

Software Engineering Group
Department of Computer Science
Nanjing University
http://seg.nju.edu.cn

Technical Report No. NJU-SEG-2017-IJ-001

2017-IJ-001

Deriving Unbounded Reachability Proof of Linear Hybrid

Automata During Bounded Checking Procedure
Dingbao Xie, Wen Xiong, Lei Bu, Xuandong Li

IEEE Transactions on Computers 2017

Most of the papers available from this document appear in print, and the corresponding copyright is held by the

publisher. While the papers can be used for personal use, redistribution or reprinting for commercial purposes is

prohibited.

http://seg.nju.edu.cn/

Deriving Unbounded Reachability Proof
of Linear Hybrid Automata during
Bounded Checking Procedure

Dingbao Xie, Wen Xiong, Lei Bu, and Xuandong Li

Abstract—Reachability analysis of linear hybrid automata (LHA) is an important problem. Classical model checking (CMC) technique

is not scalable and not guaranteed to terminate. On the other hand, bounded model checking (BMC) is more cost-effective to conduct

but can not guarantee the safety beyond the bound. In this paper, we seek to bridge the gap between BMC and CMC for reachability

analysis of LHA. During BMC of LHA, typical procedures can discover sets of unsatisfiable constraint cores, which can be mapped back

to path segments in the graph structure of LHA. If every path connecting the initial and target location has to go through such infeasible

path segment, the target location is entirely not reachable. Based on this characteristic, we propose a LTL model checking based

approach to check whether the target location is blocked. To further optimize the performance, we propose an automata based solution

to check the LTL specification incrementally and adopt an on-the-fly algorithm to check the accepting condition to avoid an explicit

construction of product automata.

Index Terms—Reachability checking, linear hybrid automata, irreducible infeasible set, linear temporal logic, B€uchi automata

Ç

1 INTRODUCTION

HYBRID Automata [1] are popular frameworks used to
model hybrid systems that exhibit both continuous and

discrete dynamic behavior. Reachability analysis of hybrid
automata is considerably difficult. Even for a relatively simple
class such as linear hybrid automata (LHA), the reachability
problem is undecidable [2]. Classical model checking (CMC)
techniques attempt to compute exact reachable state space of
LHA by the expensive polyhedral based computation which
is sensitive to the number of continuous variables and not
guaranteed to terminate. Despite decades of research on it,
state-of-the-art tools based on CMC technique such as
HyTech [3], PHAVer [4] and PHAVer’s new implementation
SpaceEx [5] do not scalewell to problems of practical interest.

As an alternative technique to the classical symbolic
model checking, bounded model checking (BMC) [6] was
proposed to find bugs within a given threshold. The basic
idea of BMC is to search for a counterexample with length
no longer than an integer k in model executions, when the
complete behavior state space is too complex to check by
classical model checking. The typical approach of BMC
reachability analysis of LHA is to encode the state space of
LHA within the bound into a constraint set which can then
be solved with Satisfiability Modulo Theories (SMT)

solvers [7], [8]. However, as the technique needs to encode
the whole state space within the bound first, the high com-
plexity restricts the size of the system that can be handled.

The past decade has witnessed a significant amount of
progress in constraint solving technologies, thanks to the
emergence of highly efficient SMT solvers [7], [8], the size of
the BMC problem of LHA that can be verified has increased
significantly. However, the result of BMC verification only
covers bounded behavior of the model. It remains a very
interesting problem that whether we can get an unbounded
proof of the system from a BMC procedure. In finite-state
BMC, techniques such as k-induction [21], interpolation [28],
IC3 [23] are widely used to obtain an unbounded model
checking result. Nevertheless, they are difficult to conduct
on infinite state systems like hybrid system.

Another way to solve the BMC problem of LHA is a
path-oriented style approach [9]. The basic idea is to check
one abstract path in the graph structure of an LHA at one
time using Linear Programming (LP) to find whether there
exists a feasible continuous behavior of the LHA along with
this discrete path. As the number of paths within a given
threshold is finite, we can answer the BMC problem of LHA
by enumerating and checking all the candidate paths one
by one [10]. Furthermore, when a path is proved to be infea-
sible, irreducible infeasible set (IIS) technique [12] can be
deployed on the constraint set generated according to the
path under checking to retrieve a minimal inconsistent con-
straint set. Such inconsistent constraint set can be mapped
back to a path segment in the graph structure of LHA,
which is infeasible for sure. As any path containing an infea-
sible path segment is definitely infeasible, the infeasible
path segments, IIS, located by the underlying LP solver can
be utilized to accelerate the BMC solving process [11], [16].

� The authors are with the State Key Laboratory of Novel Software Techniques,
Department of Computer Science and Technology, Nanjing University,
Jiangsu 210093, China.
E-mail: {xdb, xiongwen}@seg.nju.edu.cn, {bulei, lxd}@nju.edu.cn.

Manuscript received 11 Jan. 2016; revised 20 Aug. 2016; accepted 24 Aug.
2016. Date of publication 29 Aug. 2016; date of current version 16 Feb. 2017.
Recommended for acceptance by K. Schneider.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TC.2016.2604308

416 IEEE TRANSACTIONS ON COMPUTERS, VOL. 66, NO. 3, MARCH 2017

0018-9340� 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

For Research Only

In the above path-oriented BMC approach, as any candi-
date path has to avoid known infeasible path segments,
such path segments can also be used to block the graph
structure of LHA. During the experiment, it is not rare to
see that after several path segments are blocked, the path-
enumerating procedure cannot find any discrete path to
reach the target location without touching any of the previ-
ously detected IIS path segments in the LHA model. In this
situation, there does not exist a continuous behavior to
reach the target location entirely, not only within the bound.

Based on this observation, we propose to exploit IIS path
segments to provewhether a bounded unreachable argument
can be extended to the unbounded state space. We propose a
linear temporal logic (LTL) [18], [19] based sound but not
complete approach to tackle such problem. In our approach,
the discrete part of the LHAmodel, the graph structure is pre-
sented as a finite state transition system [19]. Then, we encode
all the IIS path segments detected during BMC solving into an
LTL formula. By checkingwhether the transition system satis-
fies the LTL formula, we can prove whether there exists a dis-
crete path to reach the target location without containing any
known IIS path segment in the graph structure of the LHA. If
the LTL specification is satisfied, it means there will not exist
such a path no matter how large the bound is given, which
indicates that the bounded unreachable statement also stands
in the complete unbounded state space.

A basic solution of integrating the BMC and proof proce-
dure is to conduct the LTL based proof after the completion
of the BMC analysis. It works as follows: Once an LHA
model and a reachability specification are given, we start to
perform the path-oriented bounded reachability analysis.
When the BMC procedure finishes and reports the target is
not reachable in the given bound, all the IIS path segments
detected during the BMC solving process are encoded into
an LTL formula. Then, a state-of-the-art LTL model checker
is deployed to check whether the LTL specification is satis-
fied by the transition system constructed from the graph
structure of LHA model. If yes, an unbounded result is
proved, otherwise a bounded result is given.

In the above approach, as the LTL checking is conducted
after the BMC procedure finishes, they do not have any
interaction. When the LTL specification can be proved at an
earlier time, it is a waste of time to continue the BMC analy-
sis. In order to integrate the BMC and the proof procedure
tightly to achieve better performance, we propose to per-
form the LTL checking whenever a new IIS path segment is
located during the BMC procedure. In this way, the proof
procedure will stop the BMC procedure as soon as the LTL
specification becomes satisfied.

Although the tight integration can avoid meaningless
BMC checking in some cases, it has to conduct repeated
LTL model checking, in other words, call a third-party
checker frequently, which incurs a high overhead. In order
to solve this issue, we propose to check the LTL specifica-
tion incrementally by constructing an equivalent b€uchi
automata. With the help of a dedicated LTL-to-B€uchi trans-
lation algorithm introduced in [24], we can generate a small
b€uchi automata efficiently. Furthermore, we propose an on-
the-fly algorithm to check the emptiness of the product tran-
sition system in the final step of LTL model checking. In this
way, we can frequently construct only a small portion of the

state space before a counterexample of the property being
checked is found.

The above mentioned LTL and automata based
approaches have been implemented into a bounded LHA
checker BACH [10]. To evaluate the performance of our
approach, we conduct a series of case studies on the enhanced
BACH, and compare it with the state-of-the-art classical
model checker, SpaceEx [5]. The set of experiment results
shows that most of the benchmarks can be proved to be
unreachable in the unbounded state space by analyzing the
intermediate results of the BMC procedure without perform-
ing the expensive classical model checking. Furthermore, the
experiments also show the performance of the approach pre-
sented in this paper outperforms the state-of-the-art CMC
checker, SpaceEx, significantly.

2 PATH-ORIENTED REACHABILITY ANALYSIS

In this section, we give the formal definition of linear hybrid
automata and recap the underlying technique of path-ori-
ented bounded reachability analysis that was proposed
in [9], [10]. Furthermore, we present our method of using
irreducible infeasible set technique to locate infeasible path
segment from a path which is proved to be infeasible by the
path-oriented checking to accelerate the BMCprocedure [16].

2.1 Basic Path-Oriented Reachability Analysis

Definition 1. The LHA considered in this paper is defined as a
tupleH ¼ ðG;X;a;b;f;cÞ, where

- G ¼ ðQ; q0; qbad;S; EÞ is the (labeled) location graph
ofH, where
� Q is a finite set of locations;
� q0 2 Q is initial location;
� qbad 2 Q is bad location (the location that should

not be reachable);
� S is a finite set of labels;
� E � Q� fqbadgð Þ � S�Q is a finite set of

(labeled) transitions, where no two outgoing tran-
sitions from a given location have the same label;

- X is a finite set of state continuous variables.
- a is a labeling function which maps each location in

Q� fq0g to a set of location invariants which are of

the form a � Pl
i¼0 cixi � b where xi 2 X, a; b and ci

are real numbers (a; b may be (minus)1).
- b is a labeling function which maps each location in

Q� fq0g to a set of flow conditions which are of the
form _x 2 ½a; b� where x 2 X, and a; b are real numbers
ða � bÞ. For any location q, for any x 2 X, there is one
and only one flow condition _x 2 ½a; b�.

- f is a set of labeling functions which map each transi-
tion in E to a set of transition guards which are of the

form a � Pl
i¼0 cixi � b, where xi 2 X, a; b and ci are

real numbers (a; b may be (minus)1).
- c is a set of labeling functions which map each transi-

tion in E to a set of reset actions which are of the form
x :¼ c, where x 2 X, c is a real number.

We use sequences of locations to represent the evolu-
tion of an LHA from location to location. For an LHA
H ¼ ðG;X;a;b;f;cÞ, a path segment is a sequence of loca-

tions of the form hv0i �!
s0

ðf0;c0Þ hv1i �!
s1

ðf1;c1Þ � � � �!
sn�1

ðfn�1;cn�1Þ hvni,
which satisfies ðvi; si; viþ1Þ 2 E for each i ð0 � i < nÞ,

XIE ET AL.: DERIVING UNBOUNDED REACHABILITY PROOF OF LINEAR HYBRID AUTOMATA DURING BOUNDED CHECKING... 417

For Research Only

where si 2 S, fi 2 f, ci 2 c. A path in H is a path segment
starting from the initial location q0.

For a path in H of the form hv0i �!
s0

ðf0;c0Þ hv1i �!
s1

ðf1;c1Þ � � �
�!
sn�1

ðfn�1;cn�1Þ hvni, by assigning each location vi with a time delay

stamp di we get a timed sequence of the form
v0
d0

� �
�!
s0

ðf0;c0Þ

v1
d1

� �
�!
s1

ðf1;c1Þ � � � �!
sn�1

ðfn�1;cn�1Þ vn
dn

� �
where di ð0 < i � nÞ is a

nonnegative real number and d0 ¼ 0 as v0 ¼ q0 is initial loca-
tion. This time sequence represents a behavior ofH such that
the system starts from the initial location v0, stays there for d0
time units, which is 0, then jumps to v1 and stays for d1 time
units, and so on.

The behavior of an LHA can be described informally as fol-
lows. The automaton jumps from initial location v0 to v1 to ini-
tialize all the variables. Then, as time progresses, the values of
all variables change continuously according to the flow condi-
tions associatedwith the current location. At any time, the sys-
tem can change its current location from v to v0 provided that
there is a transition ðv; s; v0Þ from v to v0, whose all transition
guards are satisfied by the current values of the variables.
With a location changed by a transition ðv;s; v0Þ, some varia-
bles are reset to the new value accordingly to the reset actions
inc. Transitions are assumed to be instantaneous.

Let H ¼ ðG;X;a;b;f;cÞ be an LHA. Given a timed

sequence v of the form
v0
d0

� �
�!
s0

ðf0;c0Þ v1
d1

� �
�!
s1

ðf1;c1Þ � � �

�!
sn�1

ðfn�1;cn�1Þ vn
dn

� �
, let ziðxÞ represents the value of x ðx 2 XÞ

when the automaton has stayed at vi for delay di and �iðxÞ
represents the value of x at the time the automaton reaches
vi along with v (0 � i � n). It follows that �iþ1ðxÞ ¼
d if x :¼ d 2 ci

ziðxÞ otherwise

�
ð0 � i < nÞ.

Definition 2. For an LHA H ¼ ðG;X;a;b;f;cÞ, a timed

sequence of the form
v0
d0

� �
�!
s0

ðf0;c0Þ v1
d1

� �
�!
s1

ðf1;c1Þ � � � �!
sn�1

ðfn�1;cn�1Þ

vn
dn

� �
represents a behavior of H if and only if the following

condition is satisfiable:

� hv0i �!
s0

ðf0;c0Þ hv1i �!
s1

ðf1;c1Þ � � � �!
sn�1

ðfn�1;cn�1Þ hvni is a path;
� each variable x 2 X evolves according to its flow con-

dition in each location vi ð0 < i � nÞ, i.e.,
uidi � ziðxÞ � �iðxÞ � u0

idi where _x 2 ½ui; u
0
i� 2 bðviÞ;

� all the transition guards in fi ð1 � i � n� 1Þ are sat-
isfied, i.e., for each transition guard a � Pl

k¼0 ckxk �
b in fi, a � Pl

k¼0 ckziðxkÞ � b;
� the location invariant of each location vi ð1 � i � nÞ is

satisfied, i.e., at the time the automaton reaches and

leaves vi, each constraint a � Pl
k¼0 ckxk � b in aðviÞ

ð1 � i � nÞ is satisfied, i.e., a � Pl
k¼0 ck�iðxkÞ � b

and a � Pl
k¼0 ckziðxkÞ � b.

Definition 3. For an LHA H ¼ ðG;X;a;b;f;cÞ, if a timed

sequence of the form
v0
d0

� �
�!
s0

ðf0;c0Þ v1
d1

� �
�!
s1

ðf1;c1Þ � � � �!
sn�1

ðfn�1;cn�1Þ

vn
dn

� �
is a behavior of H, we say path r ¼ hv0i �!

s0

ðf0;c0Þ hv1i

�!
s1

ðf1;c1Þ � � � �!
sn�1

ðfn�1;cn�1Þ hvni is feasible, and location vn is reach-

able along r.

For an LHA H ¼ ðG;X; a;b;f;cÞ, a reachability specifica-
tion, denoted as Rðv;’Þ, consists of a location v in H and a

set ’ of variable constraints of the form a � Pl
i¼0 cixi � b

where xi 2 X for any i ð0 � i � lÞ, a; b and ci ð0 � i � lÞ are
real numbers, (a; bmay be (minus)1).

Definition 4. Let H ¼ ðG;X;a;b;f;cÞ be an LHA, and
Rðv;’Þ be a reachability specification. A behavior of H of the

form
v0
d0

� �
�!
s0

ðf0;c0Þ v1
d1

� �
�!
s1

ðf1;c1Þ � � � �!
sn�1

ðfn�1;cn�1Þ vn
dn

� �
satisfies

Rðv;’Þ if and only if vn ¼ v and each constraint in ’ is satis-
fied when the automaton has stayed in vn for delay dn, i.e., for

each variable constraint a � Pl
k¼0 ckxk � b in ’,

a � Pl
k¼0 ckznðxkÞ � b where znðxkÞ ð0 � k � lÞ represents

the value of xk when the automaton has stayed at vn for the
delay dn. H satisfiesRðv;’Þ if and only if there is a behavior of
H which satisfiesRðv;’Þ.
According to Definitions 2 and 4, the reachability verifi-

cation problem can be translated into the feasibility problem
of a set of constraints on variables di; �iðxÞ, and ziðxÞ where
di represents the time delay that the automaton stays in loca-
tion vi, �iðxÞ and ziðxÞ represent the value of x ðx 2 XÞ
when the automaton reaches and leaves the location vi,
respectively ð0 � i � nÞ. If we use notation Qðr;Rðv;’ÞÞ to
represent this set of linear constraints, we can check if r sat-
isfies Rðv;’Þ by checking if the group Qðr;Rðv;’ÞÞ of linear
inequalities has a solution, which can be answered by linear
programming efficiently.

The basic idea of bounded model checking is to look for a
counterexample with length no longer than some integer k
in model executions. Given an LHA and a bound k, the
number of candidate paths with length no longer than k is
finite. Therefore, if we enumerate and check all the paths in
the bound one by one, the bounded reachability problem
can be tackled in the path-oriented BMC way.

2.2 IIS Based BMC Acceleration

Last paragraph gives a simple solution of the path-oriented
bounded reachability analysis of LHA, which requires to
enumerate and check all the candidate paths one by one in
the graph structure of LHA. Nevertheless, when the given
threshold is large and the graph structure of LHA is com-
plex, there would be numerous paths to traverse, which
could consume quite a lot of time.

Fortunately, as we use LP to judge the feasibility of a
path r, irreducible infeasible set [12] technique can be
deployed to locate a minimal infeasible set of the linear con-
straint set w.r.t. r.

Generally speaking, a set of linear constraints C is said to
be satisfiable, if there exists a valuation of all the variables,
which makes all the constraints in C to be true. Otherwise, C
is unsatisfiable. If C is unsatisfiable, then IIS of C is a subset
C0 � C that C0 is unsatisfiable and for any C00 	 C0, C00 is
satisfiable.

418 IEEE TRANSACTIONS ON COMPUTERS, VOL. 66, NO. 3, MARCH 2017

For Research Only

Intuitively speaking, an IIS of a linear constraint set is an
unsatisfiable set of constraints that becomes satisfiable if
any constraint is removed. Therefore, given an infeasible
path r, we can analyze the constraint set C generated
according to this path to locate an IIS C0. As each constraint
in C is generated from a semantical element, e.g., location
invariants or transition guards, in the locations and transi-
tions from the model. Therefore, for each constraint in C, we
can locate the source location or transition in r straightfor-
wardly. As a result, the constraint set located by the IIS tech-
nique can be mapped back to a path segment r0 in r. In
other words, once a path is proved to be infeasible, an infea-
sible path segment can be located from it by IIS analysis.

Fortunately, quoted from [12], the algorithm to locate the
IIS from a unsatisfiable set is “simple, relatively efficient
and easily incorporation into standard LP solvers”. Many
software packages are available, which supports the effi-
cient analysis of a linear constraint set and locating of the
minimal IIS, such as IBM CPLEX [30] and LINDO [31].

Now, let’s see a path r ¼ hv0i �!
e0

hv1i �!
e1

hv2i �!
e2

hv3i �!
e3

hv4i �!
e4

hv1i �!
e5

hv5i in the Water-Level Monitor

System (Fig. 1), which is proven to be infeasible. The IIS of
the constraint set according to r given by the underlying LP
solver is C0

r ¼ fdv2
1

 0; zv4ðxÞ � �v4ðxÞ ¼ dv4 ; zv4ðyÞ �

�v4ðyÞ ¼ �2dv4 ; �v2
1
ðyÞ ¼ zv4ðyÞ; zv21ðyÞ � �v2

1
ðyÞ ¼ dv2

1
; �v4ðxÞ ¼

0; �v4ðyÞ ¼ 5; zv4ðxÞ ¼ 2; zv2
1
ðyÞ ¼ 0g, where v21 represents the

second occurrence of the location v1 in r (the 6th location).
Now we show how can this IIS be mapped back to a path

segment in r.

� dv2
1

 0 stands for the time elapsed in location v21 is

nonnegative.
� zv4ðxÞ � �v4ðxÞ ¼ dv4 , zv4ðyÞ � �v4ðyÞ ¼ �2dv4 , zv21

ðyÞ�
�v2

1
ðyÞ ¼ dv5 , come from the flow conditions of x and

y in location v4: _x ¼ 1, _y ¼ �2, and location v21: _y ¼ 1.
� �v4ðxÞ ¼ 0 and �v4ðyÞ ¼ 5 come from the transition

guard and reset action on transition e3: y ¼ 5, x :¼ 0
� zv4ðxÞ ¼ 2 and zv2

1
ðyÞ ¼ 0 come from the transition

guards on transition e4: x ¼ 2 and e5: y ¼ 0.
� �v2

1
ðyÞ ¼ zv4ðyÞ comes from the transition guard on

transition e4 as y is not reset on e4.
Therefore, the related locations and transitions of C0

r

include v4; v
2
1; e3; e4; e5. As the corresponding infeasible path

segment r0 of C0
r should be the shortest path segment which

contains all these elements in r, it is hv3i �!
e3

hv4i �!
e4

hv1i �!
e5

hv5i.
Clearly, a path r can be falsified for verification without

calling the underlying decision procedure if it contains an
infeasible path segment r0, since the occurrence of r0 in r will
just be translated into the same set of unsatisfiable constraints
with only name changed. Therefore, the path-enumerating
procedure should rule out paths containing any known infea-
sible path segment.

For each bound k, the workflow of the IIS based path-ori-
ented BMC solution for LHA is shown in Fig. 2 [16]. First, a
potential path r with length no longer than k is enumerated
and then analyzed by an LP solver. If r is feasible, the algo-
rithm terminates and reports r as a witness, otherwise IIS
technique is deployed to locate an infeasible path segment
from r, which will be fed back to the path-traversing proce-
dure to accelerate the BMC process. The algorithm termi-
nates when no more candidate path can be found or a
counterexample is confirmed.

Consider the automaton in Fig. 1, suppose we want to
check whether location v5 is reachable along a path with

Fig. 1. Water-level monitor system.

Fig. 2. Workflow of path-oriented BMC of LHA.

XIE ET AL.: DERIVING UNBOUNDED REACHABILITY PROOF OF LINEAR HYBRID AUTOMATA DURING BOUNDED CHECKING... 419

For Research Only

bound 20 and the first enumerated path is r1 ¼ hv0i �!
e0

hv1i �!
e1

hv2i �!
e2

hv3i �!
e3

hv4i �!
e4

hv1i �!
e5

hv5i. The underly-
ing LP solver proves r1 is infeasible and locates an IIS path
segment r01 ¼ hv3i �!

e3
hv4i �!

e4
hv1i �!

e5
hv5i, which will be

fed back to the path-enumerating procedure to block such a
path segment. Then the next found potential path to reach
v5 without containing r01 in the graph is
r2 ¼ hv0i �!

e0
hv1i �!

e5
hv5i. Also, it is infeasible and the IIS

path segment is r02 ¼ hv0i �!
e0

hv1i �!
e5

hv5i which is the path

itself. The third candidate path to reach v5 is r3 ¼ hv0i �!
e0

hv1i �!
e1

hv2i �!
e2

hv3i �!
e3

hv4i �!
e4

hv1 i �!
e1

hv2i �!
e2

hv3i �!
e3

hv4i �!
e4

hv1i �!
e5

hv5i. Nevertheless, we do not need to check

this path by LP since it contains an exact IIS path segment
r01. After the two IIS path segments r01 and r02 are blocked,
no candidate path within the given bound can be found,
which implies the target location is not reachable within the
given step threshold.

3 DERIVING UNBOUNDED RESULT DURING BMC
SOLVING PROCESS

3.1 Motivation Overview

The last section gives a quick review of the path-oriented
bounded reachability analysis of LHA [16]. The basic idea is
to find an abstract path, sequence of locations, in the discrete
graph structure of an LHA under verification first. Then, we
can check whether there exists a feasible continuous behav-
ior corresponding to certain discrete path. During the proce-
dure, IIS technique is deployed to locate infeasible path
segments in the graphmodel. Such path segments can be uti-
lized to tailor the bounded graph structure of the LHAmodel
under verification to accelerate the BMC solving process.

Clearly, the path segment w.r.t. each IIS is infeasible for
sure. In other words, once a new IIS is found, a path seg-
ment in the graph structure of the LHA model under verifi-
cation can be blocked. During experiments, we can see this
scenario very often: an LHA model under verification does
not have any path left after several IIS path segments are
blocked. In this situation, the reachability specification can
not be satisfied at all, not only in the bound. Consider the
previous example in Fig. 1, the detected IIS path segments
are r01 ¼ hv3i �!

e3
hv4i �!

e4
hv1i �!

e5
hv5i and r02 ¼ hv0i �!

e0

hv1i �!
e5

hv5i, and the target location is v5. As we can see

from the graph, if we block these two path segments in the
graph structure of the model, there will not exist any path
to reach v5 anymore.

Based on the observation, if we can prove that there does
not exist any path to reach the target location without going
through certain infeasible path segments in the graph struc-
ture of an LHAmodel, we can tell that the reachability spec-
ification is not satisfied in the complete unbounded state
space. In other words, the problem becomes as follows: We
have a directed graph with an initial location and a target
location, A set of path segments in the graph are blocked.
Then, whether any path connecting the initial and target
location exists in the directed graph?

3.2 LTL Based IIS Representation and Verification

The question raised in the end of the last paragraph con-
cerns the reachability problem only on the discrete level, the
graph structure G, of the LHA modelH. In order to conduct
reachability verification on G, we propose to extend G into
a typical transition system (TS) [19] T first.

Definition 5. Given an LHA H ¼ ðG;X; a;b;f;cÞ, the related
discrete transition system (DTS) of its graph structure
T ¼ fG0; AP; Lg1:

� G0 ¼ ðQ; q0; qbad;S; E
0Þ is an extension to the (labeled)

location graph G, where
- Q; q0; qbad;S 2 G;
- E0 � Q� S�Q is a finite set of (labeled) transi-

tions. E0 ¼ E [e, where E 2 G, e is a self-loop
starting and ending in location qbad.

� AP is the atomic proposition set in T . For each qi 2 Q,
there exists an atomic proposition pqi 2 AP .

� L : Q ! 2AP is a labeling function. For each qi 2 Q,
LðqiÞ ¼ fpqig.

Let us review the LHA presented in Fig. 1, the DTS T
modeling the graph structure of this LHA model is shown
in Fig. 3.

It is well known that linear temporal logic [18] is a pow-
erful temporal logic for describing system behaviors. Hence,
we propose to use LTL to describe the property that there
exists a path in the TS to reach the target location qbad with-
out containing any previously detected IIS path segment.

Avoiding IIS Path Segment.The first thingwe need to do is to
represent the IIS path segment in LTL. Suppose there is a path
r ¼ hv0i ! hv1i ! � � � ! hvni in an LHA H, and r contains a
path segment r0 ¼ hvii ! hviþ1i ! � � � ! hvjiði
 0 ^ j � nÞ.
As T shares the same graph structure G with H, r and r0 are
also paths in the DTS T w.r.t.H. According toDefinition 5, we
have LðvkÞ ¼ pvk ; ð0 � k � nÞ. Therefore, Lðv0Þ ¼ pv0 ; . . . ;

LðviÞ ¼ pvi ; . . . ; LðvnÞ ¼ pvn accordingly.

As r0 starts from location vi, vi satisfies LTL formula
pvi&X pviþ1

& � � � &X X � � �X|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
j�i

pvj . Based on this, given an

IIS path segment r0 ¼ hvii ! hviþ1i ! � � � ! hvji, we give
the LTL formula representing this path segment as

IISr0 ¼ pvi&X pviþ1
& � � �&X X . . .X|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

j�i

pvj :

Furthermore, any path which does not contain path seg-
ment r0 satisfies LTL formula Gð:IISr0 Þ.

Fig. 3. DTS model of water-level monitor system.

1. Note that this discrete transition system only focuses on the
discrete graph structure of LHA. It is different from the one used to
specify the semantics of LHA.

420 IEEE TRANSACTIONS ON COMPUTERS, VOL. 66, NO. 3, MARCH 2017

For Research Only

Reaching Target Location without Containing IIS Path Seg-
ment. The property that target location qbad can be reached
by a path in the graph structure of an LHA can be simply
represented by an LTL formula F pqbad . Then, given a set of

IIS path segments fr1; r2; . . . ; rng, the LTL formula which is
true for a path reaching the target location without contain-
ing any above IIS path segment is shown below

ðGð
^

1�i�n

:IISriÞÞ ^ F pqbad ;

where IISri represents the ith IIS path segment. As our tar-
get is to prove the nonexistence of such a path, the final LTL
specification is the negation of the above formula

:ððGð
^

1�i�n

:IISriÞÞ ^ F pqbadÞ:

Theorem 1. Given an LHA H, a target location qbad and a set of
IIS path segments fr1; r2; . . . ; rng, if the DTS model T w.r.t.
H satisfies the LTL specification :ððGðV1�i�n :IISriÞÞ
^F pqbadÞ, then qbad is not reachable in the complete state space

ofH.

Proof [Proof by Contradiction]. Assume T satisfies the
LTL specification and qbad is reachable in H along a path
r ¼ hv0i ! hv1i ! � � � ! hvniðvn ¼ qbadÞ. Clearly, as T and
H shares the same graph structure G, r is also a path in T .

As qbad is reachable along r, this means there exists a
feasible continuous behavior of H along r, therefore r

doesn’t contain any IIS path segments related with
fr1; r2; . . . ; rng for sure. As a result, the LTL formula
ðGðV1�i�n :IISriÞÞ ^F pqbad is true for r. As we can see, r

is the counterexample of the given LTL specification
:ððGðV1�i�n :IISriÞÞ ^F pqbadÞ. This contradicts the

assumption thatH satisfies the LTL specification. [Hence,
the supposition is false and the proposition is true.]

Now, let us go back to the LHA in Fig. 1. As men-
tioned in Section 2, it has two IIS path segments:
hv0i ! hv1i ! hv5i, and hv3i ! hv4i ! hv1i ! hv5i and
the target location is v5. According to the above encoding
method, the associated LTL specification is

:ððGð:ðpv0&X pv1&X X pv5Þ ^ :ðpv3&X pv4&

X X pv1 ^X X X pv5ÞÞÞ ^ F pv5Þ:
It is worth noting that in Definition 1, we only allow

one transition between any two locations. In this case,
there is no need to encode the edge in the path segment
into our encoding, and thus we can give a simplified
encoding solution. In the supplementary material, which
can be found on the Computer Society Digital Library at
http://doi.ieeecomputersociety.org/10.1109/
TC.2016.2604308, we show that in the general case, when
multiple transitions are allowed between two locations,
our approach can also work by encoding edges into the
corresponding LTL formula. tu

3.3 Lazy Proof

Model checking of LTL property on a transition system is a
well-studied problem and there are various efficient tools
such as Spin [20], NuSMV [17] to tackle the problem. There-
fore, we can take advantage of these off-the-shelf LTL

checkers to prove the reachability of certain target location
in the discrete graph structure efficiently.

Recently, IC3 [23] algorithm was proposed to perform
SAT-based model checking without unfolding the transition
relation. It proved to outperform the existing verification
techniques for finite-state systems in the last years. With the
help of the converting tool smvtoaiger [27], we can formu-
late a LTL model checking problem with AIGER [27] stan-
dard which is widely used in hardware verification.
Afterwards, we can also solve the problem efficiently with
tools based on IC3 technique, such as iimc [26].

Now, by using the mature checkers mentioned above to
conduct LTL verification on the discrete transition graph of
LHA model, we can prove that after certain path segments in
the graph structure of the LHA model are blocked, whether
there still has any potential path left to reach the target
location. Clearly, if there does not exist a candidate path at all,
then the target location is not reachable thoroughly. This pro-
vides a procedure that allows us to derive, in some cases a
proof of unbounded result from a BMC solving process. As
the LTL specification checking is conducted after the comple-
tion of BMC checking procedure,we call it Lazy Proof.

Workflow of Lazy Proof. Given an LHAmodel and a bound
k, the workflow of lazy proof is shown in Fig. 4. The path-
oriented BMC is conducted first and all the IIS path seg-
ments detected during the procedure are saved for the fol-
low-up proof procedure. The BMC solving process is
marked as “BMC Procedure” by double square and its
detailed flow is shown in Fig. 2 previously. After the BMC
analysis completes, if a feasible path is found then it is
reported as a witness which can confirm the target location
is reachable. Otherwise, all the IIS path segments identified
in the BMC procedure are encoded into an LTL specifica-
tion. After that, an state-of-the-art LTL model checker is

Fig. 4. Workflow of lazy proof.

XIE ET AL.: DERIVING UNBOUNDED REACHABILITY PROOF OF LINEAR HYBRID AUTOMATA DURING BOUNDED CHECKING... 421

For Research Only

called to perform the unbounded proof by checking
whether the specification is true on the DTS of the LHA
model. If yes, then the target location is not reachable
completely, otherwise a k-bounded unreachable conclusion
will be given. In another word, this approach is sound but
not complete.

3.4 Eager Proof

In the above paragraph, we show a basic solution to inte-
grate the path-oriented BMC and LTL-based proof proce-
dure. It attempts to derive an unbounded reachability result
by collecting and analyzing the intermediate results, IIS
path segments, of the BMC solving process. As the proof
procedure has to wait for the completion of the BMC proce-
dure and it can not give feedback to the BMC procedure,
the lazy proof based solution is not as efficient as it could be.

Let us consider the following scenario: ten IIS path segments
were located after the BMC procedure finishes. However, the
first two IIS path segments are able to block the target location
already. In this case, it will be a waste of time to continue the
BMC analysis after the first two IIS path segments are located.
In fact, if we can prove the target location is not reachable
already,we can stop the BMCprocedure in advance.

In order to solve the problem, we attempt to combine the
LTL checking and BMC procedure tightly, to check the LTL
specification during the BMC solving process. Different from
the lazy proof, which starts the LTL proof after the completion
of BMCprocedure, we call the new approach Eager Proof.

Workflow of Eager Proof. We can adapt the lazy proof to
eager proof by modifying its workflow slightly. As we want
to prove the LTL specification whenever a new IIS is detected,
the BMC solving procedure is not treated as a black box again.
The updated workflow is shown in Fig. 5. The main change is
the time spot of checking the satisfiability of the LTL specifica-
tion. In the eager LTL-based approach, we call a mature LTL
checker to check the LTL specification whenever a new IIS is
detected during the BMC procedure. Besides, if the LTL
checker finds the specification becomes satisfied, the BMC
procedure will be stopped immediately and an unbounded
result will be given.

3.5 Eager Automata-Based Proof

3.5.1 Incremental B€uchi Construction

In the above paragraphs, we introduce two LTL based proof
strategies to derive an unbounded result from a BMC proce-
dure. The lazy LTL-based solution may waste time to do
meaningless checking when an unbounded proof can be
derived in an earlier time. In order to solve this problem, an
eager LTL-based solution is proposed to check the LTL
specification once an IIS is detected. However, the eager
solution needs to call the third party LTL checker to check
the LTL specification repeatedly while the lazy solution
only checks the specification once. When the LTL specifica-
tion is hard to prove or can not be proved at all, the over-
head caused by repeated LTL model checking would slow
down the whole analysis greatly.

The basic idea of LTL model checking is to construct an
equivalent b€uchi automata from the LTL formula first and
then find a strong connected component (SCC) containing the
accepting state in it. In our problem, we will detect more and

more IIS path segments as BMC procedure continues, which
means the LTL specification is refined gradually. Inspired by
the two facts, we decide to check the LTL specification by con-
structing a b€uchi automata incrementally during the BMC
solving process instead of calling a third party checker.

The LTL specification described in Section 3.2 has the fol-
lowing form: :ððGðV1�i�n :IISriÞÞ ^ F pqbadÞ. In the corre-
sponding b€uchi, we need to search for a counterexample path
that satisfies LTL formula ðGðV1�i�n :IISriÞÞ ^ F pqbad . We

decide to divide it into two parts: GðV1�i�n :IISriÞ and

F pqbad and search for the counterexample path in two stages.

The reason is that the first part changes as more and more IIS
path segments are detected while the second part remains the
same all the time. Itmakes it easier to construct a b€uchi autom-
ata fromLTL formulaGðV1�i�n :IISriÞ incrementally.

We could apply an existing LTL-to-B€uchi translation
algorithm such as [25] to construct a b€uchi automata. How-
ever, since our LTL formula has a special structure, we can
apply a dedicated incremental algorithm introduced in [24]
to generate a very small b€uchi automata efficiently.2

The workflow of automata based approach is shown in
Fig. 6. Given an LHA and a bound k, we first construct a tran-
sition system TS from the graph structure of LHAusing com-
monly used method. Then we start the BMC procedure to
enumerate candidate paths in the graph structure and check

Fig. 5. Workflow of eager proof.

2. Due to the space limit, please refer to [24] for detail of the
algorithm to construct a b€uchi automata.

422 IEEE TRANSACTIONS ON COMPUTERS, VOL. 66, NO. 3, MARCH 2017

For Research Only

whether it is feasible according to the semantic information
along the path. If feasible, then we find a counterexample,
report reachable; otherwise an IIS path segment is located
and passed to the proof procedure to construct an IIS b€uchi
automata. The IIS b€uchi automata is constructed incremen-
tally according to the LTL formula GðV1�i�n :IISriÞ to rule

out all the located IIS path segment.
After that we will intersect TS with the IIS b€uchi autom-

ata and then look for a path satisfying Fqbad in the product
transition system. If such path does not exist, the original
LTL specification is satisfied. Then the checking process
will terminate immediately and give an unbounded result.
Otherwise, the BMC procedure continues. New IIS path seg-
ment will be located and the IIS b€uchi automata will be
adapted incrementally using the algorithm introduced in
study [24] to rule out all the located IIS path segments. The
whole analysis will terminate when an unbounded result is
proved or a given bound is reached.

3.5.2 On-the-Fly Emptiness Checking

As the LTL property we want to verify in the second stage is
quite simple, we propose to check it on the fly, which can
guide the construction of the product transition system
while computing the intersection of the graph TS and IIS
b€uchi. In this way, we may frequently construct only a small
portion of the state space before we find a counterexample
to the property being checked. The algorithm is shown in

Algorithm 1: we start from the initial location of the product
transition system and search for a cycle containing qbad
using the double depth first search (DFS) algorithm intro-
duced in [35].

Algorithm 1. On-the-Fly Emptiness Checking

Input: graph transition system TS, IIS b€uchi automata B
Output: False if TS �B � Fqbad, True otherwise.
procedure check(TS;B)
p = TS.init
q = B.init
return dfs1(p, q)

end procedure
procedure dfs1(p, q)
hash(p, q)
for all successors p1 of p do
for all successors q1 of q with label L(p1) do
if not accept(q1) then
continue

end if
if p1 == qbad then
return not dfs2(p1, q1)

end if
if (p1, q1) not in the hash table then
if not dfs1(p1, q1) then
return False

end if
end if

end for
end for
return True

end procedure
procedure dfs2(p, q)
flag(p, q)
for all successors q1 of q with label L(p) do
if not accept(q1) then
continue

end if
if flagged (p, q1) then
return True

end if
if dfs2(p; q1) then
return True

end if
end for
return False

end procedure

The typical double DFS algorithm is aimed at finding a
path to a cycle containing the accepting state of a b€uchi
automata and can be used to do on-the-fly checking. We
adapt it to find an accepting run satisfying LTL formula Fqbad
in the intersection of a transition system and b€uchi automata.
Procedure “check” returns true if the LTL specification is sat-
isfied. Procedure “dfs1” is used to find an accepting run sat-
isfying LTL formula Fqbad and procedure “dfs2” is used to
find a cycle containing qbad. As every non accepting states in
the IIS b€uchi automata has no outgoing transition, we can
ignore them when traversing such states in the product
automata since they can not lead to any new state.

In summary, the eager automata-based solution has fol-
lowing advantages over the LTL based approach:

Fig. 6. Workflow of automata based eager proof.

XIE ET AL.: DERIVING UNBOUNDED REACHABILITY PROOF OF LINEAR HYBRID AUTOMATA DURING BOUNDED CHECKING... 423

For Research Only

� Compared with the lazy proof, it can stop the whole
checking process as soon as the LTL specification
becomes satisfied.

� In comparison to eager proof, as the b€uchi automata
is constructed incrementally, it is much more effi-
cient than constructing everything from scratch.
Besides, the algorithm proposed in [24] consists of
two stages: constructing and minimizing. The mini-
mizing stage can also help to boost the performance.
The size of the minimized b€uchi automata is not
monotonically increasing since adding IIS might
enable new minimization possibilities leading even
to reduction.

� Last but not least, as the checking of the LTL specifica-
tion is implemented in the eager automata-based
approach, it can reduce the overhead brought by
repeated calling the third-party LTL checkers greatly.

3.5.3 An Illustrative Example

Take the automaton in Fig. 1 for example again. Suppose the
given bound is 10. We first construct an initial transition
system TS from the graph structure of the LHA, Fig. 3, then
the BMC procedure searches for candidate paths incremen-
tally and the first detected IIS path segment is hv0i �!

e0

hv1i �!
e5

hv5i. We construct b€uchi automata v1 (shown in

Fig. 7) from it and intersect v1 with TS. Then we search
for a SCC containing qv5 and succeed. So we continue the

BMC procedure and get another IIS path segment
hv3i �!

e3
hv4i �!

e4
hv1i �!

e5
hv5i, then we construct b€uchi

autotmata v2 (shown in Fig. 8) based on v1, which can rule
out the two detected IIS path segments. At last, we intersect
v2 with TS and find that the product transition system does
not have state qv5 , which shows the nonexistence of a coun-

terexample. Then the proof procedure stops the BMC

procedure immediately and gives an unbounded result. In
this way, we are able to know a general model checking
result by searching for a very small state space, which saves
a lot of computation time.

4 IMPLEMENTATION AND CASE STUDIES

The LTL-based verification techniques presented in this
paper have been implemented into a path-oriented
bounded reachability checker of LHA-BACH [10]. For the
lazy and eager LTL based solution, we use a typical LTL
model checker NuSMV [17] to check the satisfiability of LTL
specification. These two different implementations of
BACH are marked as BACH(Lazy_NuSMV) and BACH
(Eager_NuSMV) respectively. The implementation of the
eager automata-based solution is marked as BACH (Autom-
ata). In addition, as mentioned in Section 3.3, we also imple-
mented the IC3 based approach into BACH and the
underlying IC3 based tool we selected is iimc [26] which
supports analysis of LTL specification. We mark the imple-
mentation as BACH (IC3).

In order to evaluate the performance of the presented
techniques, we carry out extensive evaluations over a set of
widely-used benchmarks, which include the aforementioned
water-level monitor system in Fig. 1, the temperature control
system from [44], the communication based train control
system from [16], sample automata in Fig. 9 and an extended
version of the navigation benchmark [36]. The navigation
example models the motion of a point robot in a n-dimen-
sional cube. The cube is partitioned into mn rectangular
regions and each such region is associated with a vector field
described by the flow equations. In order to increase both
discrete and continuous complexity of the model, we use a
generalization method introduced in [32] to generate a n-
dimensional navigation model. As our work focuses on lin-
ear hybrid automata, the flow conditions of the velocity vari-
ables in themodel are unified as in the range of ½�2; 2�.

Aside from the above models, we also conduct case stud-
ies on a scalable automated highway system from [13] in
Fig. 10. It is worth noting that the size of the highway sys-
tem model can be easily expanded by introducing more
cars into the system, which will increase new locations and
variables in the model. The target locations, qbad, are all
marked by double circles in the models and they are all
unreachable.3

Fig. 7. B€uchi automata for LTL formula Gð:ðpv0&X pv1&X X pv5 Þ.

Fig. 8. B€uchi automata for LTL formula Gð:ðpv0&X pv1&X X pv5 Þ^:ðpv3&X pv4&X X pv1 ^X X X pv5 ÞÞ.

Fig. 9. Sample automaton.

3. Due to the space limit, please refer to the tool’s website, http://
seg.nju.edu.cn/BACH/tc16, for the detailed models.

424 IEEE TRANSACTIONS ON COMPUTERS, VOL. 66, NO. 3, MARCH 2017

For Research Only

4.1 Comparison between Different Proof
Approaches

In the last section, we introduce several proof approaches to
derive an unbounded proof after or during a BMC checking
procedure. In order to evaluate the performance of these
approaches, we conduct a series of experiments on the
above mentioned benchmarks.

The experiments are conducted on a ThinkCenter work-
station (Intel i5 Quad CPU 3:1GHz, 8GB RAM running
Ubuntu 13 64 Bit). The time and memory usage limit for the
experiment are set to one hour and 4GB respectively. The
value of the bound means the largest number of discrete
locations that a path can have in the state space under
searching. The executable BACH and the input models we
use in experiments for both BACH and SpaceEx are all
available from http://seg.nju.edu.cn/BACH/tc16.

The experiment data for the time and memory usage
spent in each benchmark is shown in Table 1. The quickest
result is marked in bold. In addition, the number of IIS path
segments detected by the underlying LP solver is also given.

It is also worth mentioning that the time spent by BACH
means the total time of the BMC and the unbounded proof
procedure.

From the data, we can see that:

� All the implementations have consistent results on
the benchmarks they can handle. Because the under-
lying technique is the same, we only change the
proof strategy in attempt to improve the
performance.

� In general, the performance of BACH (Eager_
NuSMV) is the worst among the four implementa-
tions. Compared to BACH (Lazy_NuSMV), it needs
to perform LTL model checking once a new IIS is
located, in other words, call the third-party LTL
checker repeatedly, which brings heavy overhead
especially when the number of IIS is large. On the
other hand, in comparison to BACH (Automata), it
has to conduct repeated LTL model checking from
scratch, which wastes a lot of time.

� BACH (Automata) outperforms BACH (Lazy_
NuSMV) significantly when handling large models.
The reason is twofold:
1) We adopt a dedicated algorithm introduced

in [24] to construct a small b€uchi automata effi-
ciently. As the last step of LTL model checking is
to check the emptiness of the product b€uchi, it is
easier to do that in a smaller automata. For exam-
ple, when handling the NAV_5_3 model, the
automata based approach can prove that the LTL
specification is satisfied in 3 seconds while it
takes NuSMV over 40 seconds.

2) In the automata based solution, the proof proce-
dure can tell the BMC solving process to termi-
nate as long as it finds the LTL specification is
satisfied. In contrast, BACH(Lazy_NuSMV) has
to wait for the completion of the BMC procedure.
Take the LHA motorcade_500 for example,
BACH(Automata) is able to prove the target

Fig. 10. Automated highway system.

TABLE 1
Results of Applying Enhanced BACH to Different LHA Cases

BACH
(Automata)

BACH
(Eager_NuSMV)

BACH
(Lazy_NuSMV) BACH(IC3)

System #locs #vars #IIS Time (s) Mem. (MB) Time (s) Mem. (MB) Time (s) Mem. (MB) Time (s) Mem. (MB)

water 6 2 2 0:5U < 1 0:94U < 1 0:94U < 1 0:87U 30
tcs 5 3 4 0:37U < 1 0:20U < 1 0:97U < 1 0:98U 16
sample 8 2 9 0:63B 24 0:60B < 1 0:96B 27 0:41B 21
train 8 2 2 0:9U < 1 0:82U < 1 1:02U < 1 0:3U < 1
NAV_5_3 244 5 81 3:19U 784 - M.O. 45:4U 4,012 - M.O
motorcade_5 7 5 4 0:1U < 1 1:07U < 1 0:05U < 1 0:4U < 1
motorcade_10 12 10 9 0:49U < 1 0:74U 19 0:12U < 1 0:6U 17
motorcade_20 22 20 19 0:58U < 1 4:73U 65 0:53U 61 1:1U 25
motorcade_100 102 100 99 1:71U 25 - T.O 6:66U 164 15:7U 389
motorcade_200 202 200 199 4:01U 49 T.O - 61:8U 653 115:3U 3,299
motorcade_500 502 500 499 29:5U 212 T.O - T.O. - T.O. -

#locs and #vars denote the number of locations and continuous variables in the LHA, respectively. #IIS denotes the number of detected IIS path segments. T.O. is
a time out of 3,600 seconds. EXC means the checker threw an exception. When the result is T.O. or EXC, the corresponding blank of memory usage is marked as
’-’. motorcade_i means automated highway system with i cars. NAV_5_3 denotes the navigation example with three partitions and five dimensions. The bound
we set for BMC in BACH is 10 for all models and if BACH gives an unbounded result, corresponding time is marked with subscript U , otherwise, the result is
marked with subscript B. Last but not least, all the target locations in the benchmarks are unreachable.

XIE ET AL.: DERIVING UNBOUNDED REACHABILITY PROOF OF LINEAR HYBRID AUTOMATA DURING BOUNDED CHECKING... 425

For Research Only

location is not reachable in the unbounded state
space when unrolling the model to depth 3 and
stop the BMC procedure immediately in 7.43 sec-
onds. Unlike that, BACH(Lazy_NuSMV) has to
finish the BMC search at first, which can not be
even finished in the one hour time limit due to
the huge search space.

As BACH(Lazy_NuSMV) outperforms BACH(IC3) in
most of the cases in Table 1, we use BACH(Lazy_NuSMV)
to stand for the lazy proof in the experiments. In order to
further compare the performance of BACH(Automata) and
BACH(Lazy_NuSMV), we also present the experiment data
of applying them to analyze models in the benchmark with
different bound settings. The result is shown in Table 2, we
also list the time needed for the BMC analysis of the same
problem as well. From the data we can see that:

� BACH (Automata) outperforms BACH (Lazy_
NuSMV) significantly on almost all cases, especially
on problems with large bound. In detail, the value of
the bound has little influence on the performance of
BACH(Automata) while the performance of BACH
(Lazy_NuSMV) is greatly affected by it. BACH
(Automata) adopts an eager way to check the satisfi-
ability of the LTL specification and it can know the
BMC result also stands beyond the bound whenever
the collected IIS are strong enough to block the
graph. In this case, the proof procedure can stop the
BMC solving process to avoid the further meaning-
less search of the state space. In contrast, BACH
(Lazy_NuSMV) has to wait for the completion of the
BMC procedure whose performance depends on the
value of the threshold heavily.

� Compare with the BMC procedure of BACH, BACH
(Lazy_NuSMV) spends a bit more time to finish the
whole analysis as it needs to conduct an extra proof
besides the BMC checking. On the other hand,
BACH(Eager_Automata) outperforms the BMC pro-
cedure of BACH in almost all cases, especially when
the bound is large. The reason is that BACH(Autom-
ata) is able to know the unbounded statement when
collecting enough IISes and will terminate to avoid
the further meaningless analysis. In contrast, the

basic BACH can not know such information in
advance and has to search the state space within the
bound exhaustively.

4.2 Comparison with State-of-the-Art Competitors

We have evaluated the performances of different proof
approaches numerically in the last paragraph. In general,
BACH(Automata) behaves the best in almost all cases, so
we use it to represent BACH. Now, we focus on the compar-
ison of the performance of BACH with the state-of-the-art
classical LHA model checker, SpaceEx [5]. According to the
documentation, SpaceEx supports two scenarios: PHAVer
and Support Function. The former scenario uses the polyhe-
dra based method to compute the exact reachable state
space as the tool PHAVer [4], while the latter adopts sup-
port functions [29] to numerically compute the reachable
state space. In the experiment, we compare BACH with
SpaceEx in both two scenarios, which are marked as
SpaceEx (PHA.) and SpaceEx (Supp.), respectively.

The experiment data for the time and memory usage
spent in each benchmark is shown in Table 3. From these
data, we can see that:

� BACH successfully proved the bounded unreachable
results also stand in the unbounded state space for
most of the benchmarks, 9/10, except the sample
automaton. This confirms that the LTL-based
approach in BACH is not complete, however it
increases our confidence that many practical cases
can be proved to be completely unreachable due to
the existence of IIS path segments. In this situation,
BACH can produce an unbounded result. BACH
only fails to give an unbounded result for the sample
automaton. The reason is that in this model the IISes
found during the BMC procedure are not able to
block the graph.

� Comparing with SpaceEx:
- As pointed out in the SpaceEx’s documentation

and website, the support function scenario,
SpaceEx (Supp.), is more suitable to handle
hybrid automata with piecewise affine dynam-
ics, for example model with flow condition like
_x ¼ AxþBuþ c. For the class of LHA

TABLE 2
Results of Applying BACH(Automata), BACH(Lazy_NuSMV) and Basic BACH to Different LHA Cases

BACH(Automata) BACH(Lazy_NuSMV) BACH(BMC Procedure)

System bound Time (s) Mem. (MB) Time (s) Mem. (MB) Time (s) Mem. (MB)

water
1,000 0:22U < 1 0:19U < 1 0:12B < 1
50,000 0:57U < 1 2:47U 82 2:44B 80
200,000 0:74U 99 27:82U 286 27:46B 286

tcs
1,000 0:99U < 1 0:33U < 1 0:25B < 1
100,000 1:02U 49 7:2U 133 7:48B 136
200,000 1:04U 88 28:16U 257 28:12B 261

motorcade_20
1,000 0:54U 17 0:94U 79 0:17B 24
50,000 1:9U 94 6:28U 716 5:54B 671
100,000 2:68U 74 15:47U 1,379 15:11B 1,329

motorcade_100
1,000 1:87U 33 7:77U 360 2:37B 217
10,000 6:12U 98 17:79U 2,073 13:9B 1,919
20,000 10:93U 168 29:51U 3,970 26:7B 3,820

426 IEEE TRANSACTIONS ON COMPUTERS, VOL. 66, NO. 3, MARCH 2017

For Research Only

considered in this paper, SpaceEx prefers to use
the “PHAVer” scenario, SpaceEx (PHA.), to han-
dle. As we can see from Table 3, the performance
of SpaceEx (PHA.) is better than SpaceEx (Supp.)
in general when handling the class of LHA con-
sidered in this paper. Therefore, we focus on the
comparison between SpaceEx (PHA.) and BACH
in the following paragraph.

- On small cases, both BACH and SpaceEx (PHA.)
finish 4 of the 5 cases efficiently. For example, for
most of the models with number of locations and
variables smaller than 10, both BACHand SpaceEx
can solve themquickly in less than 1 second.

- On the other hand, as the reachability analysis of
LHA is undecidable, classical model checking
technique do not guarantee to terminate. The
experiment shows that SpaceEx (PHA.) times
out when dealing with the Temperature Control
System model, which has only three continuous
variables and five discrete locations. The reason
is that the value range of the variables in this
model is not closed. Therefore, the classical fix
point based computation can not terminate. In
contrast, BACH is guaranteed to terminate, as it
is BMC-based, and can give an unbounded result
in many cases according to the experiment.

- On large cases, BACH has better scalability. Take
the automated highway system for example,
BACH can solve such system with 200 cars, 202
locations and 200 continuous variables, in less
than 70 s, while SpaceEx can only handle the
system with five cars within the 1 h time limit.
As the polyhedra based computation is sensitive
to the number of continuous variables in the
LHA, the performance of SpaceEx degrades
greatly when the size of the model increases.
Different from SpaceEx, BACH conducts light-
weight BMC checking first. Then, BACH utilizes
the IIS found during BMC process to derive an
unbounded result using LTL model checking
which is a very mature and efficient technique.

5 RELATED WORK

Reachability analysis of linear hybrid automata is a very
important problem. Classical model checking techniques [3],

[4], [5] try to compute the complete reachable state space of
LHA. The basic idea is to compute iteratively the reachable
state space of the next-step based on the current state space.
The algorithm terminates if the reachable state space of the
next-step is contained by the current state space. However,
such termination is not guaranteed. Furthermore, as the
computation is very sensitive to the number of continuous
variables, the state-of-the-art tools developed based on this
technique do not scale well to the size of practical problems.

On the other hand, inductive invariant generation has been
used in the safety/reachability analysis of hybrid system.
In [38], the authors propose to use a function of state called
barrier certificate to separate the unsafe region from all possi-
ble trajectories starting from a given set of initial conditions.
However, this method is difficult to handle system with
mixed equations and inequalities [39]. Inductive invariant
generation of hybrid system has been studied in the area of
theorem proving as well. In study [39], the differential invari-
ants are computed as fixed points by differential logic for
hybrid systems in an interactiveway byKeYmaera.

In study [28], McMillan proposed an interpolation based
approach for unboundedmodel checking of finite-state transi-
tion system. They proposed to compute an over-approxima-
tion of the forward reachable state space using SAT-based
interpolation. Interpolation has been widely applied in differ-
ent areas like software checking [42], [43]. It has been extended
to nonlinear hybrid system in [40] as well. Craig interpolation
(CI) plays the key role in these studies. It remains an impor-
tant problem to study the scalable approach for CI synthesis
for large and complex system [41].

Recently, boundedmodel checking [6] has attracted a lot of
attention as an alternative technique to the classical model
checking. The basic idea of this approach is to search for a
counterexample whose length is bounded by some integer k
in model executions. However, the result of BMC verification
only covers the bounded behavior of the LHA model. It
remains a very interesting problem that whether we can
acquire an unbounded proof from a BMCprocedure.

Sheeran et al. proposed an induction based approach
called k-induction [21] to check the safety property of finite-
state transition system. The idea of this technique is to prove
that if a set of states is not reachable in k step, then it is
completely not reachable. As hybrid automata contains
both discrete and continuous behavior, such approach can
not be directly applied. In [22], Moura et al. proposed to use
k-induction to verify timed and hybrid automata and they

TABLE 3
Results of Applying BACH(Automata) and SpaceEx to Different LHA Cases

BACH(Automata) SpaceEx(PHA.) SpaceEx(Supp.)

System #locs #vars #IIS Time (s) Mem. (MB) Time (s) Mem. (MB) Time (s) Mem. (MB)

water 6 2 2 0:5U < 1 0:07U < 1 0:22U 8
tcs 5 3 4 0:37U < 1 T.O. - 0:36U 9
sample 8 2 9 0:63B 24 0:93U < 1 EXC -
train 8 2 2 0:9U < 1 0:62U < 1 1:24U 25
NAV_5_3 244 5 81 3:19U 784 16:15U 27 - M.O.
motorcade_5 7 5 4 0:1U < 1 4:94U 16 T.O. -
motorcade_10 12 10 9 0:49U < 1 T.O. - T.O. -
motorcade_20 22 20 19 0:58U < 1 T.O. - T.O. -
motorcade_100 102 100 99 1:71U 25 T.O. - T.O. -
motorcade_200 202 200 199 4:01U 49 T.O. - T.O. -

XIE ET AL.: DERIVING UNBOUNDED REACHABILITY PROOF OF LINEAR HYBRID AUTOMATA DURING BOUNDED CHECKING... 427

For Research Only

generalized the simple path condition used in original
k-induction to simulate relations. As the implementations of
the work are not available now, we cannot compare the per-
formance between our approach and [22] numerically.
However, as the unbounded analysis of [22] is conducted
by performing induction on continuous dynamics of LHA
and the procedure of generating strengthened invariants
requires quantifier-elimination, it demands a high computa-
tional complexity, which greatly restricts the size of the
problem that can be solved.

There are also works focusing on CEGAR of LHA.
Study [32] presented a hybrid abstraction based CEGAR
loop for the class of rectangular hybrid automata, which is a
special subclass of the LHA considered in this paper.
Study [37] utilized the counterexample path to synthesize
good parameters during the verification in a similar path-
oriented way, while the counterexample in our work is
used to refine the graph of the LHA.

Study [13] proposed a CEGAR method, called “Iterative
Relaxation Abstraction”, for LHA by dropping variables
from original LHA in each iteration, and asked PHAVer to
solve the simplified model. Since this technique still relies
on PHAVer, in other words, geometric computation, as the
underlying checker for the abstract model, the computation
burden is still heavy. Although the implementations of this
work are not available as well, this work [13] also reported
its performance on the motorcade series problem. Accord-
ing to [13], the largest motorcade model it solved has 19 var-
iables included. It took [13] 652.51 seconds to solve such a
problem, while for a larger problem, motorcade 20, our tool
BACH solved it in only 0.71 seconds. Furthermore, BACH
solved a much larger systemmotorcade 500 in only 7.43 sec-
onds successfully.

In [34], Fehnker et al. proposed to locate “cut set” path seg-
ments in the graph structure of the LHAmodel and then vali-
date each cut set one by one in the original model. If a cut set
was confirmed to be invalid in the original model, there does
not exist a behavior in the LHA that connects the initial loca-
tion to the target. Hence, the target location is not reachable.
Basically, the cut set path segments used in [34] are certain
key path segments which are shared by many paths on the
discrete graph level. Therefore, they have to validate such cut
set path segments in the original LHA model. While in this
paper, we use IIS technique to analyze the continuous ele-
ments of the path to locate the infeasible path segment core
after one path is proved to be infeasible on the continuous
level by LP solver. Then, such IIS path segments, which are
definitely infeasible, can be removed from the graph structure
to benefit our path-enumerating based BMC procedure.
Clearly, the IIS path segment used in this paper could be any
path segment in the graph structure and hence is different
from the cut set path segment in [34].

There are also related works which manipulate infeasible
path segments to block the target node in different area. In
study [24], Segelken proposed an v-automata based
approach for CEGAR [14] verification of step-discrete linear
hybrid models. In each CEGAR iteration, they present the
spurious counterexample path found in the last iteration as
an LTL formula which is similar to our work. After that, in
order to exclude such spurious counterexample path in the
refinement of the abstract model, the author proposed an

incremental algorithm to translate the corresponding LTL
formula to an v-automata using a dedicated algorithm
which is more efficient than the general LTL-to-B€uchi trans-
lation algorithm [25]. Then the refinement will be done by
computing the Cartesian product of the v-automata and the
abstract model. If the product automata satisfies the safety
property, then the original model is safe. This efficient LTL-
to-B€uchi translation algorithm is adopted in our automata
based proof to achieve better performance.

On the other side, the difference between this paper
and [24]mainly dwells in the following points. First, the coun-
terexample in their CEGAR iteration is identified by LTL
model checking on the discrete state space of the step-discrete
linear hybrid model. In contrast, the counterexample in our
work is given by the BMCprocedure of the continuous behav-
ior of the LHA model. Another main difference is that, in the
LTL specification checking, we propose an on-the-fly algo-
rithm to check whether the product automata satisfies the
LTL formula F(qbad), while they adopt a commonly-used
approachwhich has to compute the intersection first.

A similar idea has been proposed in software verifica-
tion. In [33], Heizmann proposed to compute appropriate
abstractions of programs based on statements as alphabet
atoms in an automata framework and block inconsistent
path segments on the automata level. This idea shares simi-
lar merits with us. However, they focus on finding the right
abstraction of a program for a given property to dismiss a
set of infeasible paths, while our work locates the minimal
infeasible path segments directly. It would be an interesting
topic to take advantage of static analysis techniques and
interpolation generation to refine the infeasible path seg-
ments and automata in our future work.

6 CONCLUSION

Reachability analysis of linear hybrid automata is very diffi-
cult. Classical full state space reachability verification is not
scalable, while bounded model checking is much more effi-
cient to conduct but the result only covers the bounded
behavior of the model. During path-oriented BMC of LHA,
a set of infeasible path segments can be located by IIS tech-
nique. The target location is completely not reachable when
it can not be reached without going through such infeasible
path segments.

In this paper, we propose an LTL-based solution to
derive an unbounded proof from the BMC procedure by
proving whether the target location is blocked by the infea-
sible path segments located during the BMC checking. We
implemented the proposed techniques into a bounded LHA
checker BACH. The experiments show that, although this
approach is not complete, BACH can give an unbounded
result for most of the benchmarks successfully, efficiently
and also with a good scalability.

ACKNOWLEDGMENTS

The authors would like to thank the editors and anonymous
reviewers for valuable advices on improving this paper.
This work is supported by the National Key Basic Research
Program of China (2014CB340703), the Joint NSFC-ISF
Research Program, jointly funded by the National Natural
Science Foundation of China and the Israel Science

428 IEEE TRANSACTIONS ON COMPUTERS, VOL. 66, NO. 3, MARCH 2017

For Research Only

Foundation (No.61561146394), the National Natural Scie-
nce Foundation of China (No.61572249, No.61632015,
No.91318301, No.61321491, No.61472179), and partially sup-
ported by Collaborative Innovation Center of Novel Soft-
ware Technology and Industrialization. Lei Bu is the
corresponding author. This paper presents in a coherent
and expanded form material that appears in the conference
venue [15].

REFERENCES

[1] T. A. Henzinger, “The theory of hybrid automata,” in Proc. 11th
Annu. IEEE Symp. Logic Comput. Sci., 1996, pp. 278–292.

[2] T. A. Henzinger, P. W. Kopke, A. Puri, and P. Varaiya, “What’s
decidable about hybrid automata?” J. Comput. Syst. Sci., vol. 57,
pp. 94–124, 1998.

[3] T. A. Henzinger, P.-H. Ho, and H. Wong-Toi, “HYTECH: A model
checker for hybrid systems,” Int. J. Softw. Tools Technol. Transfer,
vol. 1, pp. 110–122, 1997.

[4] G. Frehse, “PHAVer: Algorithmic verification of hybrid systems
past HyTech,” in Proc. 8th Int. Workshop Hybrid Syst. Comput. Con-
trol, 2005, pp. 258–273.

[5] G. Frehse, et al. “SpaceEx: Scalable verification of hybrid sys-
tems,” in Proc. 23rd Int. Conf. Comput. Aided Verification, 2011,
pp. 379–395.

[6] A. Biere, A. Cimatti, E. M. Clarke, O. Strichman, and Y. Zhu,
“Bounded model checking,” in Advance in Computers, vol. 58.
New York, NY, USA: Academic, 2003, pp. 118–149

[7] G. Audemard, M. Bozzano, A. Cimatti, and R. Sebastiani,
“Verifying industrial hybrid systems with MathSAT,” Electron.
Notes Theoretical Comput. Sci., vol. 119, no. 2, pp. 17–32, 2005.

[8] L. De Moura and N. Bjørner, “Z3: An efficient SMT solver,” in
Proc. Theory Practice Softw. 14th Int. Conf. Tools Algorithms Construc-
tion Anal. Syst., 2008, pp. 337–340.

[9] X. Li, S. K. Jha, and L. Bu, “Towards an efficient path-oriented
tool for bounded reachability analysis of linear hybrid systems
using linear programming,” Electron. Notes Theoretical Comput.
Sci., vol. 174, no. 3, pp. 57–70, 2007.

[10] L. Bu, Y. Li, L. Wang, and X. Li, “BACH: Bounded ReAchability
CHecker for linear hybrid automata,” in Proc. Int. Conf. Formal
Methods Comput.-Aided Des., 2008, pp. 65–68.

[11] L. Bu, Y. Yang, and X. Li, “IIS-guided DFS for efficient bounded
reachability analysis of linear hybrid automata,” in Proc. 7th Int.
Haifa Verification Conf. Hardware Softw. Verification Testing, 2012,
pp. 35–49

[12] J. Chinneck and E. W. Dravnieks, “Locating minimal infeasible
constraint sets in linear programs,” ORSA J. Comput., vol. 3,
pp. 157–168, 1991.

[13] S. Jha, B. H. Krogh, J. E. Weimer, and E. M. Clarke, “Reachability
for linear hybrid automata using iterative relaxation abstraction,”
in Proc. 10th Int. Conf. Hybrid Syst. Comput. Control, 2007, pp. 287–
300.

[14] E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith,
“Counterexample-guided abstraction refinement,” in Proc. 12th
Int. Conf. Comput. Aided Verification, 2000, pp. 154–169

[15] D. Xie, L. Bu, and X. Li, “Deriving unbounded proof of linear
hybrid automata from bounded verification,” in Proc. IEEE Real-
Time Syst. Symp., 2014 pp. 128–137.

[16] D. Xie, L. Bu, and X. Li, “SAT-LP-IIS joint-directed path-oriented
bounded reachability analysis of linear hybrid automata,” Formal
Methods Syst. Des., vol. 45, no. 1, pp. 42–62, 2014.

[17] A. Cimatti, et al., “NuSMV 2: An opensource tool for symbolic
model checking,” in Proc. 14th Int. Conf. Comput. Aided Verification,
2002, pp. 359–364.

[18] A. Pnueli, “The temporal logic of programs,” in Proc. 18th Annu.
Symp. Found. Comput. Sci., 1977, pp. 46–57.

[19] C. Baier and J. Katoen, Principles of Model Checking. Cambridge,
MA, USA: MIT Press.

[20] G. Holzmann, “The model checker SPIN,” IEEE Trans. Softw. Eng.,
vol. SE-23, no. 5, pp. 279–295, May 1997.

[21] M. Sheeran, S. Singh, and G. Stalmarck, “Checking safety proper-
ties using induction and a SAT solver,” in Proc. 3rd Int. Conf. For-
mal Methods Comput.-Aided Des., 2000, pp. 108–125.

[22] L. De Moura, H. Rueß, and M. Sorea, “Bounded model checking
and induction: From refutation to verification,” in Proc. 15th Int.
Conf. Comput. Aided Verification, 2003, pp. 14–26.

[23] A. R. Bradley, “SAT-based model checking without unrolling,” in
Proc. 12th Int. Conf. Verification Model Checking Abstract Interpreta-
tion, 2011, pp. 70–87.

[24] M. Segelken, “Abstraction and counterexample-guided construc-
tion of v-automata for model checking of step-discrete linear
hybrid models,” in Proc. 19th Int. Conf. Comput. Aided Verification,
2007, pp. 433–448.

[25] F. Somenzi and R. Bloem, “Efficient B€uchi automata from LTL for-
mulae,” in Proc. 12th Int. Conf. Comput. Aided Verification, 2000,
pp. 248–263.

[26] IIMC. (2011). [Online]. Available: http://ecee.colorado.edu/
wpmu/iimc/

[27] AIGER. (2006). [Online]. Available: http://fmv.jku.at/aiger/
[28] K. L. McMillan, “Interpolation and SAT-based model checking,”

in Proc. 19th Int. Conf. Comput. Aided Verification, 2003, pp. 1–13.
[29] C. Le Guernic and A. Girard, “Reachability analysis of linear

systems using support functions,” Nonlinear Anal.: Hybrid Syst.,
vol. 4, no. 2, pp. 250–262, 2010.

[30] CPLEX. (2009). [Online]. Available: http://www-01.ibm.com/
software/integration/optimi-zation/cplex-optimizer/

[31] Systems Inc., L. (1995). [Online]. Available: http://www.lindo.
com/products/api/dllm.html

[32] P. Prabhakar, P. S. Duggirala, S. Mitra, and M. Viswanathan,
“Hybrid automata-based CEGAR for rectangular hybrid sys-
tems,” in Proc. 14th Int. Conf. Verification Model Checking Abstract
Interpretation, 2013, pp. 48–67.

[33] M. Heizmann, J. Hoenicke, and A. Podelski, “Software model
checking for people who love automata,” in Proc. 25th Int. Conf.
Comput. Aided Verification, 2013, pp. 36–52.

[34] A. Fehnker, E. M. Clarke, S. K. Jha, and B. Krogh, “Refining
abstractions of hybrid systems using counterexample fragments,”
in Proc. 8th Int. Workshop Hybrid Syst. Comput. Control, 2005,
pp. 242–257.

[35] E. M. Clarke, O. Grumberg, and D. Peled, Model Checking. Cam-
bridge, MA, USA: MIT Press, 1999.

[36] A. Fehnker and F. Ivancic, “Benchmarks for hybrid systems past
HyTech,” in Proc. 7th Int. Workshop Hybrid Syst. Comput. Control,
2004, pp. 326–341.

[37] G. Frehse, S. Kumar Jha, and B. Krogh, “A counterexample-
guided approach to parameter synthesis for linear hybrid
automata,” in Proc. 11th Int. Workshop Hybrid Syst. Comput. Control,
2008, pp. 187–200.

[38] S. Prajna and A. Jadbabaie, “Safety verification of hybrid systems
using barrier certificates,” in Proc. 7th Int. Workshop Hybrid Syst.
Comput. Control, 2004, pp. 477–492.

[39] A. Platzer and E. M. Clarke, “Computing differential invariants of
hybrid systems as fixedpoints,” in Proc. 20th Int. Conf. Comput.
Aided Verification, 2008, pp. 176–189.

[40] S. Kupferschmid and B. Becker, “Craig interpolation in the pres-
ence of non-linear constraints,” in Proc. 9th Int. Conf. Formal Model-
ing Anal. Timed Syst., 2011, pp. 240–255.

[41] R. Sharma, A. V. Nori, and A. Aiken, “Interpolants as classifiers,”
in Proc. 24th Int. Conf. Comput. Aided Verification, 2012, pp. 71–87.

[42] T. A. Henzinger, R. Jhala, and G. Sutre, “Software verification
with BLAST,” in Proc. 10th Int. Conf. Model Checking Softw., 2003,
pp. 235–239.

[43] D. Kroening and G. Weissenbacher, “Interpolation-based software
verification with Wolverine,” in Proc. 23rd Int. Conf. Comput. Aided
Verification, 2011, pp. 573–578.

[44] R. Alur, et al. “The algorithmic analysis of hybrid systems,”
Theoretical Comput. Sci., vol. 138, pp. 3–34, 1995.

XIE ET AL.: DERIVING UNBOUNDED REACHABILITY PROOF OF LINEAR HYBRID AUTOMATA DURING BOUNDED CHECKING... 429

For Research Only

Dingbao Xie received the BS and PhD degrees
in computer science from Nanjing University, in
2011 and 2016, respectively. His research inter-
est mainly focus on verification of hybrid systems.

Wen Xiong received the BSc degree from Nanj-
ing Tech University, in 2014. He is working
toward the master’s degree from Nanjing Univet-
sity. His research interest mainly focus on verifi-
cation of cyber-physical system.

Lei Bu received the BS and PhD degrees in com-
puter science from Nanjing University, in 2004
and 2010, respectively. He is an associate pro-
fessor in the Department of Computer Science
and Technology, Nanjing University. His main
research interests include formal method, model
checking, especially verification of hybrid system,
and cyber-physical system.

Xuandong Li received the MS and PhD degrees
from Nanjing University, China, in 1991 and 1994,
respectively. He is a full professor in the Computer
Science and Technology Department, Nanjing
University. His research interests include formal
support for design and analysis of reactive, dis-
turbed, real-time, hybrid, and cyber-physical sys-
tems, and software testing and verification.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

430 IEEE TRANSACTIONS ON COMPUTERS, VOL. 66, NO. 3, MARCH 2017

For Research Only

