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ABSTRACT
Benefit from less computational difficulty, barrier certificate
based method has attracted much attention in safety veri-
fication of hybrid systems. Barrier certificates are inherent
existences of a hybrid system and may have different types.
A set of well-defined verification conditions is a prerequi-
site for successfully identifying barrier certificates of a spe-
cific type. Therefore, how to define verification conditions
that can identify barrier certificates invisible to existing con-
ditions becomes an essential problem in barrier certificate
based verification. This paper proposes a set of verification
conditions that helps to construct a new type of barrier cer-
tificate, namely, the Darboux-type barrier certificate made
of Darboux polynomial. The proposed verification condi-
tions provide powerful aids in non-linear hybrid system ver-
ification as the Darboux-type barrier certificates can verify
systems that may not be settled by existing verification con-
ditions.

Furthermore, we give a novel computational approach,
combining the sampling-based relaxation method with least-
squares and quadratic programming (LS-QP) alternating
projection, to find Darboux-type barrier certificates. We
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demonstrate on the benchmark examples from the literature
that our verification conditions can enhance the capability
of barrier certificate based approaches through successfully
verifying those systems that are difficult to be handled by ex-
isting verification conditions, and our algorithm is efficient.

CCS Concepts
•Software and its engineering→ Formal software ver-
ification; •Computing methodologies → Optimiza-
tion algorithms;

Keywords
Safety verification; Hybrid systems; Darboux polynomial;
Barrier certificate; Polynomial optimization

1. INTRODUCTION
Hybrid systems are dynamical systems governed by inter-

acting discrete and continuous dynamics. They are widely
used to modelling embedded systems consisting of computa-
tional and physical elements. Many safety-critical systems,
e.g., aircrafts, automobiles, chemicals and nuclear power
plants, and biological systems, operate semantically as non-
linear hybrid systems. The safety issues of those systems
can be checked by safety verification of their models, i.e.,
examining whether the systems will reach a dangerous or
unwanted configuration. Due to the intrinsic complexity,
verification of hybrid systems presents a challenging prob-
lem.

Explicit computation of reachable sets is crucial for safety
verification of hybrid systems. However, this kind of ap-
proach requires knowing the exact solution of the differen-
tial equations, thus its scalability is very restricted. Due to
its less computational difficulty than reachable set compu-
tation, barrier certificate computation has attracted much
attention [23, 15, 28]. A barrier certificate is a function of
state that divides the state space into two parts. All system
trajectories starting from a given set of initial conditions fall
into one side of the barrier certificate while the unsafe re-
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gion locates on the other side. Compared with reachable set
computation, a barrier function is much easier to compute,
when encountering nonlinear systems. For a hybrid system,
its barrier certificates are inherent existences and there may
be many barrier certificates of different types.

A barrier certificate is identified as follows: first, prede-
fine a set of verification conditions that corresponds to a
specific type of barrier certificate; then, encode those condi-
tions into some constraints on state variables and coefficients
where the unknown coefficients are existentially quantified
and state variables are universally quantified; finally, solve
the quantifier-equipped constraints. A set of well-defined
verification conditions is a prerequisite for success in catch-
ing barrier certificates of a specific type. Therefore, how
to define new verification conditions of barrier certificates
that are different from existing types to enrich the spectrum
of computable barrier certificates is an essential problem in
barrier certificate based verification.

This paper proposes a set of verification conditions that
can build a new type of barrier certificate: the Darboux-type
barrier certificate made of Darboux polynomial. Compared
with existing barrier certificate which gives a rough over ap-
proximation of the reachable set, a Darboux-type barrier
certificate gives a more precise characterization of trajec-
tories of the system by ensuring that once a trajectory of
the system enters the algebraic curve defined by the Dar-
boux polynomials, it will never leave the curve afterwards.
By catching Darboux-type barrier certificates, the proposed
verification conditions provide an effective approach for ver-
ifying non-linear hybrid systems that may not be settled by
existing verification conditions.

Specifically, the Darboux-type barrier certificate genera-
tion is addressed in two phases. In the first phase, we define
a new barrier certificate, based on the concept of Darboux
polynomials from computer algebra. Darboux polynomials
indicate the invariant algebraic curves of continuous sys-
tems. Our method is based on adapting Darboux polynomi-
als to provide a new barrier certificate that guarantees safety
property of a semi-algebraic hybrid system. This key distin-
guishing feature of Darboux polynomials provides a new en-
coding to compute barrier certificates, thus guarantees that
our method can yield barrier certificates that SOS relaxation
is unable to produce (See Table 1). In the second phase, we
propose a novel computational approach by utilizing the fea-
ture in the problem of Darboux-type barrier certificate gen-
eration. Concretely, a sampling-based method is applied to
relax the problem of computing Darboux-type barrier certifi-
cates as a polynomial optimization problem with quadratic
equalities and linear inequalities, which can subsequently be
solved by applying a least-squares (LS) and quadratic pro-
gramming (QP) alternating projection method. The bench-
mark examples from the literature show the efficiency of our
algorithm.

The main contributions of this paper are summarized as
follows: 1. We define a new barrier certificate based on
adapting Darboux polynomials, which can be used to de-
scribe the inherent invariance property of the systems. 2. As
an alternative to quantifier elimination or methods based on
SOS relaxation, we suggest a new computational approach,
combined with the sampling-based relaxation method and
LS-QP alternating projection, to compute Darboux-type bar-
rier certificates efficiently. 3. We provide a detailed experi-
mental evaluation on a set of benchmarks, which shows the

efficiency and practicability of our method.
The rest of this paper is organized as follows. We in-

troduce some related notations about hybrid system and
Darboux polynomial in Section 2. We define a new type
of barrier certificate, based on Darboux polynomial, to ver-
ify the safety property of hybrid systems in Section 3. We
transfer the problem of generating Darboux-type barrier cer-
tificates to a polynomial optimization problem in Section 4,
and suggest a new computational method for solving this
optimization problem in Section 5. Experiments on some
benchmarks are shown to illustrate our method for com-
puting Darboux-type barrier certificates in Section 6 before
concluding.

1.1 Related work
The seminal works of using barrier certificates in safety

verification of hybrid systems were proposed by Prajna et
al. in [22, 23]. Following their line, H. Kong et al. [16,
15] proposed a barrier certificate defined over an exponential
condition for semi-algebraic hybrid systems. L. Dai et al. [6]
discussed how to relax the condition of barrier certificates
in a general way without losing their convexity. Kapinski et
al. [14, 13] presented a Lyapunov-based barrier certificate,
which is more conservative but tractable than that proposed
by Prajna. In [28], Sloth et al. proposed a new barrier
certificate for a special class of hybrid systems consisting
of many interconnected subsystems. Compared with the
existing barrier certificate which defines a region acting as
the over-approximation of the reachable set, our Darboux-
type barrier certificate characterizes an algebraic curve that
restricts the trajectories of the system from leaving it once
they enter it.

Darboux-type invariants have been introduced for safety
verification as well. M.Zaki [32, 33] suggested using Darboux-
type invariants in safety verification of continuous systems.
They divided the whole state space into several regions by
Darboux polynomials and then verified the safety proper-
ties in the regions one by one. For a polynomial continuous
system, Goubault et al. [9] used Darboux polynomials to
find non-polynomial positive invariants and Lyapunov func-
tions to verify reachability and stability properties. The
computation of Darboux-type invariants is independent of
verification properties, i.e., it does not consider the initial
and unsafe constraints [32], usually it does not ensure the
separation of the initial region from the unsafe region. As
a result, unlike Darboux-type barrier certificates, the exis-
tence of Darboux-type invariants solely can not prove safety
properties directly.

Computational methods helping to compute barrier cer-
tificates from conditions are another essential aspect worth
studying. Symbolic computation based methods [10, 21, 30,
26, 27, 18, 29, 20], such as quantifier elimination or Grönber
bases computation, have been applied to solve the quan-
tification problem which can prove the existence of barrier
certificates. However, due to the high computational com-
plexity, they suffer from the scalability problem.

From a computational point of view, relaxation based
methods provide much better efficiency at the cost of more
conservative results. Among them, sum-of-squares (SOS)
relaxation is the most popular one [23, 15, 6, 28, 31]. In-
stead of directly handling constraints with quantifiers, SOS
relaxation converts them to more conservative constraints
represented as either linear matrix inequalities (LMI) [15] or
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bilinear matrix inequalities (BMI) [23, 31]. In addition, to
make the computation tractable, the degrees of the polyno-
mial multipliers appearing in LMI or BMI must be bounded.
As a result, the solution set of the bounded LMI or BMI
might be contractive. K. Ghorbal et al. [8] studied how to
balance the generality of verification conditions and the per-
formance issues of computation. Besides, O. Bouissou et al.
[2] applied interval analysis to find the barrier certificates
for the dynamical systems whose initial and unsafe regions
are all of the box form.

Simulation-guided approaches were also developed. Kap-
inski et al. [14] defined a new tractable Lyapunov-based bar-
rier certificates. For the particular verification conditions,
they combined simulation traces generation with stochastic
global optimization to build the Lyapunov candidates, and
then used the dReal SMT solver to verify the correctness.
For a given set of Lipschitz-continuous dynamical systems,
Kapinski et al. [13] checked its forward invariance by veri-
fying it on a finite number of points selected by δ−sampling
from the set. Bobiti et al. [1] extended the result to discon-
tinuous dynamics and enabled the verification of forward in-
variance for hybrid systems. In this paper, we combine the
sampling-based relaxation method with least squares and
quadratic programming (LS-QP) alternating projection to
compute barrier certificates.

2. HYBRID SYSTEM
In this section, we briefly recall the definition of hybrid

systems. Besides, we introduce a particular kind of polyno-
mials for continuous systems, called Darboux polynomials.

A continuous dynamical system S is modeled by a finite
number of first-order ordinary differential equations

ẋ = f(x), (1)

where ẋ denotes the derivative of x with respect to the time
variable t, and f(x) is called vector field f(x) = 〈f1(x), · · · ,
fn(x)〉 defined on an open set ψ ⊆ Rn. We assume that
f satisfies the local Lipschitz condition, which ensures that
given x = x0, there exists a time T > 0 and a unique time
trajectory τ : [0, T ) 7→ Rn such that τ(t) = x0. And x(t) is
called a solution of (1) that starts at a certain initial state x0,
that is, x(0) = x0. Namely, x(t) is also called a trajectory
of (1) from x0.

To model hybrid systems, we use the notion of hybrid
automata [12, 27].

Definition 1. (Hybrid system) A hybrid system H : 〈V, L,
T , Θ,D, Ψ, `0〉 consists of the following components:

• V = {x1, ..., xn}, a set of real-valued system vari-
ables. A state is an interpretation of V , assigning to
each xi ∈ V a real value. An assertion is a first-order
formula over V . A state s satisfies an assertion ϕ,
written as s |= ϕ, if ϕ holds on the state s. We will
also write ϕ1 |= ϕ2 for two assertions ϕ1, ϕ2 to denote
that ϕ2 is true at least in all the states in which ϕ1 is
true;

• L, a finite set of locations;

• T , a set of (discrete) transitions. Each transition τ :
〈`, `′, gτ , ρτ 〉 ∈ T consists of a prelocation ` ∈ L, a
postlocation `′ ∈ L, the guard condition gτ over V ,

and an assertion ρτ over V ∪V ′ representing the next-
state relation, where V ′ = {x′1, ..., x′n} denotes the
next-state variables. Note that the transition τ can
take place only if gτ holds;

• Θ, an assertion specifying the initial condition;

• D, a map that associates each location ` ∈ L to a
differential rule (also known as a vector field) D(`),
an autonomous system ẋi = f`,i(V ) for each xi ∈ V ,
written briefly as ẋ = f`(x). The differential rule at
a location specifies how the system variables evolve in
that location;

• Ψ, a map that maps each location ` ∈ L to a loca-
tion condition (location invariant) Ψ(`), an assertion
over V ;

• `0 ∈ L, the initial location. We assume that the initial
condition satisfies the location invariant at the initial
location, that is, Θ |= Ψ(`0).

By a state of a hybrid system H : 〈V, L, T , Θ,D, Ψ, `0〉,
we mean the tuple (`,x) ∈ L×Rn where n is the number of
program variables in H. A trajectory [31] of H is an infinite
sequence of states

〈l0,x0〉, 〈l1,x1〉, · · · , 〈li,xi〉, 〈li+1,xi+1〉, · · ·
such that

• [Initiation] l0 = `0 and x0 |= Θ;

Furthermore, for each consecutive pair 〈li,xi〉, 〈li+1,
xi+1〉, one of the two consecution conditions holds:

• [Discrete Consecution] There exists a transition τ :
〈`, `′, gτ , ρτ 〉 such that li = `, li+1 = `′ and (xi,xi+1) |=
ρτ (xi,xi+1) if gτ holds, or

• [Continuous Consecution] li = li+1 = `, and there
exists a time interval δ > 0 and a smooth (continuous
and differentiable to all orders) function f : [0, δ] →
Rn s.t. f evolves from xi to xi+1 according to the
differential rule D(`) at location `, while satisfying the
location invariant Ψ(`). Formally,

– f(0) = xi, f(δ) = xi+1 and ∀t ∈ [0, δ], f(t) |= Ψ(`),

– ∀t ∈ [0, δ), (f(t), ḟ(t)) |= D(`).

A state 〈`,x〉 is called a reachable state of a hybrid system
H from the initial state set `0×Θ if it appears in some tra-
jectory of H. During a continuous flow, the discrete location
`i is maintained and the continuous state variables x evolve
according to the differential equations ẋ = f`i(x), with x
satisfying the location invariant Ψ(`i). At the state 〈`i,x〉,
if the guard condition g(`i, `j) is met, the system may un-
dergo a transition to location `j , and x will take the new
value x′, which is determined by the reset map ρ(`i, `j).

Given a hybrid system H with prespecified unsafe asser-
tion Xu, we say that the system H is safe if all trajectories
of H starting from the initial condition Θ at the initial lo-
cation `0, can not evolve to any state specified by Xu. The
safety verification problem can now be stated as follows.

Problem 1. Given a hybrid system H : 〈V, L, T , Θ,D, Ψ,
`0〉 and an unsafe assertion Xu, determine whether H is
safe, namely, any state specified by Xu is not reachable.
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For safety verification of hybrid systems, the notion of
barrier functions of hybrid systems plays an important role.
In this paper, we will introduce new barrier functions based
on Darboux polynomials for the safety verification of hybrid
systems.

Definition 2. (Lie derivative [11]) Let f(x) be a vector
field f : 〈f1(x), · · · , fn(x)〉, the Lie derivative of a smooth
function g(x) with respect to f(x) is given by

Lf (g(x)) = (∇g) · f(x) =

n∑
i=1

(
∂g

∂xi
· fi

)
.

Definition 3. (Darboux polynomial [5]) Let f(x) be a
vector field f : 〈f1(x), · · · , fn(x)〉, a polynomial p(x) ∈ R[x]
is called a Darboux polynomial (eigenpolynomial, or a poly-
nomial second integral) of f(x) if and only if

Lf (p(x)) = c(x) · p(x)

where c(x) ∈ R[x] is a polynomial called the cofactor. When
c(x) is a zero polynomial, p(x) is also known as a first inte-
gral, otherwise it is called a proper Darboux polynomial.

The following lemma is provided to discover an inherent
property of Darboux polynomials.

Lemma 1. Let S be a continuous dynamical system de-
fined by (1). Suppose p(x) is a Darboux polynomial with
respect to f(x), and x(t) is a trajectory of (1) starting from
x0,i.e.,x(0) = x0. If p(x0) ≥ 0, then p(x(t)) ≥ 0 for all
t > 0.

Proof. Let c(x) be the cofactor polynomial with respect
to p(x), i.e., Lf (p(x)) = c(x) · p(x). It follows that

d(p(x(t)))

p(x(t))
= c(x(t))dt.

Thus, the above ODE has the solution of the following form:

p(x(t)) = p(x0) · e
∫ t
0 c(x(s))ds.

We then derive that p(x(t)) ≥ 0 for all t > 0 if p(x0) ≥ 0.

3. DARBOUX POLYNOMIAL BASED BAR-
RIER CERTIFICATES FOR SAFETY VER-
IFICATION

At first, we consider the barrier certificate condition for
continuous systems in [23]. Given a continuous system S,
an initial set Θ and an unsafe set Xu, a barrier certificate is
a real-valued function p(x) of states satisfying that p(x) ≥ 0
for any point x in the reachable set R and p(x) < 0 for any
point in the unsafe set Xu(called general constraint here-
after). Therefore, if there exists such a function p(x), we
can assert that R ∩Xu = ∅, which has determined the sys-
tem can not reach a state in the unsafe set from the initial
set. In fact, the condition p(x) ≥ 0 can be seen as an induc-
tive invariant for the specified barrier certificate p(x). How-
ever, the exact reachable set is really computation hard, so
we can not determine whether p(x) ≥ 0 for the state from
the reachable set R. In the following, we present a new
barrier certificate which is a sufficient condition for general
constraint.

Consider a continuous system S, and let Θ, Xu be the
initial set and unsafe set respectively. Then the following
theorem gives a new barrier certificate.

Theorem 1. Given the continuous system S and the cor-
responding sets Θ and Xu, if there exists a barrier certificate,
i.e., a real-valued function p(x) which is a Darboux polyno-
mial, satisfying the following formulae:

(i) Θ |= p(x) ≥ 0,

(ii) Xu |= p(x) < 0,

then p(x) ≥ 0 is a barrier certificate of the continuous system
S, and the safety of S is guaranteed.

Proof. If there is a Darboux polynomial p(x) which sat-
isfies conditions (i) and (ii) above, then p(x0) ≥ 0 holds
for any point x0 chosen from the initial set Θ. Therefore,
based on lemma 1, p(x(t)) will keep non-negative for any
state along the trajectory from the point x0. And it can not
evolve to Xu because of Xu |= p(x) < 0 from the condition
(ii). So the safety of the system is obvious.

Next, we present the barrier certificate condition for hy-
brid systems. As stated in the following theorem, the spec-
ified Darboux polynomials p`(x) are also known as barrier
certificates.

Theorem 2. Let H : 〈V, L, T , Θ,D, Ψ, `0〉 be a hybrid
system, and Xu(`) be the unsafe assertion at location `. Sup-
pose for each location ` ∈ L, there exists a Darboux polyno-
mial p`(x), that satisfy the following conditions:

(i) Θ |= p`0(x) ≥ 0,

(ii) g(`, `′)∧ ρ(`, `′) |= p`′(x
′)− λ`,`′(x)p`(x) ≥ 0, where x′

is the next state specified by ρ(`, `′) in relation to the
previous state x, and λ`,`′(x) ∈ R[x] is a nonnegative
polynomial, for any transition 〈`, `′, g, ρ〉 going out of `,

(iii) Xu(`) |= p`(x) < 0,

then p`(x) is a barrier certificate of the hybrid system H at
location `, and the safety of H is guaranteed.

Proof. From condition (i), p`0(x) is nonnegative over
the initial states given by Θ. And Lemma 1 implies that
p`(x) cannot become negative during the continuous flow.
Moreover, condition (ii) guarantees that p`(x) keeps non-
negative during a discrete transition. Thus, p`(x) ≥ 0 is an
inductive invariant of H at location `. Then, condition (iii)
implies that all reachable states of H lie outside the unsafe
region specified by Xu(`), which concludes that the safety
of the system is guaranteed.

According to Theorem 2, λ`,`′ can be any nonnegative
constants or polynomials. To ease computation, one prefers
to assign them with simple fixed values. Remark that the
Darboux polynomials can also be used to describe induc-
tive condition of invariants, and then be applied to verify
the safety of hybrid systems. In fact, Darboux polynomial
p(x) = 0 can be regard as a “barrier” between possible sys-
tem trajectories and the given unsafe region. If choosing
an initial point x(t0) from a given set which goes along the
state function, it would not change the sign of p(x(t)) for
t ≥ t0 afterwards. In other words, it will not go across the
guard p(x) = 0. In the hybrid case, a barrier certificate is
constructed from a set of functions of continuous state in-
dexed by the system location. And each function needs to
satisfy the inequalities only within the invariant of the loca-
tion [23]. The main difference is that Darboux polynomial
can also be seen as the algebraic type barrier.
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4. TRANSFER TO POLYNOMIAL OPTIMIZA-
TION

In this section, we will discuss how to transfer the prob-
lem of generating Darboux-type barrier certificates for hy-
brid systems to polynomial optimization problem. For the
predetermined template of Darboux polynomials, we show
that the problem of finding Darboux polynomials is equiva-
lent to the polynomial optimization problem with universal
quantifiers, proceeded by eliminating the quantifiers as in
the sampling points selection approach.

Let us predetermine a template of Darboux-type barrier
certificates with the given degree d. We assume that p`(x) =∑
α

p`,αxα, where xα = xα1
1 · · ·xαn

n , α = (α1, . . . , αn) ∈ Zn
≥0

with
∑n

i=1 αi ≤ d, and p`,α ∈ R being parameters. We

can rewrite p`(x) = pT
` · T`(x), where T`(x) is the (column)

vector of all monomials in x1, . . . , xn with total degree ≤ d,
and p` ∈ Rν is the coefficient vector of p`(x) with ν =

(
n+d

n

)
.

Theorem 2 provides a sufficient condition to verify the
safety of hybrid system H, by generating the Darboux poly-
nomials which satisfy several constraints. For the given
λ`,`′ ∈ R+, the later problem can be translated into the
following problem





find p`(x) ∈ R[x], ∀` ∈ L
s.t. Lf (p`(x)) = c`(x) · p`(x),

Θ |= p`0 (x) ≥ 0,
g(`, `′) ∧ ρ(`, `′) |= p`′ (x

′)− λ`,`′ · p`(x
′) ≥ 0,

Xu(`) |= p`(x) < 0.

(2)

Observing the equality constraint in (2), we can get the
degree of the cofactor c`(x). Similar to the template of p`(x),
let the coefficients of c`(x) be parameters, and write c`(x)
as c`(x) = cT

` · T`(x), where c` and T`(x) are the coefficient
vector and the monomial vector of c`(x), respectively. We
can rewrite the equality constraint in (2) as a quadratic sys-
tem with the variables p`, c` by sorting the coefficients with
respect to the variables x, that is,

Lf (p`(x)) = c`(x) · p`(x) ⇐⇒ F`(p`, c`) = 0. (3)

In addition, the variables of the third constraint in (2) are
x,x′. From the guard condition g(`, `′) and the reset con-
dition ρ(`, `′), one can just use the variables x to represent
this constraint, that is,

Ωg(`, `′) |= p̃`,`′(x) ≥ 0, (4)

where Ωg(`, `′) = {x ∈ Rn|g(`, `′) ∧ ρ(`, `′)}.
Having (3) and (4), the problem (2) can be transformed

into the following form




find p` ∈ Rν , ∀` ∈ L
s.t. F`(p`, c`) = 0,

p`0 (x,p`0 ) ≥ 0, ∀x ∈ Θ,
p̃`,`′ (x,p`,p`′ ) ≥ 0, ∀x,x′ ∈ Ω`,`′ ,
p`(x,p`) < 0, ∀x ∈ Xu(`).

(5)

By investigating (5), the last third constraints are the ones
involving with universal quantifiers. The straightforward
idea is to apply quantifier elimination methods to deal with
(5). Moreover, there are several available computer algebra
tools (such as QEPCAD [3]) to solve the problem. Neverthe-
less, quantifier elimination methods based on the cylindrical
algebraic decomposition (CAD) are of high complexity. In
addition, the number of the variables p`, c` in the polyno-
mial optimization problem (5) is not small. Taking the two
limits into account, the typical quantifier elimination based

on cylindrical algebraic decomposition is impractical. Here-
after we propose a novel method to solve (5) by means of
eliminating universal quantifiers through checking sampling
points.

Since the last constraint in (5) is a strict inequality, we
can introduce a small positive real number ε ∈ R>0 to relax
this constraint to a non-strict one, i.e.,

−p`(x,p`)− ε ≥ 0 =⇒ p`(x,p`) < 0.

Let us first use p and c to denote the whole coefficient vec-
tors of the Darboux polynomials and the corresponding co-
factors, respectively, i.e.,

pT = [pT
`0 ,pT

`1 , . . .], cT = [cT
`0 , cT

`1 , . . .].

The dimension of p is denoted as ω hereafter.
For ease of presentation, (5) can be rewritten as the fol-

lowing unified form:
{

find p
s.t. F (p, c) = 0,

p̃i(x,p) ≥ 0, ∀x ∈ Ωi, i = 1, 2, . . . , k.
(6)

where F (p, c) = 0 is the quadratic system consisting of
all equations F`(p`, c) = 0 for each location ` ∈ L, and
p̃i(x,p) ≥ 0, ∀x ∈ Ωi, i = 1, . . . , k represent the second, the
third and the last relaxed ones in (5) for each location ` ∈ L.

To avoid eliminating universal quantifiers directly, here
we provide a relaxation technique to deal with (6), which is
based on selecting sampling points. For each Ωi, 1 ≤ i ≤ k,
let us first construct a rectangular mesh M in Ωi with a
mesh spacing r ∈ R+ (say r = 0.05) and mesh point set
χi = {x1,x2, · · · ,xmi}. Given a continuously differentiable
function φ(x) over the compact domain Ω, and let x ∈ Ω
and x + ∆x ∈ Ω be chosen randomly, then the mean value
theorem yields that

|φ(x + ∆x)− φ(x)| ≤ nη‖∆x‖∞, (7)

where η = supx∈Ω ‖∇φ(x)‖∞.
By observing (6), the feasible solution satisfying the con-

straints is not unique, it is easy to verify that if p is the feasi-
ble solution, then kp (∀k ∈ R>0) is also the feasible solution
of (6). What the safety verification problem concentrates
here is the existence of such p satisfying the constraints of
(6). Therefore, it is reasonable for us to provide a bound D
at first for searching the objective feasible solution p such
that ‖p‖∞ ≤ D, which ensures that the coefficients of the
polynomials p̃(x,p) are also bounded. In this case, from (7)
we may select a minimal δi ∈ R>0, such that the following
implication is satisfied:

p̃i(xj ,p)− δi ≥ 0, 1 ≤ j ≤ mi =⇒ p̃i(x,p) ≥ 0, ∀x ∈ Ωi.

We should illustrate how to determine δi here. In fact, when
given objective system H, each Ωi is determined. Then the
associate δi can be determined, after deciding the sampling
mesh spacing size r. For simplify, we may compute δi =
nηir ∈ R>0 where ηi = supx∈Ωi

‖∇p̃(x)i‖∞.
By using the above relaxation technique based on sam-

pling points verification, (6) can be relaxed as the following
polynomial optimization problem without quantifiers.





find p
s.t. F (p, c) = 0,

p̃i(xj ,p)− δi ≥ 0, 1 ≤ i ≤ k, 1 ≤ j ≤ mi,
−E · p + D · 1 ≥ 0,
E · p + D · 1 ≥ 0.

(8)
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where E ∈ Rω×ω is the identity matrix and 1 is a vector of
all ones with the same dimension as p.

According to the rule of the selection of δi, it is easy to
show that the feasible solution of (8) is also the feasible
one of (5). Moreover, (8) has a special structure, that is,
all equalities are quadratic and all inequalities are linear.
Therefore, (8) can yield the following matrix form:

{
find p
s.t. F (p, c) = 0,

A · p ≥ b,
(9)

where A is a constant matrix and its row dimension is
∑k

i=1 mi.
Summarizing the above considerations, generating the bar-

rier certificates for hybrid systems is translated into the
problem for computing a feasible solution of the polynomial
optimization problem (9).

Remark 1. The smaller the mesh size is, the closer each
δi gets to zero, i.e., lim

r→0
δi = 0. Moreover, it would’t lead

to a dramatic rise in the computational cost because only a
limited number of linear inequalities constraints are added
into the problem.

Remark 2. To improve the efficiency of the computation
in practice, actually, we choose a small δi = 0.1 for the fixed
coefficient bound D = 1 in the sequel of this paper. And a
verification would be required to show whether the obtained
p satisfies the associated inequalities over all points of the
set after any feasible solution is obtained.

5. LS-QP ALTERNATING PROJECTION
In Section 4, we have reduced the problem of safety verifi-

cation of hybrid systems to the problem of polynomial opti-
mization with quadratic equalities and linear inequalities. It
is known that the polynomial optimization problem can be
solved efficiently by algorithms such as Gauss-Newton iter-
ations, trust region methods, interior-point methods. From
(9), we can see that the number of the equations is large,
which is related to the number of the system variables and
the degree of the Darboux polynomial. This key feature de-
termines that the performance of the typical numerical op-
timization methods for attacking (9) really depends on the
chosen initial point, as illustrated by the following example.

Example 1. [4] Consider the the following nonlinear sys-
tem: {

ẋ = −x + 2x2y
ẏ = −y

We want to verify that all trajectories of the system starting
from the initial set

Θ = {x ∈ R2 : 1 ≤ x ≤ 2 ∧ −2 ≤ y ≤ −1}
will never enter the unsafe region

Xu = {x ∈ R2 : 1 ≤ x ≤ 2 ∧ 1 ≤ y ≤ 2}.
As explained in Section 4, we first set the degree d = 1,
the mesh size s = 0.5 for Θ and Xu, then set the template
for the Darboux polynomial p(x, y) and its cofactor c(x, y)
as p(x, y) = p1 x + p2 y + p3 and c(x, y) = c1 x + c2 y + c3,
respectively.

Let p = [p1, p2, p3]
T and c = [c1, c2, c3]

T , to verify the
safety of the above system, it suffices to obtain a feasible
solution of the following polynomial optimization problem:

{
find p
s.t. f1(p, c) = f2(p, c) = · · · = f11(p, c) = 0,

A · p ≥ b,
(10)

where A ∈ R18×3 and b = [0.1, 0.1, . . . , 0.1]T .
Let us use the Matlab fmincon numeric optimization solver

for which we choose the interior-point method option to solve
(10). We select the initial solution p(0) from the set [−5, 5]3

randomly, and then call fmincon to deal with (10). After

5000 trials by selecting initial solution p(0), fmincon can-
not yield any feasible solution for (10). The reason may lie
in that the initial solution we selected is not close enough to
the actual solution. Actually, if we choose the initial solution
p(0) = [0.2, 2, 0]T , which is very close to a feasible solution
[0, 2, 0], it turns out that fmincon can succeed to obtain the
feasible solution. However, if the initial solution is chosen
as p̃(0) = [0.5, 2, 0]T , which is a bit further, no feasible so-
lution can be found. This phenomenon also indicates the
selection of initial solutions may seriously impact the result
of the typical numeric optimization method for handling (9).
2

In the sequel, we present a novel method, called LS-QP
alternating projection hereafter, to deal with (9). In LS-QP
alternating projection method, the problem (9) is tackled
by an iterative scheme, which is carried on by computing
the optimal solutions of a least-squares (LS) problem and a
quadratic programming (QP) problem.

Investigating (9), F (p, c) involves only cross terms be-
tween parameters of p and c, which means there is no cross-
ing product like pipj and cicj in the equations. Taking
this special feature into account, an alternative projection
method can be applied by fixing p and c, respectively, which
leads to a quadratic programming problem and a least-squares
problem. Concretely speaking, if p is fixed by some numer-
ical vector p∗, (9) would become a least-squares problem:
minc ‖F (p∗, c)‖. Likewise, once c is fixed by c∗, then (9) is
translated into the following problem

{
find p,
s.t. F (p, c∗) = 0,

A · p ≥ b.
(11)

which leads to a typical quadratic programming problem.
As addressed above, the efficient strategy for solving (9)
is to reduce dimensionality. Roughly speaking, we keep one
variable vector fixed and then optimize for the other variable
vector. Notably, the fixed value can be obtained by solving
the above least-squares problem or quadratic programming
problem.

At the (k + 1)-th iteration, when p is fixed by p(k) =

[p
(k)
1 , · · · , p

(k)
s ]T , which is the optimal value obtained from

the k-th iteration, we need solve the optimal value for c, i.e.,

min
c
‖F (p(k), c)‖. (12)

In this situation, (12) can also be rewritten as the following
form with the updated variables

min ‖F (p(k), c(k) + ∆c)‖,
c(k+1) := c(k) + ∆c 6= 0.

(13)

For convenience, we denote the solution of (13) as

∆c = update1(F ).
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Let c be fixed by c(k+1), and then update p by solving the
following optimization problem

{
min ‖∆p‖

F ((p(k) + ∆p), c(k+1)) = 0,

A · (p(k) + ∆p) ≥ b,
(14)

where p(k+1) := p(k) + ∆p 6= 0. Similarly, the solution of
(14) is denoted by

∆p = update2(F ).

The geometric description of the LS-QP alternating projec-
tion method is depicted in Figure 1. Here C is the polyhe-
dron defined by A · p ≥ b, and P is the manifold defined
by F (p,b) = 0. Suppose p(k) and c(k) have been produced

after the k-th iteration. In this situation, for the fixed p(k),
c(k+1) is computed by projecting p(k) into C. Afterwards
p(k+1) is obtained by projecting c(k+1) into P. Detailed
procedures are summarized in Algorithm 1.

Algorithm 1 LS-QP alternating projection

Require: Sampling point set χ and functions F ;
Ensure: Darboux polynomial p(x);
1: Establish the optimization problem (11) from χ and F ;

2: Generate some initial vectors c(0) and p(0);
3: for k = 1, 2, · · · ,† do;
4: c(k) = c(k−1) + update1(F,p(k−1));

5: p(k) = p(k−1) + update2(F, c(k));
6: end for.
† See Remark 4 in this section for stopping criteria.

Figure 1: LS-QP alternating projection

Remark 3. At the beginning of the alternating iteration,
we can set c(0) by selecting a random vector, and then obtain
the associated vector p(0) by solving the least squares prob-
lem with the known vector c(0). Rather than choosing c0

randomly, we can select a random vector p(0) at first, and
then get the associated vector c(0) by solving the correspond-
ing quadratic programming problem with the given p(0).

Remark 4. There are several options for the stopping
criterion of the LS-QP alternating projection algorithm. The
most typical way for the stopping criterion is to use a max-
imum number of iterations to ensure the termination of the
algorithm. Therefore, Algorithm 1 will be terminated when
one of the following cases occurs:

• When ‖update1(F,p(k−1))‖ < σ and ‖update2(F, c(k))‖
< σ at k-th iteration for a given tolerance σ(like, σ =
10−5), Algorithm 1 will stop and return the current
result; otherwise it will go to the next iteration.

• Given a time limit N and take account of the number
of iterations, when the LS-QP alternating projection
algorithm has been running so many times which ex-
ceeds the time limit N , the algorithm stops.

6. EXPERIMENTS
Let us present some examples of safety verification for

nonlinear hybrid systems based on Darboux polynomials.

Figure 2: Hybrid system of Example 2

Example 2. Consider the the hybrid system depicted in
Figure 2, where

f1(x) =

[
x1 − x1x2

−x2 + x1x2

]
, f2(x) =

[
x1 + x2

1x2

x2 + x1x2

]
.

The system starts in location `1 with an initial state in

Θ = {(x1, x2) ∈ R2 : −2 ≤ x1, x2 ≤ −1}.
We will verify that all trajectories of the system can never
reach the states of

Xu(`2) = {(x1, x2) ∈ R2 : 0 ≤ x1 ≤ 1,−2 ≤ x2 ≤ −1}.
By applying our method, we can obtain two Darboux poly-
nomials at locations `1 and `2:

p`1(x) = 0.7332x1,

p`2(x) = 0.7332x1x2,

which satisfy all the conditions in Theorem 2. Then, the
safety property of this system is guaranteed. 2

Figure 3: Hybrid system of Example 3

Example 3. Consider the hybrid system depicted in Fig-
ure 3, where

f1(x) =

[−x1 + x1x2

−x2

]
, f2(x) =

[−x1 + 2x2
1x2

−x2

]
.

The system starts in location `1 with an initial state in

Θ = {(x1, x2) ∈ R2 : (x1 + 2)2 + (x2 − 2)2 ≤ 0.25}
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We will verify that all trajectories of the system can never
reach the states of

Xu(`2) = {(x1, x2) ∈ R2 : (x1 − 2)2 + (x2 − 2)2 ≤ 0.25}.
By applying our method, we can obtain two Darboux poly-
nomials at locations `1 and `2:

p`1(x) = 0.7332x2,

p`2(x) = −0.2711x1x2 + 0.2711,

which satisfy all the conditions in Theorem 2. Then the
safety property of the given system is guaranteed. 2

As stated in Theorem 2 in [15], the problem of barrier
certificate generation can be rewritten as that of computing
a set of polynomial functions {B`(x), ∀` ∈ L} such that the
following conditions hold:

B`0 (x) ≤ 0 ∀x ∈ Θ,

Ḃ`(x)− λ`B`(x) ≤ 0 ∀x ∈ Ψ(`),
γ`,`′B`(x)−B`′ (x

′) ≥ 0 ∀x ∈ g(`, `′)∀x′ ∈ ρ((`, `′),x),
B`(x) > 0 ∀x ∈ Xu(`),





(15)

for some real numbers λ`, and non-negative real numbers
γ`,`′ . According to Corollary 2 in [15], the SOS relaxation
can be applied to convert the above problem to a linear
matrix inequalities (LMI) problem, which is convex and can
be solved with great efficiency. And as shown in Theorem 5
in [23], the problem of barrier certificate generation can be
rewritten as that of computing a set of polynomial functions
{B`(x), ∀` ∈ L}, each of which satisfies

B`0 (x) ≤ 0 ∀x ∈ Θ,

Ḃ`(x) ≤ 0 ∀x ∈ Ψ(`) s.t. B`(x) = 0,
B`(x) ≤ 0 ∀x ∈ g(`, `′)∀x′ ∈ ρ((`, `′),x) s.t. B`′ (x

′) ≤ 0,
B`(x) > 0 ∀x ∈ Xu(`).





(16)

According to Algorithm 17 in [23], the above problem can
be transformed to a bilinear matrix inequalities (BMI) prob-
lem, which is non-convex and NP-hard. We compared our
Darboux-type barrier certificate based method with the ex-
isting barrier certificate based ones in [15, 23] over a set of
benchmarks gathered from the related works. Table 1 shows
the result. Here, the LMI problems yielded from (15) were
settled by the Matlab toolbox SOSTOOLS [24] while the
BMI problems yielded from (16) were solved by the Matlab
toolbox PENBMI [17].

Algorithm 1 has been implemented in Matlab, and the
performance is reported in Table 1. For each example, we
first utilize the mesh points of the rectangular meshes with
spacing r = 0.05 located in initial and unsafe regions re-
spectively, and then eliminate universal quantifiers in prob-
lem (5) by linear inequalities. In this manner, we apply
Algorithm 1 to obtain the Darboux-type barrier certificate
p(x). Noted that the experiments are performed on Intel(R)
Core(TM) at 3.40GHz with 4GB of memory under Windows.

In Table 1, n denotes the number of the system variables;
deg denotes the maximum degree of the polynomials in the
vector fields; LMI and BMI refer to the computational meth-
ods for solving problems (15) and (16) respectively; deg(B)
denotes the degree of the computed barrier certificates, and
T (s) represents the computation time in seconds; deg(p)
represents the degree of the Darboux polynomials obtained
via our LS-QP alternating projection algorithm; Fail means
that the method fails to find the barrier certificates with
degree ≤ 6.

Table 1: Algorithm Performance on Benchmarks

ID n deg
LMI BMI LS-QP

deg(B) T (s) deg(B) T (s) deg(p) T (s)
1 2 2 Fail - 2 0.8744 2 0.6508
2 3 2 Fail - Fail - 1 0.4854
3 3 2 1 0.3751 1 1.1039 1 0.5154
4 2 2 Fail - Fail - 1 0.3645
5 3 2 Fail - 2 5.0523 2 1.6337
6 2 2 Fail - Fail - 1 0.3155
7 2 2 2 0.2816 2 1.1407 1 0.3717
8 2 2 Fail - 2 1.9511 2 0.9237
9 2 3 4 0.4623 2 1.0011 Fail -
10 4 2 Fail - 2 10.8846 1 7.0506
11 6 2 2 27.2306 2 65.3519 1 14.0614

For the 11 examples, the SOS relaxation based on BMI
solving can yield barrier certificates for 8 of them while ours
can cover 10. Our verification condition can facilitate the
safety verification of systems embracing Darboux-type bar-
rier certificates. It also enhances the capability of barrier
certificate based approaches by enabling those systems that
are difficult to be verified using existing verification condi-
tions to be verifiable, like the systems in the example 2,4 and
6 in the experiment. At the same time, being a specific type
of barrier certificate, there are some systems that can be ver-
ified by classical conditions much more easily than by ours
as shown in the example 9. In addition, even for the systems
that can be solved by both of them, there is no theoretical
result predicting which method will produce lower-degree
barrier certificates. From the table, we can see that the
BMI conversion brings more expressiveness but at the cost of
lower computation efficiency. The problem of Darboux-type
barrier certificate generation is also non-convex. However,
the proposed LS-QP alternating projection algorithm can
solve it in much shorter time. Remarked that our obtained
Darboux polynomials, regarded as the barrier certificates, in
examples 10 and 11 are different from the results provided
in [7] and [19], respectively.

7. CONCLUSION
In this paper, we have presented a new Darboux-type bar-

rier certificate based method for verifying safety property of
nonlinear hybrid systems. Our method is based on adapting
Darboux polynomials to provide a new type of barrier certifi-
cate. This key distinguishing feature of Darboux polynomi-
als provides a new encoding to compute barrier certificates,
thus guarantees that our method can yield barrier certifi-
cates that SOS relaxation is unable to produce. Thanks to
the feature in the problem of barrier certificate generation, a
sampling-based method and a LS-QP alternating projection
method are proposed for computing Darboux-type barrier
certificates efficiently. Experiments on some benchmarks are
given to illustrate the efficiency of our algorithm.
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Appendix: Benchmark Examples
System 1 [25].

[
ẋ1

ẋ2

]
=

[−x1 + 2x2
1x2

−x2

]
,

• The local condition: {x ∈ R2 : −2 ≤ x1, x2 ≤ 2};
The initial set: {x ∈ R2 : −1/2 ≤ x1 ≤ 1/2, 1/2 ≤ x2 ≤
3/2};
The unsafe set: {x ∈ R2 : (x1− 3/2)2 +(x2− 3/2)2 ≤ 1/4}.

• The computed Darboux polynomial p(x) = −0.7195x1 ·x2+
0.7195.

System 2 [25].




ẋ1

ẋ2

ẋ3


 =




x1 − x1x3

x2 − 2x2x3

−x3 + x3x1 + x3x2


 ,

• The local condition: {x ∈ R3 : −2 ≤ x1, x2, x3 ≤ 2};
The initial set: {x ∈ R3 : (x1 − 1/2)2 + (x2 − 3/2)2 + (x3 −
3/2)2 ≤ 1/4};
The unsafe set: {x ∈ R3 : (x1 + 1/2)2 + (x2 + 1/2)2 + (x2 +
1/2)2 ≤ 1/4}.

• The computed Darboux polynomial p(x) = 0.7332x3.

System 3 [25].




ẋ1

ẋ2

ẋ3


 =




x1(1− x1 − x2 − x3)
x2(1− x1 − x2 − x3)
x3(1− x1 − x2 − x3)


 ,

• The local condition: {x ∈ R3 : −2 ≤ x1, x2, x3 ≤ 2};
The initial set: {x ∈ R3 : x2

1 +(x2 +1)2 +(x3 +1)2 ≤ 0.25};
The unsafe set: {x ∈ R3 : (x1−1)2 +(x2−1)2 +(x3−1)2 ≤
0.25}.

• The computed Darboux polynomial p(x) = −0.6166x1 −
0.9661x2 − 0.9661x3.

System 4 [9].

[
ẋ1

ẋ2

]
=

[
x2
1 + x1x2 + x1

x1x2 + x2
2 + x2

]
,

• The local condition: {x ∈ R2 : −2 ≤ x1, x2 ≤ 2};
The initial set: {x ∈ R2 : 0 ≤ x1, x2 ≤ 1};
The unsafe set: {x ∈ R2 : (x1 +1/2)2 +(x2 +1/2)2 ≤ 1/4}.

• The computed Darboux polynomial p(x) = 0.5689x1+0.5689x2.

System 5 [9].




ẋ1

ẋ2

ẋ3


 =




x2
1 + x1x2 − x1x3

2x1x2 + x2
2

x2x3 − 2x2
3


 ,

• The local condition: {x ∈ R3 : −2 ≤ x1, x2, x3 ≤ 2};
The initial set: {x ∈ R3 : (x1 − 3/2)2 + (x2 − 1/2)2 + (x2 −
3/2)2 ≤ 1/4};
The unsafe set: {x ∈ R3 : (x1− 1/2)2 + (x2− 3/2)2 + (x2−
3/2)2 ≤ 1/4}.

• The computed Darboux polynomial p(x) = 0.5024x2
1−0.0168x2x3.

System 6 [9].

[
ẋ1

ẋ2

]
=

[
x2
1 + 2x1x2 + 3x2

2
4x1x2 + 2x2

2

]
,

• The local condition: {x ∈ R2 : −2 ≤ x1, x2 ≤ 2};
The initial set: {x ∈ R2 : −1/2 ≤ x1 ≤ 1/2, 1/2 ≤ x2 ≤
3/2};

The unsafe set: {x ∈ R2 : (x1− 3/2)2 +(x2− 1/2)2 ≤ 1/4}.
• The computed Darboux polynomial p(x) = −0.2525x1 +

0.2525x2.

System 7 [9].

[
ẋ1

ẋ2

]
=

[
x1 − x1x2

−x2 + x1x2

]
,

• The local condition: {x ∈ R2 : −2 ≤ x1, x2 ≤ 2};
The initial set: {x ∈ R2 : −1 ≤ x1 ≤ 0, 1/2 ≤ x2 ≤ 3/2};
The unsafe set: {x ∈ R2 : 1/2 ≤ x1 ≤ 3/2, 0 ≤ x2 ≤ 1}.

• The computed Darboux polynomial p(x) = 0.7332x1.

System 8 [32].

[
ẋ1

ẋ2

]
=

[
x2 + 2x1x2

−x1 + 2x2
1 − x2

2

]
,

• The local condition: {x ∈ R2 : −2 ≤ x1, x2 ≤ 2};
The initial set: {x ∈ R2 : 0 ≤ x1 ≤ 1, 1 ≤ x2 ≤ 2};
The unsafe set: {x ∈ R2 : x1 + x2

2 ≤ 0}.
• The computed Darboux polynomial p(x) = −1 + 2x1 −

1.6x2
1 + 2.4x2

2.

System 9 [23].

[
ẋ1

ẋ2

]
=

[
x2

−x1 + 1
3
x3
1 − x2

]
,

• The local condition: {x ∈ R2 : −2 ≤ x1, x2 ≤ 2};
The initial set: {(x1, x2) ∈ R2 : (x1 − 1.5)2 + x2

2 ≤ 0.25};
The unsafe set: {x ∈ R2 : (x1 + 1)2 + (x2 + 1)2 ≤ 0.16}.

System 10 [The Raychaudhuri polynomial system [7]].




ẋ1

ẋ2

ẋ3

ẋ4


 =



− 1

2
x2
1 − 1

2
x2
2 − 1

8
x2
3 − 2x2x3 + 2x2

4 + 1
−x1x2 − 1
−x1x3

−x1x4


 ,

• The local condition: {x ∈ R4 : −2 ≤ x1, x2, x3, x4 ≤ 2};
The initial set: {x ∈ R4 : (x1−1)2 +(x2−1)2 +(x3−1)2 +

(x4 − 1)2 ≤ 1
4
};

The unsafe set: {x ∈ R4 : (x1 +1)2 +(x2 +1)2 +(x3 +1)2 +

(x4 + 1)2 ≤ 1
4
}.

• The computed Darboux polynomial p(x) = x4.

System 11 [Modified Einstein-Yang-Mills system [19]].




ẋ1

ẋ2

ẋ3

ẋ4

ẋ5

ẋ6




=




x1x3

x1x5

(x4 − x3)x3 − 2x2
5

−(x4 − x3)2 + s(−ax2
1 + x2

6)
sx2x6 + (x3 − x4)x5

2x2x5 − x3x6




,

where s = 1 and a = 1.

• The local condition: {x ∈ R6 : −2 ≤ x1, x2, x3, x4, x5,
x6 ≤ 2};
The initial set: {x ∈ R6 : 1 ≤ x1, x2, x3, x4, x5, x6 ≤ 2};
The unsafe set: {x ∈ R2 : −1 ≤ x1, x2, x3, x4, x5, x6 ≤
−0.5}.

• The computed Darboux polynomial p(x) = 0.7332x1.
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