerical

instabilities in the software are caused by the ill-conditioned
problems implied in the software requirements. In this case,
developers should ask the software customers to inspect the
requirements. Otherwise, the numerical instabilities in the
software are caused by practice, and ediagnowill also pro-
vide some hints for fixing the numerical implementation of
the software.

3.2 ipatrans: Infinite-Precision Transformation

The goal of using infinite-precision arithmetic is to build a
system that can give us the precise numerical outputs with-
out truncation errors. In other words, every significant digit
of the output must be correct in this arithmetic. To fulfill the
goal, we use the arbitrary precision floating-point format [9]
(type_real) to represent values in the program. Fig. 7
denotes the basic format of the arbitrary precision floating-
point numbers. It consists of a sign bit, a few exponent bits
and significand bits. When s is the sign; b is the base with
the value 2; l is the number of digits in the significand; x
is the exponent; and z is the integer value of the numerator
of the significand, we have the value

ð�1Þs � z

bl�1
� bx: (1)

Different from the fixed precision floating-point format, the
arbitrary precision format dynamically allocates memory of
significand bits during execution. As such, users can extend
the number of bits for the value when needed. The precision
of such floating-point numbers is not bounded whenever

Fig. 7. Format of arbitrary precision floating-point numbers used in
infinite-precision arithmetic.

Fig. 6. Main workflow of the numerical testing toolchain.
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there is still available memory space. However, it lacks a
mechanism to indicate how much memory is sufficient for a
value, or what is the proper condition of increasing precision.

The infinite precision arithmetic extends the arbitrary
precision format with an iteration, to make sure each arbi-
trary precision floating point value has sufficient bits to rep-
resent the precise value. The iteration in the infinite
precision arithmetic refines the values with increasing sig-
nificand length, so the intermediate and output values are
closer to the precise results after each iteration. The iteration
does not terminate until each represented value v̂ is close
enough to the corresponding precise value v. Formally,
when the infinite precision arithmetic iterates in the com-
puting process, it outputs a sequence v̂1; v̂2; v̂3; . . . ; v̂n. Each
output v̂i is the result using higher precision of computing
than the previous one v̂i�1. The sequence gradually approxi-
mates the precise result v. According to the definition of the
precise result of the program, we have

v ¼ lim
n!1

v̂n: (2)

According to the definition of sequence limit, we can
infer that the iteration in infinite precision arithmetic is
convergent.

Theorem 3.1 (Convergence of Infinite-precision Itera-
tion). For every " > 0, there is a corresponding integer N
such that

if n1 > N ^ n2 > N then jv̂n1 � v̂n2j < ": (3)

Proof. According to Equation (2) and the definition of
sequence limit, we can draw the conclusion that for every
"0 > 0 there is a corresponding integer N such that

if n > N then jv̂n � vj < "0;

Let " ¼ 2"0, we derive

if n1 > N ^ n2 >N then

jv̂n1 � v̂n2j ¼ jðv̂n1 � vÞ � ðv̂n2 � vÞj
� jv̂n1 � vj þ jv̂n2 � vj
< "0 þ "0 ¼ ":

tu

Since we may not get the precise result v during the itera-
tion, Theorem 3.1 shows that we can terminate when the
computed outputs get close enough.

Algorithms 1 and 2 show our implementation of the iter-
ation in infinite precision arithmetic [10]. The basic idea of
the iteration is that since program outputs are eventually
serialized to output devices, such as the screen, disk and
network, our algorithms monitor the serialization functions
to obtain the output v̂ for each iteration. Moreover, the seri-
alization functions also provide the value ", which deter-
mines the stop conditions of the iteration. Since users often
emit the first n digits in their results of real numbers, the
length of serialization provides us information of output
precision that user defined. In Algorithm 1, " is defined
with the formula b�n � jv̂j, where b is the base of the serial-
ized output. It is often set to 10 when the output is decimal.
When the program emits n digits of the result, any error

less than " in the result cannot be shown in the serialized
string. Algorithm 1 also holds a static queue V to store a
sequence of v̂n, and make sure the sequence is convergent.
By comparing the differences of value v̂ and other values in
the queue V , the algorithm triggers iteration by the excep-
tion mechanism. Algorithm 2 presents the iterative process
in the infinite precision arithmetic. The computing pro-
cesses of the numerical program are summarized in the
function program execðÞ. When it catches the exception
thrown by the serialization functions, it allocates more
memory for the values and increases the length of the signif-
icand. After that, it repeats the process until all outputs are
sufficiently precise (convergent).

Algorithm 1. serial: The Serialization Function of
Infinite Precision Arithmetic

input: n 2 Integer // serialization length
v̂ 2 R // serialization value of current iteration, a

computable real number
output: sv 2 String // serialized string output
1: static Queue V
2: " b�n � jv̂j
3: if !is_fullðV Þ then // store the sequence of v̂
4: V:enqueueðv̂Þ
5: throw Exception re_iterate
6: end if
7: if 9v̂0 2 V; jv̂� v̂0j � " then // not convergent
8: do{}until V .dequeue() == v̂0

9: V:enqueueðv̂Þ
10: throw Exception re_iterate
11: else // convergent
12: sv IOðv̂; nÞ
13: end if
14: return sv

Algorithm 2. iteration_wrap: The Iteration Process
of Infinite Precision Arithmetic

1: repeat
2: try
3: program_exec() // the original

computing
4: rerun false

5: catch Exception re_iterate
6: increase_precision()
7: rerun true

8: end try
9: until rerun == false

The tool ipatrans transforms a fixed-precision floating
point program to the version with infinite precision. It is
implemented on Clang, an open source C/C++ compiler. It
works by traversing and transforming the abstract syntax
trees (AST) of the program. Algorithm 3 describes the trans-
formation process, which mainly consists of four parts: type
substitution, operation modification, serialization and itera-
tion wrapper. It first substitutes all fixed-precision floating
point types such as float and double to the arbitrary preci-
sion type type_real at all places of definition. Runtime
support is also added to dynamically increase the digits
used to represent type_real values on demand. The
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algorithm also replaces the operations on the substituted
variables to ensure semantic consistency, including unary
operations such as fabs, sin, and exp, and binary opera-
tions such as � and pow. Algorithm 3 also adds the serial
function defined in Algorithm 1 at each input and output
point to check the convergence of iterations with the accept-
able error ". Then it wraps the original numerical code body
to the iteration defined in Algorithm 2. Specifically, it trans-
fers the main function of the original numerical code to the
program_exec() in Algorithm 2 and wraps it with the
exception handler to repeat the computation.

Algorithm 3. Transformation Algorithm from Fixed
Precision to Infinite Precision Arithmetic

input: Pfix // the original numerical program
output: Pinf // the transformed infinite-precision program
1: P  Pfix[main 7! program_exec]

2: 8 h 2 ASTðPÞ do // traverse the abstract syntax tree
3: switch (nodeðhÞ) // substitute types and operations
4: case variable definition
5: if typeðhÞ ¼ double _ typeðhÞ ¼ float then
6: P  P½typeðhÞ 7! type_real�
7: end if
8: case function definition
9: if returnðhÞ= double _ returnðhÞ ¼ float then
10: P  P½returnðhÞ 7! type_real�
11: end if
12: if paraðhÞ ¼ double _ paraðhÞ ¼ float then
13: P  P½paraðhÞ 7! type_real]

14: end if
15: case unary operatorf : type_fix! type_fix:

16: P P½f 7! finf � // where finf : type_real !
type_real

17: case binary operator 	 : type_fix � type_fix! type_fix:

18: P  P½	 7! 	inf � // where 	inf : type_real � type_

real! type_real

19: case IOðv̂fix; nÞ // add the serialization function
20: P  P½h 7! serial v̂; nÞ�
21: endswitch
22: end for
23: Pinf  iteration_wrap PÞ // wrap the iteration process
24: return Pinf

3.3 fpstoc & ipstoc: Stochastic Transformation
on Fixed-Precision and Infinite-Precision
Arithmetic

The stochastic approach estimates the accumulated numer-
ical errors during computation. In our toolchain, we apply
the stochastic approach on both the original fixed-precision
program and its infinite-precision version. This allows us
to measure the sensitivity of both the numerical program
and the underlying mathematical problem (to small errors

in the inputs and mediate values). Because small errors
can cause substantial output changes in sensitive pro-
grams, such programs are considered unstable. The fixed-
precision stochastic approach detects instabilities in the
program implementation, whereas the stochastic results of
the infinite-precision program indicate if the instability is
caused by the mathematical properties of the problem
statement in the software requirements.

The user can choose different stochastic strategies in this
phase, such as the plain stochastic strategy, or the CESTAC
stochastic strategy [7], [8]. The plain stochastic strategy
directly perturbs all the inputs and intermediate values in
the program with a predetermined scale, whereas the CES-
TAC strategy works in a more efficient way, with the
hypothesis that the individual round-off errors of the float-
ing-point arithmetic are independently random and
uniformly distributed. With the approximation of a probabi-
listic first order model in 2�l (Equation (1)), the CESTAC
approach only needs about three different executions to
conclude the stability of the implementation.

In general, we formalize the stochastic approach like this:
For each value v in the program, we simulate the error with
a basic stochastic function p, and changes it to the value v0

v0 ¼ pðv;mÞ ¼ vþ v� d�m ¼ vð1þ dmÞ; (4)

where m is the order of magnitude in the stochastic
approach. In different stochastic stategies, the order of mag-
nitude is expressed as different forms. For example, the plain
stochastic stategy randomly alters the k tail bits in the signifi-
cand, so the value m ¼ bk�lþ1, while the CESTAC stategy
fixes the order of magnitudewith the value of ulp (unit in the
last place), wherem ¼ b�l. In Equation (4), d 2 R is a random
real number taken from a uniform distribution between �1
and 1. Hence, each execution of the basic stochastic function
changes the value vwith the precentage of dm.

Figs. 8, 9, 10, and 11 presents the implementation of basic
stochastic functions under different strategies. Figs. 8 and 9
describe the plain stochastic strategy on a single floating-
point value. They both accept an extra parameter to regulate
the number of bits to be perturbed. Fig. 8 works on a double
precision floating-point number with the fixed length of 64
bits for each value, while Fig. 9works on an infinite-precision
value, which dynamically allocates the significand by an
unsigned array (the array limb in Fig. 9). The unsigned array
stores significand in the little endian order, which means the
least significant unit is placed at the index of 0 of the array.
So the stochastic function changes the bits from index 0 to
the index of the argument. The CESTAC strategy mainly
switches the rounding mode to fulfill the stochastic proce-
dure. Fig. 10 presents the basic stochastic function with the
CESTAC strategy on a fixed-precision floating-point value.

Fig. 8. Plain stochastic function for fixed-precision arithmetic.
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Instead of altering bits of the significand in the value, the
CESTAC strategy randomly chooses different rounding
mode in its basic stochastic function. Hence, every operation
uses different rounding mode that yields stochastic results.
Fig. 11 presents the stochastic rounding switching for infi-
nite-precision values, which determines the ulp (unit in the
last place) by the precision in the type_real.

In our toolchain, the tools fpstoc and ipstoc instru-
ment the fixed-precision and the infinite-precision float-
ing point program with the stochastic transformations,
respectively. Table 1 presents the transformation rules
that substitute values in numerical programs with the
basic stochastic functions p_fix (pfix) and p_inf (pinf)
defined from Figs. 8, 9, 10, and 11. According to the rules,
our toolchain automatically transforms the operations in
each numerical expression e to a stochastic form pðeÞ
when e satisfies the conditions in Table 1. The stochastic
program calls the basic stochastic functions pfix and pinf in
computing its result. The tool fpstoc instruments pfix
while ipstoc instruments pinf . The principle in applying
the basic stochastic functions is that if any values of infi-
nite precision occur in the expression, we use the function
pinf , otherwise we use pfix. In Table 1, the transformation
handles function call fðeÞ, unary negative operator �, and

different kinds of binary operators 	, such as þ, �, � and
�. After recursively applying the transformation on each
numerical expression in the program, all numerical val-
ues in a program are perturbed systematically by the
basic stochastic function(s).

Algorithm 4 describes the testing algorithm leveraging
the stochastic transformation. It scans over all numerical
expressions in the program P, and replaces each numerical
expression e to its stochastic form pðeÞ. When we test the
program, we automatically apply the perturbed input pfixðiÞ
and pinfðjÞ , and output the perturbed results.

Fig. 9. Plain stochastic function for infinite-precision arithmetic.

Fig. 10. Fixed-precision basic stochastic function with the CESTAC strategy.

Fig. 11. Infinite-precision basic stochastic function with the CESTAC strategy.

TABLE 1
Stochastic Transformation Rules

condition pðeÞpðeÞ
e ¼ vfix pfixðvÞ
e ¼ vinf pinfðvÞ
f : F ! F ^ e ¼ vfix pfixðfðeÞÞ
f : R! R ^ e ¼ vinf pinfðfðeÞÞ
e ¼ �e1 ^ e1 ¼ vfix �pfixðe1Þ
e ¼ �e1 ^ e1 ¼ vinf �pinfðe1Þ
e ¼ e1 	 e2 ^ e1 ¼ vfix ^ e2 ¼ vfix pfixðpfixðe1Þ 	 pfixðe2ÞÞ
e ¼ e1 	 e2 ^ e1 ¼ vinf ^ e2 ¼ vinf pinfðpinfðe1Þ 	 pinfðe2ÞÞ
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Algorithm 4. Stochastic Testing Algorithm

input: P // the program to be tested
input: I // a set of inputs

1: 8 e 2 P; i; j 2 I ^ i 2 F ^ j 2 R do

2: output P½e 7!pðeÞ�ðpfixðiÞ; pinfðjÞÞ
3: end for

3.4 ediagno: Evaluation and Diagnosis

Ediagno is a test harness that drives the evaluation of the
transformed programs. When running a stochastic program
n times, we get a set of outputs fotj1 � t � ng. Then
ediagno detects and diagnoses numerical instabilities by
the statistical properties of the outputs, then it generates fix-
ing hints when the instabilities are caused by practice.

The tool needs to measure if the outputs vary a lot. Root
mean square error (RMSE), also called the root mean square
deviation, is a frequently-used measurement which is origi-
nally designed for analyzing the relative errors for values in
statistics [11]. It is expressed as the following formula in our
toolchain

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

n

X

n

t¼1
ot � oð Þ2

s

; (5)

where ot is one of the stochastic outputs, o is the corre-
sponding non-perturbed output, and n is the stochastic run-
ning times. Although a larger n increases accuracy in
statistics, it costs significantly more computing resources in
testing when we need to compute infinite-precision values
in every execution. Hence, choosing a practical n in testing
is a tradeoff. Later in our evaluation, we discuss more about
the choice of n.

When we compare the outputs of different subjects, we
normalize the RMSE measurements by the coefficient of
variation, which is denoted as CV(RMSE)

CV(RMSE) ¼ RMSE

m
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
n

Pn
t¼1 ot � oð Þ2

q

1
n

Pn
t¼1 ot

; (6)

where m is the mean of stochastic outputs.
Although CV(RMSE) measures the variation of stochastic

outputs, our toolchain does not directly use it, because we
need to study how the output variation changes with the
inputs. For this reason, we introduce two measurements for
fixed-precision stochastic evaluation and infinite-precision
stochastic evaluation, respectively. We call them the imple-
mentational condition number and the statistical condition
number

ICN ¼ CV(RMSE)fix=mfix (7)

SCN ¼ CV(RMSE)inf=minf : (8)

Both the measurements use the corresponding CV
(RMSE) and divide it by the perturbation magnitude m,
which is shown in Equation (4). Hence, they provide the
ratio of the output variation over the input variation. A
large implementational condition number (or statistical con-
dition number) means that a small change of an input or an
intermediate value causes the outputs fluctuate a lot. In the

program-level, a large implementational condition number
suggests the program is unstable, while in the problem
level, a large statistical condition number shows that the
problem defined in the requirements is unstable by its
nature.

As a tradition of numerical analysis, condition number
(CN, referred as theoretical condition number) is a well
known measurement that shows the sensitivity of the out-
put by the input of the numerical problem [12]. Here we
design the ICN and SCN based on the concept of CN, yet
we make the ICN and SCN more practical. The theoretical
condition number (CN) is defined as the ratio of the output
relative error to the input relative error. When we compute
CN of a function y ¼ fðxÞ, the formula is:

CN ¼ dy=y

dx=x

�

�

�

�

�

�

�

�

¼ dy

dx

 x
y

�

�

�

�

�

�

�

�

¼ f 0ðxÞ 
 x

fðxÞ

�

�

�

�

�

�

�

�

: (9)

Since we target on practicality, the design of ICN and
SCN is different from the theoretical condition number.
Because of the round-off errors, computable real numbers
often lose precision when they are represented as fixed-pre-
cision floating point numbers. Large ICNs may also be
caused by improper implementations of the numerical pro-
gram. Hence, it is insufficient to use ICN to indicate the
properties of the mathematical problem. Instead, we use
SCN on the infinite-precision program. SCN provides
insight about problem stability similar to CN. But the two
are practically different because CN provides the ratio
when the relative error becomes infinitesimal. For example,
when we discuss the function y ¼ sinðxÞ=x, the theoretical
condition number is:

CN ¼ dy

dx

 x

sinðxÞ=x

�

�

�

�

�

�

�

�

¼ xcosðxÞ
sinðxÞ � 1

�

�

�

�

�

�

�

�

: (10)

According to the CN values, y ¼ sinðxÞ=x is unstable when
x ¼ p 
 1010, and stable when x ¼ p 
 ð1010 þ 1=2Þ, which is
strange as numerical programs should have similar preci-
sion when computing the function with both inputs. In con-
trast, the SCN values tell us the function actually
accumulates similar errors when we precisely compute it
with x ¼ p 
 1010 and x ¼ p 
 ð1010 þ 1=2Þ with a computer,
even with infinite precision arithmetic. Hence, SCN has
more practical value for problems implemented by real
world programs.

In spite of this, some rules regarding CN are still applica-
ble to ICN and SCN. One example is the threshold for insta-
bility detection and diagnosis. Several numerical analysis
approaches use a typical value of 10 as the threshold of CN
[13]. Others in numerical analysis suggest that when CN is
greater than 10, the result at least loses one decimal digit of
precision in the significand [12]. Empirically, the same
threshold 10 works well in our evaluation too. Hence our
toolchain uses 10 as its default threshold for ICN and SCN.

The tool ediagno computes ICN and SCN from the out-
puts of the stochastic programs. Then it uses the threshold
10 from the traditional practice to detect instabilities. When
ICN is larger than the threshold, the numerical program is
unstable. Then it further checks the SCN. When it is also
larger than the threshold, it diagnoses the instabilities are
caused by problem, and suggests the user to inspect the
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requirements. Otherwise, the instabilities are caused by
practice. In this case, users can start an optional post-analy-
sis in ediagno, which provides hints to help developers fix
the numerical implementation.

3.5 Optional Post-Analysis

The optional post-analysis of our tool-chain provides locali-
zation and fixing hints for numerical instabilities caused by
practice when ICN is large. The analysis collects traces of
two groups of executions, one from the fixed-precision sto-
chastic program and the other from the corresponding
infinite-precision program. Then it compares them to iden-
tify salient differences that indicate the location of the
numerical instability in the program.

When users start the optional post-analysis, our tool-
chain links a tracing version of the basic stochastic functions
p_fix’ and p_inf’ to the transformed programs instead of
p_fix and p_inf defined in Figs. 8, 9, 10, and 11. The func-
tion p_fix’ not only performs stochastic perturbation as
p_fix, but also records its input along with an expression
index when it is called. Hence it traces every intermediate
value in an execution of the fixed-precision stochastic pro-
gram. Meanwhile, the function p_inf’ records the infinite-
precision value of the corresponding expression without
any stochastic perturbation, which provides a testing oracle
of every intermediate value in the program.

With the new version of stochastic functions, an execu-
tion of the transformed infinite-precision program outputs
an oracle trace T ¼ ht1; t2; t3; . . . ; tmi, whereas an execution
of the fixed-precision stochastic program records a test trace
T̂ ¼ ht̂1; t̂2; t̂3; . . . ; t̂mi. We define every intermediate tracing
value ti (or t̂i)ð1 � i � mÞ as a tuple ðe; vÞ , where e is the
recorded expression label and v is the corresponding
recorded value. When the post-analysis executes the fixed-
precision stochastic program n times, we get a set of test
traces T̂ ¼ fT̂1; T̂2; . . . ; T̂ng.

Algorithm 5 defines the algorithm of localization by ana-
lyzing traces. The algorithm accepts an oracle trace and a set
of test traces with the same test inputs. Then it outputs the
label of the first localized unstable expression in the numerical
program. If the stochastic testing causes the program to exe-
cute a different path (line 2), it means errors in numerical val-
ues may also lead the program to execute a different path.
Since it is often dangerous, the algorithm directly returns the
first different expression in the path to warn users (line 3).
Then the algorithm computes ICN for every intermediate
value in the trace. According to Equation (7),

ICN ¼ CV(RMSE)fix
mfix

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
n

Pn
t¼1 ot � oð Þ2

q

mfix � 1
n

Pn
t¼1 ot

: (11)

Here we substitute ot with every intermediate value t̂i:v in
test traces, and substitute o with ti:v in the oracle trace (lines
5-6). Finally the algorithmoutputs the expression label whose
ICN is greater than the threshold 10 discussed in Section 3.4
as the potential reasons of implementational instabilities.

The optional post-analysis also outputs an expression
which is mathematically equivalent to the localized numeri-
cal expression as a fixing hint. It transforms the localized
expression with the commutative, associative, and

distributive laws, and outputs an expression whose fixed-
precision floating-point result is the nearest one to the value
in the oracle trace. Details of the expression transformation
can be further referred to one of our previous work [14].

Algorithm 5. Localization Algorithm

input: T // an oracle trace
T̂ // the corresponding set of test traces

output: e // a label of the localized expression
1: for i ¼ 1 to n do
2: if 9T̂j 2 T̂ ; t̂i ¼ T̂j.valueðiÞ; ti ¼ T .valueðiÞ; t̂i:e 6¼ ti:e then
3: return ti:e
4: end if
5: Oi  ft̂i:vj8T̂j 2 T̂ ; t̂i ¼ T̂j.valueðiÞg
6: icni ICN(Oi; ti:v); // compute ICN
7: if icni > 10 then
8: return ti:e
9: end if
10: end for

A real world numerical software may contain instabil-
ities that are caused by very complicated mechanism in
practice. Our post-analysis does not guarantee the localiza-
tion and fixing information is complete in all scenarios. For
example, a numerical instability may be caused by multiple
locations in a program and our localization algorithm
always outputs the first location. Meanwhile, the fixing
hints take effect only when the numerical instability can be
fixed by changing one numerical expression with the com-
mutative, associative, and distributive laws. Hence, users
need to further validate the outputs of our tool chain manu-
ally to fix numerical instabilities. Nonetheless, we still
believe that the post-analysis is helpful especially when
users detect numerical instabilities in large software. It pro-
vides locations and clues for fixing instabilities caused by
practice, so users do not need to examine the whole numeri-
cal program.

4 EVALUATION

We first evaluate our approach on a few subject programs
from the literature, including two well known ill-condi-
tioned problems, two are well-known problematic numeri-
cal implementations, and two stable numerical programs.
By testing on these programs, we want to answer the fol-
lowing key questions:

RQ1: Can our approach distinguish ill-conditioned prob-
lems from unstable implementation?

RQ2: Are there general guidelines in setting parameters,
such as the perturbation magnitude m? Are the com-
monly used thresholds from the practice of numeri-
cal analysis applicable in our context?

RQ3: Is the performance of our system reasonable?
Then we test our framework over the API functions in GNU
scientific library (GSL) version 1.16 (i.e., the latest version).
This is to evaluate the effectiveness of our approach on
applications of industrial-strenth, aiming to answer the fol-
lowing research question:

RQ4: Can our toolchain detect real bugs in numerical soft-
ware, and help fixing the detected bugs?
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Our evaluation was performed on an Apple MacBook
Pro with Intel Core i5 CPU 2.4 GHz, and 4 GB Physical
Memory. The operating system is MacOSX 10.7 Lion. Our
implementation is based on the ROSE compiler 0.9.5a [15]
and iRRAM 2013.01 [10]. We reuse the code of exception
pattern in iRRAM. When users apply the CESTAC strategy,
our implementation calls CADNA and SAM library to
mutate the ulp of numerical values, which are based on
CADNA 1.1.9 [1] and SAM 2013 [16]. We compile the pro-
gram with llvm-gcc 4.2.1.

4.1 Results for Programs from the Literature

Fig. 12 presents the salient code segments of our first set of
subject programs. We collect our first set of evaluation sub-
jects from several existing projects. The set includes two
well-known ill-conditioned problems (Hilbert.c [17] and
GM.c [18]), two well-known unstable numerical implemen-
tations (harmonic.c [19] and root.c [20]), and two stable
implementations (inv.c [21] and sample_run.c [22]).
These subjects contain 869 lines of code (LOC) in total.

The code snippet of Hilbert.c is shown in Fig. 12e. It
represents a well-known ill-conditioned problem—the Hil-
bert linear equation system [17]. In particular, a Hilbert lin-
ear equation system is denoted as

Hx ¼ h; (12)

with the n� nHilbert coefficient matrixH expressed as

Hi;j ¼
1:0

iþ j� 1:0
; (13)

xn�1 denoting a vector containing n unknowns, hn�1 the
vector of constant terms.

The other well-known ill-conditioned problem is the
Grey Prediction Control Model GM(1,1) [18] in Fig. 12f,

which is expressed as the following differential equation

dXð1Þ

dt
þ aXð1Þ ¼ u; (14)

where XðkÞ is a sequence of time series numerical data, a
and u are unknown coefficients that need to be estimated

X
ðkÞ
i ¼

X

i

j¼1
X
ðk�1Þ
j : (15)

For detecting whether solving a linear equation is ill-con-
ditioned, traditional numerical analysis directly computes
the theoretical condition number (CN) from the coefficient
matrix. Unlike these traditional practices, our approach
evaluates the problem directly on the system. This is very
desirable when the system is complicated. In our evalua-
tion, all the systems are transformed to the infinite-precision
implementations that eliminate any possible translation
errors from the mathematical models to the programs due
to the precision lost in the fixed-precision arithmetic.

In addition, Figs. 12a and 12b show the code snippets for
unstable implementations. In particular, the harmonic.c

in Fig. 12a is from [19], where Stanoyevitch computes the
generalized harmonic number with the order of two using a
loop. When the variable i becomes large during the itera-
tion, the loop continuously adds the small number 1=i2 onto
a very large floating-point number re, which is an improper
practice in numerical programming. The root.c program
in Fig. 12b is from [20]. It computes the quadratic formula
for some given parameters. It is unstable because there is
massive cancellation in its calculations.

We also include two stable numerical programs for
comparison. The inv.c program is from [21] and
sample_run.c is from the computation of a mechanical
engineering simulator [22]. Although some expression in

Fig. 12. Key code segments of the evaluation subjects from the literature.
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the simulator is complicated, the numerical computation is
correct and stable.

Figs. 13, 14, 15, and 16 and Table 2 present the results on
testing the subjects from the literature. We first evaluate all
the subjects with the plain stochastic strategy. Particularly,
we fix the perturbation probability r ¼ 100 percent and then

systematically alter the perturbation magnitude m from 2�52

to 2�37. We run 200 times for eachmagnitude value, and com-
pute the implementational condition number and statistical
condition number separately for the fixed-precision arithme-
tic and the infinite-precision arithmetic. Fig. 13 shows the
implementational condition numbers of the fixed-precision

Fig. 16. SCN (statistical condition number) of the stochastic outputs over infinite-precision arithmetic with different perturbation probability r from 10
to 100 percent, while we fix the perturbation magnitudem ¼ 2�45.

Fig. 13. ICN (implementational condition number) of the stochastic outputs over fixed-precision arithmetic with different perturbation magnitude m,
which is from 2�52 to 2�37.

Fig. 14. SCN (statistical condition number) of the stochastic outputs over infinite-precision arithmetic with different perturbation magnitude m, which
is from 2�52 to 2�37.

Fig. 15. ICN (implementational condition number) of the stochastic outputs over fixed-precision arithmetic with different perturbation probability r
from 10 to 100 percent, while we fix the perturbation magnitudem ¼ 2�45.
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stochastic programs, whereas Fig. 14 presents the statistical
condition numbers of the infinite-precision programs. We
mark the widely accepted threshold 10 as a straight
line in the figures. From the results, the unstable
programs (Hilbert, GM, harmonic and root) produce
larger implementational condition numbers than the stable
ones (inv and sample_run), which are clearly divided by
the threshold. Note that all the unstable subjects would lose
more than one decimal digit of the significand than its input
when the subjects produce implementational condition num-
ber larger than the threshold 10. Yet the stable subjects do not
have such a problem. The results in Fig. 14 are quite different
from Fig. 13. Because the instabilities in harmonic and root

are from improper implementation, they produce small sta-
tistical condition numbers at the same level as the results of
the stable subjects (inv and sample_run). But the statistical
condition numbers of Hilbert and GM are very large since
their instabilities are caused by the ill-conditioned problems.
According to Figs. 13 and 14, we also observe that the imple-
mentational condition number and the statistical condition
number are not sensitive to changes of the perturbation mag-
nitudem. So we can fix the perturbation magnitudem to the
median value 2�45 for other experiments.

The perturbation probability r and the number of samples
affect the performance of our toolchain. Hence, we also study
the valid values of these parameters. In particular, we fix the
perturbation magnitude m to 2�45, and use 200 samples for
the stochastic approach. When we change the perturbation
probability r from 10 to 100 percent, the corresponding imple-
mentational condition and statistical condition numbers are

shown in Figs. 15 and 16, respectively. From the results, the
implementational condition number and the statistical condi-
tion number become unstable when the perturbation
probability r is lower than 10 percent, because the implemen-
tational condition number of sample_run and the statistical
condition number of root deviate from the numbers with
full perturbation (i.e., r ¼ 100 percent). In general, r ¼ 30 per-
cent is good enough. Based on these observations, we conser-
vatively choose r ¼ 50 percent for other experiments to
ensure the quality of the results.

We further study whether it is required for us to run each
subject 200 times to get stochastic results of good quality.
Chatelin [23] rigorously concludes that only two or three
samples with stochastic running in numerical evaluation sta-
tistically give a confidence level of 95 percent in general.
Vignes proves that the CESTAC strategy only needs three
independent samples to generate valid results [7], [8]. Other
numerical experts also take five samples or less as a practical
way in their stochastic evaluation [24], [25]. Table 2 presents
the implementational condition and statistical condition
numbers under different numbers of running samples. In
particular, we fix the perturbation magnitude m ¼ 2�45 and
the perturbation probability r ¼ 50 percent. As the results
align with the observations from other numerical experts,
we follow the tradition of taking five samples for further
experiments, to ensure our toolchain efficiently yields good
results for instability detection and diagnosis.

Table 3 presents the ICNs and SCNs generated from the
plain strategies (with two different configurations) and the
CESTAC strategy, whereas Table 4 compares the execution

TABLE 2
ICN (Implementational Condition Number) and SCN (Statistical Condition Number) of the Stochastic Outputs with Different
Numbers of Running Samples, While We Fix the Perturbation Magnitudem ¼ 2�45, and the Perturbation Probability r ¼ 50%

SampleNum 3 5 10 20 50 100 200

harmonic
ICN 1.482E+02 1.471E+02 1.656E+02 1.502E+02 1.038E+02 1.233E+02 1.264E+02
SCN 4.265E-15 6.159E-16 2.586E-15 4.088E-15 2.787E-15 2.448E-15 1.917E-15

root
ICN 1.891E+06 9.056E+05 2.522E+06 2.235E+06 1.805E+06 2.117E+06 2.078E+06
SCN 4.519E-05 6.548E-05 7.379E-05 1.292E-04 2.123E-04 1.657E-04 1.286E-04

inv
ICN 6.287E-01 6.976E-01 6.323E-01 6.527E-01 6.361E-01 6.828E-01 6.878E-01
SCN 7.162E-02 6.262E-02 6.316E-02 7.416E-02 6.116E-02 6.716E-02 6.938E-02

sample_run
ICN 6.046E-01 6.176E-01 6.041E-01 5.573E-01 6.652E-01 6.551E-01 6.071E-01
SCN 6.379E-06 6.279E-06 6.490E-06 6.559E-06 6.304E-06 6.462E-06 6.870E-06

Hilbert
ICN 1.861E+18 3.927E+18 3.092E+18 3.315E+18 5.443E+18 2.976E+18 3.287E+18
SCN 3.669E+82 7.505E+82 6.447E+82 5.187E+82 9.028E+82 6.948E+82 7.187E+82

GM
ICN 8.328E+07 3.423E+07 5.345E+07 5.376E+07 4.525E+07 6.142E+07 5.851E+07
SCN 1.729E+13 1.869E+13 1.212E+13 2.032E+13 1.820E+13 1.919E+13 1.630E+13

TABLE 3
ICN and SCN Comparison between the Plain Strategies and the CESTAC Strategy

(Plain#1:m ¼ 2�45, r ¼ 50%, Five Samples; Plain#2:m ¼ 2�52, r ¼ 100%, Three Samples)

Subjects ICN SCN

Plain#1 Plain#2 CESTAC Plain#1 Plain#2 CESTAC

harmonic 1.471E+02 9.171E+01 2.481E+04 6.159E-16 2.010E-15 2.392E-13
root 9.056E+05 2.541E+06 2.549E+04 6.548E-05 8.524E-05 2.606E-09
inv 6.976E-01 3.378E-01 1.373E+00 6.262E-02 4.200E-02 1.253E-15
sample_run 6.176E-01 6.159E-01 3.080E-01 6.279E-06 1.668E-06 9.475E-16
Hilbert 3.927E+18 5.639E+20 9.814E+15 7.505E+82 4.198E+84 8.254E+15
GM 3.423E+07 9.078E+07 2.945E+07 1.869E+13 2.042E+13 3.385E+15
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time of the original program and the testing process with
these strategies. The configuration of Plain#1 in Tables 3
and 4 is suggested from other experiments with the pertur-
bation magnitude m ¼ 2�45, the perturbation probability
r ¼ 50 percent, and five samples to generate the results. The
configuration of Plain#2 is designed following the closest
parameters to the CESTAC strategy with the perturbation
magnitude m ¼ 2�52, the perturbation probability r ¼ 100
percent, and three running samples. When the CESTAC
strategy only switches the value of ulp (unit in the last
place) with three samples, it runs faster than the plain strat-
egies. But for some subjects such as Hilbert, it produces
different ICNs and SCNs than the plain strategy because
the plain strategy applies perturbation to the values that are
already rounded. When the plain strategies are more sensi-
tive to the instabilities, we use the configuration of Plain#1
for other experiments in our evaluation.

From Table 4, the toolchain introduces overhead in test-
ing compared to the native execution time of the original
program, which is about 46 times slower on average. The
reason is that we introduce the infinite-precision arithmetic
and the stochastic sampling. However, we still believe the
performance is acceptable as a high performance testing
environment can address this problem. For example, users
can test and diagnose their large size numerical software on
a massively parallel processing platform, and run their fixed
software in a normal environment without any overhead
than its original version.

According to the results in Figs. 13, 14, 15, and 16, our
toolchain effectively diagnoses the two unstable subjects
that are caused by improper numerical implementations.
The toolchain also generates fixing hints for these subjects.
It locates the expression in line 4 of Fig. 12a and the expres-
sion in line 3 of Fig. 12b. Our toolchain does not provide the
correct fixing expression automatically, because harmonic

cannot be directly patched with expression replacement,
and the new (and stable) expression of root needs very

complicated transformation that is not currently supported
by our implementation. Nevertheless, it is much easier for
numerical experts to fix the instabilities with the localization
hints in the code, especially when the project is large.

Fig. 17 shows the code patches of the two unstable sub-
jects. For harmonic, we change the iteration sequence to
avoid adding small numbers onto the large floating-point
number. And for root, we use an equivalent expression
�2c=ðbþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b2 � 4ac
p

Þ instead of the quadratic formula
ð�bþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b2 � 4ac
p

Þ=2a, because

�bþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b2 � 4ac
p

2a
¼ �bþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b2 � 4ac
p

2a
��b�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b2 � 4ac
p

�b�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b2 � 4ac
p

¼ � b2 � ðb2 � 4acÞ
2aðbþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b2 � 4ac
p

Þ
¼ �2c

bþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b2 � 4ac
p :

After the expression substitution, root does not have
massive cancellation in its code and becomes stable. When
verifying the patched code with our toolchain, we get the
implementational condition numbers in Table 5. Both sub-
jects produce low implementational condition numbers
after applying the patches, according to the data in Table 5.

4.2 GSL

Besides the experiments on the subjects from the literature,
we also apply the toolchain on the GNU Scientific
Library [26] to detect and diagnose instabilities in real proj-
ects. The GNU Scientific Library is a mature, well-main-
tained, and widely deployed numerical library in industry.
It is both challenging and important for us to find instabil-
ities in the GSL functions.

The GSL library contains 2,115 functions with 275,304
lines of code (LOC). A function in the library contains a
maximum of 609 lines of code, and about 130 lines of code
in average. Our toolchain analyzes programs not library
functions, so we compose a driver for the GSL functions by
synthesizing a main and calls the nine elementary functions
and 160 special functions with inputs falling into the func-
tion domain. For functions that are very similar to each
other, we only test one of them.

For test input generation, we follow a few empirical
guidelines as proposed in the genetic algorithm by Zou
et al. [27]. According to [27], many functions in GSL may
produce substantially different outputs due to rounding
errors or/and cancellations around a few special inputs,
which can be summarzied as I ¼ f�e;�p;�2;�1;�p=2; 0;
p=2; 1; 2;p; eg. Then let � ¼ 5� 10�10, and 8i 2 I, we ran-
domly select 20 inputs in the range of (i� �, iþ �), including
i itself, where we got 220 test inputs. Then we generate 100

TABLE 4
Execution Time (in Seconds) of the Original Program,
the Testing Process with the Plain Strategies, and the

CESTAC Strategy (Plain#1:m ¼ 2�45, r ¼ 50%,
Five Samples; Plain#2:m ¼ 2�52, r ¼ 100%, Three Samples)

Subjects Original Plain#1 Plain#2 CESTAC

harmonic 7.180E-04 7.828E-02 4.869E-02 4.465E-02
root 4.900E-05 3.990E-04 2.494E-04 1.650E-04
inv 5.300E-05 2.160E-04 2.011E-04 1.840E-04
sample_run 7.300E-05 4.482E-03 2.864E-03 1.481E-03
Hilbert 5.272E-03 3.018E-01 1.849E-01 9.290E-02
GM 2.610E-04 8.949E-03 8.254E-03 7.750E-03

Fig. 17. Patched code segments for unstable subjects caused by improper numerical implementations.
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test inputs according to the algorithms in [27], and select
100 sample inputs following uniform distribution. The total
number of test cases for each function is 420.

According to Barr’s research [4], many underflow and
overflow exceptions are avoidable in GSL. And since our
transformed infinite-precision programs can handle a larger
range of numerical values, we manually fix a few overflows
and underflows in GSL to enlarge the valid input ranges.

Table 6 shows the experiment setup and summary of
results in the GSL evaluation. With the observation in
Section 4.1, we fix the perturbation magnitude m ¼ 2�45

and the perturbation probability r ¼ 50 percent. For each
test, we take five samples to get the correct results. We
totally find 15 unstable functions, and nine of them are diag-
nosed as implementational instabilities. We reported the
nine functions as real bugs to the GSL Buglist3 as Bugs
#45726, #45730, and #45746. The average testing time for a
function is 7.284E-2 seconds, which is acceptable in testing.

Table 7 presents the evaluation details of the 15 unstable
functions. We mark the nine functions with implementa-
tional vulnerabilities with grey. Table 7 presents the input,
output, implementational condition number, statistical con-
dition number and the average testing time for each func-
tion. Some of the functions are obviously wrong: As
common knowledge in mathematics, the trigonometric
function sine should output values in the range [�1; 1].
However the mean output of the GSL library function
gsl_sf_sin, which actually computes values of sine, is
�5:206E þ 118.

Our toolchain also reports some hints for the root cause
of the implementational vulnerabilities. It can narrow down
to a few expressions. Here we use a code snippet as a typical
example in Fig. 18. The root cause is located at line 533 of
the source file specfunc/trig.c in GSL-1.16.

The function angle_restrict_symm_err() in Fig. 18
works for periodic functions with the period of p(or 2p). It
tries to extract the equivalent value r in ð�p;pÞ for the input
theta of the periodic function. For example, if the user pro-
vides an input theta of �72p� 0:6, the function in Fig. 18
should compute r as �0:6, because for some periodic func-
tion like cosine, we have cosð�72p� 0:6Þ ¼ cosð�0:6Þ.
From Fig. 18, the developer carefully divides p to three dou-
ble values as P1, P2 and P3 for more mantissae. Then com-
putes y for the number of periods in theta, such as y =
�72 when theta = �72p� 0:6. At line 14 of Fig. 18, it com-
putes r with theta-y * p. Hence, it is clear that the author
of GSL believes r 2 ð�p;pÞ.

The problem of the code in Fig. 18 is triggered when the
input theta becomes large. In this case, we cannot com-
pute correct y through the expression in line 12, because
fabs(theta)/TwoPi has very large absolute errors
(> 1). Although the relative error of y is quite small, the

massive cancellation in line 14 causes severe errors in r.
When we set the input theta = �7:294E þ 23, the code out-
puts r = 5092122.317. It violates the rule r 2 ð�p;pÞ and
causes problems in later computing. As the massive cancel-
lation at line 14 is unavoidable, we suggest the developer to
increase the precision of each value in computing the
expression at 12. We have reported all the bugs and the
patch suggestions to the Buglist of GSL.

4.3 Limits and Summary

The testing technique is not sound—it may miss important
inputs (such as the GSL test inputs of unstable functions).
Although infinite-precision arithmetic is precise when the
computer has enough resources, it may still suffer from the
precision loss when the physical computing resources is
limited. Nonetheless, we are still confident that our tool-
chain is useful to numerical code developers. Software test-
ing has been proven to be a useful technique for improving
software quality. The test suite is representative and the
reported results are promising. Our toolchain did find real
bugs in the latest version of one of the most well-main-
tained, widely deployed numerical libraries in industry.

Diagnosing whether a numerical instability is caused by
the implementation is important for users, since it tells
them if it is a bug that can be fixed by changing the code.
Otherwise, the users may need to re-formulate their prob-
lem. From the results of our evaluation, we have several
observations: For RQ1, the numerical instabilities from ill-
conditioned problems generate large implementational con-
dition numbers as well as statistical condition numbers. But
unstable implementations only generate large implementa-
tional condition numbers with small statistical condition
numbers. Hence, they can be easily distinguished by our
toolchain. For RQ2, the results are not sensitive to the per-
turbation magnitude m. A median value of m ¼ 2�45 is rec-
ommended in general. To ensure result validity, we
recommend the perturbation probability r � 30 percent and
the number of samples � 3. For distinguishing and diagno-
sis instabilities in numerical programs, the traditional prac-
tice suggested threshold used on CN is also applicable on

TABLE 6
GSL Testing Parameters and Summary

No. of Tested Functions 169
No. of Inputs 420
Perturbation Magnitudem 2�45

Perturbation Probability r 50%
No. of Perturbation Samples 5
No. of Fixed Overflows 57
No. of Fixed Underflows 103

No. of Detected Instabilities 15
No. of Detected Implementation Errors 9
Average Testing Time (sec.) 7.284E-2

TABLE 5
Implementational Condition Number of the Patched Subjects

m (2x) -37 -39 -41 -43 -45 -47 -49 -51

harmonic_fix 6.894E-01 7.608E-01 6.862E-01 6.588E-01 7.202E-01 7.062E-01 7.686E-01 8.069E-01
root_fix 6.565E-01 6.402E-01 6.548E-01 5.588E-01 6.456E-01 6.702E-01 6.458E-01 5.829E-01

3. https://savannah.gnu.org/bugs/?group=gsl
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the measurement of ICN and SCN in our evaluation. The
toolchain diagnoses the subjects from the literature with
perfect accuracy, and detects real bugs in GSL with the sug-
gested threshold. For RQ3, our toolchain introduces over-
head in numerical testing due to the infinite-precision
numerical computing, stochastic sampling etc. Hence, the
process of testing is about 46 times slower than the native
execution of the original program. Nevertheless, we believe
the performance is still acceptable because a high perfor-
mance testing environment can address this problem. For
example, users can test and diagnose their large size numer-
ical software on a massively parallel processing platform,
and run their fixed software in a normal environment with-
out any overhead than its original version. And for RQ4,
our toolchain finds real bugs in the latest version of GSL.

5 RELATED WORK

Computing the propagation of roundoff errors and analyzing
(in)stability of numerical algorithms is a popular research
topic that has been studied formore than twodecades. A great
number of theoretical approaches have been proposed to help
engineersmanually analyze numerical problems and develop
stable programs [28], [29], [30], [31], [32]. This section mainly
surveys a few recent practices on automatic techniques for
improving numerical stability. Five threads are included from

different aspects: 1) static analysis of numerical software
based on the interval arithmetic and affine arithmetic, 2)
dynamic testing and test generation to detect numerical insta-
bilities, 3) verification of numerical properties and program
transformation for numerical optimization, 4) the develop-
ment of infinite-precision arithmetic, and 5) perturbation tech-
niques and the stochastic arithmetic.

Static Analysis for Numerical Software. A few static
approaches are proposed to analyze the possible numerical
errors based on the theory of interval arithmetic [33] or affine
arithmetic [34]. Interval arithmetic uses an error range, also
called interval, to represent a numerical value, and substitutes
the basic operations on numbers as the operations between
intervals. For example, instead of using the number of 2.0,
interval arithmetic uses a range [1.97, 2.03] that means we are
sure that the valuemust be somewhere between 1.97 and 2.03.
Then it substitutes adding two numbers with the operations
of adding two intervals that outputs the maximum possible
range, as ½a; b� þ ½c; d� ¼ ½aþ b; cþ d�. Affine arithmetic fur-
ther tracks the sources of errors as affine forms for better preci-
sion. It presents the numerical value as the affine form of
x0 þ x1�1 þ x2�2 þ x3�3:::, where x0 is the central value of the
form, often representing the precise value, xi are the partial
deviations often represents errors coming fromdifferent sour-
ces, and �i are the noise symbols whose values are unknown
but assumed to be in the interval ½�1; 1�. Besides recording an
error range as interval arithmetic, affine arithmetic also tracks
the correlations between sources. Hence, affine arithmetic
yields a tighter range than the interval arithmetic when the
value contains errors from the same source. Several static
approaches work with the interval and affine arithmetic to
estimate the propagation of errors in numerical programs.
Putot et al. propose a static analysis on C code, which relies on
abstract interpretation by interval values and arithmetic [35].
Goubault [36] gives a semantics of floating-point operations
and abstract themwith the affine forms to extract information
about the possible loss of precision. Later Goubault and
Putot [21] refine their workwith an advanced abstract domain
of affine arithmetic, which highly increases the precision of
such analysis.

Numerical Testing and Test Case Generation. Dynamic test-
ing for improving numerical stability is another wellFig. 18. A code snippet that causes errors in GSL.

TABLE 7
The 15 Unstable Functions Detected in GSL

Function Input Mean Output ICN SCN Average Time (sec.)

gsl_log1p -9.999E-01 -1.868E+01 2.069E+06 2.675E+05 1.322E-01
gsl_sf_bessel_I0 -7.062E+02 7.684E+304 6.715E+01 1.788E+02 5.184E-03
gsl_sf_bessel_I1 6.324E+02 7.373E+272 7.976E+01 1.211E+02 5.643E-03
gsl_sf_bessel_j0 -1.458E+27 6.686E+152 1.756E+15 1.742E+00 6.454E-02
gsl_sf_bessel_j1 -7.013E+25 -1.367E+140 1.401E+14 6.258E-01 7.761E-02
gsl_sf_bessel_j2 8.933E+21 1.112E+89 3.710E+14 4.359E-01 4.120E-02
gsl_sf_bessel_y0 9.372E+22 2.167E+102 2.304E+14 5.629E-01 4.713E-02
gsl_sf_bessel_y1 6.496E+23 3.030E+111 1.074E+16 5.105E-01 5.600E-02
gsl_sf_bessel_y2 4.448E+28 -4.170E+175 1.270E+14 1.108E+00 1.108E-01
gsl_sf_clausen 2.291E+14 -1.407E-02 1.878E+15 3.221E+00 4.630E-02
gsl_sf_cos -7.294E+23 -7.317E+136 1.726E+14 1.657E+00 2.258E-02
gsl_sf_eta -1.700E+02 6.838E+220 3.922E+02 2.234E+03 9.675E-03
gsl_sf_gamma 1.710E+02 5.738E+306 3.775E+02 3.781E+03 9.837E-03
gsl_sf_psi -9.999E-01 -1.556E+14 7.751E+13 1.329E+11 9.162E-03
gsl_sf_sin 3.548E+22 -5.206E+118 4.902E+14 3.597E+00 2.415E-02
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studied topic in recent years. Benz et al. [37] present a tool
called FPDebug, which uses a dynamic testing based on
binary translation and lightweight program slicing to detect
numerical bugs in programs. Bao and Zhang [38] further
reduce the cost of detection by not computing all the precise
errors but only tracking several potentially inaccurate val-
ues. For test generation, Miller and Spooner [39] propose a
search-based technique, which they called numerical maxi-
mization method to get floating-point input data. Bagnara
et al. [40] use several search heuristics to improve con-
straint-solving in concolic testing for floating-point pro-
grams. Barr et al. [4] work on a symbolic execution
approach that finds numerical exceptions such as overflows
and underflows in software. Recently, Zou et al. [27]
improve the tool FPDebug with a genetic algorithm, which
automatically generates test inputs that aim to trigger signif-
icant inaccuracies in floating-point programs.

Verification and Transformation. Some recent researches
also focus on verifying floating-point properties and trans-
forming numerical programs for different purpose. Boldo
et al. [41], [42] introduce support systems to verify the prop-
erties of floating-point C programs with the Coq proof assis-
tant. Ayad and March�e [43] propose an expressive language
to formally specify floating-point properties, and use multi-
ple provers to generate proofs of such properties. Darulova
and Kuncak [44] present a type system for rigorous reason-
ing the precision of floating-point results. Numerical pro-
gram transformation is also well studied recently. For
precision optimization, Martel [45] proposes a concrete
semantics to generally explain the propagation of rounding
errors. He implements an optimizer [2] to statically trans-
form numerical programs to more precise ones in his later
works [3]. Monniaux [46] points out a few pitfalls in seman-
tics of floating-point numbers such as subtle differences in
hardware platforms and compilers can pose special chal-
lenges in verifying floating-point computation. Monniaux
further proposes some alterations to program verification
techniques to solve the problem. For performance optimiza-
tion, Lam et al. [47], Rubio-Gonz�alez et al. [48], and
Schkufza et al. [49] separately propose different precision
tuning and adapting approach.

Arbitrary and Infinite Precision Arithmetic. Arbitrary preci-
sion arithmetic (APA) and infinite precision arithmetic, are
recently developed techniques for computing real numbers
numerically without errors [50]. The APA technique uses
dynamic allocatedmemories to represent floating-point num-
bers in a computer, which indicates that the digits of precision
are limited only by the available memory of the system.
Marcial-Romero and Escardo propose the semantics of APA
in programming language, and discuss the logic properties of
such semantics [51], then M�enissier-Morain theoretically
gives the operators and algorithms of APA [52]. Intervals
analysis based onAPA is discussed by Blanck [53], and imple-
mented in [54]. Anderson et al. compare the performance of
different implementations that work on decimal floating-
point numbers [55]. And a few researches focus on the hard-
ware configuration that improves the efficiency of APA and
IPA. Wang et al. define the floating-point division, floating-
point square root and floating-point accumulation for the
reconfigurable hardware [56], then they extend their work to
a tool called VFloat [57], which supports full features for APA

under reconfigurable hardware. El-Araby et al. discuss the
hardware features such as the virtual convolution scheduling
and the dynamic pipeline in improving the performance of
APA and IPA [58]. A few libraries support the computation of
APA and IPA, which include the GNU multiple precision
arithmetic library (GMP) [59], the GNU multiple precision
floating-point reliable library (MPFR) [9], the e_float
Library [60] and the number theory library (NTL) [61] for
APA; And the RealLib [62] and iRRAM [10] for IPA. In this
paper, we implement the IPA based on iRRAM by Norbert
M€uller [10], which is the fastest state-of-art IPA package [62].

Perturbation and Stochastic Arithmetic. The stochastic arith-
metic works based on the Monte Carlo approach by ran-
domizing floating-point computation. The pioneer work on
numerical stochastic arithmetic is CESTAC [7], [63], which
consists in executing each floating-point operation several
times with a random rounding mode. Discrete Stochastic
Arithmetic [8] is based on the CESTAC method and is
implemented in the CADNA [1] library. With the hypothe-
sis that the elementary round-off errors of the floating-point
arithmetic are randomly independent, centered and uni-
formly distributed variables, CADNA only needs about
three different executions to conclude the stability of the
programs. Parker et al. [20], [64] formalize the Monte Carlo
Arithmetic (MCA) framework, which is similar to the basic
insight of stochastic arithmetic. This framework allows both
random rounding that simulates uncorrelated roundoff
errors, and random unrounding that simulates catastrophic
cancellation with errors correlated to the numerical opera-
tions. Based on MCA, Eggert and Parker [24] develop a tool
called wonglediff, which changes the rounding mode of
FPU to evaluate the numerical programs at runtime. It is
restricted to rounding modes perturbation with unmodified
numeric programs. Tang et al. [14] introduce expression
perturbation to localize the instabilities in numerical imple-
mentations. Different from these tools, our toolchain com-
bines the stochastic arithmetic over both fixed-precision and
infinite-precision floating-point numbers and uncovers
numerical instabilities from software requirements.

6 CONCLUSION AND FUTURE WORK

Analyzing (in)stability of numerical computing is a key pro-
cess for building reliable software. In this paper, we have
presented the design and implementation of a numerical
analysis toolchain that not only detects the potential insta-
bility in software, but also diagnoses reason for such insta-
bility. We classify the reason of instability into two
categories: When it is introduced by the software require-
ment specification, we say the instability is caused by prob-
lem. In this case, developers should think about improving
their software at a higher level, which means redefining the
software requirements to mitigate or get around the insta-
bility inducing mathematical properties. Otherwise, we say
the instability is caused by practice and developers can
improve the software itself with better numerical design
and programming skills. We build our toolchain with four
loosely-coupled tools: ipatrans transfers the numerical
program to an infinite-precision arithmetic form, which
dynamically iterates the numerical computation with more
precise numbers to uncover the distance between the
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program implementation and the mathematical insight
behind it. Then fpstoc and ipstoc separately apply the
stochastic perturbation on both the fixed-precision program
and the infinite-precision form. Finally, ediagno harness
the testing, which statistically synthesizes the results to
detect the potential instabilities and diagnoses the reasons
for such instabilities—by the mathematical properties of the
problem or by improper practices in the implementation.
We evaluate a few subjects from the literature and functions
in the GNU Scientific Library. From our evaluation, we get
several interesting conclusions: 1) The numerical instabil-
ities from ill-conditioned problems generate large imple-
mentational condition numbers as well as large statistical
condition numbers. However, unstable implementations
only generate large implementational condition numbers
with small statistical condition numbers. So they can be eas-
ily distinguished by our toolchain. 2) The ICN and SCN are
not sensitive to the perturbation magnitude m. A median
value of m ¼ 2�45 is recommended in general. To ensure
result validity, we recommend the perturbation probability
r � 30 percent and the number of samples � 3. The tool-
chain diagnoses the subjects from the literature with perfect
accuracy, and detects real bugs in GSL with the suggested
threshold. 3) The performance of our toolchain is quite
acceptable. The average time for testing a function in the
numerical library in industry is only 7.284E-2 second on an
ordinary laptop. And after testing, the numerical code can
be run without any overhead than its original version. 4)
Our toolchain finds real bugs in the latest version of GSL.
We report fixing advices to its bug list.

In future, we will develop more features in the toolchain,
such as improve the post-analysis to detect patterns of
benign path changing and integrate modules that automati-
cally find critical inputs in numerical testing. And we are
also going to improve the interface of our toolchain to fit
more complicated testing, including the industry software
that processes multimedia contents. Furthermore, we would
improve the framework with parallel and distributed tech-
niques to fill the gap between theoretical research activities
and practical engineering applications.
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