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ABSTRACT

Benefit from less computational diffic
based method has attracted much attentj
fication of hybrid systems. Barrier certifigates
existences of a hybrid system and may ha
A set of well-defined verification conditions is

v, b, certificate
ety veri-

cific type. Therefore, how to define verification c
that can identify barrier certificates invisible to existin,
ditions becomes an essential problem in barrier certifi
based verification. This paper proposes a set of verification
conditions that helps to construct a new type of barrier cer-
tificate, namely, the Darboux-type barrier certificate made
of Darboux polynomial. The proposed verification condi-
tions provide powerful aids in non-linear hybrid system ver-
ification as the Darboux-type barrier certificates can verify
systems that may not be settled by existing verification con-
ditions.

Furthermore, we give a novel computational approach,
combining the sampling-based relaxation method with least-
squares and quadratic programming (LS-QP) alternating
projection, to find Darboux-type barrier certificates. We

>|<This material is supported in part by the National Natural Science
Foundation of China under Grants 61321064, 61361136002, 11471209,
11571350 and 61561146394, the Innovation Program of Shanghai Mu-
nicipal Education Commission under Grant 1477046, Project on the
Integration of Industry, Education and Research of Jiangsu Province
under Grant BY2014126-03. We would like to thank anonymous re-
viewers for their very valuable comments.

TCorresponding author

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions @acm.org.

EMSOFT’16, October 01-07, 2016, Pittsburgh, PA, USA
© 2016 ACM. ISBN 978-1-4503-4485-2/16/10. .. $15.00
DOL: http://dx.doi.org/10.1145/2968478.2968484

Wang Lin
Key Laboratory of
Mathematics Mechanization
AMSS, Beijing 100190, China
linwang@wzu.edu.cn

Zhengfeng YangT
Shanghai Key Laboratory of
Trustworthy Computing
East China Normal University,
Shanghai 200062, China

zfyang@sei.ecnu.edu.cn

Lilei Wang
Shanghai Key Laboratory of
Trustworthy Computing

East China Normal University,

Shanghai 200062, China

llwang@stu.ecnu.edu.cn

demonstrate on the benchmark examples from the literature
that our verification conditions can enhance the capability
of barrier certificate based approaches through successfully
verifying those systems that are difficult to be handled by ex-
isting verification conditions, and our algorithm is efficient.

CCS Concepts

eSoftware and its engineering — Formal software ver-
ation; eComputing methodologies — Optimiza-
1oMjalgorithms;

Y
ion; Hybrid systems; Darboux polynomial;
Barrier ; Palynomial optimization
ON

ynamical systems governed by inter-
dynamics. They are widely

linear hybrid systems. The
can be checked by safety verific
examining whether the systems
unwanted configuration. Due to th
verification of hybrid systems presents al
lem.

Explicit computation of reachable set for safety
verification of hybrid systems. However, this kind of ap-
proach requires knowing the exact solution of the differen-
tial equations, thus its scalability is very restricted. Due to
its less computational difficulty than reachable set compu-
tation, barrier certificate computation has attracted much
attention [23, 15, 28]. A barrier certificate is a function of
state that divides the state space into two parts. All system
trajectories starting from a given set of initial conditions fall
into one side of the barrier certificate while the unsafe re-

ir dels, i.e.,
ngerous or




gion locates on the other side. Compared with reachable set
computation, a barrier function is much easier to compute,
when encountering nonlinear systems. For a hybrid system,
its barrier certificates are inherent existences and there may
be many barrier certificates of different types.

A barrier certificate is identified as follows: first, prede-
fine a set of verification conditions that corresponds to a
specific type of barrier certificate; then, encode those condi-
tions into some constraints on state variables and coefficients
where the unknown coefficients are existentially quantified
and state variables are universally quantified; finally, solve
the quantifier-equipped constraints. A set of well-defined
verification co s is a prerequisite for success in catch-
5 of a specific type. Therefore, how

to define

ificates is an essential problem in
ification.

verification conditions that
can build a new type© r cértificate: the Darboux-type
barrier certificate mad Darboux polsnomial. Compared
with existing barrier certificate whicl a rough over ap-
proximation of the reachable se -type barrier
certificate gives a more precise ion of trajec-
tories of the system by ensuring thatfonce a trajectory of
the system enters the algebraic curvgide the Dar-
boux polynomials, it will never leave the erwards.
By catching Darboux-type barrier certificaes, p. sed
verification conditions provide an effective approachifor Ver-
ifying non-linear hybrid systems that may not se y
existing verification conditions.

Specifically, the Darboux-type barrier certificate ge
tion is addressed in two phases. In the first phase, we ne
a new barrier certificate, based on the concept of Darb
polynomials from computer algebra. Darboux polynomials
indicate the invariant algebraic curves of continuous sys-
tems. Our method is based on adapting Darboux polynomi-
als to provide a new barrier certificate that guarantees safety
property of a semi-algebraic hybrid system. This key distin-
guishing feature of Darboux polynomials provides a new en-
coding to compute barrier certificates, thus guarantees that
our method can yield barrier certificates that SOS relaxation
is unable to produce (See Table 1). In the second phase, we
propose a novel computational approach by utilizing the fea-
ture in the problem of Darboux-type barrier certificate gen-
eration. Concretely, a sampling-based method is applied to
relax the problem of computing Darboux-type barrier certifi-
cates as a polynomial optimization problem with quadratic
equalities and linear inequalities, which can subsequently be
solved by applying a least-squares (LS) and quadratic pro-
gramming (QP) alternating projection method. The bench-
mark examples from the literature show the efficiency of our
algorithm.

The main contributions of this paper are summarized as
follows: 1. We define a new barrier certificate based on
adapting Darboux polynomials, which can be used to de-
scribe the inherent invariance property of the systems. 2. As
an alternative to quantifier elimination or methods based on
SOS relaxation, we suggest a new computational approach,
combined with the sampling-based relaxation method and
LS-QP alternating projection, to compute Darboux-type bar-
rier certificates efficiently. 3. We provide a detailed experi-
mental evaluation on a set of benchmarks, which shows the

This paper propesesgd’se

efficiency and practicability of our method.

The rest of this paper is organized as follows. We in-
troduce some related notations about hybrid system and
Darboux polynomial in Section 2. We define a new type
of barrier certificate, based on Darboux polynomial, to ver-
ify the safety property of hybrid systems in Section 3. We
transfer the problem of generating Darboux-type barrier cer-
tificates to a polynomial optimization problem in Section 4,
and suggest a new computational method for solving this
optimization problem in Section 5. Experiments on some
benchmarks are shown to illustrate our method for com-
puting Darboux-type barrier certificates in Section 6 before
concluding.

1.1 Related work

The seminal works of using barrier certificates in safety
verification of hybrid systems were proposed by Prajna et
al. in [22, 23]. Following their line, H. Kong et al. [16,
15] proposed a barrier certificate defined over an exponential
condition for semi-algebraic hybrid systems. L. Dai et al. [6]
discussed how to relax the condition of barrier certificates
in a general way without losing their convexity. Kapinski et
al. [14, 13] presented a Lyapunov-based barrier certificate,
which is more conservative but tractable than that proposed
by Prajna. In [28], Sloth et al. proposed a new barrier
certificate for a special class of hybrid systems consisting
of many interconnected subsystems. Compared with the
existing barrier certificate which defines a region acting as
the over-approximation of the reachable set, our Darboux-
type barrier certificate characterizes an algebraic curve that
restricts the trajectories of the system from leaving it once
they enter it.

rboux-type invariants have been introduced for safety
rifiéation as well. M.Zaki [32, 33] suggested using Darboux-
invariants in safety verification of continuous systems.

ey d the whole state space into several regions by
ux omials and then verified the safety proper-

ties in th€TegiGhs ong by one. For a polynomial continuous
system,fGoubatilt gf’al. [9] used Darboux polynomials to
find nont sitive invariants and Lyapunov func-
ility and stability properties. The
ux-type invariants is independent of
es, i.e., itdoes not consider the initial

tence of Darboux-type invagi
properties directly.
Computational methods helpi

0, 21, 30,

bases computation, have been applied to solye
tification problem which can prove the €xi of barrier
certificates. However, due to the high computational com-
plexity, they suffer from the scalability problem.

From a computational point of view, relaxation based
methods provide much better efficiency at the cost of more
conservative results. Among them, sum-of-squares (SOS)
relaxation is the most popular one [23, 15, 6, 28, 31]. In-
stead of directly handling constraints with quantifiers, SOS
relaxation converts them to more conservative constraints
represented as either linear matrix inequalities (LMI) [15] or



bilinear matrix inequalities (BMI) [23, 31]. In addition, to
make the computation tractable, the degrees of the polyno-
mial multipliers appearing in LMI or BMI must be bounded.
As a result, the solution set of the bounded LMI or BMI
might be contractive. K. Ghorbal et al. [8] studied how to
balance the generality of verification conditions and the per-
formance issues of computation. Besides, O. Bouissou et al.
[2] applied interval analysis to find the barrier certificates
for the dynamical systems whose initial and unsafe regions
are all of the box form.

Simulation-guided approaches were also developed. Kap-
inski et al. [14] dgfined a new tractable Lyapunov-based bar-
the particular verification conditions,
jon traces generation with stochastic

d its forward invariance by veri-
offpaints selected by d—sampling
from the set. Bobiti € extended the result to discon-
tinuous dynamics and led the verifi@ation of forward in-
variance for hybrid systems. In thi
sampling-based relaxation methg
quadratic programming (LS-Q
compute barrier certificates.

al

2. HYBRID SYSTEM

In this section, we briefly recall the deffiion id
systems. Besides, we introduce a particular kingdyof Poly@o-
mials for continuous systems, called Darboux p omial

A continuous dynamical system S is modeled b
number of first-order ordinary differential equations

% = (),

where x denotes the derivative of x with respect to the time
variable ¢, and f(x) is called vector field f(x) = (fi(x), -,
frn(x)) defined on an open set p C R™. We assume that
f satisfies the local Lipschitz condition, which ensures that
given X = Xo, there exists a time 7' > 0 and a unique time
trajectory 7 : [0,T) — R™ such that 7(¢) = xo. And x(t) is
called a solution of (1) that starts at a certain initial state xo,
that is, x(0) = xo. Namely, x(t) is also called a trajectory
of (1) from xg.

To model hybrid systems, we use the notion of hybrid
automata [12, 27].

Definition 1. (Hybrid system) A hybrid system H : (V| L,
T,0,D,¥, ly) consists of the following components:

eV = {z1,...,xn}, a set of real-valued system wvari-
ables. A state is an interpretation of V', assigning to
each x; € V a real value. An assertion is a first-order
formula over V. A state s satisfies an assertion ¢,
written as s = ¢, if ¢ holds on the state s. We will
also write @1 = @2 for two assertions ¢1, @2 to denote
that (2 is true at least in all the states in which ¢, is
true;

e [, a finite set of locations;
e 7, a set of (discrete) transitions. Each transition 7 :

(6,0 ,g-,p-) € T consists of a prelocation £ € L, a
postlocation ¢ € L, the guard condition g, over V,

and an assertion p, over V UV’ representing the next-
state relation, where V' = {x,...,2},} denotes the
next-state variables. Note that the transition 7 can
take place only if g, holds;

e O, an assertion specifying the initial condition;

e D, a map that associates each location ¢ € L to a
differential rule (also known as a wvector field) D({),
an autonomous system z; = f¢ (V) for each z; € V,
written briefly as x = fy(x). The differential rule at
a location specifies how the system variables evolve in
that location;

e U, a map that maps each location ¢ € L to a loca-
tion condition (location invariant) WU(£), an assertion
over V;

e /g € L, the initial location. We assume that the initial
condition satisfies the location invariant at the initial
location, that is, © = ¥ ({o).

By a state of a hybrid system H : (V,L,7,0,D, ¥, (),
we mean the tuple (¢,x) € L x R™ where n is the number of
program variables in H. A trajectory [31] of H is an infinite
sequence of states

(losx0), (L1, x1), -+, (liy X}y (Lit1, Xiv1), -
such that
e [Initiation] Iy = ¢y and x¢ |= ©;

Furthermore, for each consecutive pair (l;,x;), (li+1,
Xi+1), one of the two consecution conditions holds:

[Discrete Consecution] There exists a transition 7 :
<€, Z/, gr, p7> such that ll = E, li+1 = f/ and (Xi7 Xi+1) ):
i, Xi+1) if g- holds, or

£) at location ¢, while satisfying the
W (¢). Formally,

- f(0)=

ate of a hybrid system
i ears in some tra-
iscrete location

¢; is maintained and the continu ria, x evolve
according to the differential equation: ), with x
satisfying the location invariant ¥ (¢; te (£;,x),

if the guard condition g(¢;, ¢;) is met, t
dergo a transition to location ¢;, and x wil
value x’, which is determined by the res (€, 45).
Given a hybrid system H with prespecified unsafe asser-
tion X,, we say that the system H is safe if all trajectories
of H starting from the initial condition © at the initial lo-
cation {p, can not evolve to any state specified by X,. The
safety verification problem can now be stated as follows.

PROBLEM 1. Given a hybrid systemH : (V,L,7,0,D, U,
£o) and an unsafe assertion X,, determine whether H is
safe, namely, any state specified by X, is not reachable.



For safety verification of hybrid systems, the notion of
barrier functions of hybrid systems plays an important role.
In this paper, we will introduce new barrier functions based
on Darboux polynomials for the safety verification of hybrid
systems.

Definition 2. (Lie derivative [11]) Let f(x) be a vector
field £ : (f1(x), -, fn(x)), the Lie derivative of a smooth
function g(x) with respect to f(x) is given by

109 =3 (22 1),

i=1

Le(9(x) = (Vg) -

oux polynomial [5]) Let f(x) be a

Dol 7f’ﬂ(x)>7 a pOlynomial p(X) € R[X]

polynomial (eigenpolynomial, or a poly-
: (x) if and only if

where ¢(x) € R[x]
¢(x) is a zero polynomi
gral, otherwise it is call

The following lemma is providg
property of Darboux polynomi#ls’

LEMMA 1. Let S be a continuous
fined by (1). Suppose p(x) is a Darboy
respect to f(x), and x(t) is a trajectory o
x0,i.€.,%X(0) = xo. If p(x0) > 0, then p
t>0.

PROOF. Let ¢(x) be the cofactor polynomial
to p(x), i.e., Le(p(x)) = ( ) - p(x). It follows that

Thus, the above ODE has the solution of the following form:

p(x(t)) = p(x
We then derive that p(x(t)) >

o) - eld clends.

Oforallt > 0ifp(xe) > 0. [

3. DARBOUX POLYNOMIAL BASED BAR-
RIER CERTIFICATES FOR SAFETY VER-
IFICATION

At first, we consider the barrier certificate condition for
continuous systems in [23]. Given a continuous system S,
an initial set © and an unsafe set X,,, a barrier certificate is
a real-valued function p(x) of states satisfying that p(x) > 0
for any point x in the reachable set R and p(x) < 0 for any
point in the unsafe set X, (called general constraint here-
after). Therefore, if there exists such a function p(x), we
can assert that RN X, = (), which has determined the sys-
tem can not reach a state in the unsafe set from the initial
set. In fact, the condition p(x) > 0 can be seen as an induc-
tive invariant for the specified barrier certificate p(x). How-
ever, the exact reachable set is really computation hard, so
we can not determine whether p(x) > 0 for the state from
the reachable set R. In the following, we present a new
barrier certificate which is a sufficient condition for general
constraint.

Consider a continuous system S, and let ©, X, be the
initial set and unsafe set respectively. Then the following
theorem gives a new barrier certificate.

THEOREM 1. Given the continuous system S and the cor-
responding sets © and X, if there exists a barrier certificate,
i.e., a real-valued function p(x) which is a Darbouz polyno-
mial, satisfying the following formulae:

() ©Fp(x) =20
(i) Xu = p(x) <0,

then p(x) > 0 is a barrier certificate of the continuous system
S, and the safety of S is guaranteed.

PROOF. If there is a Darboux polynomial p(x) which sat-
isfies conditions (i) and (ii) above, then p(x¢) > 0 holds
for any point x¢ chosen from the initial set ©. Therefore,
based on lemma 1, p(x(t)) will keep non-negative for any
state along the trajectory from the point xo. And it can not
evolve to X, because of X, |= p(x) < 0 from the condition
(ii). So the safety of the system is obvious. [

Next, we present the barrier certificate condition for hy-
brid systems. As stated in the following theorem, the spec-
ified Darboux polynomials pe(x) are also known as barrier
certificates.

THEOREM 2. Let H : (V, L, T, ©,D,V,{y) be a hybrid
system, and X, (£) be the unsafe assertion at location £. Sup-
pose for each location £ € L, there exists a Darboux polyno-
mial pe(x), that satisfy the following conditions:

(i) ©® Epey(x) =20

(i) g(6,£) A p(6,€) = por(') — Ao ()pe(x) > 0, where X'
is the next state specified by p(£,£') in relation to the
previous state x, and Xp ¢ (x) € R[x] is a nonnegative
polynomial, for any transition ((,{' g, p) going out of £,

IRX . (0) = pe(x) <0

¢ s a barrier certificate of the hybrid system H at
att nd the safety of H is guaranteed.

condition (i), p¢,(x) is nonnegative over
by ©. And Lemma 1 implies that
negatlve during the continuous flow.
guarantees that p¢(x) keeps non-
te transition. Thus, pe(x) > 0 is an
at location £. Then, condition (iii)
lie outside the unsafe

implies that all r
region specified by X

e any nonnegative

constants or polynomials. To tion, one prefers

to assign them with simple fixed that the
Darboux polynomials can also b€ use ribe induc-
tive condition of invariants, and the to verify
the safety of hybrid systems. In fact, olynomial

p(x) = 0 can be regard as a “barrier” betwee Sys-
tem trajectories and the given unsafe choosing
an initial point x(¢o) from a given set which goes along the
state function, it would not change the sign of p(x(t)) for
t > to afterwards. In other words, it will not go across the
guard p(x) = 0. In the hybrid case, a barrier certificate is
constructed from a set of functions of continuous state in-
dexed by the system location. And each function needs to
satisfy the inequalities only within the invariant of the loca-
tion [23]. The main difference is that Darboux polynomial
can also be seen as the algebraic type barrier.



4. TRANSFER TO POLYNOMIAL OPTIMIZA- on cylindrical algebraic decomposition is impractical. Here-

TION

In this section, we will discuss how to transfer the prob-
lem of generating Darboux-type barrier certificates for hy-
brid systems to polynomial optimization problem. For the
predetermined template of Darboux polynomials, we show
that the problem of finding Darboux polynomials is equiva-
lent to the polynomial optimization problem with universal
quantifiers, proceeded by eliminating the quantifiers as in
the sampling points selection approach.

Let us predetermine a template of Darboux-type barrier
certificates wit given degree d. We assume that py(x) =
it ant, a= (a1, an) € 28

d, and pyo» € R being parameters. We
(x), where T;(x) is the (column)
1,--.,%n With total degree < d,
ht yector of pe(x) with v = (n:d).
ient condition to verify the

can rewrite pe(x)
vector of all mong

safety of hybrid system
nomials which satisfy
Ae,ee € Ry, the later problem ca:
following problem

find pe(x) € R[x|,¥£ € L
6. Lp(pe(x)) = co(x) - pe(x),
O |= pgy (x) 2 0,
g, ) A p(€, ') | per (x') — Ag o (e ;
Xu(f) F pe(x) <0.

Observing the equality constraint in (2), we @an@et €he
degree of the cofactor c¢(x). Similar to the templage ofipe (
let the coefficients of c¢(x) be parameters, and w
as ce(x) = c; - Te(x), where ¢, and Ty(x) are the coeffigient
vector and the monomial vector of c¢(z), respectively.
can rewrite the equality constraint in (2) as a quadratic sys-
tem with the variables py, c¢ by sorting the coefficients with
respect to the variables x, that is,

For the given
lated into the

Ly(pe(x)) = co(x) - pe(x) <= Fi(pe, cr) = 0. ®3)

In addition, the variables of the third constraint in (2) are
x,x’. From the guard condition g(¢,¢') and the reset con-
dition p(¢,£'), one can just use the variables x to represent
this constraint, that is,

Qq(0,0') = P (x) >0, (4)

)
where Qg (£,0') = {x € R"|g(¢,¢") A p(¢,0')}.
Having (3) and (4), the problem (2) can be transformed
into the following form

find p, €eRY, VLEL
s.t. Fg(p[,CE) =0,

Peo (X, Pey) >0, Vx € O, (5)
Do (X, Pe, Per) >0, Vx,x' € Qp p,
pe(x,pe) <0, Vx € Xy (0).

By investigating (5), the last third constraints are the ones
involving with universal quantifiers. The straightforward
idea is to apply quantifier elimination methods to deal with
(5). Moreover, there are several available computer algebra
tools (such as QEPCAD [3]) to solve the problem. Neverthe-
less, quantifier elimination methods based on the cylindrical
algebraic decomposition (CAD) are of high complexity. In
addition, the number of the variables p¢, ¢, in the polyno-
mial optimization problem (5) is not small. Taking the two
limits into account, the typical quantifier elimination based

after we propose a novel method to solve (5) by means of
eliminating universal quantifiers through checking sampling
points.

Since the last constraint in (5) is a strict inequality, we
can introduce a small positive real number ¢ € R to relax
this constraint to a non-strict one, i.e.,

—pe(X,pe) —€ >0 = pe(x,pr) <O0.

Let us first use p and c to denote the whole coefficient vec-
tors of the Darboux polynomials and the corresponding co-
factors, respectively, i.e.,

T

T T T
p :[p[(J?le?"'L

T T
C :[Cﬁovcelv"']'
The dimension of p is denoted as w hereafter.
For ease of presentation, (5) can be rewritten as the fol-
lowing unified form:

find p
st.  F(p,c) =0, (6)
pi(x,p) >0, Vx€Q;,i=1,2,... k.

where F(p,c) = 0 is the quadratic system consisting of
all equations F¢(p¢,c) = 0 for each location ¢ € L, and
Di(x,p) > 0,Vx € Q5,7 =1,...,k represent the second, the
third and the last relaxed ones in (5) for each location £ € L.

To avoid eliminating universal quantifiers directly, here
we provide a relaxation technique to deal with (6), which is
based on selecting sampling points. For each ;,1 <1 < k,
let us first construct a rectangular mesh M in Q; with a
mesh spacing r € Ry (say » = 0.05) and mesh point set
Xi = {X1,X2,- -+ ,Xm, }. Given a continuously differentiable
function ¢(x) over the compact domain Q, and let x € Q
x + Ax € Q be chosen randomly, then the mean value

lp(x + Ax) — ¢(x)| < n1l| Ax|| oo, (7)

ca [Vo(x)]loo-
v obg@rvingl(6), the feasible solution satisfying the con-

straintsfis not u 1t is easy to verify that if p is the feasi-
ble solu k € Rso) is also the feasible solution
verification problem concentrates
such p satisfying the constraints of
us to provide a bound D
easible solution p such
he coefficients of the
In this case, from (7)
that the following

that ||p|lec < D, which
polynomials p(x, p) are a
we may select a minimal 04
implication is satisfied:

Pi(x5,p) —0: >0, 1 <j<my

We should illustrate how to determin
given objective system H, each €; is de
associate §; can be determined, after decidin
mesh spacing size r. For simplify, we
nair € Rxo where 1; = sup,cq, [[VH(X)illoo-

By using the above relaxation technique based on sam-
pling points verification, (6) can be relaxed as the following
polynomial optimization problem without quantifiers.

find p

st.  F(p,c) =0,
pi(x;,p) — 6; 2 0,
—E-p+D-12>0,
E-p+D-12>0.

1<i<k, 1<j<m (8)



where E € RY*“ is the identity matrix and 1 is a vector of
all ones with the same dimension as p.

According to the rule of the selection of §;, it is easy to
show that the feasible solution of (8) is also the feasible
one of (5). Moreover, (8) has a special structure, that is,
all equalities are quadratic and all inequalities are linear.
Therefore, (8) can yield the following matrix form:

find p
st.  F(p,c) =0, 9)
A-p2>b,

where A is a constant matrix and its row dimensionis )7, m,.

the mesh size is, the closer each

d; gets to zero, 1. Moreover, it would’t lead
to a dramatic rise in
limited number of line

into the problem.

REMARK 2. To improve the

r. And a
obtained

coefficient bound D = 1 in the seque
verification would be required to show w
P satisfies the associated inequalities ovegall
set after any feasible solution is obtained.

5. LS-QP ALTERNATING PROJE

In Section 4, we have reduced the problem of safety
cation of hybrid systems to the problem of polynomial
mization with quadratic equalities and linear inequalities.
is known that the polynomial optimization problem can be
solved efficiently by algorithms such as Gauss-Newton iter-
ations, trust region methods, interior-point methods. From
(9), we can see that the number of the equations is large,
which is related to the number of the system variables and
the degree of the Darboux polynomial. This key feature de-
termines that the performance of the typical numerical op-
timization methods for attacking (9) really depends on the
chosen initial point, as illustrated by the following example.

EXAMPLE 1. [4] Consider the the following nonlinear sys-
tem:
= —x+223%y
{ y= -y
We want to verify that all trajectories of the system starting
from the initial set

O={xcR:1<x<2A-2<y< -1}
will never enter the unsafe region
X, ={xeR*:1<z<2A1<y<2}

As explained in Section 4, we first set the degree d = 1,
the mesh size s = 0.5 for © and X, then set the template
for the Darboux polynomial p(z,y) and its cofactor c¢(z,y)
as p(z,y) = prx+p2y + ps and c(z,y) = crx + cay + cs,
respectively.

Let p = [p1,p2,p3]" and ¢ = [c1,c2,c3]T, to verify the
safety of the above system, it suffices to obtain a feasible
solution of the following polynomial optimization problem:

find p
{ st.  fi(p,c) = fa(p,c) =+ = f11(p,c) =0, (10)
A-p2>b,

where A € R*®*3 and b =1[0.1,0.1,...,0.1]7.

Let us use the Matlab fmincon numeric optimization solver
for which we choose the interior-point method option to solve
(10). We select the initial solution p® from the set -5, 5]
randomly, and then call fmincon to deal with (10). After
5000 trials by selecting initial solution p<0), fmincon can-
not yield any feasible solution for (10). The reason may lie
in that the initial solution we selected is not close enough to
the actual solution. Actually, if we choose the initial solution
p® = [0.2,2,0]7, which is very close to a feasible solution
[0,2,0], it turns out that fmincon can succeed to obtain the
feasible solution. However, if the initial solution is chosen
as p© = [0.5,2,0]T, which is a bit further, no feasible so-
lution can be found. This phenomenon also indicates the
selection of initial solutions may seriously impact the result
of the typical numeric optimization method for handling (9).
O

In the sequel, we present a novel method, called LS-QP
alternating projection hereafter, to deal with (9). In LS-QP
alternating projection method, the problem (9) is tackled
by an iterative scheme, which is carried on by computing
the optimal solutions of a least-squares (LS) problem and a
quadratic programming (QP) problem.

Investigating (9), F(p,c) involves only cross terms be-
tween parameters of p and ¢, which means there is no cross-
ing product like p;p; and c;c; in the equations. Taking
this special feature into account, an alternative projection
éthod can be applied by fixing p and c, respectively, which

*

, (9) would become a least-squares problem:
. Likewise, once c is fixed by c*, then (9) is
nto fhe following problem

As addressed above, the g
is to reduce dimensionalifj speaking, we keep one

2 for the other variable

the above least-squares proble
problem.

[p(lk)y -+, p{]7, which is the optim

the k-th iteration, we need solve the opti
. k
min |F(p', c)].

In this situation, (12) can also be rewritten as the following
form with the updated variables

min [[F(p®), ™) 4 Ac)l,

D) = e®) 4 Ac £ 0. (13)

For convenience, we denote the solution of (13) as

Ac = updatei (F).



Let ¢ be fixed by c(’“+1), and then update p by solving the
following optimization problem

min [|Ap||
F((p® + Ap),ck+D) =0, (14)
A-(p® + Ap) > b,

where p**tY .= p®) + Ap # 0. Similarly, the solution of
(14) is denoted by

Ap = updatez(F).

The geometric description of the LS-QP alternating projec-
tion method is icted in Figure 1. Here C is the polyhe-
dron defined > b, and P is the manifold defined
e p(k) and ¢ have been produced

Require: Sampling poMt set y and
Ensure: Darboux polynomial p(x
: Establish the optimization p
: Generate some initial vecto
for k=1,2,---," do;
c® = =Y 4 update, (F,p*—Y
p*) = p*=Y 1 updates (F, c);
: end for.

1 See Remark 4 in this section for stopping

update,

Figure 1: LS-QP alternating projection

REMARK 3. At the beginning of the alternating iteration,
we can set c© by selecting a random vector, and then obtain
the associated vector p(® by solving the least squares prob-
lem with the known vector ¢¥. Rather than choosing c°
randomly, we can select a random vector p<0) at first, and
then get the associated vector ¢©) by solving the correspond-
ing quadratic programming problem with the given p(@.

REMARK 4. There are several options for the stopping
criterion of the LS-QP alternating projection algorithm. The
most typical way for the stopping criterion is to use a max-
imum number of iterations to ensure the termination of the
algorithm. Therefore, Algorithm 1 will be terminated when
one of the following cases occurs:

o When |lupdate; (F,p*~Y)|| < o and ||updates(F,c™)]|
< o at k-th iteration for a given tolerance o (like, o =
10_5), Algorithm 1 will stop and return the current
result; otherwise it will go to the next iteration.

e Given a time limit N and take account of the number
of iterations, when the LS-QP alternating projection
algorithm has been running so many times which ex-
ceeds the time limit N, the algorithm stops.

6. EXPERIMENTS

Let us present some examples of safety verification for
nonlinear hybrid systems based on Darboux polynomials.

(o +1/2)2+ (22 + 1/ =174

(o — 12+ (xs— 17 = 1/4
Figure 2: Hybrid system of Example 2

EXAMPLE 2. Consider the the hybrid system depicted in
Figure 2, where

fl(x) _ { Tr1 — T1T2 }  fa(x) = [m +l’%1‘2:| )

—T2 + T1T2 T2 + T1x2
The system starts in location £1 with an initial state in
0= {(xl,xz) S R*: -2 <z1,22 < —1}.

ill verify that all trajectories of the system can never
aclidthe states of

— {(z1,22) €ER®:0< 2 <1,-2< a5 < —1}.

lyi method, we can obtain two Darbouz poly-
nomaials locatdons and ¥o:

0, (x) = 0.733221,
(X) = 0.7332x1x2,

which satisfy all

conditions in Theorem 2. Then, the
safety property o ]

x£=x172,xé=x2+1

Figure 3: Hybrid system of ple 3

ExXAMPLE 3. Consider the hybrid system depicted in Fig-
ure 3, where

filx) = [—zl —|—zlz2} R = {—ml + mewg] .

—T2 —T2
The system starts in location £1 with an initial state in

O = {(z1,22) € R?: (214 2)® + (22 — 2)® < 0.25}



We will verify that all trajectories of the system can never

reach the states of
Xu(fg) = {(CIZ’1,LIZ’2) e RQ : (331 — 2)2 + ($2 — 2)2 < 0.25}.

By applying our method, we can obtain two Darbouz poly-
nomials at locations £1 and ¥ :

pe, (x) = 0.7332z2,
Doy (x) = —0.2711z 22 + 0.2711,

which satisfy all the conditions in Theorem 2. Then the

safety property of the given system is guaranteed. O
As stated m 2 in [15], the problem of barrier
certificat tion Can be rewrltten as that of computing

following conditio
By, (%) < 0 Vx e
By(x) — A\ Be(x
Ye,e Be(x) — Ber (x

Bg( >OVXEXu

(15)

)" € p((L,€'),%),
for some real numbers A;, and ng e real numbers

Megat
ve,er. According to Corollary 24 OS relaxation

can be applied to convert the ‘above/fpf@blem to a linear

matrix inequalities (LMI) problem, wlich is x and can
be solved with great efficiency. And aS/sh eorem 5
in [23], the problem of barrier certificate (gene n can be

rewritten as that of computing a set of pol ial fi ns
{Be(x), V¢ € L}, each of which satisfies

Bgo( ) <0Vx €O,
By(x) <0Vx € U({) s.t. Bp(x) =0, (
By(x) <0Vx € g(¢,0')vx' € p((£,€),x) s.t. Bp(x') <0,
By(x) > 0 Vx € X (¢).

According to Algorithm 17 in [23], the above problem can
be transformed to a bilinear matrix inequalities (BMI) prob-
lem, which is non-convex and NP-hard. We compared our
Darboux-type barrier certificate based method with the ex-
isting barrier certificate based ones in [15, 23] over a set of
benchmarks gathered from the related works. Table 1 shows
the result. Here, the LMI problems yielded from (15) were
settled by the Matlab toolbox SOSTOOLS [24] while the
BMI problems yielded from (16) were solved by the Matlab
toolbox PENBMI [17].

Algorithm 1 has been implemented in Matlab, and the
performance is reported in Table 1. For each example, we
first utilize the mesh points of the rectangular meshes with
spacing 7 = 0.05 located in initial and unsafe regions re-
spectively, and then eliminate universal quantifiers in prob-
lem (5) by linear inequalities. In this manner, we apply
Algorithm 1 to obtain the Darboux-type barrier certificate
p(x). Noted that the experiments are performed on Intel(R)
Core(TM) at 3.40GHz with 4GB of memory under Windows.

In Table 1, n denotes the number of the system variables;
deg denotes the maximum degree of the polynomials in the
vector fields; LMI and BMI refer to the computational meth-
ods for solving problems (15) and (16) respectively; deg(B)
denotes the degree of the computed barrier certificates, and
T'(s) represents the computation time in seconds; deg(p)
represents the degree of the Darboux polynomials obtained
via our LS-QP alternating projection algorithm; Fail means
that the method fails to find the barrier certificates with
degree < 6.

Table 1: Algorithm Performance on Benchmarks

o | 1| des LMI BMI LS-QP
deg(B) T(s) deg(B) T(s) deg(p) T(s)
1 2 2 Fail - 2 0.8744 2 0.6508
2 3 2 Fail - Fail - 1 0.4854
3 3 2 1 0.3751 1 1.1039 1 0.5154
4 2 2 Fail - Fasl - 1 0.3645
5 3 2 Fail - 2 5.0523 2 1.6337
6 2 2 Fazil - Fail - 1 0.3155
7 2 2 2 0.2816 2 1.1407 1 0.3717
8 2 2 Fail - 2 1.9511 2 0.9237
9 2 3 4 0.4623 2 1.0011 Fail -
10 | 4 2 Fail - 2 10.884 1 7.0506
11 | 6 2 2 27.230 2 65.351 1 14.0614

For the 11 examples, the SOS relaxation based on BMI
solving can yield barrier certificates for 8 of them while ours
can cover 10. Our verification condition can facilitate the
safety verification of systems embracing Darboux-type bar-
rier certificates. It also enhances the capability of barrier
certificate based approaches by enabling those systems that
are difficult to be verified using existing verification condi-
tions to be verifiable, like the systems in the example 2,4 and
6 in the experiment. At the same time, being a specific type
of barrier certificate, there are some systems that can be ver-
ified by classical conditions much more easily than by ours
as shown in the example 9. In addition, even for the systems
that can be solved by both of them, there is no theoretical
result predicting which method will produce lower-degree
barrier certificates. From the table, we can see that the
BMI conversion brings more expressiveness but at the cost of
lower computation efficiency. The problem of Darboux-type
barrier certificate generation is also non-convex. However,
the proposed LS-QP alternating projection algorithm can
solve it in much shorter time. Remarked that our obtained

oux polynomials, regarded as the barrier certificates, in
les 10 and 11 are different from the results provided
an@ [19], respectively.

e presented a new Darboux-type bar-
ethod for verifying safety property of

als provides a new encoding
thus guarantees that our

sampling-based method and™@
method are proposed for computi ux-type barrier

marks are

8. REFERENCES

[1] BoBITl, R., AND LAZAR, M. A delt@- g
verification theorem for discrete-time, possibly
discontinuous systems. In Proc. of the Hybrid Systems:
Computation and Control (HSCC) (2015), ACM,
pp. 140-148.

[2] Bouissou, O., CHAPOUTOT, A., DJABALLAH, A.,
AND KIEFFER, M. Computation of parametric barrier
functions for dynamical systems using interval
analysis. In Proc. of the IEEE Conference on Decision
and Control (CDC) (2014), IEEE, pp. 753-758.



3]

[15]

BrownN, C. W. QEPCAD B: a program for
computing with semi-algebraic sets using CADs. ACM
SIGSAM Bulletin 37, 4 (2003), 97-108.

BrowN, R. C., AND HINTON, D. B. Lyapunov
inequalities and their applications. In Survey on
Classical Inequalities. Springer, 2000, pp. 1-25.
CHEZE, G. Computation of darboux polynomials and
rational first integrals with bounded degree in
polynomial time. Journal of Complexity 27, 2 (2011),
246-262.

Dai, L., GaN, T., X1a, B., AND ZHAN, N. Barrier
certificates gvisited. Journal of Symbolic

(19]

20]

(21]

(22]
D GASULL, A. Seeking darboux

pol, Applicandae Mathematicae 1389, 1
(2015),
GHORBAL,
hierarchy of
invariance of

ON, A., AND PLATZER, A. A [23]
checking positive

emi-algebraic sets.

OT, S., AND
g olynomial
positive invariants and lyap s for

polynomial systems through darb@t®®polynomials. In

(24]

Proc. of the American Control Confere ca)
(2014), IEEE, pp. 3571-3578. [25]
GULWANI, S., AND T1wARI, A. Consfrain e

approach for analysis of hybrid syste .
the Computer Aided Verification (CAV) (2008)
vol. 5123, pp. 190-203.

HaLMmos, P. R. Finite-Dimensional Vector Sp
Springer, 1974.

HENZINGER, T. The theory of hybrid automata. In

Proc. of the IEEE Symposium on Logic in Computer

Science (LICS) (1996), pp. 278-292.

KAPINSKI, J., AND DESHMUKH, J. Discovering ]
forward invariant sets for nonlinear dynamical
systems. In Interdisciplinary Topics in Applied
Mathematics, Modeling and Computational Science.
Springer, 2015, pp. 259-264.

KAPINSKI, J., DESHMUKH, J. V.,
SANKARANARAYANAN, S., AND ARECHIGA, N.
Simulation-guided lyapunov analysis for hybrid
dynamical systems. In Proc. of the Hybrid Systems:
Computation and Control (HSCC) (2014), ACM,

pp. 133-142.

Kong, H., Hg, F., Song, X., HUNG, W. N., AND
Gu, M. Exponential-condition-based barrier
certificate generation for safety verification of hybrid
systems. In Proc. of the Computer Aided Verification
(CAV) (2013), Springer, pp. 242-257.

Kong, H., Song, X., HAN, D., Gu, M., AND SUN, J.
A new barrier certificate for safety verification of
hybrid systems. The Computer Journal 57, 7 (2014),
1033-1045.

Ko¢vara, M., AND STINGL, M. PENBMI user’s
guide (version 2.0). Available at
http://www.penopt.com, 2005.

Liu, J., Zuan, N.; AND ZHao, H. Computing
semi-algebraic invariants for polynomial dynamical
systems. In Proc. of the Embedded Software
(EMSOFT) (2011), ACM, pp. 97-106.

(26]

€S,

29]

(30]

(31]

(32]

(33]

LLIBRE, J., AND VALLS, C. On the integrability of the
einstein—yang—mills equations. Journal of
Mathematical Analysis and Applications 356, 2 (2007),
1203-1230.
MATRINGE, N., MOURA, A. V., AND REBIHA, R.
Generating invariants for non-linear hybrid systems by
linear algebraic methods. In Proc. of the Static
Analysis. Springer, 2010, pp. 373-389.
PrLATZER, A., AND CLARKE, E. M. Computing
differential invariants of hybrid systems as fixedpoints.
Formal Methods in System Design 35, 1 (2009),
98-120.
PRAJNA, S., AND JADBABAIE, A. Safety verification of
hybrid systems using barrier certificates. In Proc. of
the Hybrid Systems: Computation and Control
(HSCC) (2004), Springer, pp. 477-492.
PRrRAINA, S., JADBABAIE, A., AND Pappras, G. A
framework for worst-case and stochastic safety
verification using barrier certificates. IEEE
Transactions on Automatic Control 52, 8 (2007),
1415-1429.
PRAJINA, S., PAPACHRISTODOULOU, A., AND
PARRILO, P. Sostools: Sum of squares optimization
toolbox for matlab, 2002. URL: hitp://www. cds.
caltech. edu/sostools.
RAcHID REBIHA, ARNALDO V. MOURA, N. M.
Generating invariants for non-linear hybrid systems.
Theoretical Computer Science 594 (2015), 180-200.
RODRIGUEZ, E., AND TIWARI, A. Generating
polynomial invariants for hybrid systems. In Proc. of
the Hybrid Systems: Computation and Control
(HSCC) (2005), pp. 590-605.

ANKARANARAYANAN, S., SIPMA, H., AND MANNA,

. Constructing invariants for hybrid systems. Formal
Medhods in System Design 32 (2008), 25-55.

TH, C., Pappas, G. J., AND WISNIEWSKI, R.

om ional safety analysis using barrier certificates.
In Pyoc. ofithe Hybrid Systems: Computation and
Cotltrol (. (2012), ACM, pp. 15-24.
Soa ORBAL, K., JACKSON, P. B., AND
PLATZE thod for invariant generation for

Verification, Wlodel Che and Abstract
Interpretation (VMC, Springer,
Pp. 268-288.

STurM, T., AND TI
synthesis using real qua
the International Symposium

tion. In Proc. of
ymbelic and

Algebraic Computation (ISSAC) (2 , Press,
pp. 329-336.
YANG, Z., Wu, M., AND LIN, W t y@rification

of hybrid systems based on bilinear SOS
representation. ACM Transactions gn E
Computing Systems 14, 1 (2015), 1-19"
ZAKI, M., TAHAR, S., AND Bois, G. Combining
constraint solving and formal methods for the
verification of analog designs. Tech. rep., Concordia
University, 2007.

ZAKI, M., TAHAR, S., AND Bois, G. A symbolic
approach for the safety verification of continuous
systems. In Proc. of the International Conference on
Computational Sciences (2007), pp. 93—-100.



Appendix: Benchmark Examples
System 1 [25].
1| _ |—z1 +2$%x2
To| —x2 ’
e The local condition: {x € R2:-2<z,20 < 2};
The initial set: {x € R? : —1/2 < x1 < 1/2,1/2 < x5 <
3/2%
The unsafe set: {x € R? : (z1 —3/2)2 + (z2 — 3/2)% < 1/4}.

e The computed Darboux polynomial p(x) = —0.7195z1 -z2 +
0.7195.

System 2 |

Tl —X1T3
T2 — 2x213

The initial set:
3/2)% < 1/4%;

The unsafe set: {x
1/2)2 < 1/4}.

e The computed Darboux poly. 7332x3.

System 3 [25].
1 z1(l —x1 — x2 3)
22 | = | z2(1—x1 — @2 — 3|,
@3 x3(1 — w1 — w2 — x3)

e The local condition: {x € R3: -2 < z1,22,23& 2}
The initial set: {x € R? : 22 + (z2 +1)2 + (3 +
The unsafe set: {x € R3 : (21 —1)2+ (22 — 1)2 + (z3 —
0.25}.

e The computed Darboux polynomial p(x) = —0.6166x1 —
0.9661x2 — 0.9661x3.

System 4 [9].

)

71| _ [ 22 +zz2 + 7
{ 2 } B { w1z + 23 + 22
e The local condition: {x € R2:-2<z,22 < 2};
The initial set: {x € R%2:0 < 1,22 < 1};
The unsafe set: {x € R2: (z1 +1/2)% + (22 + 1/2)2 < 1/4}.
e The computed Darboux polynomial p(x) = 0.5689z1+0.5689x2.
System 5 [9].

T Z‘% + x120 — T123
:152 = 2x1$2 +Z‘§ ’
T3 T2x3 — 273

e The local condition: {x € R3: -2 <z, 29,23 < 2};
The initial set: {x € R3 : (z1 —3/2)% + (w2 — 1/2)% + (z2 —
3/2)% < 1/4);
The unsafe set: {x € R3: (z1 —1/2)2? + (2 — 3/2)% + (z2 —
3/2)? < 1/4}.

e The computed Darboux polynomial p(x) = 0.5024z7 —0.0168z2x3.
System 6 [9].

1
)
e The local condition: {x € R?:-2<z,22 < 2};

The initial set: {x € R? : —1/2 < x1 < 1/2,1/2 < z2 <
3/2%

_ x% + 2x120 + 390%
| dxia0 + 2x% ’

where s =1 and a = 1.

The unsafe set: {x € R?: (x1 —3/2)2 + (z2 — 1/2)? < 1/4}.

e The computed Darboux polynomial p(x) = —0.2525z1 +
0.2525x5.
System 7 [9].
1 | _ | x1—x172
o | | —x2tax122 |’

e The local condition: {x € R2:-2<z,22 < 2};

The initial set: {x € R2: -1 <z; <0,1/2 <22 < 3/2};

The unsafe set: {x € R?:1/2 <z1 <3/2,0< 23 <1}
e The computed Darboux polynomial p(x) = 0.7332z;.
System 8 [32].

1 | _ | T2+ 27122
{ Zo } - { 7x1+2x%fx§ ’

e The local condition: {x € R2: -2 < z1,29 < 2};

The initial set: {x €R2:0<x; < 1,1 <z <2}

The unsafe set: {x € R? : z1 + 232 < 0}.

e The computed Darboux polynomial p(x) =
1.6z% + 2.43.

System 9 [23].
T
Z2

e The local condition: {x € R? : —2 < 1,29 < 2};
The initial set: {(z1,z2) € R? : (z1 — 1.5)2 + 22 < 0.25};

The unsafe set: {x € R?: (z1 +1)? + (22 +1)2 < 0.16}.
System 10 [The Raychaudhuri polynomial system [7]].

-1 4+ 221 —

—zy 4 2t —xa |

lx% — 2xox3 + 22:2 +1

(x) = z4.
Mills system [19]].

T xr1xr3

xro T1Ts5

@3 | _ | (za—m3

24 | | —(x4a—x3) ’
s szawe + (23 —

Tg 2xoxs — T3%6

e The local condition: {x € R6 : —2 < . Ts5,
z6 < 2};
The initial set: {x € R®: 1 < x1, 22, x3, ¥4, x5, 26 < 2};
The unsafe set: {x € R? : —1 < x1,22,23,24, 5, Tg <

—0.5}.
e The computed Darboux polynomial p(x) = 0.7332z;.



