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Abstract  Stochastic model check
focuses on quantitatively checking t

g 1s a recent extension and generalization of the classical model checking, which
> te roperty of a system model. PCTL* is one of the important quantitative
property specification languages, which §§ st more expressive than either PCTL (probabilistic computation tree logic)

or LTL (linear temporal logic) with proBakilit . At present, PCTL* stochastic model checking algorithm is very

complicated, and cannot provide any relevant gexp' n of why a formula does or does not hold in a given model. For
dealing with this problem, an intuitive and su@ginc#yapsp for PCTL* stochastic model checking with evidence is put
forward in this paper, which includes: presenting o %
form), defining the PCTL* stochastic model checking game]

model checking, and refining winning strategy as the evi@

mantics for PCTL* in release-PNF (release-positive normal
trategy solving in game to achieve the PCTL* stochastic
ify stochastic model checking result. The soundness
and the completeness of game-based PCTL* stochastic mo g are proved, and its complexity matches the known
lower and upper bounds. The game-based PCTL* stochastic algorithm is implemented in a visual prototype

tool, and its feasibility is demonstrated by an illustrative examp

Keywords PCTL*, stochastic model checking, game semantics, stra€gy, evide

1 Introduction for stochastic b ior characteristics exhibited in

systems can be classified the system contains

Model checking!'3! is an automatic and complete randomness itself, suchfas using fhe probabilistic al-
method for deciding whether the system model meets gorithm or the randomiged algogfhm; 2) the running
the property specification, which converts checking sys- environment of the syste which results

tem into a decidable problem by means of restricting in the occurrence of random faj agffailing to

the system model as a finite state model and specifica- invoke some components in the sy the loss of

tion as the propositional temporal logic. Model check- message; 3) for performance evaluatight and analysis,
ure
odel check-

and complex, and some of them are accompanied with ing or probabilistic model checking[®® to quantitatively

ing emphasizes on the absolute guarantee of correct- the random variable is factitiously employ
ness. However, computer systems are becoming large performance index. It is named stoch &%t

the stochastic behavioral characteristics. The reasons analyze the complex system with stochastic behaviors
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by model checking. In recent decade, stochastic model
checking has aroused widespread concern in formal veri-
fication community and made a great progress. Its rep-
resentative groups include Software Modeling and Veri-
fication Group at RWTH Aachen University®, PRISM
Group at the University of Oxford@, Dependable Sys-

Foundations of Computer Science
resden® and so on. Now, stochas-
i been applied to the correct-
istic programm, system perfor-

tion protocols reliability
(10]

mance analysis

optimizatiomof service flow
11]

analysis?), the quali

and even the systems biology!

Stochastic model checking sion and gene-

ralization of classical model chegk In the set-
ting of stochastic model checking els com-
monly used are DTMC (discrete ti chain),
MDP (Markov decision process), C cofitious
time Markov chain) and so on; the quantitatr o-
perty specifications commonly used are PC iy

bilistic computation tree logic)'?, LTL (linear tefipo
ral logic)[*3 with probability bounds, PCTL*[12],
(continuous stochastic logic)'* 1% and so on. There-
into, PCTL* can be seen as the extension of PCTL and
LTL with probability bounds, and it is strictly more ex-
pressive than anyone of them. At present, the PCTL*
stochastic model checking is obtained by the appropri-
ate combination of recursive descent procedure (as for
PCTL stochastic model checking) and LTL with proba-
bility bounds stochastic model checking. As shown in
Fig.1, the main procedures of PCTL* stochastic model
checking are as follows: 1) like PCTL, bottom-up tra-
verse the parse tree of PCTL* formula; 2) for PCTL*
state formula P, (¥), translate ¥ into LTL formula ¥’
by replacing each maximal state-subformula of ¥ with
a fresh atomic proposition; 3) transform ¥’ to DRA
(deterministic Rabin automaton) by w automaton; 4)
compute the product of stochastic system model M and
DRA, and compute accepting BSCC (bottom strongly
connected component) of product by graph analysis; 5)
get the probability pgscc to reach an accepting BSCC
by solving linear equation system; 6) decide whether M
satisfies P, (¥) by comparing pgscc and ~ p.

[ PCTL* Formula P p(¥)

(DTMC, MDP or LNPPN)

[Stochastic System Model M]

i

[ w Automation for ¥’

[ LTL Formula ¥ ]
]

[Deterministic w Automaton]

]
[Deterministic Rabin Automaton A]
| Compute the Product of M and DRA A |

| Compute the Accepting BSCCs of Product |

{

Get the Probability to Reach an Accepting BSCC|

i

| Decide Whether M Satisfies P.p(¥) |

Yes (Satisfied) No (Not Satisfied)

Fig.1. Traditional PCTL* stochastic model checking.

The above algorithm is based on Tarski’s denota-
1 semantics (truth as a predicate) at essence. The
fidiencies of the algorithm are: 1) the algorithm pro-
is plicated; 2) the returned result is “yes” or
ithout other further information for support-

9,

0
the result returned by traditional

ing'resu efor
PCTL i
for the s

In this shown in Fig.2, using nondeter-

NPPN)['6] with label

game semantics), which can vidé’evidence

for verification or refutation on th keeping

the same complexity with traditional L
model checking algorithm. The evidence
for helping the specifier to understa y the pro-
perty is true or false in the model. To this end, the rest
of the paper is organized as follows. In next section,
we define the label-extended NPPN and the logical se-
mantics PCTL* about it. Section 3 presents the game
semantics for PCTL* in release-PNF (positive normal

®http://moves.rwth—aachen.de/, Sept. 2015.
@http://WWW.prismmodelchecker.org/, Sept. 2015.
@http://depend.cs.uni—sb.de/index.php?id:156, Sept. 2015.

@http://www.inf.tu—dresden.de/index.php?node_id:1438&ln:en, Sept. 2015.
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formal). Based on this, Section 4 uses the strategy solv-
ing in game to implement the PCTL* stochastic model
checking algorithm, and Section 5 describes how to au-
tomatically construct the evidence for verification and
refutation in PCTL* stochastic model checking. In Sec-

tion 6, we illustrate the validity and feasibility of the

Yes (Satisfied) +
Evidence for Verification

2 Extending NPPN with Labeling Functio

NPPNUIl is a high-level formal model for mod-
eling the nondeterministic and probabilistic behavior
characteristics of systems, which is a natural develop-
ment of the original Petri net by introducing probability
measurement theory under the guidance of general net
theory'®!. In this section, we extend the NPPN with
labeling function and define its logical semantics.

2.1 Definition and Measurement for
NPPN with Label

Definition 1 (NPPN with Label (LNPPN)).
The LNPPN can be defined as a 7-tuple M =
(S,T; F, f;C; AP, L), where: 1) T = (Transition, Prt),
Transition denotes the transition act, Prt € [0,1] de-
notes the success probability of the transition, and T is
the act transition (AT) with the probability equaling 1,
or the probabilistic act transition (AT, Prt) with an act
satisfying a certain probability distribution, or the pure
probability transition (PT) without any act; if Prt =0,
it means that the transition is invalid; 2) SNT = ),
SUT#0, FCSxTUT xS, which is the flow rela-
tion of net, and N = (S, AT, F) is the pure net, where
AT is the act transition with probability equaling 1; 3)
f — fTUfSUfoTUfoS; fT-' T — 2Transition><P'rt7 fS-'
S — [0,1], fos.‘ TxS— [0,1], fS><T-' SxT — [0,1],

J. Comput. Sci. & Technol., Jan. 2016, Vol.31, No.1

the value of fsxr is determined by the nondeterminism
of transitions, the value of frxs can be obtained from
the probability value of fr(t), i.e., opm(fr(t)), and the
value of fs except initial place can be computed accord-
ing to the value of fsxr and frys; 4) vVt €T, Is € S,
Jrxs(t x s) =1 —opr(fr(t)). frxs(t xs) =0, if
oprt(fr(t)) =1, which represents transition (t, s) and
place s are invalid; 5) C is the set of nondeterminism
classes, and each nondeterminism class is a set com-
prised of (s,t;); if {(s, t1),(s, t2),...,(s, tn)} € C,
then >0 fsxr(s,t;) = 1;6) AP is a set of atomic

2AP

propositions; 7) L: S — is the labeling function,

which can express the requirements of users, i.e., the
property.

M is thought to be finite if S and T are finite, and
the size of M is the number of places and transitions
plus the number of pairs (s, t) with fsx7 > 0 and (¢,
s) with fryg > 0.

Definition 2 (Adversary (Scheduler, or Policy) for
LNPPN). An adversary for LNPPN is a function Adv :
St — T, such that an i > 0 for all sgs159...5, € ST.
The path ™ = sg h, S1 RN Si... 1s called an Adv-

if t; = Adv(sps182...8i—1) for all i > 0.
eorem 1. LNPPN model is measurable with
ab
00f. he measurement of LNPPN is related

to the ndet@rminism. When the nondeterminism

is solvgd by ad@érsary, the LNPPN M is just a
pure LP babilistic Petri net with label) M’ =
(S,T;F, f; he probability space over LPPN

M’ can be defi as (Q, g
is sample space, Y Pat,

(M"), Pry), where
gvent set, and Pr; is
"), which is the set
Path(M') is the
the cylinder

probability measure. 2

set Cylinder(7) for all finite p with ini-

tial place, and Cylinder(w) = {
pref(m)} where pref(m) denotes the
of path m. Prs extends uniquely to
sure Prg: > Path(M') — [0,1], and the probability of
cylinder set is

Prg, (Cylinder (7))
. 1, if 7= S0,
| P(s0,81) X ... X P(8g—_1,8k), if T =5081...8k,

where so is the initial place and P(s;,s;) =
fsxr(siyt) X frxs(t,s;). Therefore, an LPPN M’ is
measurable, and an LNPPN M is also measurable. [J
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2.2 PCTL* Semantics for LNPPN

PCTL* is an extension of CTL*[ which also can be
regarded as extending PCTL by dropping the require-
ment that any temporal operator has to be proceeded
by the state formula. In addition, it allows for Boolean
path formulae. The logic PCTL* can

the rational boune formulae of PCTL* can

be defined as: W :: U A U= XU OUY, where ¢

is the PCTL* state formula. O B@olean operators
and temporal modalities can j om the above
88 by the PCTL*

combinations

lae over'the at
as: ® = true —®|P.,[¥], where a € AP, U

is a path form ,<,>,2}and p € [0,1] is

PCTL* definition. The events spe

path formulae are measurable*2].

Because an LNPPN model is ble, the
PCTL* semantics about LNPPN model c ed
as follows.

Definition 3 (PCTL* Semantics abou P
For an LNPPN model M, path m = sg s
Sg...(abbr. ™ = 808182..., if it is not related to t), c

s; € S, the semantics of PCTL* formulae can be de-
fined by structural induction:

1) a satisfaction relation E for place s and PCTL*
state formulae:

s F true, Vs e S,
sFa, ifface L(s),
sE-®,  iffsEd,

SE® A Dy, iffskE® AskE Dy,
sEPL[Y], iff Prob(s,¥) ~ p,

where Prob(s, V) is the probability measure of path
set such that m E ¥, i.e., Prob(s,¥) = Pry{r €
Path(s)|m E U}), and Path(s) is the path set which
starts with place s;

2) a satisfaction relation = for path © in M and
PCTL* path formulae:

TEd, iffsoE®,

TE-U,  iffTEU,

TEUGAD,, iff 7k U AmE U,

mTE X\I/, fo §18283... = ‘I/,

mE UoUW,, iff there exits n > 0, such that

SnSn+15n+2--- F VU1, SmSm41Sm42---
E Wy for 0 <m<n.

3 Game Semantics for PCTL* Stochastic

Model Checking

In this section, we describe how to use game seman-
tics to implement PCTL* stochastic model checking,
which is the theory foundation for evidence construct-
ing. Any PCTL* formula can be transformed into a
canonical form, and the so-called PNF (positive nor-
mal form) is characterized by the fact that negations
only occur adjacent to atomic propositions. For avoid-
ing the exponential blowup in transforming the PCTL*
formulae into PNF, we choose release-PNF as the PNF
for PCTL*.

3.1 Release-PNF for PCTL*

Definition 4 (Release-PNF for PCTL*). PCTL*
state formulae in release-PNF are formed according to
the following grammar: ® ::= truefalse|a|-a|® A ®|P V
QP ,[V], where a € AP, AP is the set of atomic
propositions, U is the path formula, ~€ {<,<, >, >},
and p € [0, 1] is the rational bound; PCTL* path formu-
lae in release-PNF are formed according to the following

mar: U= QU AU|UV U XU|WUY|URY, where
isithe state formula, temporal modality R is dual to

U perator U, formula WoRW¥, can be read as
WoRY, holds for a path if Uy al-
equigement that is released as soon as

eases Wq”.
ways hol@s,

Uy becdlines valid,
PC

PCTL* for

theorem.

equivalent PCTL* form

Proof. Let Sat(®) &
satisfy the formula ®. P
formula in release-PNF &' ar

M over the atomic proposition set A P.
mantics of - is: for any place s in LNPPN
and only if s ¥ ®. Therefore, any P ormula can
be transformed into PCTL* formula in release-PNF by
the following equivalence laws in Fig.3. g

3.2 Game Definition for PCTL* Stochastic
Model Checking

Let M be an LNPPN model, and ® be a
PCTL* formula in release-PNF. The stochastic model
checking problem is to decide whether M FE &,
i.e., whether sy F ®, where sp is the initial
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—true = false assume ~ is >, and the initial player is verifier. The
P =P rules are shown in Fig.5.
=(Po A P1) = Dy V Py The game Gf/[ for PCTL* stochastic model check-
U =T ing is played on board between refuter and wverifier
~(Uo ATy) = —Tg vV —Ty according to rule. The play of game G}}\;f is deter-
XU = X ministic according to the above rules. Moreover, a
U T,) = ~ToR-T, play either ends with rule 0/1, or iterates infinitely
%, (1] = P, V] with rule 9/10/13/14. The winning criteria for a play
=P, [U] are as follows. werifier wins the play if and only
if one of the following conditions holds: 1) the play
quivalence laws. ends with rule 0; 2) the play ends with rule 1, and
place®. W CTL* stochastic model the configuration is (player, s, true/Ps,(true), ), or
checking can be ned as agtwo-person game (player, 5 a/_‘a/l?Ep(C_‘/_‘a%Q) and a/-a € L(s); 3)
G2, (player, board, rule), which R abbreviated as the play iterates infinitely with rule 10; 4) the rule 13

G(player, board, rule) it M is used for the second time. refuter wins the play if

context. where: and only if one of the following conditions holds: 1)

the play ends with rule 0; 2) the play ends with rule 1,

1) player represents the ong icipates in
the game, which is composed of tw that are and the configuration is (player, s, false/P,(false), ),
named refuter and verifier respect : yer  OF (player, s, a/=a/P>p(a/=a), Q) and a/=a & L(s); 3)
verifier tries to show model M satisfies @, cBas the play executes infinitely with rule 9; 4) the rule 14
player refuter tries to show model M does ti is used for the second time.
P; Theorem 3. For every play in the game

2) board presents where the players play, whi€ is ® (player, board, rule), there is a determined winner.
the Cartesian product of S x Sub(®) x 25U4(®) where oof. 'The LNPPN model M is finite, and the
S is the set of places, and Sub(®) is the set of sub- orgulae of ¢ are also finite, thereby the configu-
formulae, which is defined in Fig.4; ti n of game G(]}\;[ are finite. Every play al-

3) rule represents how to play in the game, which ~ wd¥s re e configuration in which @ is atomic
is the guidance for which player is going to play and  proposifion, configuration in which ® is the
how to play. The play of game G, is a sequence of ~ form o P>p(PoRY,) or the configura-
configurations Cong —piayer CON1 = player -« —player tion is visit second time. According to the
Con; —player --- —+player Cony, where Con; is the form winning criteriadall of the above cases have the de-
of (player x S x Sub(®) x Q), Q = 25(®) which can termined winner. Thep every play in the
be seen as the insurance for a player to redo the play game G‘}M (player, board re is a determined

that he/she did before. Without loss of generality, we winner. O

Sub(®) = {®}, if ¢ = true/false/a/—a
Sub(®g N @1) = {‘bo A\ @1} U Sub(@o) U Sub(‘1>1)
Sub(®g V @1) = {‘bo V @1} U Sub(@o U Sub(‘1>1)

(@
(
( )
ub(P oy (Wo A 1)) = {P (W0 A T1)} U Sub(Wo) U Sub(Wy)
( )
(
(
(

»n

ub(Pp(Wo V W1)) = {Pp(Wo V W1)} U Sub(Po) U Sub(Wy)
ub(Pp (XW)) = {Pp(X¥)} U Sub(¥)
(
(

»n 0

ub(P~p(ToUW,)) = {expansion(Pwp(PoUW1)) U Sub(¥o) U Sub(Wy
Sub(Pp(PoRY1)) = {expansion(P~,(VoRW;)) U Sub(¥o) U Sub(¥;

)
)

{®, Py (U V (Wg A XD)), Py (Tg A XD), P (XB)}, if & = P,y (T Uy )
)

. N ~p(X®)},
cxpansion(®) = { {®, Py (U1 A (Tg V XD)), Py (T V XB), Py (XB)}, if & = Py (UoRT,)

Fig.4. Elements of Sub(®).

®Assume that M has at most one single initial place, which will not lead to weakening its ability to model the stochastic system
behaviours.
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0) p = 0 : the play finishes and the player verifier wins
1

Con; = (player, s, true/false/a/—a/Px ) (true/false/a/—a),

Q) : the play finishes

= (verifier,s, ®;,{P1_;} UQ)
= (verifier,s, ®;,Q)

= (refuter,s, ®;,{P1_;} UQ)

)
)
2) Con; = (verifier,s,®o A ®1,Q) : player refuter chooses ®;,j € {0,1}, and Con;1q
3) Con; = (verifier,s,®o V $1,Q) : player verifier chooses ®;,j € {0,1}, and Con;y1
4) Con; = (refuter, s, ®g A ®1,Q) : player refuter chooses ®;,j € {0,1}, and Con;y1 = (refuter,s, ®;,Q)
5) Con; uter, s, P V ®1,Q) : player verifier chooses ®;,5 € {0,1}, and Con;41
6)

adversary, and Con;y1

8) Con; = (verifier
and p0+pl > p
9) Con; = (verifier,s, P>, (¥q oniy1

10) Con; = (verifier, s, Py
11) Con; = (player, s, ®,{P>,(¥)}H Q) : Con;y1
12) Con; = (player, s, ®, {true/falsgfa/ : Con;qq
13) Con; = (verifier,s, &g, {®1} U Q) @pla;

14) Con; = (refuter,s, o, {P1} UQ) : verfif v

Fi

3.3 Game Semantics

The PCTL* model checking game G%, (player, board,

rule) is composed of all the possible plays from initial
configuration (verifier,s, ®,), which is the form of
tree structure. The graph structure for game G, is
the graph presentation of game tree, in which nodes are
configurations, edges are possible moves according to
rule, and loops are plays of the form rule 9/10/13/14.
The winning strategy means that there is a set of moves
allowing the player to make every play into a configura-
tion which he/she wins. The game tree of the winner is
the refined game tree of game G'%,, which only consists
of the winning moves for the winner. The game graph
of the winner has the similar definition with the game
tree of the winner.

Theorem 4. For every game, there is a winning
strategy for one of the players.

Proof. We use the induction method to prove
1) When the PCTL* model check-

ing game G%, is composed of a configuration Cony,

the theorem.

in which the formula ® is one of the following
forms: true/false/a/—a/Psp(true/false/a/—a), one of
the players has a winning strategy based on winning
criteria. 2) Game G%; is composed of a set of config-

urations Cong, Cony, ..., Con;, ..., Con,. Assuming

there is a winning strategy for one of the players at
the game with start configuration C'on;, then Con;4q

Clony ier, s, P> (XW), Q) : player verifier chooses some transitions ¢ in the minimum nondeterministic

= (verifier, s, Ps,s (V)), where s A Z P(s,s") x ps’ = p, P(s,s’) is the

= (verifier,s,P>p;(V;)),

= (verifier,s,P>p(¥1 V (¥o AX(¥oUW1))))
= (verifier,s, P>, (V1 A (Yo V X(ToR¥1))))
= (player, s, ®,Q)

= (player, s, ®,Q)

futer chooses a next configuration, and Con;41 =

(verifier,s, ®1,{Po} UQ)

hooses a next configuration, and Con; 1 = (refuter,s, ®1,{®o} U Q)

rules of game.

also has a winning strategy because C'on; may choose
. 1 to play on. If not, the other player will have a
trategy in the game with start configuration
erefore, for every game, there is a winning

of the players. O
tegy in game Gj\};[, we can capture
tics for PCTL* stochastic model
d in Theorem 5.

a winning strategy
® - with starfconfigurdlon (player, s, ®,);
s E ® if and only if re fulCugh
game G, with start configurati s 4, Q). In
r which is
verifier or refuter.

Proof. The “if” part is obvious.
prove the “only if” part which can b
presenting the strategy of player verifier or refuter
for s F ® or s ¥ ®. Moreover, the proof process of
“only if” part can be shown in structural induction on
Sub(®) and 25%(®) of PCTL* formula @, and all places
S of the LNPPN model M.

1) ® = true/false/a/—a/Ps,(true/false/a/—a): if
sE ®, then P—
right at C'ong according to winning criteria; if s @,
then P_o(®), and thus re futer wins the game G%, right
at Cong according to winning criteria.

o(®), and thus verifier wins game G%;
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2) @ = PpADy: if s F PgAPq, according to the deno-
tational semantics, s £ ®; for each j, where j € {0,1}.
Therefore, by the induction hypothesis, verifier has a
winning strategy for the game with start configuration
(player, s, @y, Q) and (player, s, P1,Q).
winning strategy of veri fier which starts from configu-
ration (play . Q) is composed of the union of the
verifier for the game with start
layer, s, &g, Q) or (player, s, ®1,Q); if

Moreover, the

ing to the denotational seman-
j, where j € {0,1}. There-
| hesis, refuter has a win-
ning strategy for thed@ame with start configuration
(player, s, @y, Q) or (player, s, P Moreover, the
winning strategy of refuter

figuration (player, s, ®,Q) 4

ts from con-
of the stra-
tegy choosing the next configura
and the winning strategy of refufer A
(player, s, ®;, Q).

3) o = (I)Q\/q)ll if s E q)o\/q)l, ACCORCli
the denotational semantics, s F ®; for a ]
j € {0,1}. Therefore, by the induction h
verifier has a winning strategy for the game Qvit
start configuration (player,s,®;,8). Moreover,
winning strategy of wverifier which starts from con-
figuration (player,s,®,) is composed of the strat-
egy choosing the next configuration (player,s,®;,)
and the winning strategy of verifier for configuration
(player, s, ®;,Q); if s¥ ®¢V Py, according to the deno-
tational semantics, s# ®; for each j, where j € {0,1}.
Therefore, by the induction hypothesis, re futer has a
winning strategy for the game with start configuration
(player, s, @y, Q) and (player, s, ®1,). Moreover, the
winning strategy of re futer which starts from configu-
ration (player, s, ®,)) is composed of the union of the
winning strategy of refuter for the game with start
configuration (player, s, ®o, Q) or (player, s, 1, Q).

4) & =P, (XT): if s F P>, (X¥), according to the
denotational semantics, Pry{m € Path(s)|m E XU} >
p, i.e., there is one or more transitions ¢ which s L
and > P(s,s') x ps’ > p, where P(s,s’) is the proba-
bility from place s to place s’ and ps’ is the proba-
bility of §" satisfying W. Therefore, by the induction
hypothesis, verifier has a winning strategy for the
game with start configuration (player, s’, P>ps (¥), Q).
Moreover, the winning strategy of werifier which
starts from configuration (player,s, ®,Q) is com-
posed of the strategy choosing the next configura-
tion (player,s’,P>ps(¥),Q) and the winning strat-
egy for configuration (player,s’,Ps,s (¥),Q); if s ¥
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P>, (XT), according to the denotational semantics,
Pr{m € Path(s)|r ¥ XU} > 1 — p, ie. there
is one or more transitions ¢ which s — s and
> P(s,s') x ps’ > 1—p, where P(s,s’) is the proba-
bility from place s to place s’ and ps’ is the prob-
ability of s’ satisfying =¥. Therefore, by the induc-
tion hypothesis, re futer has a winning strategy for the
game with start configuration (player, s’, P> ps (¥), Q).
Moreover, the winning strategy of refuter which
starts from configuration (player,s,®,Q) is com-
posed of the strategy choosing the next configuration
(player,s’,P>ps (¥),Q) and the winning strategy for
configuration (player, s’, P>, (), Q).

5)® =P, (VoAT): if s F P5,(¥oAT), according
to the denotational semantics, Prs{m € Path(s)|m F
oA} > p, e, Pro{m € Path(s)|m F YoATE Uy} >
p. Therefore, by the induction hypothesis, verifier
has a winning strategy for the game with start con-
figuration (player,s, Uy A Wq,€2). Moreover, the win-
ning strategy of verifier which starts from configura-
tion (player, s, ®,Q) is composed of the strategy choos-
ing the next configuration (player,s, ¥o A ¥1,) and
the winning strategy for configuration (player,s, Uy A
;if s ¥ P>p(Wo A ¥q), according to the denota-
antics, Pris{m € Path(s)|mt ¥ Uy A U1} >
Pry{r € Path(s)|r # ¥,;} > 1 —p for

j € {0,1}, or Prs{m € Path(s)|m ¥
2{m € Path(s)|t ¥ ¥} > pl
— p.  Therefore, by the induc-
ter has a winning strategy for

of the union of the

winning strategy of re f ey ame with start

configuration (player, s, ¥;, §2) laydh, s, Wy, 2) and
(player, s, V1, Q).
6) ® =P>,(VoV¥,): if s F Py, 00 W, ) fBccording

to the denotational semantics, Prs{
Uy V \Ifl} > p, e, s F P>p(‘llj)
j € {0,1}, or s E Pypo(¥o) and s F Py, (¥1)
where p0 + pl > p. Therefore, by the induction
hypothesis, verifier has a winning strategy for the
game with start configuration (player, s, P>, (¥,), ) or
(player, s,P>p0(¥0),Q2) and (player,s,P>p1(¥1),Q).
Moreover, the winning strategy of werifier which
starts from configuration (player,s,®,Q) is com-
posed of the strategy choosing the next configura-
tion (player, s, P>, (¥;),Q) or (player, s,P>po(¥o), )
and (player,s,P>,1(¥1),Q) and the winning strat-
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egy for configuration (player,s,P>,(¥;),Q) or

(player, s,P=po(P0),?) and (player,s,Ps,1(¥1),Q);
it s ¥ P>p,(¥ V Uy), according to the denotational
semantics, Pro{m € Path(s)|t ¥ VoV ¥} > 1 —p,
ie, Pro{m € Path(s)|t ¥ YoV ¥ ¥} > 1—p.
Therefore, by the induction hypothesis, refuter has

PR, (ToUT,), ac-
@ s, Pry{r €
Path(8)|ﬂ' = ‘I’QU‘I’l} 2 i.e. P>p(‘111), or

skE P>p(\111 /\XP>pS/(\I/0U\I/1)). sb
hypothesis, verifier has a win
game with start configuration (pla
or (player,s,P>p(U1 A XPxsps (U
over, the winning strategy of werifier

he induction

from configuration (player,s,®,Q)
the winning strategy choosing the next configura~
tion (player,s,P>,(01),Q) or (player,s,Px,(¥g

XP5ps (ToU¥)),2) and the strategy
of werifier for the game with start configura-

winning

tion (player,s,P>,(01),Q) or (player,s,Ps,(¥1 A
XP>ps (TUP)),Q); if s ¥ P, (ToUP,), according
to the denotational semantics, Pry{m € Path(s)|m ¥
UoUU} > 1 —p, ie., Prs{m € Path(s)|m ¥ Uy Aw ¥
Pop(¥o A XP3ps (ToUW))} > 1 — p.  Therefore,
by the induction hypothesis, refuter has a win-
ning strategy for the game with start configuration
(player,s, U1 V (Tg A XP5,s (ToUT)),82).  More-
over, the winning strategy of refuter which starts
from configuration (player,s,®,) is composed of
the winning strategy choosing the next configuration
(player, s, U1V (Vo AXP>ps (ToUT4)), Q) and the win-
ning strategy of refuter for the game with start con-
figuration (player, s, U1 V (o A XP>pe (TUT)), Q).

8) P = P>p(\I/0R\I/1)2 if s E P>p(\I/0R\I/1), ac-
cording to the denotational semantics, Pr.{m €
Path(s)|lt E YoR¥:} > p, ie, s E Pyp(¥1 A
(T V XP>ps(ToRT))).  Thus by the induction
hypothesis, verifier has a winning strategy for the
game with start configuration (player,s,P>,(¥1),Q)
and (player,s,P>p(¥o V XP5pe (YoR¥1)),2). More-
over, the winning strategy of wverifier which starts
from configuration (player,s,®,) is composed of
the winning strategy choosing the next configura-

tion (player,s,P>,(¥1),Q) and (player,s,P>,(¥o V
XP>ps (ToRYY)),2), and the strategy
of werifier for the game with start configura-
tion (player,s,P>,(¥1),Q) and (player,s,P>,(¥o V
XP>ps/(\I/0R\I/1)),Q); if s K P>p(‘I/QR\I/1), according
to the denotational semantics, Prs{m € Path(s)|m ¥
UoR¥1} > 1 —p, i.e., Pry{m € Path(s)|mr ¥ Uy V7 ¥
| 7& P>p(\110 V XP>ps/(‘I/QR\I/1))} > 1 — p. There-
fore, by the induction hypothesis, refuter has a

winning

winning strategy for the game with start configu-
ration (player,s,P>,(¥1),Q) or (player,s,P>,(¥o V
XP>ps (PoR¥Y)), Q).
egy of refuter which starts from configuration

Moreover, the winning strat-

(player, s, ®,Q) is composed of the winning strategy
choosing the next configuration (player, s, P>, (¥1), )
or (player,s,P>,(¥y V XP>,s(TeRY1)),2) and
the winning strategy of refuter for the game
with start configuration (player,s,P>,(¥1),Q) or
(player, s,P=p(To V XP>ps (PoRT1)), Q). |

4 Strategy Solving in PCTL* Stochastic Model
Checking Game

e game process for PCTL* stochastic model
ing can be presented by the game graph Gg(N,
e set N is the set of configurations in the

yer x S x Sub(®) x Q); edge set E is the
the game, F C N x N; w is the
d w = P(s,s’). The game graph

set of sible Ahov;
probab
Gg(N, E, w

or DFS (depth
characteristics stated i

aph for game G%,
al strongly con-
Ty pl@y newer leaves

Theorem 6.
can be partitioned into
nected components). Moreover,
MSCC,, into MSCC,, with m < n.

Proof. The algorithm for findi
order is basically the same with stan

finding a topological order on the set
ponents of a directed graph in the DFS method. Let
Cong —player Cony —player -+ ~player Con; —player
... Con,, be a game process with Cong = (player x S x
Sub(®) x Q), then all the intermediate configurations
are all of the form (player x S x Sub(®) x Q). Let
m = 1, then the configurations are generated by rule 1,
and the other MSCCs are labeled as m-++ one by one in
the bottom-up manner. Moreover, the other configura-
tions from Con; and all successor configurations Con,,
which are not used in rule 1 and have a move return
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to Con; are labeled as m. There is no edge from an
MSCC with a lower index to one with a higher index,
because the generation of MSCCs is the application of
game rules which strictly increase the path quantifiers’
number in the configuration.

Based on Theorem 6, we can alter the coloring
algorithm![!9] olor each node in the MSCCs of game
graph, whi

. That is to say, if the node is
en verifier/refuter wins the

wn by all the nodes which
. Therefore, the winning stra-
is how to

are colored in white/
tegy solving algorith
The coloring algorithm colors
Let MSCC; be the smallest
MSCC,,, with m < ¢ have all beecolor efore, and
the coloring process of a node in MS follows.

1) The node at which & t fi of
true/false/a/—a /Py (true/false/a/—a) col@redh in
rkfothers

white, if verifier wins in the node, and
wise.

2) The node at which ® is the form of &g A @5 1
colored in white, if all its sons at which ® is the
of ®; are colored in white, and dark if it has at least
one son colored in dark.

3) The node at which ® is the form of ®g Vv Py is
colored in white if at least one of its sons at which ®
is the form of ®; is colored in white, and dark if all its
sons are colored in dark.

4) The node at which & is the form of P, (X¥) is
colored in white, if the sum of P(s,s’) x ps’ is equal
to or greater than p, where P(s,s’) is the probability
of moving from the place at the node to its son that is
colored in white and satisfies ¥ at the probability ps’,
and dark if the sum of P(s,s’) x ps’ is greater than
1 — p, where P(s,s’) is the probability of moving from
the place at the node to its son which does not satisfy
U at the probability ps’ and is colored in dark.

5) The node at which @ is the form of P>, (oA T1)
is colored in white, if the probability of moving from
the place at the node to its sons at which ® is true for
the form of Uy A Wy, is equal to or greater than p. It is
colored in dark, if the probability of moving from the
place at the node to its sons at which ® is true for the
form of Uy A Uy, is greater than 1 — p

6) The node at which @ is the form of P, (¥oV ¥;)
is colored in white, if the probability of moving from
the place at the node to its sons at which ® is true for
the form of Wy V ¥y, is equal to or greater than p. It is
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colored in dark, if the probability of moving from place
at the node to its sons at which ® is true for the form
of gV Wy, is greater than 1 — p

7) The node which is the witness of the form
P>, (¥oU¥,) is colored in dark, and the node which
is the witness of the form P>,(¥oR¥;) is colored in
white. g

Strategy solving algorithm for PCTL* stochastic
model checking game combines finding MSCCs with or-
der algorithm and coloring algorithm. The complexity
of strategy solving algorithm is shown in Theorem 7.

Theorem 7. Strategy solving algorithm for PCTL*
stochastic model checking game is in PSPACE.

Proof. Let |®| be the length of ®, and |M| the num-
ber of states in LNPPN model M. Because the PCTL*
formula ® contains |®|/2 irredundant path quantifiers,
the game graph can contain |M| x |®|/2 MSCCs ac-
cording to Theorem 6. The coloring algorithm may be
used for |M| x |®|/2 times, but the space it occupies
can be reused. Moreover, the coloring algorithm is re-
cursive, thus it has to store the constant value of the
number of MSCCs, the polynomial size of the number
of nodes in each MSCC, and two configurations of lin-

ize of ®. Thus, according to Savitch’s theorem!2%!,
rategy solving algorithm can be transformed into
st1c one only with a quadratic trade-off in

jal space complexity only. O

structlng for PCTL* Stochas-
ing Results

5 Evidence

At present, gdifle mainst
model checking, such as k

swer “yes” or “no”, w

cam tools of stochastic

tion. For understanding tITéusE
results better, we argue that it

In this section, we present the evidencé co
gorithm for stochastic model checkin, .
Intuitively speaking, in stochastic model checking,
an evidence for verification is a part of the stochastic
system model responsible for the quantitative temporal
property being satisfied. Dually, when the stochastic
system model does not satisfy a quantitative temporal
property, an evidence for refutation is provided as a
portion of the stochastic system model responsible for
the quantitative temporal property being violated.
Definition 5 (Evidence in General Form). If
P<p(¥) or Po,p(¥) is a failed formula in stochastic
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system model M, then Ev is an evidence for refuta-
tion for P<,(U) or P<,(¥) in M if and only if Ev
is a Y Path(M') with the biggest adversary such that
Eve P+p(U) or Bk Pxp(V). If P5p(T) or Py, ()
is a successful formula in stochastic system model M,

then Ev is an evidence for verification for P>,(¥) or

form of P>, (¥
form P, (¥)

or P, (7),
or P-, () equivalently.
evidence for verification or
fined for them, but it makes no sefise be e even the
empty set trivially fulfills Prob(d§ P < p (or
Prob(>" Path(M')) < p).

Informally, as an evidence for verific
tion, it is expected to fulfill the following co
it verifies or falsifies the property formula;
enough information for explaining why the stoc
system model satisfies (or does not satisfy) the
perty formula; 3) it is the minimality which means it
is precise without redundancies, i.e., every place and
every transition are needed to maintain 1) and 2).

Generally speaking, the sub-model of a stochastic
system model and its unwinding can be the evidence
for verification or refutation, but the information it
holds is implicit. For PCTL*, having a sub-model as
an evidence for verification or refutation is probably
not what we want. We need it to be annotated with
further explanatory information. For showing the in-
formation explicitly, we take full advantage of the game
graph constructed in Section 4 and use the sub-graph of
corresponding game graph to present the evidence for
verification or refutation of PCTL* property formula.
Moreover, this can define the evidence for verification
or refutation unifiedly. In the sub-graph, each node is
marked by the place and the sub-formula, the color of
a node means whether it satisfies the sub-formula, and
the value on the outgoing edge represents the probabil-
ity between the connected nodes. Therefore, we define
an evidence for verification or refutation to be a sub-
graph of the corresponding game graph, rather than a
sub-model.

Definition 6 (Evidence in Unified Form). Let Gg
be a game graph constructed for an LNPPN model M
and a PCTL* formula ® in release-PNF, and Cong be

the initial node of Gg. The sub-graph Ev of game graph
Gg from Cong is an evidence for verification or refu-
tation of @, if it meets the following conditions: 1) for
each node Con; in Ewv, its color is the same with that
of Conyg; 2) sub-graph Ev is independent of Gg; 3) sub-
graph Ev is minimal with regard to 1) and 2). More-
over, if the color of Cong is white, the sub-graph Ev is
the evidence for verification of ®; if the color of Cong
1s dark, the sub-graph Ev is the evidence for refutation
of ®.

Condition 1 requires color consistency with the ini-
tial node, because the color of initial node decides
whether the model satisfies the property, i.e., sub-graph
FEv is the evidence for verification or refutation of ®. In
condition 2, the independence means that the color of a
node in sub-graph does not have any relationship with
the color of other nodes in the game graph. Thus, con-
dition 2 guarantees the sub-graph Ev holds sufficient
information for explaining the reason why initial node
is colored in white or dark, i.e., why the property for-
mula @ is verified or refuted by the stochastic system
model M. Condition 3 claims there is not a strict sub-

raph of Fv satisfying the conditions 1 and 2, i.e., the
0 in the sub-graph Ev are necessary.

e evidence for verification or refutation is in-

ed finement of winning strategy of verifier or

is sufficient to win game G%,. The algo-

The constructed evidence
condition 2) of Definition 6, i.e., s
pendent of the game graph Gg, whi ved
respectively according to the followi

1) Con; in Ev is colored in white by case 1 of the
coloring algorithm. It is colored in white only depend-
ing on itself, which has nothing to do with others.

2) Con; in Ewv is colored in white by case 2 of the
coloring algorithm. Supposing some other nodes in the
game graph Gg can give rise to coloring Con; in dark,
there is at least one son Con; of Con; being colored
in dark. However, in the light of the evidence Fv con-
struction process, all sons of Con;, certainly including
Conj, are in Ev and colored in white. Therefore, this
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results in contradiction.
3) Con; in Ev is colored in white by case 3 of the
coloring algorithm. Supposing some other nodes in the

game graph G¢g can give rise to coloring Con; in dark,
all sons of Con; are colored in dark. However, in the
light of the evidence Fv construction process, at least
f C'on; being colored in white. There-

there is one

Y>> P(s,sj) x ps; = p. Thereffre, t
diction.
5) Con; in Ev is colored in wllitedh

game graph GGg can give rise to coloring
there are some sons of C'on; being colored
>-ps;j >1—p. However, in the light of the
FEv construction process, there are some sons of
being colored in white and )" ps; > p. Therefore,
results in contradiction.

6) Con; in Fv is colored in white by case 6 of the
coloring algorithm. Supposing some other nodes in the
game graph G¢g can give rise to coloring Con; in dark,
there are some sons of C'on; being colored in dark and
> ps;j >1—p. However, in the light of the evidence
Ev construction process, there are some sons C'on; of
Con,; being colored in white and > ps; > p. Therefore,
this results in contradiction.

7) Con; in Ewv is colored in white by case 7 (or case
8) of the coloring algorithm, the proof process is similar
to 6 and 5 (or 5 and 6).

For proving the constructed evidence Ev for veri-
fication meets condition 3 of Definition 6, we can use
the method of proof by contradiction, i.e., if any node
Con; or any edge between nodes in Ev is removed from
FEv, then it will lead to a situation that the sub-graph
is not independent of the game graph. The abbrevi-
ated proof process is: assume that a node or an edge
between nodes in Fv is removed from Fwv, then it can
be colored in dark by other coloring algorithm, which is
contradictory to all kinds of coloring process, because
constructed evidence Ev for verification is independent
of game graph. O

Theorem 9. The constructed evidence Ev for refu-
tation is in accordance with Definition 6.
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Proof. The proof process is similar to the proof of
Theorem 8. g

Actually, the evidence for refutation constructed ac-
cording to Definition 6 and the algorithm of Appendix,
is somewhat like the counterexample defined by Clarke
et al.l??l Clarke et al. pointed out that the counterex-
ample has to satisfy three criteria: the counterexample
should 1) serve as an explanation of why the model
violates the property, 2) be rich enough to explain the
violation of a large class of properties, 3) be simple and
specific enough to identify bugs, and be amenable to
efficient generation and analysis. Strictly speaking, the
evidence for refutation is just a quasi-counterexample,
because it may not conform to “simple enough” in crite-
rion 3. Chadha and Viswanathan(?3 showed that coun-
terexample generation according to criteria of Clarke et
al. in stochastic model checking is an NPC problem.
That is to say, generating the smallest counterexample
is NP-complete. Moreover, it is unlikely to be efficiently
approximable. The related work about counterexample
will be discussed in Section 7. Note that an evidence
for refutation constructed in this paper can be viewed
(minimal) part of the winning strategy of re futer
is sufficient to guarantee its victory. The evidence

., but it is the minimal counterexample. In-
ely. iimal counterexample has the property
that refifoving@an, ge from the underlying graph of
the cou a ill result in the evidence which is
no longer a ntergXample.

6 Case Study

@0l SMC-NPPN with
e-based PCTL*
hiche includes

We implement a pr

explicit state search {0

stochastic model checking algo,
all functions of NPNMV[16:24
semantic algorithm to quantitati
tem model with nondeterminism an

checking in game semantics, and it can present the evi-
dence for stochastic model checking result. In order to
demonstrate the game-based PCTL* stochastic model
checking process, an illustrative example is checked
in SMC-NPPN. Let M be the LNPPN model to be
checked, which is shown in Fig.6, and P>0.4(qUGr)
be the PCTL* property formula. In Fig.6, S1 is the
single initial place, {(S1, T0), (S1, T1), (S1, T2)} is
a nondeterministic class, {(S1, T6)} is another non-
deterministic class. The labeling functions of M are
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ig.6. LNPPN model to be checked.

as follows: L(S3) = L(S4) = null, L
L(S5) = r, and the probability matrixes of
in Fig.7. In fact, system model M models a

~
|

failed (T0) with probability 0.35 and stops, and with
probability 0.35 it chooses successful sending (T1) and
stops.

communication protocol. The workflow of com: Fig.8 shows the stochastic model checking result

cation protocol is as follows. When it starts tryi d on game semantics, and indicates that the col-

edigame graph is saved as Fig.9, and the evidence is
Fig.10. If the color is not considered, Fig.9

send a message (S1), there is a nondeterministic choice
between: 1) sending the message direct (T2) as the

channel is safe and ready; and 2) sending the message o gdtne graph Gg that is constructed for the given
in an unreliable way. If the latter, it waits for (T6) with LNFPN M and the PCTL* 'prope-rt'y -formula
probability 0.3 because the channel is unready, it sends P0.4(4Gr). od(-al M has a single initial place
S1, thus le initial node (s1, P>0.4(qUGr)).
The other ngfles argfdlerived according to game seman-

tics in Section 3 e dashed and solid edges represent

< Probability Matrix

Source net

moves of players, and t

[V]Use current net File name: s\willow\Desktop\SHC-Game\NPPN-gane. xa| Browse

Results

NP Petri net p

Fig.7.

y matrix and p

Forwards probability matrix P
| [7o|71|72|73] 74| 78] 78] 77|
$10000100000000000
|s2
$31.00.0001.00.0000000
|sa
$50000000000001010
Backwards probability matrix P
|71 |72|7o|7a 15| 16| 7|
$10.350.350.30.00.0001.00.0
|s2
$3 00 00 001000000000
|s4
$5 .00 00000000000010
Combined probability matrix P
[ [ 70| 7 |r2[rs[s| 18|76 |77 |
$1-0.35-0.35070.00.00.0-1.00.0
|s2
$3 10 00 000000000000
|sa
$5 00 00 000000001000
Transition Probability Vector
| 70| 71| 72| 73| 74| 75| 78| 17|
1009101010101010

Copy || save

Calculate

sponds to s;, and Tj corresponds to t;.

Probability matrixes of the LNPPN model.

y vector

Si corre-

actual transition in M.

colored by the coloring a
coloring process colors MSCCs

will be colored according to colorig
other nodes of MSCCs are colored accor,
oring process 2~7. The white node satisfies
the corresponding property formula, and the dark node
means it does not satisfy the corresponding property
formula. The initial node (s1, P>0.4(¢UGr)) is colored
in white, which means that the given model M satisfies
formula P>0.4(¢UGr). Therefore, from Fig.9, we can
say that 1) verifier has a winning strategy, 2) the
sub-graph (s1,P>0.4(qUGr)) — (s1,P>04(Gr Vv (¢ A
XP0 (qUGT)))) — (51, P20.4(q A XP 5 (qUGH))) —
(s1,0) A (s1,P20.4(q A (51, P20.4(g AXP 20 (qUGr))) —
(55, P2pss(qUGr)) = (s5,P<pss(Gr V(g A
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Fig.9. Colored game graph of LNPPN and PCTL*.

XP, (qUGH))) — (s3,Gr) = (55, P2 pes(qUGH)) -
(85, P<pss(Gr V (¢ A XP<ps (qUGT)))) — (s5,Gr) and
Fig.10 are colored in white, and they are both inde-
pendent of other nodes in the game graph. It means
that they are the independent winning strategies for
veri fier. However, according to Definition 5 and Defi-
nition 6, Fig.10 is the evidence for verification because
it is the event set with the smallest adversary. It de-
notes the corresponding sub-LNPPN is composed of
place set {S1, S2}, transition set {T1, T2, T4} and

flow relations among them in the LN el.

If the PCTL* property formula is P.g.4(qUGr),
the game graph has the same structure with Fig.9,
but its colors are opposite to those in Fig.9. There-
and the
evidence for refutation is the following sub-graph
that is colored in dark: (s1,P<04(¢UGr)) —
(51,P<0.4(GrV (¢ NXP<ps (qUGT)))) = (s1,P<0.a(g A
XPps (qUGT))) — (s1,9) A (s1,P<oalg A
XPps (qUGT))) — (85, P<pss5(qUGT)) —

fore, refuter has a winning strategy,
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| s1, Poga(qUGr) l

51, Puos(GrV (4 AXP.p (qUGN)))|
~

~
\\

10 Paos (0 A XP.y (qUG)) |

- ~

~

——
[sia ] [ s PostiPuotuen)

51, Paps1 (qUGT)

-
~
-~

52 Py (G V (4 AXP,y (qUGT)|

51 Papn GV (4 AXP.y (UG

- -~

~
\\

Is1. Pupsa(a A XPy atlor) |
-~ S~

- 4
Sy, q l | S, XPEZ,S,(‘QUGr) |

1g.10. Evidence for verification of PCTL*.

(55, P<pss(Gr V (¢ A XP<po (qUGT)) ) — , It

denotes the corresponding sub-LNPP comPosed of

place set {S1, S5}, transition set {T6, TR} a 0
relations among them in the LNPPN model.

7 Related Work

Game theory has been used as a powerful paradigm
for giving the formal semantics to a variety of program-
ming languages and logical systems(26-3%. It manages
to be both the denotational semantics and operational

311 For seeking the better result of classi-

semantics!
cal model checking, the game theory was introduced
in bisimulation and p-calculus model checking by Stir-
ling et al.32-34 Then, Lange and Stirling[®! defined and
examined the model checking game for the branching
time temporal logic, which employed the focus to en-
rich configuration sets by picking out one distinguished
Shoham and GrumbergP extended the
game-based CTL model checking!®¥ for counterexam-
ple generation and incremental abstraction-refinement,
which produced the annotated counterexamples for full
CTL and provided an iterative 3-valued abstraction-
refinement framework. The work most closely related
to ours is the PCTL model checking as winning strate-
gies in games proposed by Fecher et al.l®”] They pro-
vided a game foundation for producing diagnostics in-
formation in the setting of Markov chains and PCTL
in weak until-PNF.

On the other hand, the idea of providing the evi-

element.

dence for justifying the result of classical model check-
ing has appeared in some references®*41],  Tan and

Cleaveland®® presented how to modify the classical
model checkers to return the support sets as the evi-
dence for mu-calculus. Namjoshil®® used deductive
proofs to encode evidence for the modal mu-calculus

model checking, and Peled et al.*0-%1 considered en-

0 evidence for the linear-time temporal-logic.
ven, in the setting of stochastic model checking,

e work is little, and the closest work related
togours i terexample generation. Han et al.[*?]
originally’ defidgd minimal and smallest counterex-
ample, abilistic path traces or regular ex-

pression to

model. Komuravelli et
as strong probabilistic S
to represent counterexanmplgggah
positional verification. Chatterj

for planning and abstraction-refinemént.
Viswanathan[?3] showed that the aboge
expressively inadequate, defined the notion of coun-
terexample to simply be small MDP, and first proved
generating the smallest counterexample was an NP-
complete problem. Up to now, all the research work
about counterexample in stochastic model checking is
just suitable to the subset of PCTL (e.g., safe-PCTL),
and the generating counterexample algorithm is dedi-
cated, which is independent of stochastic model check-
ing process.

We summarize the above work as follows. 1) In



212

stochastic model checking area, game theory is ex-
ploited for PCTL model checking DTMC, and specifi-
cally, PCTL in weak until-PNF. It is difficult to be
extended to PCTL* which is the superset of PCTL
and LTL with probability bounds, because transform-
ing PCTL* into weak until-PNF will easily lead to

2) The state-o
stochastic modg
PCTL (e.g., saf

g is just suitable for subset of
chability), which cannot be
considering PCTL*, we face

formulae. If we use “probabili
PCTL* may

traces. If we

counterexample, the counte

express all counterexamples for PC
family of tree-like counterexample is T
If we use “general DTMC” as a countereggm
stochastic model checker will be used as a de
cedure in each step of the counterexample generdgfio
3) To the best of our knowledge, there is not an
lated work about the evidence constructing in unified
form for stochastic model checking result.

This paper is the first presentation of game seman-
tics for PCTL* stochastic model checking with evi-
dence. Compared with the above work, the checked
model is LNPPN which is the high-level model for
system with nondeterministic and probabilistic be-
haviours. For avoiding the exponential blowup in trans-
forming a PCTL* formula into PNF, we present the
game semantics for PCTL* in release-PNF. Moreover,
the evidence in unified form for PCTL* stochastic
model checking result is constructed by refining win-
ning strategy, which makes full use of the information
in a single run of the stochastic model checker, and it
can be seen as a minimal part of winning strategy that
is sufficient to explain the stochastic model checking re-
sult. The algorithm presented for solving strategy and
constructing evidence is more intuitive, and it is imple-
mented in a prototype tool SMC-NPPN.

8 Conclusions

The paper made the following contributions. An
intuitive and succinct game-theoretic approach for
PCTL* stochastic model checking was firstly proposed.
More importantly, it can provide the evidence in a uni-
fied form to certify the stochastic model checking result.
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In the point of view of game theory, a stochastic sys-
tem model satisfies a PCTL* formula, which can be
seen as the player verifier having a winning strategy;
otherwise, it can be seen as the player refuter hav-
ing a winning strategy. The evidence for verification or
refutation is indeed the refinement of winning strategy
of verifier or refuter, which is minimal part of the
winning strategy to win the PCTL* stochastic model
checking game. Therefore, the algorithm has the advan-
tage of providing evidence for the result of stochastic
model checking easily, which makes full use of the infor-
mation in stochastic model checking process and does
not increase the complexity. However, the evidence for
verification or refutation is minimal (may not be the
smallest), and evidence presentation is complex if the
model is too big, thus there is the trade-off between
the detailed results and the model scale. It may be
improved and optimized in several ways. In the future
work, we will attempt to optimize the strategy solving
and strategy refining (evidence constructing) algorithm
by heuristic*®!, and on the other hand, we will genera-
lize the game-based stochastic model checking to check

continuous time stochastic system model.
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Appendix

Algorithm of Constructing Evidence for PCTL* Stoch

consEvidence (Gg, Cong){
N'={Cony}
Templ={Con,}
Temp2=0
if the color of Con, is white{
while Templ # @ do{
node=remove (Temp1)

Temp2=Temp2 U{node}
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1c ePChecking Result

ifthe @ of node is the form of true/false/a/—a/P.,(true/false/a/—a) then continue

ifthe @ of node is the form of &y A P, {
for each (node, Con;)in Gg do{
if Con; & Temp2 then{

Temp2=Temp2 U{Con;}; N'=N"U{Con;}:E'=E" U{(node, Con;)} } }

ifthe ® of node is the form of &,V @, {
Con; is the reason for coloring the node

if Con; € Temp2 then{

Temp2=Temp2 U{Con;}; N'=N"U{Con;};E'=E' U{(node, Con;)} }}

ifthe @ of node is the form of P.,(X¥){

for each Con; colored in white of (node, Con;) in the smallest adversary of Gg do{

pick Con; from big to small according to the value of P(node, Con;) X P(Con; = ¥)

while (3;; P(node, Con;) X P(Con; F ¥)<p){
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if Con; € Temp2 then{
Temp2=Temp2 U{Con;}; N'=N"U{Con;}:E'=E" U{(node, Con;)} }}}
ifthe @ of node is the form of P.,,(¥; A W,){
for each Con; colored in white of (node, Con;)in Gg do{
pick Con; from big to small according to the value of P(Con; E W; A W¥,)
while (P(Con; F W; AW,)<p){
& Temp2 then{
mp2=Temp2 U{Con;}; N'=N"U{Con;}:E'=E' U{(node, Con;)} }}}
gade is the form of P.,,(W; vV ¥;){

olored in white of (node, Con;)in Gg do{
small according to the value of P(Con; F ¥; V¥,)
while (P(Co L VW,)<p)
if Con; € Temp2 then

Temp2=Temp2 U{
ifthe @ of node is the form

{Con;}:E'=E" U{(node, Con;)} }}}
WoUp){

construct according to thg o the form of P.,(¥; V¥,) and P.,(¥; AW¥,)}
ifthe @ of node is the form of B, )<
construct according to the & o e 1s of P.,,(W; AW,) and P.,(W; Vv ¥,)}

}return evidence Ev(N',E’,w") for verifigatio!
if the color of Con, is dark{
while Templ # @ do{
node=remove (Temp1l)
Temp2=Temp2 U{node}
ifthe @ of node is the form of true/false/a/—a/P-,(trueffal /—a) then continue
ifthe @ of node is the form of &,V @, {
for each (node, Con;)in Gg do{
if Con; & Temp2 then{
Temp2=Temp2 U{Con;}; N'=N'"U{Con;};E'=E" U{(node, Con;)} }}
ifthe @ of node is the form of &y A @, {
Con; is the reason for coloring the node
if Con; € Temp2 then{
Temp2=Temp2 U{Con;}; N'=N"U{Con;}.E'=E" U{(node, Con;)} }}
ifthe @ of node is the form of P.,(X¥){
for each Con; colored in dark of (node, Con;) in the biggest adversary of Gg do{
pick Con; from big to small according to the value of P(node, Con;) X P(Con; # ¥)
while (3; P(node, Con;) x P(Con; # ¥)<1-p){
if Con; & Temp2 then{
Temp2=Temp2 U{Con;}; N'=N"U{Con;}.E'=E" U{(node, Con;)} }}}
ifthe @ of node is the form of P.,,(W; vV ¥,){
for each Con; colored in dark of (node, Con;)in Gg do{
pick Con; from big to small according to the value of P(Con; ¥ ¥; V¥,)
while (P(Con; # ¥; V ¥,)<1-p){
if Con; € Temp2 then{
Temp2=Temp2 U{Con;}: N'=N"U{Con;}:E'=E" U{(node, Con;)} }}}

215
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ifthe @ of node is the form of P.,(W¥; A W) {
for each Con; colored in dark of (node, Con;)in Gg do{
pick Con; from big to small according to the value of P(Con; # ¥; AW,)
while (P(Con; # W) AW,)<1-p){
if Con; & Temp2 then{
Temp2=Temp2 U{Con;}; N'=N"U{Con;}.E'=E" U{(node, Con;)} }}}




