Software Engineering Group
Department of Computer Science
Nanjing University
http:/éeg.niu.edu.cn

NJU Software
Engineering Group

Technical Report No. NJU-SEG-2016-1C-003

2016-1C-003

Precondition Calculation for Loops Iterating over
Data Structures

Juan Zhai, Bin Li, Zhenhao Tang, Jianhua Zhao, Xuandong Li

International Conference on Software Quality, Reliability and Security 2016

Most of the papers available from this document appear in print, and the corresponding copyright is held by the

publisher. While the papers can be used for personal use, redistribution or reprinting for commercial purposes is
prohibited.

http://seg.nju.edu.cn/

2016 IEEE International Conference on Software Quality, Reliability and Security

Precondition Calculation for Loops Iterating over
Data Structures

Juan Zhai*T, Bin Li*, Zhenhao Tang*, Jianhua Zhao*, Xuandong Li*
*State Key Laboratory for Novel Software Technology
Department of Computer Science and Technology
Nanjing University, Nanjing, Jiangsu, P.R.China 210093
ftware Institute, Nanjing University, Nanjing, Jiangsu, P.R.China 210093
i { zhaijuan, hsslb, tangzh} @seg.nju.edu.cn, {zhaojh, Ixd} @nju.edu.cn

Abstract—Precondition ulation is a fi
verification technique. Many previous wg
problem, but ended with limited capg
ments. We conducted a survey on log
used data structures occurring in several r¢

ndamental program
ied to solve this
to loop state-
g commonly-
d open-source

programs, and found that about 80% of stich loops,iterate over
elements of a data structure, indicating thagaut culation
of preconditions with respect to post-conditigns e loops
would cover a great number of real-world progkams and tly
ease code verification tasks.

In this paper, we specify the execution effect of @ program

statement using the memories modified by the state

the new values stored in these memories after executing
statement. Thus, conditional statements and loop statements
be uniformly reduced to a sequence of assignments. Also
present an approach to calculate preconditions with respect to
given post-conditions of various program statements including
loops that iterate over elements of commonly-used data structures
(e.g., acyclic singly-linked lists) based on execution effects of
these statements. With execution effects, post-conditions and loop
invariants can also be generated. Our approach handles various
types of data including numeric, boolean, arrays and user-defined
structures. We have implemented the approach and integrated it
into the code verification tool, Accumulator. We also evaluated
the approach with a variety of programs, and the results show
that our approach is able to calculate preconditions for different
kinds of post-conditions, including linear ones and universally
quantified ones. Preconditions generated with our approach can
ease the verification task by reducing the burden of providing
loop invariants and preconditions of loop statements manually,
which improves the automatic level and efficiency, and makes the
verification less error-prone.

aj

n

Keywords—precondition; loop; data structure; execution effect;
equivalent expression

[. INTRODUCTION

Program verification is an effective approach to ensure rig-
orous, unambiguous guarantees on program correctness. One
basic approach for program verification is to reduce a program
specification {p} s {q} into a logical formula p = WP(q, s)
where WP(q, s) represents the weakest precondition [9] of s
with respect to q. Many previous works attempt to calculate
weakest preconditions, but the existence of loop statements
limits their abilities. The work [16] is able to calculate weakest
preconditions for programs that manipulate pointers, but loops
are not supported. Works like [10], [19] calculate weakest
preconditions for loops by de-sugaring loops with loop invari-
ants. However, automatic generation of loop invariants itself

978-1-5090-4127-5/16 $31.00 © 2016 IEEE
DOI 10.1109/QRS.2016.25

132

remains largely unfulfilled. Other works like [14] calculate
weakest preconditions for loops by bounding the number of
iterations to transform loop programs into acyclic programs,
which sometimes may lose accuracy. Weakest precondition
calculation for loop statements is of great significance in
program verification, but it is still a tough challenge, which
remains unresolved to this day.

As one of the basic component in modern programming
languages, container data structures are frequently used in real-
world, widely-used applications. We have conducted a statistic

nalysis on loops manipulating commonly-used container data

ructures occurring in several open-source softwares, such as
httpd and nginx. We found that about 80% of such
ate over elements of a container data structure. From a
point of view, automatic calculation of preconditions
given post-conditions of this kind of loops
reat number of cases in real-world widely-

lop an automatic precondition cal-
ate over elements of commonly-used

y the execution effect of a statement
and new values stored

in these memories after exec
a novel approach to calculaj
given post-conditions of prog
based on the execution effect.
nested loops. Furthermore, other
conditions and loop invariants can be

ourggpproach supports
i cluding post-

a wide range of data types (e.g., num
and structures like acyclic singly-linked lis
able to deal with universally quantified formula
necessary and important to express properi
that manipulate unbounded data structures like acyclic singly-
linked lists. Our contributions are highlighted as follows.

1) To the best of our knowledge, we are the first to specify
the execution effect of a loop statement as memories
modified by the loop and new values stored in these
memories after executing the loop, which reduces a loop
statement into a sequence of assignments and effectively
summarizes a loop statement.

We propose a novel approach to synthesize execution
effects of loop statements that manipulate commonly-
used container data structures including one-dimensional

2)

arrays, two-dimensional arrays and acyclic singly-linked
lists, which reduces a loop statement into a sequence of
assignment statements.

With the execution effect of a loop statement, we propose
an approach to calculate preconditions, post-conditions
and loop invariants for this loop statement.

3)

4) Based on the proposed approaches, we implemented a
prototype, and integrated it into the code verification
tool, Accu [1]. We also evaluated our approaches,

w that we can effectively generate

ection III gives an example
IV specifies the execution
presents the method

our approach
. Section

sketches the implementation of the approa

real world case. Section X surveys related e
end, Section XI concludes the paper.
II. PRELIMINARY
In this section, we present a brief overview of Sc@pe

Logic [16], which is an extension of Hoare Logic to deal w
pointers and recursive data structures.

The basic idea of Scope Logic is that the value of an
expression e depends only on the contents stored in a finite set
of memories. The value of e keeps unchanged if no memory
in this set is modified by program statements. This set of
memories is denoted as 9(e).

In Scope Logic, specifications and verifications are written
in the proof-in-code form. Formulas are written at program
points, which are places before and after program statements.
For a sequential statement s1; ss, the program point after s;
is just the program point before so. A formula at a program
point means that this formula holds each time the program
runs into this program point. Formulas at the program point
before a statement and the program point after a statement are
separately preconditions and post-conditions of this statement.

Scope Logic introduces program-point-specific expres-
sions to specify the relations between program states at differ-
ent program points. A program point j is said to dominate a
program point ¢ if the program must go through the program
point j before it goes to the program point 4. In this case,
we write e@j at the program point ¢ to denote the value of
e evaluated at the program point j when the program was at
the program point j the last time. At the program point j,
the program-point-specific expression e@j equals to e, and at
a program point other than j including the program point 7,
e@j is treated as a constant.

To describe program properties, especially properties of
recursive data structures, Scope Logic allows users to define
recursive functions. For example, the recursive functions de-
fined in Fig. 1 specify properties of acyclic singly-linked lists.

133

The function isSL(x) asserts that if a node « is a null pointer
or x — n points to an acyclic singly-linked list, then x is
an acyclic singly-linked list, and the function isSLSeg(z,y)
states that the node x can reach the node y along the field
n and the nodes from the node z to the node y make up
an acyclic singly-linked list segment. The function nodes(z)
yields the set of all the nodes of the singly-linked list =, while
the function nodesSeg(z,y) yields the set of nodes from the
node x to the node y (excluded) along the filed n.

First-order logic cannot deal with user-defined functions.
To support local reasoning about programs whose properties
are expressed using user-defined functions, we need to provide
properties of these functions. Both the given properties of the
use-defined functions and the definitions of these functions are
used to reason about programs. Some properties for the user-
defined functions in Fig. 1 are given in Fig. 2. Take the first
property as an example, it describes that if the pointer variable
x is null, then = represents an acyclic singly-linked list and
the node set of x is empty.

III. BACKGROUND AND MOTIVATION

A. Weakest Preconditions for Loops

Weakest preconditions have been widely used to prove
the correctness of a program with respect to specifications
epresented by pairs of preconditions and post-conditions.

utomatic generation of weakest preconditions can greatly fa-
litate the formal verification of programs to improve software

idable challenges when loop statements are considered.
preconditions for loops are provided manually,
us and error-prone task, and also increases the

burd or pr mers. This poses a tremendous obstacle to
the practicaljise oficodegyerification.
There en variety of loops which makes it

impossible to fin
preconditions fi
loops manipulating fi

m way to automatically calculate

of preconditions which are pow
conditions for this kind of loops woul
real-world widely-used programs, ma
much easier and less error-prone.

ber of

de gfetification

The above factors motivate us to develop @ app
tomatically calculate preconditions with respect t
conditions of loop statements that manipulate
data structures to ease the code verification tasks and improve
the quality and reliability of softwares.

B. Our Idea: Calculating Preconditions from Modified Mem-
ories and New Values

The value of an expression e depends only on the values
stored in a finite set of memories, and the value of e keeps
unchanged if no memory in this set is modified by program
statements. Given a program statement s, and i, j be respec-
tively the program points before and after s, the program state

isSL(x : P(Node)) : bool é(:10 == null)?true : isSL(x — link)
Nodes(z : P(Node)) : SetO f(P(Node)) é(:c == null)?0 : ({z} U Nodes(z — link))
isSLSeg(xz : P(Node),y : P(Node)) : bool é(:c == null)? false : ((x == y)?true : isSLSeg(x — link,y))
NodesSeg(x : P(Node),y : P(Node)) : SetO f(P(Node)) é(:10 ==null)?0: (zx == y)?0 : {z} U NodesSeg(x — link,y)))

Fig. 1: Recursive functions of acyclic singly-linked lists

isSL(z) A nodes(x) == 0)
nodes(x) == {z} Unodes(x — n) A x ¢ nodes(x — n))
nodesSeg(z,y) == 0)

(z == null) =
W NisSL(z)) =
VaVy(z =
VaVy(z # null ANy W= (nodesSeg(x,y) == nodes(z))

1sSL(z) A nodes(x) == nodes(y) UnodesSeg(z,y))
isSLSeg(x,z) A nodesSeg(z, z) == nodesSeg(x,y) UnodesSeq(y, z))

at the program point ¢ is different with the program statg
the program point j only on the memories modified by #
statement s. Suppose that m is the memory modified by s and
v is the new value stored in m after executing s. Both m and v
are evaluated at the program point . For any memory address
z in e, the value of (x == m)?v : xx at the program point i
equals to the value of *x at the program point j, and thus we
can calculate an equivalent expression at ¢ which is equal to
e at j. When e is a post-condition, the equivalent expression
is actually the precondition.

Basic Idea: Given a loop statement and its post-conditions,
we firstly attempt to analyze the loop body to get the memories
modified by the loop body and the new values in these
memories after executing the loop body, based on which we

then synthesize the memories modified by the loop and the new {9: i==i@5+1 }

values stored in these memories after executing the loop. With } -

the synthesized modified memories and the new values, the (10: sum == (3, _, blz])@4, .

loop is equivalent to a sequence of assignments which assigns Ve € [0,s —1].alz] == (32, _, tigh@4,

Vz € [0,s — 1].b[z] == 0,

the new values to the modified memories. vz e [Ls—1].afe] > afz — 1])

Example. Fig. 3 gives a program that operates on two one-
dimensional arrays. The loop in the program manipulates the
arrays a and b via the loop control variable ¢ which iterates over
the closed integer interval [0, s—1]. The program computes the
sum of the elements whose indexes range from 0 to s—1 in the
array b, and sets the k-th element of the array a with the sum

Fig. 3: The program summati,

of the elements whose subscripts range from 0 to k in the array Through an analysis of the loop body, we know that the
b. Also, each element in the array b is set to the value 0. The loop bOd){ respectlyely assigns the new values sum + bli],
numbered program points of the program, together with some sum + bli], 0 and i + 1 evaluated at the program point 5 to

formulas, are also shown. The entrance program point and the the memories &sum, &ali], &b[i] and &i. As the loop control
exit program point are respectively 1 and 10. The formulas variable ¢ iterates over the closed integer interval [0, s — 1], the

like sum == (Z;:) b[x])@4 at the program point 10 are the value of su;zil at the program poin't 5 is eyaluaFed to be the
post-conditions of the loop, which are also the post-conditions ~ value of > >/~ b[z]@4. And hence in each iteration, the value
of the program. stored in the memory address &al[i] is evaluated as the value

134

of 32! _, blz]a4

Based on the result, we can synthesize the memories
modified by the loop and the corresponding new values, and
the result is as follows: the values of the Vanables ¢ and sum
are respectively set to s — 1 and (Z o blz])@4, and for

each x in the interval [0,s — 1], a[z] is set to the value of
(34— bly])@4, and b[z] is set to 0.

With the me odified by the loop and the new values
stored in the e are able to calculate preconditions
with respe t-conditions of this loop. Take the post-
condition

YV

l.alz] > alz — 1] (1)

e modified memories and
the new values of the lo we know that the value of s
is not modified by the 166p, and for
[0,s — 1], the value of a[z] at the
value of >/ b[y] which is evaluz
By substituting the expressions a|
condition (1) with their values ZZ:O b

1. 3750 bl

of the loop as an e

in the post—
7 b[y] we
get the formula Vz € [1,s— %
can be simplified to

Ve ell,s—1].b[z] >0
The value of (2) evaluated at the program point

to the value of (1) evaluated at the program point 10, and

formula (2) is just the precondition of the loop with respec

the post-condition (1).

c

IV. EXECUTION EFFECT

In this section, we specify the execution effect of a program
statement as the memories modified by this statement and
the new values stored in these memories after executing the
statement, which is the basis of calculating preconditions for
a statement.

Executing a program statement is to manipulate memories
related to this statement. In our work, we group the memories
into two categories which are separately defined in Definition
1 and Definition 2.

Definition 1: A single memory expression (SiM) is any
expression with the type P(t), i.e., a pointer type to a type t.
Here ¢ can be int, boolean, or some other pointer types.

Definition 2: A set memory expression (SeM) is an
expression of the form \x.e[set], where e is a memory, set is
an expression with a set type, and x is bound in set.

The kernel (K) of a memory m, denoted as x(m), and the
range variables (RV) of a memory m, denoted as v(m), are
defined as follows.

e If m is a SiM, then x(m) = {m} and v(m) = 0;
e If m is a SeM and of the form Az.m/[set], then k(m)
r(m') and ~(m) = {x} U~y (m').

Intuitively, the effect of executing a program statement is
assigning new values to a finite set of memories while keeping
the values of other memories unchanged. We specify the
execution effect of each program statement as a set of tuples

135

of memories modified by this statement and the corresponding
new values stored in these memories after executing the
statement. More formally,

Definition 3: The execution effect of a program statement
s, denoted as 7(s), is a finite set of tuples of the form
(m,v) where m is a memory expression, and v is the new
value expression of m. Both m and v are evaluated at the
program point before executing s. The type of x(m) and v are
respectively P(t) and t for some ¢, and the variables in y(m)
can occur in v.

A special expression p is introduced in our work to specify
the value of v when the new value in the memory m cannot
be determined. In other words, if we know that a statement s
modifies the memory m, but we cannot get the new value in
m, then the execution effect of s is specified as {(m, o)}

e If m is a SiM, then the tuple means the value stored in
the memory m is v;
e If m is a SeM and of the following form

Az1.(... (Axg.e[sety]) ...)[set1]
then the tuple means that for each memory expressed
as mlvy/x1][ve/za] ... [ug/zk], the corresponding new

value is represented as v[vy /x1][va/xa] . . . [k /xk], Where
v; is a value in the set set; fori =1,2,...,k

Take the loop in Fig. 3 as an example. Its execution effect
as follows:

(&i, s),
1
(&sum, 320~ blz]),
(Az.(&b[2])[0, s — 1],0),
x
Ar.(&alz])[0,5 = 1], 52, bly])
The two spec1fy that the new values of the varlables
¢ and su y the values of s and Y °_ ,0 b[z]
evaluated rance point, namely at the program
point 4. Th ecifies that the elements indexed

b are set to 0 while the last one

atement s, denoted
in the execution
execution 7(s). The memory express
with each other. It is required that if t
specify two overlapped memory sets,
value expressions must agree on the co
For example, the execution effect of the se
“ *p=1; *q=2; ” is specified as

{ (p, (p==q?2: 1)),

(2,2),
The memory units specified by p and ¢ may be the same. When
the condition p == ¢ holds, their new value expressions are

both evaluated to 2.

What should be highlighted here is that for any program
statement including the conditional statement and the loop
statement, its execution effect actually reduces it into a se-
quence of special assignment statements. Thus it is feasible to
calculate predictions for a loop statement in the same way as
with an assignment statement.

V. EQUIVALENT EXPRESSION CALCULATION

In this section, we introduce the concept of equivalent
expression, and present the method to calculate and simplify
equivalent expressions.

Definition 4: If s is a program statement and e is an
expression at the program point after s, then the equivalent
expression ¢’ of s with respect to e is an expression at the the
s, which is equivalent to the expression

For example, if g
after “i=j; ”, then
program point befo
value of ali]

to the value of a[j]

expression at the program point
e ,equivalent expression at the

Note that the concept of equiva
viewed as a generalization of pre
is in regard to a predicate while an equiv;
regard to a predicate or just a simple expyessio

pre-condition
expression is in
variable.

A. Equivalent Expression Calculation

Given a program statement s and an expression
equivalent expression of s with respect to e, denote
is calculated recursively. The calculation of €(e, s)
based on the rules given in Table I. Column “e” lists
formats of the expressions while Column “e(e, s)” shows
to calculate the equivalent expression of the statement s wi

respect to the expression e.

W

From the table, we can see that the equivalent expression
calculation €(e, s) is reduced to the calculations of the equiv-
alent expressions of the sub-expressions of e. Consequently,
as long as we can calculate the equivalent expression for the
expression *¢, the calculation of equivalent expressions for
other expressions can be solved simply.

The equivalent expression of the program statement s with
respect to the expression xe’, namely e(xe’,s), depends on
whether the memory address specified by e’ is modified by
the statement s. If so, the new value in the memory €’ is
crucial for the value of e(xe’,s). As mentioned in Section
IV, 7(s) represents the tuples of the memories modified by
the program statement s and the corresponding new values
after executing s. Thus e(x€’, s) can be derived by iteratively
calculating the equivalent expression with respect to each tuple
in 7(s). Suppose that p represents the program point before the
statement s, the equivalent expression of x(e’@p) with respect
to each tuple (m, v) is a conditional expression c?e” : x(e’@Qp),
where c tests whether the memory specified by e¢’@p overlaps
with the memory specified by m, and ¢” is constructed based
on the value v.

e If m is a SiM, then the equivalent expression is (m ==
e)Qp?v@p : x(e'Qp)

o If m is a SeM, y(m) = {zx1,x9,...,2,} and the
corresponding sets of the variables x1,x2,...,x, are
respectively sety, seto, ..., sety,.

o If we can find n expressions ey, es,..., €, such that
¢’ is the same as the expression derived by substitut-
ing x1,xa,...,T, in k(m) with ej,es,...,e,, then

136

e/ € m holds if and only if e; € set; holds for
i =1,2,...,n. In this case, the equivalent expression
is as follows:

((e1 € set1) A (ez € seta) A--- A (e, € sety,))@Qp?
(vler/x1][ea/x2] . . . [en/xn])Qp : x(e'Qp)

o Otherwise, the equivalent expression is (¢/ € m)@Qp?p :
x(e’Qp)

B. Equivalent Expression Simplification

The calculated equivalent expressions may contain condi-
tional sub-expressions, program-point-specific sub-expressions
(@p), and the special expression p. These sub-expressions
should be simplified to make the equivalent expressions easy
to handle. Because the equivalent expression is evaluated at
the program point p, all the @p sub-expressions can be re-
moved after the equivalent expressions are finally constructed.
Moreover, a conditional expression c?e; : e can be simplified
to e; if the condition ¢ holds and it can be simplified to eq if
—c holds. The following premises are used to check whether
¢ or —c holds.

e The given preconditions of the program statement s;

e The memory layout properties of the programming lan-
guage shown in Table II;

e The conditions enclosing the sub-expression under sim-
plification.

o For a conditional expression c?e; : es, the condition ¢
is used as a premiss when e; is being simplified and
ocon is used as a premiss when e5 is being simplified;
r expressions of the forms Az.e[set] and Vz € set.e,
et is used as a premiss when the sub-expression

g simplified.

O

-of the-art SMT Solver Z3 [8] to
quivalent expressions. If the final
which means unknown as a sub-
s the final result.

expression, we

Considering the enoted as L, in Fig. 3,

equivalent expression is

Vo € [0, ((&sum == &s)@4?(21;;}) blz])@4 ;
((&sum == &alz])@4?7(3"7_) bz]) Qdyg

Because the two conditions —(&sum == &s)@4 and

—(&sum == &alzr])@4 hold, the equivalent expression is
simplified to itself.

()

Similarly, the equivalent expression is still itself after the
tuples (&, s) and (Az.(&b[z])[0, s — 1],0) are treated.

With regard to the last tuple (A\x.(&a[z])[0,s

1], Zzzo bly]), the constructed equivalent expression is
vz € [0, ((&s € Az.(&alz])[0,s — 1])@4?p : s) — 1].

(@ € 0,5 — 1))@42(Y ;g bly])@4 : alz]) > 0

TABLE I: Rules to calculate an equivalent expression

e e(e, s) e e(e, s)
2 quancificd variaple | © aterics | cleoss)telenss)sclen)
e Qk(k # j) e'Qk op € (op # *) op €(€, s)
&v &v e1 op e e(e1, s) op e(ez, s)
e’ e(x(e(€’, 5)), s) &(e'.n) &(e(&e’,s) = n)
v e(x(&v), s) &(e" = n) &(e(€',s) = n)
e'.n e(x(&e), s) &(erlez2]) & (xe(&eq, s)[e(ez2, s)])
e —n e(x(&e” — n), s) Az.e1[ea] Az.€(e1, s)[e(ez2, 5)]
e1les] e(x(&eile2]), s) Va € e1.e2 Vx € e(eq, s).€(e2, s)

Since the equivg
point 4, by simplify
equivalent expression V1

ssion is evaluated at the program
I ving ‘@4’, we have the final

7S —]-ZZ:O bly] > 0.

VI. SYNTHESIS OF EXECUT
ASSIGNMENTS, SEQUENTI
CONDITIONAL S

As has been pointed out in the
execution effect is the key to the calculat
expressions as well as preconditions. This s
in detail how to synthesize execution effects
sequential statements and conditional statements.

A. Synthesizing Execution Effects for Assignments

The execution effect of the assignment e e
{(&e1,e2)} where &e; and ey are evaluated at the program
point before this assignment. For example, the execution effect
of the statement “sum = sum+b[i]” is a one-element set
{{&sum, sum + b[i]) }.

B. Synthesizing Execution Effects for Sequential Statements

Let s be a sequential statement si;ss. The memories
modified by s are the union of those modified by s; and s,.
Since x(s2) is evaluated at the program point before so, we
must first calculate the equivalent representation of x(s2) at the
program point before s; and thus x(s) is x(s1)U{e(e, s1)|e €
x(s2)}. For each memory m in x(s), its new value in 7(s) is
calculated as e(e(x(x(m)@p), s2), s1) where p is the program

TABLE II: Axioms for memory layout and memory access

name axiom

DEREF-REF x&e =e

REF-DEREF eZ#null=&*xe==¢e¢
PVAR-1 &v # null
PVAR2 &o1 £ &us
PVAR-3 &v # &r —n
PVAR-4 &v Z &ali]
REC-1 r # null = &r — n # null
REC-2 (ri—=on=ras—on)s (rn=r)
REC-3 1T — N1 7& T2 — N2
ARR-1 a#null A0 <1t <c)— &((xa)[t] # null
ARR-2 (&((xa1)[ir]) = &((xaz)[i2])) <

(a1 ==a2 N1 == 12 A0 < 41,02 < C)
ARR-REC 1 — N1 FE T2 — N2

137

TABLE III: Calculation rules

[condition {
m € x(s1) Am € x(s2)
m € x(s1) Am & x(s2)

m & x(s1) Am € x(s2)

new value ‘

ctvy v
c?vy @ e(x(k(m)Q@pr), s2)
c?e(x(k(m)@Q@p2), s1) : v2

v1 and v2 are separately the new values of the memory
m in 7(s1) and 7(s2)

% p1 and po are separately the program points before the
else-branch and the then-branch

point before s. For example, 7(“ t = ¢ + 2;alt]
(&t,t+ 2), (&alt +2],0)}.

0; 7) is

C. hesizing Execution Effects for Conditional Statements
xecution effect of a conditional statement is synthe-

TO, execution effects of its branches. Let s be

a ifional ‘statement if ¢ then s; else sy. The modified
memaries . ., x(s), are the union of the modified
memories ¢F'the branche§Pi.c., x(s1)Ux(s2). For each memory
expressioni in x(s corresponding new value expression

is computed III.

itional statement in Fig. 4, the ex-

ecution effects of then-braa ad the else-branch are

respectively

{

Based on the rules in Table III, we can get the exeguiti
of the conditional statement below

{

and
(&absSum, absSum
(&negSum,negSum +

ct

}

In this section, we specify the loop statements that are dealt
with in our approach and describe how to synthesize execution
effects for such loops.

(&absSum, afi] > 07absSum + ali] : absSum — ali]),
(&posSum, ali] > 07posSum + ali] : posSum),
(&negSum, ali] > 0?negSum : negSum + ali])

VII. SYNTHESIS OF EXECUTION EFFECTS FOR LOOPS

if(ali]l>0){
absSum = absSum + al[il];
posSum = posSum + al[i]l;
}
else(
absSum = absSum - al[il;
negSum = negSum + ali];
}

e program summation

thesize the execution effect of a
llg@ by a variable which iterates

acyclic singly-linked list
s update thegmemories in some
in our approach.
¢) s, denoted
Statement, we

Our approach is
while-statement thati
over an integer intervalh
nodes, and the loop iter

two categories:

e The loop control condition ¢ is of theffo
e ~ w, where ~ is an operator in {<, <
an integer-typed variable and e is an expressi
type int. In this case, we also require:

The condition €(e, s) e holds, which m
the value of the expression e is not modified by
loop body s;
If ¢ is one of the forms w < e, w < e, € > w, or
e > w, the condition ¢(w, s) == w+ 1 should be met;
If ¢ is one of the forms w > e, w > e, e < w, or
e < w, the condition €¢(w, s) == w — 1 should be met.
If ¢ is one of the forms w # e or e # w, the condition
e(w,s) ==w—1Ve(w,s) == w + 1 should be met.
e The loop control condition c is of the forms w # null or
null # w, where w is a pointer to an acyclic singly-linked
list node. In this case, we also require:

o isSL(w) holds at the program point p;

o The condition €(w,s) = w — link is met, which
means that the loop iterates over the nodes of the
acyclic singly-linked list one by one;

o For each assignment e; = ey in the loop body,
&ey ¢ M(isSL(sl)) holds at the program point before
the assignment where sl is the initial value of w
before entering the loop and Mt(isSL(sl)) contains the
memories of the field n of each list node. This formula
guarantees that the loop does not modify the field n of
all the nodes being iterated, and thus the shape of the
singly-linked list is not modified.

(¢]

€

In both categories, w is the loop control variable. The loop
statements which satisfy the conditions in each category are
sure to terminate.

In the rest of this paper, £(w) is used to represent the valid
value set of the control variable w, which means that with any
value in &(w), we can access an element of the data structure
being iterated over. {(w) can be obtained by analyzing the
loop control condition and the known assertions at the program
point p. Considering the loop in Fig. 3, ¢ is the loop control
variable and £(4) is [0, s@4 — 1].

138

Through an analysis of such loops, we can see that the
memories modified by the loop body, i.e., x(s) can be grouped
into the following two categories:

e A memory m is a fixed address (FA) if and only if the
condition ¢(m, s) == m is satisfied.

e A memory m is a shifting address (SA) if and only if
the condition €(m, s) == m[e(w, s)|w] is satisfied.

From this, we can see that if a memory expression m is a FA,
each loop iteration updates the same memories, and if m is a
SA, each loop iteration updates different memories as the loop
control variable iterates over its valid value set. For example,
the memory &sum in Fig. 3 is a FA while the memory &ali]
is a SA.

B. Synthesizing Execution Effects for Loops

In this subsection, we discuss how to synthesize the execu-
tion effect of a loop statement by analyzing and transforming
the execution effect of its loop body.

We will first define some predicates which will be used in
the later sections.

Let w be the loop control variable and wg be a value in
the valid value set &(w). The set of values of w before w
equals to wy, denoted as p(w,wp), is shown in Fig. 5. With

(w,wp), we define the predicate N B(e,wp) to specify that
expression e is not modified by the iterations before the

te when the value of w equals to wy:
B(e,wo) = (w € p(w,wo)) = (e(e, s) == e)
i
sion &1S no
the value

where v(w, wp)
w equals to wy.

execution effect of
of synthesizing the

Suppose that (m,v) is a
the loop body, namely, 7(s)
execution effect of the loop

o If ¢(v,8) == v holds, then v is not modj
loop body, which means each loop itefati
same value v to the memory m. In this case, the tuple
corresponding to m in 7(L) is (m, c?v : *xm)

If m is a SiM and v is one of the forms xm op e or
e op *m, where op is an operator in {+, —, %, +,V, A},
and N B(e[wo/w], wo) holds for an arbitrary value wy in
&(w), then the value stored in the memory m in 7(L) is
specified in Table IV.

Considering the tuple (&sum, sum + bli]) of the execu-
tion effect of the loop body in Fig. 3, the memory &sum
is a FA and its value sum + b[¢] is of the form *m op e.
Based on the the first rule in Table IV, we can get the

{z|lx € E(v) Nz < wo}
{z|z € E(v) ANz > vo}
nodesSeg(v@p, vg)

/U‘(Uf UO) = {

: when v is an integer-typed variable and it increases by 1 in each iteration
: when v is an integer-typed variable and it decreases by 1 in each iteration
: when v points to an acyclic singly-linked list

Fig. 5: The value set u(v,vp)

{z|x € E(v) ANz > vo}

: when v is an integer-typed variable and it increases by 1 in each iteration
: when v is an integer-typed variable and it decreases by 1 in each iteration
: when v points to an acyclic singly-linked list

Fig. 6: The value set v(v, vg)

v(v {zlx € §(v) Nz < vo}
desSeg(vo, v@p)
tuple (&sum, s >, Ofx]) for the execution effect
of the loop.

e In other cases, the new value of
and the corresponding tuple is

t be computed,

TABLE 1V: Construction rules for sions

op new value
+,— | *mop 3 e €TPT
#,+ | #moop [ee explz/v
v #m op V,ce() €xp[z/V]
A #m op N\,ee(w) €2P[T/V]

2) mis a SA: When m is a SA, each loop iteration updages
a different set of memories according to the value of the loo
control variable. Given a tuple (m,v) in 7(s), the memory
modified by the iteration wq and the corresponding new value
after the iteration are respectively specified by the expressions
m|wg/w] and v[wy/w] evaluated when the iteration starts.

If the condition Ywg € &(w).NB(k(m)[we/w],wp) holds,
then the expression x(m)[wo/w] is evaluated to the same
value at the program point before the loop and the program
point before the iteration wyg, and thus Az.(m[z/w])[{(w)] is
a memory modified by the loop.

Furthermore, if both Ywy € &(w) NB(v[wy/w], wp) and
Ywy € &(w) NA(*(k(m)|we/w],wp) hold, then v[wy/w]
is evaluated to the same value at the program point be-
fore the loop as the value *(k(m)[wg/w]) evaluated at the
program point after the loop. In this case, v[wg/w] is the
new value stored in m[wg/w] after executing the loop, and
(Az.(m[z/w])[{(w)], v[z/w]) is a tuple in the execution effect
of the loop. Otherwise, (Ax.(m[z/w])[{(w)], o) is a tuple in
the execution effect of the loop.

Take the loop in Fig. 3 as an example, for brevity, the
loop and the loop body are respectively denoted as L and
S. The variable ¢ is the loop control variable of the loop
and &(4) is [0,99]. The tuple (&0b[i],0) is in the execution
effect of the loop body, namely, 7(.5), and the three conditions
Ywy € [0, 99}./\/’8(&1)[11)0}, IU()), Ywgy € [O, 99]/\/8(07100) and
Ywo € [0,99]. N A(*(&b[wo], wy) are met, thus we can obtain
the tuple (Az.(&b[z])[0,99],0) in 7(L).

C. Incremental Synthesis

Sometimes we cannot get a tuple for a loop from a tuple
of the loop body directly since some conditions may not

139

hold. In some cases, such conditions can be satisfied by
substituting some sub-expressions of a value expression in a
tuple of the loop body with their equivalent sub-expressions.
Thus we propose the incremental synthesis of substituting sub-
expressions of a value expression of a tuple of the loop body
with new sub-expressions.

The sub-expression, denoted as ma_exp, to be substi-
tuted is a memory-access expression and the memory being
accessed, denoted as m_exp, is a memory modified by the
loop. The sub-expression, denoted as v_exp’, used to substitute
ma_exp is the value of m_exp evaluated at the beginning

f each loop iteration. The sub-expression v_exp’ is obtained
transforming the value expression v_exp of the memory
g&p in the corresponding tuple of the loop generated in
1 synthesis processes. In general, the transformation is
ute the range of a variable by substituting the whole
ion in v_exp with the range that covers elements

e been iterated over. The substitution heuristics are
the sdme wij e in our previous work [27]. The details
of space limitation. We do this
til the result execution effect of the

Considering
(&sum, sum + bli])

of these two tuples,
s—1

wm, 35— blyl)

alue expression for

some conditions

we get (Az.(&alz])[0,s — 1
the loop. Here, we cannot

substitute the range [0,s — 1] of the varia]
sum + ZZ;}) bly] with the range [0,i —
expression sum + E;;lo bly]. Then we us
sum + Z;;lo bly] to substitute sum in ¢
sion in the tuple (&ali], sum + b[i]) of the Toop body, and
get the new tuple (&ali], sum + 37 _bly]). After that, we
analyze the transformed tuple and generate the result tuple
(Az.(&alz])[0,s — 1],3°7_ by]) of the execution effect of
the loop.

D. Nested Loops

Precondition calculation is more difficult in the presence of
nested loops. Our approach, however, is applicable to programs
with nested loops. The execution effect of the outer loop is
synthesized with inner loops replaced with their execution

i = 100; Considering the program in Fig. 3, 4 is the program point
L1: while(i<n){ before the loop statement. The tuple (&sum, ZZ;E bly]) is
J =0 among the execution effect of the loop and the memory

2
12: j,f,ile}um)(expression &sum is a SiM. Based on the ﬁrst rule, we can
clil (3] = 0; generate the post-condition sum == (Zy o bly])@4. In the
}{(pg;o}; tuple (Az.(&alx])[0,s — 1], Zzzo bly]), the memory expres-

sion Az.(&alx])[0, s—1] is a SeM. From this tuple, we generate
clil[3] + ali] [kl+b[k][j]; the post-condition Vz € [0,s — 1].alz] == (32,_, bly])@4
based on the second rule.

L3: while (k<
]

B. Inferring Loop Invariants

} Our approach infers loop invariants from post-conditions
generated in the last subsection utilizing the framework of
automatically generating suitable loop invariants with respect
to post-conditions of loops. The framework was proposed
herefore reduced and implemented in our previous work [27]. The framework

Fig. 7: Th a ix_multiplication

effects. The analysis of ested loop i

to the analysis of a single loop. And 4htisSghe precondition generates loop invariants based on the strategy of substituting
calculation for a nested loop is redug alculation for some sub-expressions of a given post-condition with some new
a single loop. sub-expressions which equals to the original one at the loop

Considering the program in Fig. 7, d Ls are exit program point. Because of space limitation, the details are

omitted here.

respectively represent the while-statemegts side to
inside. Using our approach, we firstly get thefex effect For instance, the formula sum == (Zy o bly))@4 is
of the innermost loop, 7(L3): a post-condition of the loop in Fig. 3, From this post-
qrs ars p—1 .) condition, we can infer the loop invariant sum == (sum +
{ <§;EL{>} ([][]] + HO a[z][m] * b[IL'][])) ; 10 [})@4 usmg the framework in [27].
With 7(Ls3), the loop L3 is just like a sequence of assignmefits. . Calculating Preconditions
Then, as a summary of L, 7(L3) is used in the synthesl eady mentioned in Definition 4, when an expression
process of 7(Lz), and the result execution effect 7(Ly) is as APOst-condition of a program statement s, the equivalent

follows: with respect to e, denoted as €', is actually

f the statement s with respect to the post-

(Az.(&cli] [z D[O m — 1],

(TTo25 TTEZg alil[z] * bla][y]) @p2),
(&K, p),
(&4, m)

Similarly, 7(L;) can be obtained.

as part of the code verificatio
VIIL. IN PRACTICE Hoare-style proof system integ
semi-automatic techniques i
flow analysis. We make use of
as the back-end SMT solver to

In this section, we discuss the application of the execu-
tion effect and the equivalent expression calculation, namely
inferring post-conditions, loop invariants and generating pre-
conditions for loops.

A. Inferring Post-conditions

We can infer post-conditions based on the execution effect
of a program statement since it summarizes the memories mod-
ified by this statement and the new values in these memories
after executing this statement.

ease code verification. Some of the experimental programs are
shown in Table V. Column “Data structure” shows the type of

Suppose that p represents the program point before a pro- the data structure manipulated by the loop statement in each
gram statement s, then for each tuple (m,v) in the execution program. Column “Routines” shows operations on the data
effect of the statement s, post-conditions of the statement s structure in the loop. The programs operating two-dimensional
are generated according to the following rules: arrays contain nested loops which can be handled well by

. . e our approach. One program name shown in Table V ma
e If m is a SiM, then one post-condmlon is xm == vQp; represlzll)lt a series of grograms. For example, “count” count}s]
e Iftm sa S_eM and of the form Az.m’[set], then one post- elements which satisfy some given condition like greater than
condition is Vz € [set]. * m’ == v@p.

one element or being non-null, or just counts all the elements
which are iterated over. We can successfully synthesize the

140

TABLE V: Experimental programs

Data Structure Routines
Closed Integer Intervals count, sum, multiply
One-dimensional Arrays copy, assign, count, sum, multiply, search, maximum, minimum

copy, assign, count, sum, multiply,
search, maximum, minimum, matrix_multiplication
Acyclic Singly-linked Lists | assign, count, sum, multiply, search, maximum, minimum

Two-dimensional Arrays

program statements of the programs Then we reduce the outer loop from a nested loop to a
d calculate preconditions, post-conditions single loop by substituting the inner loop shown in box () in
these programs. The process of Fig. 8(a) with its execution effect in box) in Fig. 8(b), and
i @ s and generating assertions for the reduced outer loop is shown in Fig. 8(b). We next analyze

seznds which includes the time the reduced program in Fig. 8(b) to obtain the execution effect

and loop invariants
synthesizing execu
each program is le

used by Z3. of the outer loop body /by and the result is as follows:

Next we will illustratéfthe applicatiopgef our approach to (&b[i], S0 é ali[z]),
the verification of a non-trivial progra i (&sum, sum + anl ali][z])
This program sets the i-th elemenf@ ofle-dimensional (&j >’ z=0 ’
array b to the sum of the element { &z’7i Y
dimensional array a and computes the s ’
in the array a. The formula bli] == (>

For the outer loop, ¢ is the loop control variable. In the first
tuple, the memory address &b[i] is a SA, and the condition
Vig € [0,m — 1] NB(&blio],%0) is met. Consequently, for an
arbitrary value i, &b[io] is evaluated to the same value at the

rogram point ps and the program point before the iteration
. In this case, Ay.(&b[y])[0,m — 1] represents a series of
emories modified by the outer loop.

the inner loop and the outer loop. The two pos
among the goals of verifying this program. In thi
we will use [b; and b, to respectively represent the
body and the outer loop body.

Firstly, our approach synthesizes the execution effect of
inner loop body [b; which consists of two assignments and get
the following result:

{ (&b(a], bli] + ali][4]), }

(&j,7+1)

an arbitrary value g, the two conditions Vip €
UNB(X ") afig)[], i) and Vip € [0,m —
io],70) hold, so 3"} afig][x] is evaluated to
t the program point before the outer loop
j0]) evaluated at the program point after

the outer se, > oo L alig)[x] is the new value

For the inner loop, j is the loop control variable. In stored in xecution effect of the outer loop,
the first tuple, the memory address &bli] is a FA, and thus and (Ay.(&bly LS " alyl[#]]) is a tuple in the
it is a memory address modified by the inner loop. The er loop

corresponding value b[i]+ali][5] is of the form «m+e, and for
any arbitrary value jo in the set £(3), the predicate N'B(3, jo)
holds. In this case, we can obtain the value stored in &b[¢] after
executing the i inner loop based on Table IV, and the result value

a FA and the condition
at &j is a memory
&7 after executing

In the third tuple, the memo
€(n,lby) == n holds, and th
modified by the outer loop a
the outer loop is n.

is bli] + >0, ! a[i][x]. The second tuple is treated in the same
way, and hence we get the execution effect of the inner loop We deal with the second tuple and aslone just as we
shown as follows: do for the two tuples of the executio ect ofthe idter loop
{ (&b[d], b[i] + 32" a[z][1, } body. The details are omitted here.
(&j,n After the synthesis process above, we thefollowing
execution effect of the outer loop:

Based on the synthesized execution effect, we can generate

post-conditions of the inner loop Since &b[i] is SiM, the post- (Ay.(&bly])[0,m — 1], (Zz 0 a[y][3/s
condition b[i] == (b[i]+>__, Lali)[z])@p1 is generated for the (&sum, (Zy:o Zz:ﬂ alyl[z])@ps),

inner loop according to the first rule given in Section VIII-A. (&j,n

Similarly, we can generate the post-condition j == n. These (&1, m)

two post-conditions are also the intermediate assertions of the

outer loop. Through a data flow analysis which is supported in Then we can reduce the loop shown in box 3) in Fig. 8(b)
Accumulator, we know that b[i] == 0 and ¥y € [0, m—1]vz € to a sequence of special assignments shown in box @& in
[0, n—1].a[y][z] == a[y][z]Qps hold at the program point p1, Fig. 8(c). The special assignments are just the generated
and hence the post-condition b[i] == (b[i]+3_},", a[i|[2])@py execution effect of the outer loop in the original program in
is simplified as bfi] == (3.I_ é ali][z])@ps which is the Fig. 8(a), and the reduced program is shown in Fig. 8(c). From

assertion to be proved at the program point po. this, we can see that our approach is able to reduce a loop

141

sum = 0; sum = 0; sum = 0;
i=0; i=0; i=0;
{p3: vy € [0.m —1]vx € [0,n —1].a[y][x] > 0} (p3: vy €10m - 1lvx € [0n - 1].aly]lx] >0} ____ (p3: vy €10m-1lvx€[0n - 1].a[y]lx] >0} ____
while (i<m) { Wwhile (i<m) { @: ! @:
b[i] = 0; bli] = 0; ! H
j = 0; j = 0; i -
fpl; b[i] == 0,vy € [0,m — 1] j{pl: b[i] == 0,vy € [0,m — 1] Ay (&b[yD[0,m — 1], (Z3=5 aly][x])@p3)

vx €[0,n — 1].aly][x] == a[y][x]@p3}

K&esum, (£33 S22 aly][x]) @p3)

vx € [0,n = 1]. afy][x] == a[y][x]@p3}
while (j<n) { @

(&[1], 01i] + SibalilxD@p1) | | ,
(&j,n) | X&j,m)

bli] = b[i] + alil[j];
i=3+
- {p2:bli] == T2 Falil[x], j ==n} Vi
g’uzmb[ﬂ =% [‘][["i]i sum = sum & bli]; (&L, m)
1 = @1 ' P tE il :
} AR SRR
(p4:vy € [0,m — 1]b[y] > 0} {pd:vy €[0,m = 1Jbly] > 0} {p4: vy € [0,m — 1]b[y] > 0}
(b) (c)
Fig. 8: Case study
program to a program without loops A (iuting the loops method in [2] removes all back edges in the control-flow graph

of unstructured programs to eliminate loops. Loop invariants
are added to guard loop bodies. A great number of techniques
have been proposed to automatically infer loop invariants, see

o ne1 e.g., [6], [24], [29], [12], [17], [3]. Nevertheless, automatic
vy meil[O, TA_ 1].bly] == .(szo aly [x generation of loop invariants itself is still a complicated
(>ymo 2oz—o alyl[z])@ps, j == n and i &€ problem which often requires ingenuity and human invention.

these, the first two post-conditions are the asscrtionsQuhi Unlike all of them, our approach can calculate preconditions
should be proved to be true in order to prove the §rre@tness _ for Joops without the help of loop invariants.

of the program in Fig. 8(a).

we can generate the following post-cof

In [14], loops are first transformed into acyclic programs

nding the number of loop iterations, which may lose

By comparison, our approach calculates precondi-

d on the automatically-synthesized execution effects
tements, which are accurate.

For the post-condition Yy € [0, m—1].b[y] > 0 of the olter
loop, our approach can calculate its precondition of the ou
loop, and the result is Yy € [0,m—1]. Y."Z, ali][z] > 0 which
is proved to be true using Z3 with the assertion Yy € [0, m —

1Vz € [0,n — 1].aly][x] > O being true at the program point

ps. Consequently, the post-condition Yy € [0,m — 1].b[y] > 0 ork enerates preconditions for both intermedi-
is proved to be true. Similarly, the post-condition sum == ate assertiog§fand p@st-cogditions of a loop based on proposed
(Z;”:*Ol Z:;S aly][z])@ps can be proved. heuristics ile t er summarizes a loop as modified

memories 0O Io, the new values after executing the

From the above process, we can see that our approach 1oop, and then ¢
is effective and practical to help prove the correctness of
a program by automatically calculating preconditions and
inferring post-conditions.

conditions based on the summary.

B. Summarization

X. RELATED WORK merous papers. The work [I{li] present

Our approach is related to previous works closely in two
areas: precondition calculation and summarization.

A. Precondition Calculation .
our summary is more general and has

Many precondition calculation techniques for handling including inferring preconditions and post-
loops have been proposed for different purposes. The works are the summary result of [11]. For terminati
[7], [4] generate preconditions of loops that guarantee program [26] summarizes loops based on abstract i
termination. The papers [22], [25] derive preconditions for while [26] summarizes a loop by computing symbolic abstract
safety assertions in loops. In [20], weakest preconditions of transformers with respect to a set of abstract domains. Unlike
loops are calculated and used for compiler optimizations. The [11], [26], the purpose of our summary is to automatically
works [10], [19], [14], [23], [2] calculate preconditions to generate assertions for program verification.

verify the correctness of a program, which are similar to us. . . .
y prog Many previous works have attempted to summarize pointer

Many works on the precondition calculation for loops are programs. The work [18] presents a local inter-procedural
based on de-sugaring loops with invariants. In [10], [19], shape analysis to summarize procedures as transformers of
preconditions for loops with respect to given post-conditions procedure-local heaps. In [15], an inter-procedural dataflow
are calculated by de-sugaring loops with loop invariants. In analysis technique is proposed to summarize procedure effects
[23], preconditions of loops are computed or approximated with procedure contracts which are graph transformations
by identifying invariant relations [21] of a while loop. The capturing the overall effect of a procedure. Similarly, [13]

142

employs graph grammars to abstract pointer operations. Unlike (8]
these works, our approach summarizes program statements
operating pointers as memories modified by them and the new
values stored in these memories after executing the statements.
Such a summary reflects the result of executing a statement,
which facilitates the program analysis and code verification. [10]

XI. CONCLUSION

. [11]
sults on loop statements that manip-

ta structures from real-world pro-
1) specifies the execution effect of a

sgmedified by the statement and new
ter executing this statement; (2)
i way to summarize a loop
t, which reduces a loop

[12]

[13]
[14]
[15]

[16]

invariants for a program statement based o
fect; (5) demonstrates our implemented tool,
results. The results show that the proposed approach imipro
the efficiency and quality of code verification by \generatin
assertions including pre-conditions, post-conditions
invariants automatically and reducing human involvemgnt,
which has great practicability and significance. 19

d [17]

Future Work. To ease the code verification task for more
programs, we will extend our work in several aspects. Firstly,
we will attempt to cover non-linear data structures like binary
search trees. Secondly, we are considering dealing with more
kinds of loops such as enhanced foreach loops over collections.

XII. ACKNOWLEDGEMENT (221
We thank the anonymous reviewers for their constructive
comments. This research was partially supported by National [23]
Key Basic Research Program of China No.2014CB340703,
National Science Foundation of China No0.61561146394,
No0.91318301, No.91418204, No.61321491 and No.61472179. |,
REFERENCES
[1] Accumulator. http://seg.nju.edu.cn/toolweb. [25]
[2] M. Barnett and K. R. M. Leino. Weakest-precondition of unstructured
programs. In ACM SIGSOFT Software Engineering Notes, volume 31,
pages 82-87. ACM, 2005. [26]
[3] D. Beyer, T. A. Henzinger, R. Majumdar, and A. Rybalchenko. Invariant
synthesis for combined theories. In Verification, Model Checking, and
Abstract Interpretation, pages 378-394. Springer, 2007. [27]
[4] M. Bozga, R. Iosif, and F. Kone¢ny. Deciding conditional termination.
In Tools and Algorithms for the Construction and Analysis of Systems,
pages 252-266. Springer, 2012. 28]
[5] A. Chawdhary, B. Cook, S. Gulwani, M. Sagiv, and H. Yang. Ranking
abstractions. In Programming Languages and Systems, pages 148-162.
Springer, 2008.
[6] S. Conchon, A. Goel, S. Krsti¢, A. Mebsout, and F. Zaidi. Invariants [29]

for finite instances and beyond. In Formal Methods in Computer-Aided
Design (FMCAD), pages 61-68, 2013.

[71 B. Cook, S. Gulwani, T. Lev-Ami, A. Rybalchenko, and M. Sagiv.
Proving conditional termination. In Computer Aided Verification, pages
328-340. Springer, 2008.

143

L. De Moura and N. Bjgrner. Z3: An efficient smt solver. In Tools
and Algorithms for the Construction and Analysis of Systems, pages
337-340. Springer, 2008.

E. W. Dijkstra. Guarded commands, nondeterminacy and formal
derivation of programs. Communications of the ACM, 18(8):453-457,
1975.

C. Flanagan and J. B. Saxe. Avoiding exponential explosion: Generating
compact verification conditions. In SYMPOSIUM ON PRINCIPLES OF
PROGRAMMING LANGUAGES, pages 193-205. ACM, 2001.

P. Godefroid and D. Luchaup. Automatic partial loop summarization
in dynamic test generation. In Proceedings of the 2011 International
Symposium on Software Testing and Analysis, pages 23-33. ACM, 2011.

D. Gopan, T. Reps, and M. Sagiv. A framework for numeric analysis
of array operations. ACM SIGPLAN Notices, 40(1):338-350, 2005.

J. Heinen, C. Jansen, J.-P. Katoen, and T. Noll. Juggrnaut: using graph
grammars for abstracting unbounded heap structures. Formal Methods
in System Design, 47(2):159-203, 2015.

I. Jager and D. Brumley. Efficient directionless weakest preconditions.
Technical report, Technical Report CMU-CyLab-10-002, Carnegie Mel-
lon University, CyLab, 2010.

C. Jansen and T. Noll. Generating abstract graph-based procedure

summaries for pointer programs. In Graph Transformation, pages 49—
64. Springer, 2014.

Z. Jianhua and L. Xuandong. Scope logic: An extension to hoare logic
for pointers and recursive data structures. In Theoretical Aspects of
Computing—ICTAC 2013, pages 409-426. Springer, 2013.

L. Kovécs and A. Voronkov. Finding loop invariants for programs over
arrays using a theorem prover. In Fundamental Approaches to Software
Engineering, pages 470-485. Springer, 2009.

J. Kreiker, T. Reps, N. Rinetzky, M. Sagiv, R. Wilhelm, and E. Yahav.
Interprocedural shape analysis for effectively cutpoint-free programs.
In Programming Logics, pages 414—445. Springer, 2013.

R. M. Leino. Efficient weakest preconditions. Information Process-
etters, 93(6):281-288, 2005.

?. Lopes and J. Monteiro. Weakest precondition synthesis for
timizations. In Verification, Model Checking, and Abstract
, pages 203-221. Springer, 2014.

raihi, L. L. Jilani, and A. Mili. Invariant assertions,
nd ingariant functions. In WING 2009 WORKSHOP
TION, page 60. Citeseer, 2009.

ditions for modular assertion checking. In
Verification,
202. Springer;

Springer, 2011.
C. S. Pisdreanu and W. Viss
symbolic execution and inva
Software, pages 164—181. Springer;*200
M. N. Seghir and D. Kroening. Counte
inference. In Programming Languages
Springer, 2013.

of java programs using
In Model Checking

summarization and termination analysis. In Tooland
the Construction and Analysis of Systems, pages 81-95.

J. Zhai, H. Wang, and J. Zhao. Post-condition-di
ence for loops over data structures. In Software Security and Reliability-
Companion (SERE-C), 2014 IEEE Eighth International Conference on.
IEEE, 2014.

J. Zhai, H. Wang, and J. Zhao. Assertion-directed precondition synthesis
for loops over data structures. In Dependable Software Engineering:
Theories, Tools, and Applications - First International Symposium,
SETTA 2015, Proceedings, pages 258-274, 2015.

L. Zhang, G. Yang, N. Rungta, S. Person, and S. Khurshid. Feedback-
driven dynamic invariant discovery. In Proceedings of the 2014

International Symposium on Software Testing and Analysis, pages 362—
372. ACM, 2014.

