

Software Engineering Group
Department of Computer Science
Nanjing University
http://seg.nju.edu.cn

Technical Report No. NJU-SEG-2016-IJ-004

2016-IJ-004

A Game-based Approach PCTL* Stochastic Model Checking

with Evidence

Yang Liu, Xuandong Li, Yan Ma

Journal of Computer Science and Technology 2016

Most of the papers available from this document appear in print, and the corresponding copyright is held by the

publisher. While the papers can be used for personal use, redistribution or reprinting for commercial purposes is

prohibited.

http://seg.nju.edu.cn/

Liu Y, Li XD, Ma Y. A game-based approach for PCTL* stochastic model checking with evidence. JOURNAL OF COM-

PUTER SCIENCE AND TECHNOLOGY 31(1): 198–216 Jan. 2016. DOI 10.1007/s11390-016-1621-y

A Game-Based Approach for PCTL* Stochastic Model Checking with

Evidence

Yang Liu 1,2, Member, CCF, ACM, Xuan-Dong Li 1, Fellow, CCF, and Yan Ma 3,∗

1State Key Laboratory for Novel Software Technology, Nanjing University, Nanjing 210046, China
2Department of Computer Science, School of Computing, National University of Singapore, Singapore 117417, Singapore
3College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics

Nanjing 210016, China

E-mail: yangliu@seg.nju.edu.cn; lxd@nju.edu.cn; mayan1616@163.com

Received July 10, 2014; revised June 19, 2015.

Abstract Stochastic model checking is a recent extension and generalization of the classical model checking, which

focuses on quantitatively checking the temporal property of a system model. PCTL* is one of the important quantitative

property specification languages, which is strictly more expressive than either PCTL (probabilistic computation tree logic)

or LTL (linear temporal logic) with probability bounds. At present, PCTL* stochastic model checking algorithm is very

complicated, and cannot provide any relevant explanation of why a formula does or does not hold in a given model. For

dealing with this problem, an intuitive and succinct approach for PCTL* stochastic model checking with evidence is put

forward in this paper, which includes: presenting the game semantics for PCTL* in release-PNF (release-positive normal

form), defining the PCTL* stochastic model checking game, using strategy solving in game to achieve the PCTL* stochastic

model checking, and refining winning strategy as the evidence to certify stochastic model checking result. The soundness

and the completeness of game-based PCTL* stochastic model checking are proved, and its complexity matches the known

lower and upper bounds. The game-based PCTL* stochastic model checking algorithm is implemented in a visual prototype

tool, and its feasibility is demonstrated by an illustrative example.

Keywords PCTL*, stochastic model checking, game semantics, strategy, evidence

1 Introduction

Model checking[1-3] is an automatic and complete

method for deciding whether the system model meets

the property specification, which converts checking sys-

tem into a decidable problem by means of restricting

the system model as a finite state model and specifica-

tion as the propositional temporal logic. Model check-

ing emphasizes on the absolute guarantee of correct-

ness. However, computer systems are becoming large

and complex, and some of them are accompanied with

the stochastic behavioral characteristics. The reasons

for stochastic behavior characteristics[4] exhibited in

systems can be classified as: 1) the system contains

randomness itself, such as using the probabilistic al-

gorithm or the randomized algorithm; 2) the running

environment of the system is complex, which results

in the occurrence of random failures, such as failing to

invoke some components in the system or the loss of

message; 3) for performance evaluation and analysis,

the random variable is factitiously employed to capture

performance index. It is named stochastic model check-

ing or probabilistic model checking[5-6] to quantitatively

analyze the complex system with stochastic behaviors

Regular Paper

The work was supported by the National Natural Science Foundation of China under Grant Nos. 61303022 and 61472179, the
China Postdoctoral Science Foundation under Grant No. 2013M531328, the Natural Science Foundation of Shandong Province of China
under Grant No. ZR2012FQ013, the Project of Shandong Province Higher Educational Science and Technology Program under Grant
No. J13LN10, and the Science and Technology Program of Taian of China under Grant No. 201330629. This work was partially
supported by Jiangsu Collaborative Innovation Center of Novel Software Technology and Industrialization of China.

∗Corresponding Author

©2016 Springer Science +Business Media, LLC & Science Press, China

For Research Only

Yang Liu et al.: A Game-Based Approach for PCTL* Stochastic Model Checking with Evidence 199

by model checking. In recent decade, stochastic model

checking has aroused widespread concern in formal veri-

fication community and made a great progress. Its rep-

resentative groups include Software Modeling and Veri-

fication Group at RWTHAachen University 1○, PRISM

Group at the University of Oxford 2○, Dependable Sys-

tems and Software group at Saarland University 3○,

Algebraic and Logic Foundations of Computer Science

group at TU Dresden 4○ and so on. Now, stochas-

tic model checking has been applied to the correct-

ness analysis of probabilistic program[7], system perfor-

mance analysis[8], communication protocols reliability

analysis[9], the quality optimization of service flow[10],

and even the systems biology[11].

Stochastic model checking is the extension and gene-

ralization of classical model checking. In the set-

ting of stochastic model checking, the models com-

monly used are DTMC (discrete time Markov chain),

MDP (Markov decision process), CTMC (continuous

time Markov chain) and so on; the quantitative pro-

perty specifications commonly used are PCTL (proba-

bilistic computation tree logic)[12], LTL (linear tempo-

ral logic)[13] with probability bounds, PCTL*[12], CSL

(continuous stochastic logic)[14-15] and so on. There-

into, PCTL* can be seen as the extension of PCTL and

LTL with probability bounds, and it is strictly more ex-

pressive than anyone of them. At present, the PCTL*

stochastic model checking is obtained by the appropri-

ate combination of recursive descent procedure (as for

PCTL stochastic model checking) and LTL with proba-

bility bounds stochastic model checking. As shown in

Fig.1, the main procedures of PCTL* stochastic model

checking are as follows: 1) like PCTL, bottom-up tra-

verse the parse tree of PCTL* formula; 2) for PCTL*

state formula P∼p(Ψ), translate Ψ into LTL formula Ψ′

by replacing each maximal state-subformula of Ψ with

a fresh atomic proposition; 3) transform Ψ′ to DRA

(deterministic Rabin automaton) by ω automaton; 4)

compute the product of stochastic system modelM and

DRA, and compute accepting BSCC (bottom strongly

connected component) of product by graph analysis; 5)

get the probability pBSCC to reach an accepting BSCC

by solving linear equation system; 6) decide whether M

satisfies P∼p(Ψ) by comparing pBSCC and ∼ p.

 PCTL* formula

LTL formula

ω automaton for

stochastic syst em model M

(DTMC , MDP or LNPPN)

deterministic Rabin automaton A

compute the product of M and DRA A

get the probability to reach an accepting BSCC

decide whether M satisfies

compute the accepting BSCCs of product

No (not sat isfied) Yes (satisfied)

PCTL* Formula PbP(Y)

Decide Whether M Satisfies PbP(Y)

LTL Formula Y

ω Automation for Y’

Deterministic ω Automaton

Deterministic Rabin Automaton A

Stochastic System Model M
(DTMC, MDP or LNPPN)

Compute the Product of M and DRA A

Compute the Accepting BSCCs of Product

Get the Probability to Reach an Accepting BSCC

Yes (Satisfied) No (Not Satisfied)

Fig.1. Traditional PCTL* stochastic model checking.

The above algorithm is based on Tarski’s denota-

tional semantics (truth as a predicate) at essence. The

deficiencies of the algorithm are: 1) the algorithm pro-

cess is complicated; 2) the returned result is “yes” or

“no”, without other further information for support-

ing result. Therefore, the result returned by traditional

PCTL* stochastic model checking algorithm is obscure

for the specifier.

In this paper, as shown in Fig.2, using nondeter-

ministic probabilistic Petri net (NPPN)[16] with label

as the stochastic system model, we put forward a com-

plete and rigorous PCTL* stochastic model checking

algorithm based on Hintikka’s operational semantics[17]

(truth as winning strategy in two-player game, i.e.,

game semantics), which can easily provide evidence

for verification or refutation on the premise of keeping

the same complexity with traditional PCTL* stochastic

model checking algorithm. The evidence can be used

for helping the specifier to understand why the pro-

perty is true or false in the model. To this end, the rest

of the paper is organized as follows. In next section,

we define the label-extended NPPN and the logical se-

mantics PCTL* about it. Section 3 presents the game

semantics for PCTL* in release-PNF (positive normal

1○http://moves.rwth-aachen.de/, Sept. 2015.
2○http://www.prismmodelchecker.org/, Sept. 2015.
3○http://depend.cs.uni-sb.de/index.php?id=156, Sept. 2015.
4○http://www.inf.tu-dresden.de/index.php?node id=1438&ln=en, Sept. 2015.

For Research Only

200 J. Comput. Sci. & Technol., Jan. 2016, Vol.31, No.1

formal). Based on this, Section 4 uses the strategy solv-

ing in game to implement the PCTL* stochastic model

checking algorithm, and Section 5 describes how to au-

tomatically construct the evidence for verification and

refutation in PCTL* stochastic model checking. In Sec-

tion 6, we illustrate the validity and feasibility of the

techniques from Section 3 to Section 5 by an illustrative

example in our prototype tool. We discuss the related

work in Section 7. Section 8 concludes the paper and

points out the future work in this direction.

PCTL* formula

stochastic system model M

(LNPPN)

game semantics

strategy solving and refining

Yes (satisfied) +

evidence for verification

No (not satisfied) +

evidence for refutation

PCTL* Formula PbP(Y)
Stochastic System Model M

(LNPPN)

Game Semantics

Strategy Solving and Refining

Yes (Satisfied) +
Evidence for Verification

No (Not Satisfied) +
Evidence for Refutation

Fig.2. Game-based PCTL* stochastic model checking.

2 Extending NPPN with Labeling Function

NPPN[16] is a high-level formal model for mod-

eling the nondeterministic and probabilistic behavior

characteristics of systems, which is a natural develop-

ment of the original Petri net by introducing probability

measurement theory under the guidance of general net

theory[18]. In this section, we extend the NPPN with

labeling function and define its logical semantics.

2.1 Definition and Measurement for

NPPN with Label

Definition 1 (NPPN with Label (LNPPN)).

The LNPPN can be defined as a 7-tuple M =

(S, T ;F, f ;C;AP,L), where: 1) T = (Transition, Prt),

Transition denotes the transition act, Prt ∈ [0, 1] de-

notes the success probability of the transition, and T is

the act transition (AT) with the probability equaling 1,

or the probabilistic act transition (AT, Prt) with an act

satisfying a certain probability distribution, or the pure

probability transition (PT) without any act; if Prt = 0,

it means that the transition is invalid; 2) S ∩ T = ∅,

S ∪ T 6= ∅, F ⊆ S × T ∪ T × S, which is the flow rela-

tion of net, and N = (S,AT, F) is the pure net, where

AT is the act transition with probability equaling 1; 3)

f = fT∪fS∪fS×T∪fT×S, fT : T → 2Transition×Prt, fS:

S → [0, 1], fT×S: T ×S → [0, 1], fS×T : S×T → [0, 1],

the value of fS×T is determined by the nondeterminism

of transitions, the value of fT×S can be obtained from

the probability value of fT (t), i.e., σPrt(fT (t)), and the

value of fS except initial place can be computed accord-

ing to the value of fS×T and fT×S; 4) ∀t ∈ T , ∃s ∈ S,

fT×S(t × s) = 1 − σPrt(fT (t)). fT×S(t × s) = 0, if

σPrt(fT (t)) = 1, which represents transition (t, s) and

place s are invalid; 5) C is the set of nondeterminism

classes, and each nondeterminism class is a set com-

prised of (s, ti); if {(s, t1), (s, t2), . . . , (s, tn)} ∈ C,

then
∑n

i=1 fS×T (s, ti) = 1; 6) AP is a set of atomic

propositions; 7) L: S → 2AP is the labeling function,

which can express the requirements of users, i.e., the

property.

M is thought to be finite if S and T are finite, and

the size of M is the number of places and transitions

plus the number of pairs (s, t) with fS×T > 0 and (t,

s) with fT×S > 0.

Definition 2 (Adversary (Scheduler, or Policy) for

LNPPN). An adversary for LNPPN is a function Adv :

S+ → T , such that an i > 0 for all s0s1s2...sn ∈ S+.

The path π = s0
t1−→ s1

t2−→ ... → si... is called an Adv-

path if ti = Adv(s0s1s2...si−1) for all i > 0.

Theorem 1. LNPPN model is measurable with

probability.

Proof. The measurement of LNPPN is related

to the nondeterminism. When the nondeterminism

is solved by adversary, the LNPPN M is just a

pure LPPN (probabilistic Petri net with label) M ′ =

(S, T ;F, f ;AP,L). The probability space over LPPN

M ′ can be defined as (Ω,
∑

Path(M ′), P rs), where Ω

is sample space,
∑

Path(M ′) is event set, and Prs is

probability measure. Ω = Paths(M ′), which is the set

of infinite paths with initial place.
∑

Path(M ′) is the

least σ-algebra on Paths(M ′) containing the cylinder

set Cylinder(π̂) for all finite paths π̂ starting with ini-

tial place, and Cylinder(π̂) = {π ∈ Paths(M ′)|π̂ ∈

pref(π)} where pref(π) denotes the set of prefix paths

of path π. Prs extends uniquely to a probability mea-

sure Prs :
∑

Path(M ′) → [0, 1], and the probability of

cylinder set is

Prs0(Cylinder(π̂))

=

{

1, if π̂ = s0,
P (s0, s1)× ...× P (sk−1, sk), if π̂ = s0s1...sk,

where s0 is the initial place and P (si, sj) =

fS×T (si, t) × fT×S(t, sj). Therefore, an LPPN M ′ is

measurable, and an LNPPN M is also measurable. �

For Research Only

Yang Liu et al.: A Game-Based Approach for PCTL* Stochastic Model Checking with Evidence 201

2.2 PCTL* Semantics for LNPPN

PCTL* is an extension of CTL*[1], which also can be

regarded as extending PCTL by dropping the require-

ment that any temporal operator has to be proceeded

by the state formula. In addition, it allows for Boolean

combinations of path formulae. The logic PCTL* can

capture quantitative branching property specification

about DTMC, MDP and LNPPN. PCTL* state formu-

lae over the atomic propositions set AP can be defined

as: Φ ::= true|a|Φ ∧ Φ|¬Φ|P∼p[Ψ], where a ∈ AP , Ψ

is a path formula, ∼ ∈ {<,6, >,>} and p ∈ [0, 1] is

the rational bound. The path formulae of PCTL* can

be defined as: Ψ ::= Φ|Ψ ∧ Ψ|¬Ψ|XΨ|ΨUΨ, where Φ

is the PCTL* state formula. Other Boolean operators

and temporal modalities can be derived from the above

PCTL* definition. The events specified by the PCTL*

path formulae are measurable[12].

Because an LNPPN model is measurable, the

PCTL* semantics about LNPPN model can be defined

as follows.

Definition 3 (PCTL* Semantics about LNPPN).

For an LNPPN model M, path π = s0
t1−→ s1

t2−→

s2...(abbr. π = s0s1s2..., if it is not related to t), place

si ∈ S, the semantics of PCTL* formulae can be de-

fined by structural induction:

1) a satisfaction relation � for place s and PCTL*

state formulae:

s � true, ∀s ∈ S,

s � a, iff a ∈ L(s),

s � ¬Φ, iff s 2 Φ,

s � Φ1 ∧ Φ2, iff s � Φ1 ∧ s � Φ2,

s � P∼p[Ψ], iff Prob(s,Ψ) ∼ p,

where Prob(s,Ψ) is the probability measure of path

set such that π � Ψ, i.e., Prob(s,Ψ) = Prs({π ∈

Path(s)|π � Ψ}), and Path(s) is the path set which

starts with place s;

2) a satisfaction relation � for path π in M and

PCTL* path formulae:

π � Φ, iff s0 � Φ,

π � ¬Ψ, iff π 2 Ψ,

π � Ψ0 ∧Ψ1, iff π � Ψ0 ∧ π � Ψ1,

π � XΨ, iff s1s2s3... � Ψ,

π � Ψ0UΨ1, iff there exits n > 0, such that
snsn+1sn+2... � Ψ1, smsm+1sm+2...
� Ψ0 for 0 6 m < n.

3 Game Semantics for PCTL* Stochastic

Model Checking

In this section, we describe how to use game seman-

tics to implement PCTL* stochastic model checking,

which is the theory foundation for evidence construct-

ing. Any PCTL* formula can be transformed into a

canonical form, and the so-called PNF (positive nor-

mal form) is characterized by the fact that negations

only occur adjacent to atomic propositions. For avoid-

ing the exponential blowup in transforming the PCTL*

formulae into PNF, we choose release-PNF as the PNF

for PCTL*.

3.1 Release-PNF for PCTL*

Definition 4 (Release-PNF for PCTL*). PCTL*

state formulae in release-PNF are formed according to

the following grammar: Φ ::= true|false|a|¬a|Φ∧Φ|Φ∨

Φ|P∼p[Ψ], where a ∈ AP , AP is the set of atomic

propositions, Ψ is the path formula, ∼∈ {<,6, >,>},

and p ∈ [0, 1] is the rational bound; PCTL* path formu-

lae in release-PNF are formed according to the following

grammar: Ψ ::= Φ|Ψ∧Ψ|Ψ∨Ψ|XΨ|ΨUΨ|ΨRΨ, where

Φ is the state formula, temporal modality R is dual to

the until operator U, formula Ψ0RΨ1 can be read as

“Ψ0 releases Ψ1”. Ψ0RΨ1 holds for a path if Ψ1 al-

ways holds, a requirement that is released as soon as

Ψ0 becomes valid.

PCTL* formula in release-PNF can rewrite any

PCTL* formula, which is facilitated by the following

theorem.

Theorem 2. For each PCTL* formula, there is an

equivalent PCTL* formula in release-PNF.

Proof. Let Sat(Φ) denote the set of states which

satisfy the formula Φ. PCTL* formula Φ and PCTL*

formula in release-PNF Φ′ are called equivalent, de-

noted as Φ ≡ Φ′, if Sat(Φ) = Sat(Φ′) for all LNPPN

M over the atomic proposition setAP. Moreover, the se-

mantics of ¬ is: for any place s in LNPPN M , s � ¬Φ if

and only if s 2 Φ. Therefore, any PCTL* formula can

be transformed into PCTL* formula in release-PNF by

the following equivalence laws in Fig.3. �

3.2 Game Definition for PCTL* Stochastic

Model Checking

Let M be an LNPPN model, and Φ be a

PCTL* formula in release-PNF. The stochastic model

checking problem is to decide whether M � Φ,

i.e., whether s0 � Φ, where s0 is the initial

For Research Only

202 J. Comput. Sci. & Technol., Jan. 2016, Vol.31, No.1

¬true ≡ false

¬¬Φ ≡ Φ

¬(Φ0 ∧ Φ1) ≡ ¬Φ0 ∨ ¬Φ1

¬¬Ψ ≡ Ψ

¬(Ψ0 ∧Ψ1) ≡ ¬Ψ0 ∨ ¬Ψ1

¬XΨ ≡ X¬Ψ

¬(Ψ0UΨ1) ≡ ¬Ψ0R¬Ψ1

¬P>p[Ψ] ≡ P6p[Ψ]

¬P>p[Ψ] ≡ P<p[Ψ]

Fig.3. Equivalence laws.

place 5○. The game for PCTL* stochastic model

checking can be defined as a two-person game

GΦ
M (player, board, rule), which can be abbreviated as

G(player, board, rule) if M and Φ are clear from the

context, where:

1) player represents the one who anticipates in

the game, which is composed of two players that are

named refuter and verifier respectively, and player

verifier tries to show model M satisfies Φ, whereas

player refuter tries to show model M does not satisfy

Φ;

2) board presents where the players play, which is

the Cartesian product of S × Sub(Φ)× 2Sub(Φ), where

S is the set of places, and Sub(Φ) is the set of sub-

formulae, which is defined in Fig.4;

3) rule represents how to play in the game, which

is the guidance for which player is going to play and

how to play. The play of game GΦ
M is a sequence of

configurations Con0 →player Con1 →player ... →player

Coni →player ... →player Conn, where Coni is the form

of (player × S × Sub(Φ) × Ω), Ω = 2Sub(Φ) which can

be seen as the insurance for a player to redo the play

that he/she did before. Without loss of generality, we

assume ∼ is >, and the initial player is verifier. The

rules are shown in Fig.5.

The game GΦ
M for PCTL* stochastic model check-

ing is played on board between refuter and verifier

according to rule. The play of game GΦ
M is deter-

ministic according to the above rules. Moreover, a

play either ends with rule 0/1, or iterates infinitely

with rule 9/10/13/14. The winning criteria for a play

are as follows. verifier wins the play if and only

if one of the following conditions holds: 1) the play

ends with rule 0; 2) the play ends with rule 1, and

the configuration is (player, s, true/P>p(true),Ω), or

(player, s, a/¬a/P>p(a/¬a),Ω) and a/¬a ∈ L(s); 3)

the play iterates infinitely with rule 10; 4) the rule 13

is used for the second time. refuter wins the play if

and only if one of the following conditions holds: 1)

the play ends with rule 0; 2) the play ends with rule 1,

and the configuration is (player, s, false/P>p(false),Ω),

or (player, s, a/¬a/P>p(a/¬a),Ω) and a/¬a /∈ L(s); 3)

the play executes infinitely with rule 9; 4) the rule 14

is used for the second time.

Theorem 3. For every play in the game

GΦ
M (player, board, rule), there is a determined winner.

Proof. The LNPPN model M is finite, and the

sub-formulae of Φ are also finite, thereby the configu-

rations Con of game GΦ
M are finite. Every play al-

ways reaches the configuration in which Φ is atomic

proposition, or the configuration in which Φ is the

form of P>p(Ψ0UΨ1)/P>p(Ψ0RΨ1) or the configura-

tion is visited for the second time. According to the

winning criteria, all of the above cases have the de-

termined winner. Therefore, for every play in the

game GΦ
M (player, board, rule), there is a determined

winner. �

Sub(Φ) = {Φ}, if Φ = true/false/a/¬a

Sub(Φ0 ∧ Φ1) = {Φ0 ∧ Φ1} ∪ Sub(Φ0) ∪ Sub(Φ1)

Sub(Φ0 ∨ Φ1) = {Φ0 ∨ Φ1} ∪ Sub(Φ0) ∪ Sub(Φ1)

Sub(P∼p(Ψ0 ∧Ψ1)) = {P∼p(Ψ0 ∧Ψ1)} ∪ Sub(Ψ0) ∪ Sub(Ψ1)

Sub(P∼p(Ψ0 ∨Ψ1)) = {P∼p(Ψ0 ∨Ψ1)} ∪ Sub(Ψ0) ∪ Sub(Ψ1)

Sub(P∼p(XΨ)) = {P∼p(XΨ)} ∪ Sub(Ψ)

Sub(P∼p(Ψ0UΨ1)) = {expansion(P∼p(Ψ0UΨ1)) ∪ Sub(Ψ0) ∪ Sub(Ψ1)}

Sub(P∼p(Ψ0RΨ1)) = {expansion(P∼p(Ψ0RΨ1)) ∪ Sub(Ψ0) ∪ Sub(Ψ1)}

expansion(Φ) =

{

{Φ,P∼p(Ψ1 ∨ (Ψ0 ∧XΦ)),P∼p(Ψ0 ∧XΦ),P∼p(XΦ)}, if Φ = P∼p(Ψ0UΨ1)

{Φ,P∼p(Ψ1 ∧ (Ψ0 ∨XΦ)),P∼p(Ψ0 ∨XΦ),P∼p(XΦ)}, if Φ = P∼p(Ψ0RΨ1)

Fig.4. Elements of Sub(Φ).

5○Assume that M has at most one single initial place, which will not lead to weakening its ability to model the stochastic system
behaviours.

For Research Only

Yang Liu et al.: A Game-Based Approach for PCTL* Stochastic Model Checking with Evidence 203

0) p = 0 : the play finishes and the player verifier wins

1) Coni = (player, s, true/false/a/¬a/P>p(true/false/a/¬a),Ω) : the play finishes

2) Coni = (verifier, s,Φ0 ∧ Φ1,Ω) : player refuter chooses Φj , j ∈ {0, 1}, and Coni+1 = (verifier, s,Φj , {Φ1−j} ∪ Ω)

3) Coni = (verifier, s,Φ0 ∨ Φ1,Ω) : player verifier chooses Φj , j ∈ {0, 1}, and Coni+1 = (verifier, s,Φj ,Ω)

4) Coni = (refuter, s,Φ0 ∧Φ1,Ω) : player refuter chooses Φj , j ∈ {0, 1}, and Coni+1 = (refuter, s,Φj ,Ω)

5) Coni = (refuter, s,Φ0 ∨Φ1,Ω) : player verifier chooses Φj , j ∈ {0, 1}, and Coni+1 = (refuter, s,Φj , {Φ1−j} ∪Ω)

6) Coni = (verifier, s,P>p(XΨ),Ω) : player verifier chooses some transitions t in the minimum nondeterministic

class by an adversary, and Coni+1 = (verifier, s′,P>ps′ (Ψ)),where s
t

−→ s′,
∑

P (s, s′)× ps′ > p, P (s, s′) is the

probability from place s to place s′ and ps′ is the probability of s′ satisfying Ψ

7) Coni = (verifier, s,P>p(Ψ1 ∧Ψ2),Ω) : player refuter chooses Ψj , j ∈ {0, 1}, and Coni+1 = (refuter, s,P>pj(Ψj)),

and p0 + p1− 1 < p

8) Coni = (verifier, s,P>p(Ψ0 ∨Ψ1),Ω) : player verifier chooses Ψj , and Coni+1 = (verifier, s,P>pj(Ψj)),

and p0 + p1 > p

9) Coni = (verifier, s,P>p(Ψ0UΨ1),Ω) : Coni+1 = (verifier, s,P>p(Ψ1 ∨ (Ψ0 ∧ X(Ψ0UΨ1))))

10) Coni = (verifier, s,P>p(Ψ0RΨ1),Ω) : Coni+1 = (verifier, s,P>p(Ψ1 ∧ (Ψ0 ∨ X(Ψ0RΨ1))))

11) Coni = (player, s,Φ, {P>p(Ψ)} ∪ Ω) : Coni+1 = (player, s,Φ,Ω)

12) Coni = (player, s,Φ, {true/false/a/¬a} ∪ Ω) : Coni+1 = (player, s,Φ,Ω)

13) Coni = (verifier, s,Φ0, {Φ1} ∪ Ω) : player refuter chooses a next configuration, and Coni+1 = (verifier, s,Φ1, {Φ0} ∪Ω)

14) Coni = (refuter, s,Φ0, {Φ1} ∪Ω) : player verifier chooses a next configuration, and Coni+1 = (refuter, s,Φ1, {Φ0} ∪ Ω)

Fig.5. Move rules of game.

3.3 Game Semantics

The PCTL*model checking gameGΦ
M (player, board,

rule) is composed of all the possible plays from initial

configuration (verifier, s,Φ,Ω), which is the form of

tree structure. The graph structure for game GΦ
M is

the graph presentation of game tree, in which nodes are

configurations, edges are possible moves according to

rule, and loops are plays of the form rule 9/10/13/14.

The winning strategy means that there is a set of moves

allowing the player to make every play into a configura-

tion which he/she wins. The game tree of the winner is

the refined game tree of game GΦ
M , which only consists

of the winning moves for the winner. The game graph

of the winner has the similar definition with the game

tree of the winner.

Theorem 4. For every game, there is a winning

strategy for one of the players.

Proof. We use the induction method to prove

the theorem. 1) When the PCTL* model check-

ing game GΦ
M is composed of a configuration Con0,

in which the formula Φ is one of the following

forms: true/false/a/¬a/P>p(true/false/a/¬a), one of

the players has a winning strategy based on winning

criteria. 2) Game GΦ
M is composed of a set of config-

urations Con0, Con1, ..., Coni, ..., Conn. Assuming

there is a winning strategy for one of the players at

the game with start configuration Coni, then Coni+1

also has a winning strategy because Coni may choose

Coni+1 to play on. If not, the other player will have a

winning strategy in the game with start configuration

Coni+1. Therefore, for every game, there is a winning

strategy for one of the players. �

Using winning strategy in gameGΦ
M , we can capture

the operational semantics for PCTL* stochastic model

checking which is stated in Theorem 5.

Theorem 5. Let M be an LNPPN model, s ∈ S,

Φ be a PCTL* formula in release-PNF. Then for ∀s :

s � Φ if and only if verifier has a winning strategy

for game GΦ
M with start configuration (player, s,Φ,Ω);

s � Φ if and only if refuter has a winning strategy for

game GΦ
M with start configuration (player, s,Φ,Ω). In

addition, it is independent of the initial player which is

verifier or refuter.

Proof. The “if” part is obvious. It is sufficient to

prove the “only if” part which can be implemented by

presenting the strategy of player verifier or refuter

for s � Φ or s 2 Φ. Moreover, the proof process of

“only if” part can be shown in structural induction on

Sub(Φ) and 2Sub(Φ) of PCTL* formula Φ, and all places

S of the LNPPN model M .

1) Φ = true/false/a/¬a/P>p(true/false/a/¬a): if

s � Φ, then P=0(Φ), and thus verifier wins game GΦ
M

right at Con0 according to winning criteria; if s 2 Φ,

then P=0(Φ), and thus refuter wins the gameGΦ
M right

at Con0 according to winning criteria.

For Research Only

204 J. Comput. Sci. & Technol., Jan. 2016, Vol.31, No.1

2) Φ = Φ0∧Φ1: if s � Φ0∧Φ1, according to the deno-

tational semantics, s � Φj for each j, where j ∈ {0, 1}.

Therefore, by the induction hypothesis, verifier has a

winning strategy for the game with start configuration

(player, s,Φ0,Ω) and (player, s,Φ1,Ω). Moreover, the

winning strategy of verifier which starts from configu-

ration (player, s,Φ,Ω) is composed of the union of the

winning strategy of verifier for the game with start

configuration (player, s,Φ0,Ω) or (player, s,Φ1,Ω); if

s 2 Φ0 ∧ Φ1, according to the denotational seman-

tics, s 2 Φj for any j, where j ∈ {0, 1}. There-

fore, by the induction hypothesis, refuter has a win-

ning strategy for the game with start configuration

(player, s,Φ0,Ω) or (player, s,Φ1,Ω). Moreover, the

winning strategy of refuter which starts from con-

figuration (player, s,Φ,Ω) is composed of the stra-

tegy choosing the next configuration (player, s,Φj,Ω)

and the winning strategy of refuter for configuration

(player, s,Φj,Ω).

3) Φ = Φ0 ∨ Φ1: if s � Φ0 ∨ Φ1, according to

the denotational semantics, s � Φj for any j, where

j ∈ {0, 1}. Therefore, by the induction hypothesis,

verifier has a winning strategy for the game with

start configuration (player, s,Φj,Ω). Moreover, the

winning strategy of verifier which starts from con-

figuration (player, s,Φ,Ω) is composed of the strat-

egy choosing the next configuration (player, s,Φj,Ω)

and the winning strategy of verifier for configuration

(player, s,Φj,Ω); if s 2 Φ0∨Φ1, according to the deno-

tational semantics, s 2 Φj for each j, where j ∈ {0, 1}.

Therefore, by the induction hypothesis, refuter has a

winning strategy for the game with start configuration

(player, s,Φ0,Ω) and (player, s,Φ1,Ω). Moreover, the

winning strategy of refuter which starts from configu-

ration (player, s,Φ,Ω) is composed of the union of the

winning strategy of refuter for the game with start

configuration (player, s,Φ0,Ω) or (player, s,Φ1,Ω).

4) Φ = P>p(XΨ): if s � P>p(XΨ), according to the

denotational semantics, Prs{π ∈ Path(s)|π � XΨ} >

p, i.e., there is one or more transitions t which s
t
−→ s′

and
∑

P (s, s′)× ps′ > p, where P (s, s′) is the proba-

bility from place s to place s′ and ps′ is the proba-

bility of s′ satisfying Ψ. Therefore, by the induction

hypothesis, verifier has a winning strategy for the

game with start configuration (player, s′,P>ps′(Ψ),Ω).

Moreover, the winning strategy of verifier which

starts from configuration (player, s,Φ,Ω) is com-

posed of the strategy choosing the next configura-

tion (player, s′,P>ps′(Ψ),Ω) and the winning strat-

egy for configuration (player, s′,P>ps′(Ψ),Ω); if s 2

P>p(XΨ), according to the denotational semantics,

Prs{π ∈ Path(s)|π 2 XΨ} > 1 − p, i.e., there

is one or more transitions t which s
t
−→ s′ and

∑

P (s, s′)× ps′ > 1− p, where P (s, s′) is the proba-

bility from place s to place s′ and ps′ is the prob-

ability of s′ satisfying ¬Ψ. Therefore, by the induc-

tion hypothesis, refuter has a winning strategy for the

game with start configuration (player, s′,P>ps′(Ψ),Ω).

Moreover, the winning strategy of refuter which

starts from configuration (player, s,Φ,Ω) is com-

posed of the strategy choosing the next configuration

(player, s′,P>ps′(Ψ),Ω) and the winning strategy for

configuration (player, s′,P>ps′(Ψ),Ω).

5) Φ = P>p(Ψ0∧Ψ1): if s � P>p(Ψ0∧Ψ1), according

to the denotational semantics, Prs{π ∈ Path(s)|π �

Ψ0∧Ψ1} > p, i.e., Prs{π ∈ Path(s)|π � Ψ0∧π � Ψ1} >

p. Therefore, by the induction hypothesis, verifier

has a winning strategy for the game with start con-

figuration (player, s,Ψ0 ∧ Ψ1,Ω). Moreover, the win-

ning strategy of verifier which starts from configura-

tion (player, s,Φ,Ω) is composed of the strategy choos-

ing the next configuration (player, s,Ψ0 ∧ Ψ1,Ω) and

the winning strategy for configuration (player, s,Ψ0 ∧

Ψ1,Ω); if s 2 P>p(Ψ0 ∧ Ψ1), according to the denota-

tional semantics, Prs{π ∈ Path(s)|π 2 Ψ0 ∧ Ψ1} >

1 − p, i.e., Prs{π ∈ Path(s)|π 2 Ψj} > 1 − p for

any j, where j ∈ {0, 1}, or Prs{π ∈ Path(s)|π 2

Ψ0} > p0 and Prs{π ∈ Path(s)|π 2 Ψ1} > p1

and p0 + p1 > 1 − p. Therefore, by the induc-

tion hypothesis, refuter has a winning strategy for

the game with start configuration (player, s,Ψj,Ω) or

(player, s,Ψ0,Ω) and (player, s,Ψ1,Ω). Moreover, the

winning strategy of refuter which starts from configu-

ration (player, s,Φ,Ω) is composed of the union of the

winning strategy of refuter for the game with start

configuration (player, s,Ψj,Ω) or (player, s,Ψ0,Ω) and

(player, s,Ψ1,Ω).

6) Φ = P>p(Ψ0∨Ψ1): if s � P>p(Ψ0∨Ψ1), according

to the denotational semantics, Prs{π ∈ Path(s)|π �

Ψ0 ∨ Ψ1} > p, i.e., s � P>p(Ψj) for any j, where

j ∈ {0, 1}, or s � P>p0(Ψ0) and s � P>p1(Ψ1)

where p0 + p1 > p. Therefore, by the induction

hypothesis, verifier has a winning strategy for the

game with start configuration (player, s,P>p(Ψj),Ω) or

(player, s,P>p0(Ψ0),Ω) and (player, s,P>p1(Ψ1),Ω).

Moreover, the winning strategy of verifier which

starts from configuration (player, s,Φ,Ω) is com-

posed of the strategy choosing the next configura-

tion (player, s,P>p(Ψj),Ω) or (player, s,P>p0(Ψ0),Ω)

and (player, s,P>p1(Ψ1),Ω) and the winning strat-

For Research Only

Yang Liu et al.: A Game-Based Approach for PCTL* Stochastic Model Checking with Evidence 205

egy for configuration (player, s,P>p(Ψj),Ω) or

(player, s,P>p0(Ψ0),Ω) and (player, s,P>p1(Ψ1),Ω);

if s 2 P>p(Ψ0 ∨ Ψ1), according to the denotational

semantics, Prs{π ∈ Path(s)|π 2 Ψ0 ∨ Ψ1} > 1 − p,

i.e., Prs{π ∈ Path(s)|π 2 Ψ0 ∨ π 2 Ψ1} > 1 − p.

Therefore, by the induction hypothesis, refuter has

a winning strategy for the game with start configu-

ration (player, s,Ψ0 ∨ Ψ1,Ω). Moreover, the winning

strategy of refuter which starts from configuration

(player, s,Φ,Ω) is composed of the winning strategy

choosing the next configuration (player, s,Ψ0 ∨ Ψ1,Ω)

and the winning strategy of refuter for the game with

start configuration (player, s,Ψ0 ∨Ψ1,Ω).

7) Φ = P>p(Ψ0UΨ1): if s � P>p(Ψ0UΨ1), ac-

cording to the denotational semantics, Prs{π ∈

Path(s)|π � Ψ0UΨ1} > p, i.e., s � P>p(Ψ1), or

s � P>p(Ψ1 ∧XP>ps′(Ψ0UΨ1)). Thus by the induction

hypothesis, verifier has a winning strategy for the

game with start configuration (player, s,P>p(Ψ1),Ω)

or (player, s,P>p(Ψ1 ∧ XP>ps′(Ψ0UΨ1)),Ω). More-

over, the winning strategy of verifier which starts

from configuration (player, s,Φ,Ω) is composed of

the winning strategy choosing the next configura-

tion (player, s,P>p(Ψ1),Ω) or (player, s,P>p(Ψ0 ∧

XP>ps′(Ψ0UΨ1)),Ω) and the winning strategy

of verifier for the game with start configura-

tion (player, s,P>p(Ψ1),Ω) or (player, s,P>p(Ψ1 ∧

XP>ps′(Ψ0UΨ1)),Ω); if s 2 P>p(Ψ0UΨ1), according

to the denotational semantics, Prs{π ∈ Path(s)|π 2

Ψ0UΨ1} > 1 − p, i.e., Prs{π ∈ Path(s)|π 2 Ψ1 ∧ π 2

P>p(Ψ0 ∧ XP>ps′(Ψ0UΨ1))} > 1 − p. Therefore,

by the induction hypothesis, refuter has a win-

ning strategy for the game with start configuration

(player, s,Ψ1 ∨ (Ψ0 ∧ XP>ps′(Ψ0UΨ1)),Ω). More-

over, the winning strategy of refuter which starts

from configuration (player, s,Φ,Ω) is composed of

the winning strategy choosing the next configuration

(player, s,Ψ1∨(Ψ0∧XP>ps′(Ψ0UΨ1)),Ω) and the win-

ning strategy of refuter for the game with start con-

figuration (player, s,Ψ1 ∨ (Ψ0 ∧ XP>ps′(Ψ0UΨ1)),Ω).

8) Φ = P>p(Ψ0RΨ1): if s � P>p(Ψ0RΨ1), ac-

cording to the denotational semantics, Prs{π ∈

Path(s)|π � Ψ0RΨ1} > p, i.e., s � P>p(Ψ1 ∧

(Ψ0 ∨ XP>ps′(Ψ0RΨ1))). Thus by the induction

hypothesis, verifier has a winning strategy for the

game with start configuration (player, s,P>p(Ψ1),Ω)

and (player, s,P>p(Ψ0 ∨ XP>ps′(Ψ0RΨ1)),Ω). More-

over, the winning strategy of verifier which starts

from configuration (player, s,Φ,Ω) is composed of

the winning strategy choosing the next configura-

tion (player, s,P>p(Ψ1),Ω) and (player, s,P>p(Ψ0 ∨

XP>ps′(Ψ0RΨ1)),Ω), and the winning strategy

of verifier for the game with start configura-

tion (player, s,P>p(Ψ1),Ω) and (player, s,P>p(Ψ0 ∨

XP>ps′(Ψ0RΨ1)),Ω); if s 2 P>p(Ψ0RΨ1), according

to the denotational semantics, Prs{π ∈ Path(s)|π 2

Ψ0RΨ1} > 1 − p, i.e., Prs{π ∈ Path(s)|π 2 Ψ1 ∨ π 2

| 6= P>p(Ψ0 ∨ XP>ps′(Ψ0RΨ1))} > 1 − p. There-

fore, by the induction hypothesis, refuter has a

winning strategy for the game with start configu-

ration (player, s,P>p(Ψ1),Ω) or (player, s,P>p(Ψ0 ∨

XP>ps′(Ψ0RΨ1)),Ω). Moreover, the winning strat-

egy of refuter which starts from configuration

(player, s,Φ,Ω) is composed of the winning strategy

choosing the next configuration (player, s,P>p(Ψ1),Ω)

or (player, s,P>p(Ψ0 ∨ XP>ps′(Ψ0RΨ1)),Ω) and

the winning strategy of refuter for the game

with start configuration (player, s,P>p(Ψ1),Ω) or

(player, s,P>p(Ψ0 ∨ XP>ps′(Ψ0RΨ1)),Ω). �

4 Strategy Solving in PCTL* Stochastic Model

Checking Game

The game process for PCTL* stochastic model

checking can be presented by the game graph Gg(N ,

E, w). Node set N is the set of configurations in the

game, N ⊆ (player×S×Sub(Φ)×Ω); edge set E is the

set of possible move in the game, E ⊆ N ×N ; w is the

probability value, and w = P (s, s′). The game graph

Gg(N , E, w) can be constructed from initial configura-

tion as the initial node in a BFS (breadth first search)

or DFS (depth first search) manner, and it owns the

characteristics stated in Theorem 6.

Theorem 6. The game graph for game GΦ
M

can be partitioned into MSCCs (maximal strongly con-

nected components). Moreover, every play never leaves

MSCCm into MSCCn with m < n.

Proof. The algorithm for finding MSCCs with the

order is basically the same with standard algorithm for

finding a topological order on the set of connected com-

ponents of a directed graph in the DFS method. Let

Con0 →player Con1 →player ... →player Coni →player

... Conn be a game process with Con0 = (player×S×

Sub(Φ) × Ω), then all the intermediate configurations

are all of the form (player × S × Sub(Φ) × Ω). Let

m = 1, then the configurations are generated by rule 1,

and the other MSCCs are labeled asm++ one by one in

the bottom-up manner. Moreover, the other configura-

tions from Coni and all successor configurations Conn

which are not used in rule 1 and have a move return

For Research Only

206 J. Comput. Sci. & Technol., Jan. 2016, Vol.31, No.1

to Coni are labeled as m. There is no edge from an

MSCC with a lower index to one with a higher index,

because the generation of MSCCs is the application of

game rules which strictly increase the path quantifiers’

number in the configuration.

Based on Theorem 6, we can alter the coloring

algorithm[19] to color each node in the MSCCs of game

graph, which depends on whether verifier or refuter

has a winning strategy for the game with the node as

the initial configuration. That is to say, if the node is

colored in white/dark, then verifier/refuter wins the

game, and the witness is shown by all the nodes which

are colored in white/dark. Therefore, the winning stra-

tegy solving algorithm is how to color the game graph.

The coloring algorithm colors MSCCs by their order.

Let MSCCi be the smallest MSCC at present, i.e., the

MSCCm with m < i have all been colored before, and

the coloring process of a node in MSCCi is as follows.

1) The node at which Φ is the form of

true/false/a/¬a/P>p(true/false/a/¬a) is colored in

white, if verifier wins in the node, and dark other-

wise.

2) The node at which Φ is the form of Φ0 ∧ Φ1 is

colored in white, if all its sons at which Φ is the form

of Φj are colored in white, and dark if it has at least

one son colored in dark.

3) The node at which Φ is the form of Φ0 ∨ Φ1 is

colored in white if at least one of its sons at which Φ

is the form of Φj is colored in white, and dark if all its

sons are colored in dark.

4) The node at which Φ is the form of P>p(XΨ) is

colored in white, if the sum of P (s, s′) × ps′ is equal

to or greater than p, where P (s, s′) is the probability

of moving from the place at the node to its son that is

colored in white and satisfies Ψ at the probability ps′,

and dark if the sum of P (s, s′) × ps′ is greater than

1− p, where P (s, s′) is the probability of moving from

the place at the node to its son which does not satisfy

Ψ at the probability ps′ and is colored in dark.

5) The node at which Φ is the form of P>p(Ψ0∧Ψ1)

is colored in white, if the probability of moving from

the place at the node to its sons at which Φ is true for

the form of Ψ0 ∧Ψ1, is equal to or greater than p. It is

colored in dark, if the probability of moving from the

place at the node to its sons at which Φ is true for the

form of Ψ0 ∧Ψ1, is greater than 1− p.

6) The node at which Φ is the form of P>p(Ψ0∨Ψ1)

is colored in white, if the probability of moving from

the place at the node to its sons at which Φ is true for

the form of Ψ0 ∨Ψ1, is equal to or greater than p. It is

colored in dark, if the probability of moving from place

at the node to its sons at which Φ is true for the form

of Ψ0 ∨Ψ1, is greater than 1− p.

7) The node which is the witness of the form

P>p(Ψ0UΨ1) is colored in dark, and the node which

is the witness of the form P>p(Ψ0RΨ1) is colored in

white. �

Strategy solving algorithm for PCTL* stochastic

model checking game combines finding MSCCs with or-

der algorithm and coloring algorithm. The complexity

of strategy solving algorithm is shown in Theorem 7.

Theorem 7. Strategy solving algorithm for PCTL*

stochastic model checking game is in PSPACE.

Proof. Let |Φ| be the length of Φ, and |M | the num-

ber of states in LNPPN model M . Because the PCTL*

formula Φ contains |Φ|/2 irredundant path quantifiers,

the game graph can contain |M | × |Φ|/2 MSCCs ac-

cording to Theorem 6. The coloring algorithm may be

used for |M | × |Φ|/2 times, but the space it occupies

can be reused. Moreover, the coloring algorithm is re-

cursive, thus it has to store the constant value of the

number of MSCCs, the polynomial size of the number

of nodes in each MSCC, and two configurations of lin-

ear size of Φ. Thus, according to Savitch’s theorem[20],

the strategy solving algorithm can be transformed into

a deterministic one only with a quadratic trade-off in

the polynomial space complexity only. �

5 Evidence Constructing for PCTL* Stochas-

tic Model Checking Results

At present, the mainstream tools of stochastic

model checking, such as PRISM[21], just return the an-

swer “yes” or “no”, which can be viewed as the de-

cision result without any further explanation informa-

tion. For understanding the stochastic model checking

results better, we argue that it will be appreciative to

show why the model satisfies (or does not satisfy) the

property, i.e., the evidence for verification or refutation.

In this section, we present the evidence constructing al-

gorithm for stochastic model checking results.

Intuitively speaking, in stochastic model checking,

an evidence for verification is a part of the stochastic

system model responsible for the quantitative temporal

property being satisfied. Dually, when the stochastic

system model does not satisfy a quantitative temporal

property, an evidence for refutation is provided as a

portion of the stochastic system model responsible for

the quantitative temporal property being violated.

Definition 5 (Evidence in General Form). If

P6p(Ψ) or P<p(Ψ) is a failed formula in stochastic

For Research Only

Yang Liu et al.: A Game-Based Approach for PCTL* Stochastic Model Checking with Evidence 207

system model M, then Ev is an evidence for refuta-

tion for P6p(Ψ) or P6p(Ψ) in M if and only if Ev

is a
∑

Path(M ′) with the biggest adversary such that

Ev� P>p(Ψ) or Ev� P>p(Ψ). If P>p(Ψ) or P>p(Ψ)

is a successful formula in stochastic system model M,

then Ev is an evidence for verification for P>p(Ψ) or

P>p(Ψ) in M if and only if Ev is a
∑

Path(M ′) with

the smallest adversary such that Ev � P>p(Ψ) or Ev

� P>p(Ψ).

As the evidence for refutation, if a formula Φ is the

form of P>p(Ψ) or P>p(Ψ), Φ can be translated into the

form P6p(Ψ) or P<p(Ψ) equivalently. As the evidence

for verification, if a formula Φ is the form of P6p(Ψ)

or P<p(Ψ), Φ can be translated in the form P>p(Ψ)

or P>p(Ψ) equivalently. Actually, the corresponding

evidence for verification or refutation can also be de-

fined for them, but it makes no sense because even the

empty set trivially fulfills Prob(
∑

Path(M ′)) < p (or

Prob(
∑

Path(M ′)) 6 p).

Informally, as an evidence for verification or refuta-

tion, it is expected to fulfill the following conditions: 1)

it verifies or falsifies the property formula; 2) it holds

enough information for explaining why the stochastic

system model satisfies (or does not satisfy) the pro-

perty formula; 3) it is the minimality which means it

is precise without redundancies, i.e., every place and

every transition are needed to maintain 1) and 2).

Generally speaking, the sub-model of a stochastic

system model and its unwinding can be the evidence

for verification or refutation, but the information it

holds is implicit. For PCTL*, having a sub-model as

an evidence for verification or refutation is probably

not what we want. We need it to be annotated with

further explanatory information. For showing the in-

formation explicitly, we take full advantage of the game

graph constructed in Section 4 and use the sub-graph of

corresponding game graph to present the evidence for

verification or refutation of PCTL* property formula.

Moreover, this can define the evidence for verification

or refutation unifiedly. In the sub-graph, each node is

marked by the place and the sub-formula, the color of

a node means whether it satisfies the sub-formula, and

the value on the outgoing edge represents the probabil-

ity between the connected nodes. Therefore, we define

an evidence for verification or refutation to be a sub-

graph of the corresponding game graph, rather than a

sub-model.

Definition 6 (Evidence in Unified Form). Let Gg

be a game graph constructed for an LNPPN model M

and a PCTL* formula Φ in release-PNF, and Con0 be

the initial node of Gg. The sub-graph Ev of game graph

Gg from Con0 is an evidence for verification or refu-

tation of Φ, if it meets the following conditions: 1) for

each node Coni in Ev, its color is the same with that

of Con0; 2) sub-graph Ev is independent of Gg; 3) sub-

graph Ev is minimal with regard to 1) and 2). More-

over, if the color of Con0 is white, the sub-graph Ev is

the evidence for verification of Φ; if the color of Con0

is dark, the sub-graph Ev is the evidence for refutation

of Φ.

Condition 1 requires color consistency with the ini-

tial node, because the color of initial node decides

whether the model satisfies the property, i.e., sub-graph

Ev is the evidence for verification or refutation of Φ. In

condition 2, the independence means that the color of a

node in sub-graph does not have any relationship with

the color of other nodes in the game graph. Thus, con-

dition 2 guarantees the sub-graph Ev holds sufficient

information for explaining the reason why initial node

is colored in white or dark, i.e., why the property for-

mula Φ is verified or refuted by the stochastic system

model M . Condition 3 claims there is not a strict sub-

graph of Ev satisfying the conditions 1 and 2, i.e., the

nodes in the sub-graph Ev are necessary.

The evidence for verification or refutation is in-

deed the refinement of winning strategy of verifier or

refuter, which is sufficient to win game GΦ
M . The algo-

rithm of constructing evidence for verification or refuta-

tion is shown in Appendix, and the soundness is stated

in Theorem 8 and Theorem 9.

Theorem 8. The constructed evidence Ev for veri-

fication is in accordance with Definition 6.

Proof. It is obviously correct that the constructed

evidence Ev for verification meets condition 1 of Defi-

nition 6, which is shown by the coloring algorithm and

the induction on the construction of Ev.

The constructed evidence Ev for verification meets

condition 2) of Definition 6, i.e., sub-graph Ev is inde-

pendent of the game graph Gg, which can be proved

respectively according to the following cases.

1) Coni in Ev is colored in white by case 1 of the

coloring algorithm. It is colored in white only depend-

ing on itself, which has nothing to do with others.

2) Coni in Ev is colored in white by case 2 of the

coloring algorithm. Supposing some other nodes in the

game graph Gg can give rise to coloring Coni in dark,

there is at least one son Conj of Coni being colored

in dark. However, in the light of the evidence Ev con-

struction process, all sons of Coni, certainly including

Conj , are in Ev and colored in white. Therefore, this

For Research Only

208 J. Comput. Sci. & Technol., Jan. 2016, Vol.31, No.1

results in contradiction.

3) Coni in Ev is colored in white by case 3 of the

coloring algorithm. Supposing some other nodes in the

game graph Gg can give rise to coloring Coni in dark,

all sons of Coni are colored in dark. However, in the

light of the evidence Ev construction process, at least

there is one son of Coni being colored in white. There-

fore, this results in contradiction.

4) Coni in Ev is colored in white by case 4 of the

coloring algorithm. Supposing some other nodes in

the game graph Gg can give rise to coloring Coni in

dark, there are some sons of Coni being colored in

dark and
∑

P (s, sj)× psj > 1− p. However, in the

light of the evidence Ev construction process, there

are some sons of Coni being colored in white and
∑

P (s, sj)× psj > p. Therefore, this results in contra-

diction.

5) Coni in Ev is colored in white by case 5 of the

coloring algorithm. Supposing some other nodes in the

game graph Gg can give rise to coloring Coni in dark,

there are some sons of Coni being colored in dark and
∑

psj > 1− p. However, in the light of the evidence

Ev construction process, there are some sons of Coni

being colored in white and
∑

psj > p. Therefore, this

results in contradiction.

6) Coni in Ev is colored in white by case 6 of the

coloring algorithm. Supposing some other nodes in the

game graph Gg can give rise to coloring Coni in dark,

there are some sons of Coni being colored in dark and
∑

psj > 1− p. However, in the light of the evidence

Ev construction process, there are some sons Conj of

Coni being colored in white and
∑

psj > p. Therefore,

this results in contradiction.

7) Coni in Ev is colored in white by case 7 (or case

8) of the coloring algorithm, the proof process is similar

to 6 and 5 (or 5 and 6).

For proving the constructed evidence Ev for veri-

fication meets condition 3 of Definition 6, we can use

the method of proof by contradiction, i.e., if any node

Coni or any edge between nodes in Ev is removed from

Ev, then it will lead to a situation that the sub-graph

is not independent of the game graph. The abbrevi-

ated proof process is: assume that a node or an edge

between nodes in Ev is removed from Ev, then it can

be colored in dark by other coloring algorithm, which is

contradictory to all kinds of coloring process, because

constructed evidence Ev for verification is independent

of game graph. �

Theorem 9. The constructed evidence Ev for refu-

tation is in accordance with Definition 6.

Proof. The proof process is similar to the proof of

Theorem 8. �

Actually, the evidence for refutation constructed ac-

cording to Definition 6 and the algorithm of Appendix,

is somewhat like the counterexample defined by Clarke

et al.[22] Clarke et al. pointed out that the counterex-

ample has to satisfy three criteria: the counterexample

should 1) serve as an explanation of why the model

violates the property, 2) be rich enough to explain the

violation of a large class of properties, 3) be simple and

specific enough to identify bugs, and be amenable to

efficient generation and analysis. Strictly speaking, the

evidence for refutation is just a quasi-counterexample,

because it may not conform to “simple enough” in crite-

rion 3. Chadha and Viswanathan[23] showed that coun-

terexample generation according to criteria of Clarke et

al. in stochastic model checking is an NPC problem.

That is to say, generating the smallest counterexample

is NP-complete. Moreover, it is unlikely to be efficiently

approximable. The related work about counterexample

will be discussed in Section 7. Note that an evidence

for refutation constructed in this paper can be viewed

as a (minimal) part of the winning strategy of refuter

that is sufficient to guarantee its victory. The evidence

for refutation in this paper is not the smallest coun-

terexample, but it is the minimal counterexample. In-

tuitively, a minimal counterexample has the property

that removing any edge from the underlying graph of

the counterexample will result in the evidence which is

no longer a counterexample.

6 Case Study

We implement a prototype tool SMC-NPPN with

explicit state search for the game-based PCTL*

stochastic model checking algorithm, which includes

all functions of NPNMV[16,24-25] and can use game

semantic algorithm to quantitatively check the sys-

tem model with nondeterminism and probabilistic be-

haviours. It is the first tool for PCTL* stochastic model

checking in game semantics, and it can present the evi-

dence for stochastic model checking result. In order to

demonstrate the game-based PCTL* stochastic model

checking process, an illustrative example is checked

in SMC-NPPN. Let M be the LNPPN model to be

checked, which is shown in Fig.6, and P>0.4(qUGr)

be the PCTL* property formula. In Fig.6, S1 is the

single initial place, {(S1, T0), (S1, T1), (S1, T2)} is

a nondeterministic class, {(S1, T6)} is another non-

deterministic class. The labeling functions of M are

For Research Only

Yang Liu et al.: A Game-Based Approach for PCTL* Stochastic Model Checking with Evidence 209

Fig.6. LNPPN model to be checked.

as follows: L(S3) = L(S4) = null, L(S1) = q, L(S2) =

L(S5) = r, and the probability matrixes ofM are shown

in Fig.7. In fact, system model M models a very simple

communication protocol. The workflow of communi-

cation protocol is as follows. When it starts trying to

send a message (S1), there is a nondeterministic choice

between: 1) sending the message direct (T2) as the

channel is safe and ready; and 2) sending the message

in an unreliable way. If the latter, it waits for (T6) with

probability 0.3 because the channel is unready, it sends

Fig.7. Probability matrixes of the LNPPN model. Si corre-
sponds to si, and Tj corresponds to tj .

failed (T0) with probability 0.35 and stops, and with

probability 0.35 it chooses successful sending (T1) and

stops.

Fig.8 shows the stochastic model checking result

based on game semantics, and indicates that the col-

ored game graph is saved as Fig.9, and the evidence is

saved as Fig.10. If the color is not considered, Fig.9

shows a game graphGg that is constructed for the given

LNPPN model M and the PCTL* property formula

P>0.4(qUGr). The model M has a single initial place

S1, thus Gg has a single initial node (s1,P>0.4(qUGr)).

The other nodes are derived according to game seman-

tics in Section 3. The dashed and solid edges represent

moves of players, and the solid edges also denote the

actual transition in M . Taking the color into conside-

ration, Fig.9 presents a coloring game graph that is

colored by the coloring algorithm in Section 4. The

coloring process colors MSCCs of game graph Gg by

their order. If the MSCC only contains one node, it

will be colored according to coloring process 1. The

other nodes of MSCCs are colored according to col-

oring process 2∼7. The white node means it satisfies

the corresponding property formula, and the dark node

means it does not satisfy the corresponding property

formula. The initial node (s1, P>0.4(qUGr)) is colored

in white, which means that the given model M satisfies

formula P>0.4(qUGr). Therefore, from Fig.9, we can

say that 1) verifier has a winning strategy, 2) the

sub-graph (s1,P>0.4(qUGr)) → (s1,P>0.4(Gr ∨ (q ∧

XP>ps′(qUGr)))) → (s1,P>0.4(q ∧ XP>ps′(qUGr))) →

(s1, q)∧ (s1,P>0.4(q∧ (s1,P>0.4(q∧XP>ps′(qUGr))) →

(s5,P>ps5(qUGr)) → (s5,P<ps5(Gr ∨ (q ∧

For Research Only

210 J. Comput. Sci. & Technol., Jan. 2016, Vol.31, No.1

Fig.8. Stochastic model checking result.

Fig.9. Colored game graph of LNPPN and PCTL*.

XP>ps′(qUGr)))) → (s5,Gr) → (s5,P>ps5(qUGr)) →

(s5,P<ps5(Gr ∨ (q ∧ XP<ps′(qUGr)))) → (s5,Gr) and

Fig.10 are colored in white, and they are both inde-

pendent of other nodes in the game graph. It means

that they are the independent winning strategies for

verifier. However, according to Definition 5 and Defi-

nition 6, Fig.10 is the evidence for verification because

it is the event set with the smallest adversary. It de-

notes the corresponding sub-LNPPN is composed of

place set {S1, S2}, transition set {T1, T2, T4} and

flow relations among them in the LNPPN model.

If the PCTL* property formula is P<0.4(qUGr),

the game graph has the same structure with Fig.9,

but its colors are opposite to those in Fig.9. There-

fore, refuter has a winning strategy, and the

evidence for refutation is the following sub-graph

that is colored in dark: (s1,P<0.4(qUGr)) →

(s1,P<0.4(Gr ∨ (q ∧XP<ps′(qUGr)))) → (s1,P<0.4(q ∧

XP<ps′(qUGr))) → (s1, q) ∧ (s1,P<0.4(q ∧

XP<ps′(qUGr))) → (s5,P<ps5(qUGr)) →

For Research Only

Yang Liu et al.: A Game-Based Approach for PCTL* Stochastic Model Checking with Evidence 211

Fig.10. Evidence for verification of PCTL*.

(s5,P<ps5(Gr ∨ (q ∧ XP<ps′ (qUGr)))) → (s5,Gr). It

denotes the corresponding sub-LNPPN is composed of

place set {S1, S5}, transition set {T6, T7} and flow

relations among them in the LNPPN model.

7 Related Work

Game theory has been used as a powerful paradigm

for giving the formal semantics to a variety of program-

ming languages and logical systems[26-30]. It manages

to be both the denotational semantics and operational

semantics[31]. For seeking the better result of classi-

cal model checking, the game theory was introduced

in bisimulation and µ-calculus model checking by Stir-

ling et al.[32-34] Then, Lange and Stirling[35] defined and

examined the model checking game for the branching

time temporal logic, which employed the focus to en-

rich configuration sets by picking out one distinguished

element. Shoham and Grumberg[36] extended the

game-based CTL model checking[33] for counterexam-

ple generation and incremental abstraction-refinement,

which produced the annotated counterexamples for full

CTL and provided an iterative 3-valued abstraction-

refinement framework. The work most closely related

to ours is the PCTL model checking as winning strate-

gies in games proposed by Fecher et al.[37] They pro-

vided a game foundation for producing diagnostics in-

formation in the setting of Markov chains and PCTL

in weak until-PNF.

On the other hand, the idea of providing the evi-

dence for justifying the result of classical model check-

ing has appeared in some references[38-41]. Tan and

Cleaveland[38] presented how to modify the classical

model checkers to return the support sets as the evi-

dence for mu-calculus. Namjoshi[39] used deductive

proofs to encode evidence for the modal mu-calculus

model checking, and Peled et al.[40-41] considered en-

coding evidence for the linear-time temporal-logic.

However, in the setting of stochastic model checking,

the related work is little, and the closest work related

to ours is counterexample generation. Han et al.[42]

originally defined the minimal and smallest counterex-

ample, used the probabilistic path traces or regular ex-

pression to present counterexample, and adopted the

k-shortest paths algorithms to generate counterexam-

ple for PCTL formula on discrete-time Markov chain

model. Komuravelli et al.[43] defined counterexample

as strong probabilistic simulation, used stochastic tree

to represent counterexample, and exploited it to com-

positional verification. Chatterjee et al.[44] and Her-

manns et al.[45] suggested viewing the general DTMC

as a counterexample, and used the counterexample

for planning and abstraction-refinement. Chadha and

Viswanathan[23] showed that the above proposals were

expressively inadequate, defined the notion of coun-

terexample to simply be small MDP, and first proved

generating the smallest counterexample was an NP-

complete problem. Up to now, all the research work

about counterexample in stochastic model checking is

just suitable to the subset of PCTL (e.g., safe-PCTL),

and the generating counterexample algorithm is dedi-

cated, which is independent of stochastic model check-

ing process.

We summarize the above work as follows. 1) In

For Research Only

212 J. Comput. Sci. & Technol., Jan. 2016, Vol.31, No.1

stochastic model checking area, game theory is ex-

ploited for PCTL model checking DTMC, and specifi-

cally, PCTL in weak until-PNF. It is difficult to be

extended to PCTL* which is the superset of PCTL

and LTL with probability bounds, because transform-

ing PCTL* into weak until-PNF will easily lead to

the exponential blowup. Moreover, the winning stra-

tegy holds all the relevant information for the result of

the stochastic model checking, but it has redundancies.

2) The state-of-the-art work about counterexample in

stochastic model checking is just suitable for subset of

PCTL (e.g., safe-PCTL, reachability), which cannot be

used for PCTL*. When considering PCTL*, we face

properties expressed by Boolean combinations of path

formulae. If we use “probabilistic path traces” as a

counterexample, the counterexample for PCTL* may

be very large or an infinite set of path traces. If we

use “stochastic tree” as a counterexample, it cannot

express all counterexamples for PCTL*, because the

family of tree-like counterexample is not rich enough.

If we use “general DTMC” as a counterexample, the

stochastic model checker will be used as a decision pro-

cedure in each step of the counterexample generation.

3) To the best of our knowledge, there is not any re-

lated work about the evidence constructing in unified

form for stochastic model checking result.

This paper is the first presentation of game seman-

tics for PCTL* stochastic model checking with evi-

dence. Compared with the above work, the checked

model is LNPPN which is the high-level model for

system with nondeterministic and probabilistic be-

haviours. For avoiding the exponential blowup in trans-

forming a PCTL* formula into PNF, we present the

game semantics for PCTL* in release-PNF. Moreover,

the evidence in unified form for PCTL* stochastic

model checking result is constructed by refining win-

ning strategy, which makes full use of the information

in a single run of the stochastic model checker, and it

can be seen as a minimal part of winning strategy that

is sufficient to explain the stochastic model checking re-

sult. The algorithm presented for solving strategy and

constructing evidence is more intuitive, and it is imple-

mented in a prototype tool SMC-NPPN.

8 Conclusions

The paper made the following contributions. An

intuitive and succinct game-theoretic approach for

PCTL* stochastic model checking was firstly proposed.

More importantly, it can provide the evidence in a uni-

fied form to certify the stochastic model checking result.

In the point of view of game theory, a stochastic sys-

tem model satisfies a PCTL* formula, which can be

seen as the player verifier having a winning strategy;

otherwise, it can be seen as the player refuter hav-

ing a winning strategy. The evidence for verification or

refutation is indeed the refinement of winning strategy

of verifier or refuter, which is minimal part of the

winning strategy to win the PCTL* stochastic model

checking game. Therefore, the algorithm has the advan-

tage of providing evidence for the result of stochastic

model checking easily, which makes full use of the infor-

mation in stochastic model checking process and does

not increase the complexity. However, the evidence for

verification or refutation is minimal (may not be the

smallest), and evidence presentation is complex if the

model is too big, thus there is the trade-off between

the detailed results and the model scale. It may be

improved and optimized in several ways. In the future

work, we will attempt to optimize the strategy solving

and strategy refining (evidence constructing) algorithm

by heuristic[46], and on the other hand, we will genera-

lize the game-based stochastic model checking to check

the continuous time stochastic system model.

References

[1] Clarke E M, Emerson E A. Design and synthesis of syn-

chronization skeletons using branching time temporal logic.

In Proc. the Workshop on Logic of Programs, May 1981,

pp.52-71.

[2] Queille J P, Sifakis J. Specification and verification of con-

current systems in CESAR. In Proc. the 5th Colloquium

on International Symposium on Programming, April 1982,

pp.337-351.

[3] Lin H M, Zhang W H. Model checking: Theories, techniques

and applications. Acta Electronica Sinica, 2002, 30(12A):

1907-1912. (in Chinese)

[4] Baier C, Katoen J P. Principles of Model Checking. MIT

Press, 2008.

[5] Clarke E M, Emerson E A, Sifakis J. Model checking: Al-

gorithmic verification and debugging. Communications of

the ACM, 2009, 52(11): 74-84.

[6] Kwiatkowska M, Norman G, Parker D. Stochastic model

checking. In Proc. the 7th International Conference on For-

mal Methods for Performance Evaluation, May 28-June 2,

2007, pp.220-270.

[7] Ndukwu U, Mclver A. An expectation transformer approach

to predicate abstraction and data independence for proba-

bilistic programs. In Proc. the 8th Workshop on Quantita-

tive Aspects of Programming Languages, Mar. 2010, pp.129-

143.

[8] Baier C, Haverkort B R, Hermanns H, Katoen J P. Perfor-

mance evaluation and model checking join forces. Commu-

nication of the ACM, 2010, 53(9): 74-85.

For Research Only

Yang Liu et al.: A Game-Based Approach for PCTL* Stochastic Model Checking with Evidence 213

[9] Duflot M, Kwiatkowska M, Norman G, Parker D, Peyron-

net S, Picaronny C, Sproston J. Practical applications of

probabilistic model checking to communication protocols.

In Formal Methods for Industrial Critical Systems: A Sur-

vey of Applications, Gnesi S, Margaria T (eds.), John Wiley

& Sons, Inc., 2012, pp.133-150

[10] Calinescu R, Grunske L, Kwiatkowska M, Mirandola R,

Tamburrelli G. Dynamic QoS management and optimisa-

tion in service-based systems. IEEE Transactions on Soft-

ware Engineering, 2011, 37(3): 387-409.

[11] Kwiatkowska M, Norman G, Parker D. Probabilistic model

checking for systems biology. In Symbolic Systems Biology,

Iyengar M S (ed.), Jones and Bartlett, 2010, pp.31-59.

[12] Hansson H, Jonsson B. A logic for reasoning about time

and reliability. Formal Aspects of Computing, 1994, 6(5):

512-535.

[13] Pnueli A. The temporal logic of programs. In Proc. the 18th

IEEE Symposium on Foundations of Computer Science,

Oct.31-Nov.2, 1977, pp.46-67.

[14] Aziz A, Sanwal K, Singhal V, Brayton R. Model-checking

continuous time Markov chains. ACM Transactions on

Computational Logic, 2000, 1(1): 162-170.

[15] Baier C, Haverkort B, Hermanns H, Katoen J P. Model-

checking algorithms for continuous-time Markov chains.

IEEE Transactions on Software Engineering, 2003, 29(6):

524-541.

[16] Liu Y, Miao H, Zeng H, Ma Y, Liu P. Nondeterministic

probabilistic Petri net — A new method to studying qual-

itative and quantitative behaviors of system. Journal of

Computer Science and Technology, 2013, 28(1): 203-216.

[17] Hintikka J. Logic, Language-Games and Information: Kan-

tian Themes in the Philosophy of Logic. Clarendon Press,

Oxford, 1973.

[18] Petri C A. Introduction to general net theory. InLecture

Notes in Computer Science 84, Brauer, W (ed.), Springer-

Verlag, 1980, 84: 1-19.

[19] Bollig B, Leucker M, Weber M. Local parallel model check-

ing for the alternation-free µ-calculus. In Proc. the 9th In-

ternational SPIN Workshop on Model Checking of Soft-

ware, April 2002, pp.128-147.

[20] Savitch W J. Deterministic simulation of non-deterministic

turing machines. In Proc. the 1st ACM Symposium on The-

ory of Computing, May 1969, pp.247-248.

[21] Kwiatkowska M, Norman G, Parker D. PRISM 4.0: Verifi-

cation of probabilistic real-time systems. In Proc. the 23rd

International Conference on Computer Aided Verification,

Jul. 2011, pp.585-591.

[22] Clarke E M, Jha S, Lu Y, Veith H. Tree-like counterexam-

ples in model checking. In Proc. the 17th IEEE Symposium

on Logic in Computer Science, Jul. 2002, pp.19-29.

[23] Chadha R, Viswanathan M. A counterexample-guided

abstraction-refinement framework for Markov decision pro-

cesses. ACM Transactions on Computational Logic, 2010,

12(1): 1:1-1:49.

[24] Bonet P, Llado C M, Puijaner R, Knottenbelt W J. PIPE

v2.5: A Petri net tool for performance modelling. In Proc.

the 23rd Latin American Conference on Informatics (CLEI

2007), October 2007.

[25] Dingle N J, Knottenbelt W J, Suto T. PIPE2: A tool

for the performance evaluation of generalised stochastic

Petri nets. ACM SIGMETRICS Performance Evaluation

Review, 2009, 36(4): 34-39.

[26] Ong C H L. Verification of higher-order computation: A

game-semantic approach. In Proc. the 17th European Sym-

posium on Programming, Mar.29-Apr.6, 2008, pp.299-306.

[27] Abramsky S, Ghica D, Murawski A, Ong C H L. Apply-

ing game semantics to compositional software modelling

and verification. In Proc. the 10th International Conference

Tools and Algorithms for the Construction and Analysis of

Systems, Mar.29-Apr.2, 2004, pp.421-435.

[28] Abramsky S, Jagadeesan R. Game semantics for access

control. Electronic Notes in Theoretical Computer Science,

2009, 249: 135-156.

[29] Fredriksson O, Ghica D R. Abstract machines for game se-

mantics, revisited. In Proc. the 28th Annual IEEE/ACM

Symposium Logic in Computer Science, Jun. 2013, pp.560-

569.

[30] Stirling C. Proof systems for retracts in simply typed

lambda calculus. In Proc. the 40th International Confer-

ence on Automata, Languages, and Programming, Jul.

2013, pp.398-409.

[31] Ghica D R. Applications of game semantics: From pro-

gram analysis to hardware synthesis. In Proc. the 24th An-

nual IEEE Symposium on Logic in Computer Science, Aug.

2009, pp.17-26.

[32] Zhu X Y, Zhang W H, Li G Y, Lv Y, Lin H M. Report

on advances in model checking. In Report on Advances in

Computer Science and Technology (2011-2012), China Sci-

ence and Technology Press, 2012. (in Chinese)

[33] Stirling C. Bisimulation, model checking and other games.

http://homepages.inf.ed.ac.uk/cps/mathfit.pdf, Dec. 2015.

[34] Stirling C. Modal and Temporal Properties of Processes.

Springer-Verlag New York, 2001.

[35] Lange M, Stirling C. Model checking games for branch-

ing time logics. Journal of Logic Computation, 2002, 12(4):

623-939.

[36] Shoham S, Grumberg O. Game-based framework for

CTL counterexamples and 3-valued abstraction-refinement.

ACM Transactions on Computational Logic (TOCL), 2007,

9(1): 1:1-1:52.

[37] Fecher H, Huth M, Piterman N, Wagner D. PCTL model

checking of Markov chains: Truth and falsity as winning

strategies in games. Performance Evaluation, 2010, 67(9):

858-872.

[38] Tan L, Cleaveland R. Evidence-based model checking.

In Proc. the 14th International Conference on Computer

Aided Verification, Jul. 2002, pp.455-470.

[39] Namjoshi K. Certifying model checkers. In Proc. the 13th

International Conference on Computer Aided Verification,

Jul. 2001, pp.2-13.

[40] Peled D, Pnueli A, Zuck L. From falsification to verification.

In Lecture Notes in Computer Science 2245, Hariharan R,

Vinay V, Mukund M (eds.), Springer-Verlag, 2001, pp.292-

304.

[41] Peled D, Zuck L. From model checking to a temporal proof.

In Proc. the 8th International SPIN Workshop on Model

Checking of Software, May 2001, pp.1-14.

[42] Han T T, Katoen J P, Damman B. Counterexample gener-

ation in probabilistic model checking. IEEE Transactions

on Software Engineering, 2009, 35(2): 241-257.

[43] Komuravelli A, Păsăreanu C S, Clarke E M. Assume-

guarantee abstraction refinement for probabilistic systems.

In Proc. the 24th International Conference on Computer

Aided Verification, Jul. 2012, pp.310-326.

For Research Only

214 J. Comput. Sci. & Technol., Jan. 2016, Vol.31, No.1

[44] Chatterjee K, Henzinger T, Jhala R, Majumdar R. Counter

example-guided planning. InProc. the 21st International

Conference on Uncertainty in Artificial Intelligence, Jul.

2005, pp.104-111.

[45] Hermanns H, Wachter B, Zhang L Z. Probabilistic CEGAR.

In Proc. the 20th International Conference on Computer

Aided Verification, Jul. 2008, pp.162-175.

[46] Aljazzar H, Leue S. Directed explicit state-space search

in the generation of counterexamples for stochastic model

checking. IEEE Transactions on Software Engineering,

2010, 36(1): 37-60.

Yang Liu received his Ph.D. degree

in computer science and technology

from Shanghai University in July 2012.

He is a post-doctoral researcher in the

State Key Laboratory for Novel Soft-

ware Technology at Nanjing University,

and he is also a visitor post-doctoral

researcher in the Department of Com-

puter Science at National University of Singapore. His

research interests include software engineering and formal

verification. He is a member of CCF and ACM.

Xuan-Dong Li received his M.S. and

Ph.D. degrees from Nanjing University,

Nanjing, in 1991 and 1994, respectively.

He is a full professor at the Department

of Computer Science and Technology

and the State Key Laboratory for

Novel Software Technology of Nanjing

University. Currently, he is the dean of

both the Department of Computer Science and Technology

and the Software Institute of Nanjing University. His

research interests include software modeling and analysis,

and software testing and verification.

Yan Ma received her M.S. degree in

computer science and technology from

Jiangnan University, Wuxi, in 2007. She

is a Ph.D. candidate in the College of

Computer Science and Technology at

Nanjing University of Aeronautics and

Astronautics. Her research interests in-

clude software engineering and hybrid

system verification.

Appendix

For Research Only

Yang Liu et al.: A Game-Based Approach for PCTL* Stochastic Model Checking with Evidence 215

For Research Only

216 J. Comput. Sci. & Technol., Jan. 2016, Vol.31, No.1

For Research Only

