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Abstract—Precondition calculation is a fundamental program
verification technique. Many previous works tried to solve this
problem, but ended with limited capability due to loop state-
ments. We conducted a survey on loops manipulating commonly-
used data structures occurring in several real-world open-source
programs, and found that about 80% of such loops iterate over
elements of a data structure, indicating that automatic calculation
of preconditions with respect to post-conditions of these loops
would cover a great number of real-world programs and greatly
ease code verification tasks.

In this paper, we specify the execution effect of a program
statement using the memories modified by the statement and
the new values stored in these memories after executing the
statement. Thus, conditional statements and loop statements can
be uniformly reduced to a sequence of assignments. Also we
present an approach to calculate preconditions with respect to
given post-conditions of various program statements including
loops that iterate over elements of commonly-used data structures
(e.g., acyclic singly-linked lists) based on execution effects of
these statements. With execution effects, post-conditions and loop
invariants can also be generated. Our approach handles various
types of data including numeric, boolean, arrays and user-defined
structures. We have implemented the approach and integrated it
into the code verification tool, Accumulator. We also evaluated
the approach with a variety of programs, and the results show
that our approach is able to calculate preconditions for different
kinds of post-conditions, including linear ones and universally
quantified ones. Preconditions generated with our approach can
ease the verification task by reducing the burden of providing
loop invariants and preconditions of loop statements manually,
which improves the automatic level and efficiency, and makes the
verification less error-prone.

Keywords—precondition; loop; data structure; execution effect;
equivalent expression

I. INTRODUCTION

Program verification is an effective approach to ensure rig-
orous, unambiguous guarantees on program correctness. One
basic approach for program verification is to reduce a program
specification {p} s {q} into a logical formula p ⇒ WP(q, s)
where WP(q, s) represents the weakest precondition [9] of s
with respect to q. Many previous works attempt to calculate
weakest preconditions, but the existence of loop statements
limits their abilities. The work [16] is able to calculate weakest
preconditions for programs that manipulate pointers, but loops
are not supported. Works like [10], [19] calculate weakest
preconditions for loops by de-sugaring loops with loop invari-
ants. However, automatic generation of loop invariants itself

remains largely unfulfilled. Other works like [14] calculate
weakest preconditions for loops by bounding the number of
iterations to transform loop programs into acyclic programs,
which sometimes may lose accuracy. Weakest precondition
calculation for loop statements is of great significance in
program verification, but it is still a tough challenge, which
remains unresolved to this day.

As one of the basic component in modern programming
languages, container data structures are frequently used in real-
world, widely-used applications. We have conducted a statistic
analysis on loops manipulating commonly-used container data
structures occurring in several open-source softwares, such as
Apache httpd and nginx. We found that about 80% of such
loops iterate over elements of a container data structure. From a
practical point of view, automatic calculation of preconditions
with respect to given post-conditions of this kind of loops
would cover a great number of cases in real-world widely-
used programs, and greatly ease the code verification tasks.
This motivates us to develop an automatic precondition cal-
culator for loops that iterate over elements of commonly-used
container data structures.

In this paper, we specify the execution effect of a statement
as memories modified by the statement and new values stored
in these memories after executing the statement, and present
a novel approach to calculate preconditions with respect to
given post-conditions of program statements including loops
based on the execution effect. Naturally, our approach supports
nested loops. Furthermore, other assertions including post-
conditions and loop invariants can be derived with the presence
of the execution effect of a statement. Our approach handles
a wide range of data types (e.g., numeric, boolean, arrays
and structures like acyclic singly-linked list node) and it is
able to deal with universally quantified formulas which are
necessary and important to express properties of programs
that manipulate unbounded data structures like acyclic singly-
linked lists. Our contributions are highlighted as follows.

1) To the best of our knowledge, we are the first to specify
the execution effect of a loop statement as memories
modified by the loop and new values stored in these
memories after executing the loop, which reduces a loop
statement into a sequence of assignments and effectively
summarizes a loop statement.

2) We propose a novel approach to synthesize execution
effects of loop statements that manipulate commonly-
used container data structures including one-dimensional
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arrays, two-dimensional arrays and acyclic singly-linked
lists, which reduces a loop statement into a sequence of
assignment statements.

3) With the execution effect of a loop statement, we propose
an approach to calculate preconditions, post-conditions
and loop invariants for this loop statement.

4) Based on the proposed approaches, we implemented a
prototype, and integrated it into the code verification
tool, Accumulator [1]. We also evaluated our approaches,
and the results show that we can effectively generate
various types of assertions, including preconditions, post-
conditions and loop invariants.

The remainder of the paper is organized as follows. Section
II introduces Scope Logic [16]. Section III gives an example
which motivates our work. Section IV specifies the execution
effect of a program statement. Section V presents the method
to calculate equivalent expressions based on execution effects.
Section VI demonstrates how to synthesize execution effects of
assignments, sequential statements and conditional statements.
Section VII summarizes the types of loops that our approach
can handle, and how they are treated in our approach. Section
VIII gives some applications of execution effects. Section IX
sketches the implementation of the approach and presents a
real world case. Section X surveys related works, and in the
end, Section XI concludes the paper.

II. PRELIMINARY

In this section, we present a brief overview of Scope
Logic [16], which is an extension of Hoare Logic to deal with
pointers and recursive data structures.

The basic idea of Scope Logic is that the value of an
expression e depends only on the contents stored in a finite set
of memories. The value of e keeps unchanged if no memory
in this set is modified by program statements. This set of
memories is denoted as M(e).

In Scope Logic, specifications and verifications are written
in the proof-in-code form. Formulas are written at program
points, which are places before and after program statements.
For a sequential statement s1; s2, the program point after s1
is just the program point before s2. A formula at a program
point means that this formula holds each time the program
runs into this program point. Formulas at the program point
before a statement and the program point after a statement are
separately preconditions and post-conditions of this statement.

Scope Logic introduces program-point-specific expres-
sions to specify the relations between program states at differ-
ent program points. A program point j is said to dominate a
program point i if the program must go through the program
point j before it goes to the program point i. In this case,
we write e@j at the program point i to denote the value of
e evaluated at the program point j when the program was at
the program point j the last time. At the program point j,
the program-point-specific expression e@j equals to e, and at
a program point other than j including the program point i,
e@j is treated as a constant.

To describe program properties, especially properties of
recursive data structures, Scope Logic allows users to define
recursive functions. For example, the recursive functions de-
fined in Fig. 1 specify properties of acyclic singly-linked lists.

The function isSL(x) asserts that if a node x is a null pointer
or x → n points to an acyclic singly-linked list, then x is
an acyclic singly-linked list, and the function isSLSeg(x, y)
states that the node x can reach the node y along the field
n and the nodes from the node x to the node y make up
an acyclic singly-linked list segment. The function nodes(x)
yields the set of all the nodes of the singly-linked list x, while
the function nodesSeg(x, y) yields the set of nodes from the
node x to the node y (excluded) along the filed n.

First-order logic cannot deal with user-defined functions.
To support local reasoning about programs whose properties
are expressed using user-defined functions, we need to provide
properties of these functions. Both the given properties of the
use-defined functions and the definitions of these functions are
used to reason about programs. Some properties for the user-
defined functions in Fig. 1 are given in Fig. 2. Take the first
property as an example, it describes that if the pointer variable
x is null, then x represents an acyclic singly-linked list and
the node set of x is empty.

III. BACKGROUND AND MOTIVATION

A. Weakest Preconditions for Loops

Weakest preconditions have been widely used to prove
the correctness of a program with respect to specifications
represented by pairs of preconditions and post-conditions.
Automatic generation of weakest preconditions can greatly fa-
cilitate the formal verification of programs to improve software
quality and reliability. However, precondition calculation faces
formidable challenges when loop statements are considered.
Traditionally, preconditions for loops are provided manually,
which is a tedious and error-prone task, and also increases the
burden for programmers. This poses a tremendous obstacle to
the practical use of code verification.

There is an enormous variety of loops which makes it
impossible to find a uniform way to automatically calculate
preconditions for all of them. From our statistic analysis on
loops manipulating frequently-used data structures occurring in
several open-source softwares including memcached, Apache
httpd and nginx, we found that about eighty percent of such
loops achieve their goals by iterating over elements of a data
structure. From a practical standpoint, automatic calculation
of preconditions which are powerful enough to prove post-
conditions for this kind of loops would cover a great number of
real-world widely-used programs, making the code verification
much easier and less error-prone.

The above factors motivate us to develop an approach to au-
tomatically calculate preconditions with respect to given post-
conditions of loop statements that manipulates commonly-used
data structures to ease the code verification tasks and improve
the quality and reliability of softwares.

B. Our Idea: Calculating Preconditions from Modified Mem-
ories and New Values

The value of an expression e depends only on the values
stored in a finite set of memories, and the value of e keeps
unchanged if no memory in this set is modified by program
statements. Given a program statement s, and i, j be respec-
tively the program points before and after s, the program state
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isSL(x : P (Node)) : bool
Δ
=(x == null)?true : isSL(x→ link)

Nodes(x : P (Node)) : SetOf(P (Node))
Δ
=(x == null)?∅ : ({x} ∪Nodes(x→ link))

isSLSeg(x : P (Node), y : P (Node)) : bool
Δ
=(x == null)?false : ((x == y)?true : isSLSeg(x→ link, y))

NodesSeg(x : P (Node), y : P (Node)) : SetOf(P (Node))
Δ
=(x == null)?∅ : ((x == y)?∅ : ({x} ∪NodesSeg(x→ link, y)))

Fig. 1: Recursive functions of acyclic singly-linked lists

∀x(x == null)⇒(isSL(x) ∧ nodes(x) == ∅)
∀x(x �= null ∧ isSL(x))⇒(nodes(x) == {x} ∪ nodes(x→ n) ∧ x /∈ nodes(x→ n))

∀x∀y(x == y)⇒(nodesSeg(x, y) == ∅)
∀x∀y(x �= null ∧ y == null)⇒(nodesSeg(x, y) == nodes(x))

∀x∀y(isSL(y) ∧ isSLSeg(x, y))⇒(isSL(x) ∧ nodes(x) == nodes(y) ∪ nodesSeg(x, y))

∀x∀y∀z(isSLSeg(x, y) ∧ isSLSeg(y, z)⇒(isSLSeg(x, z) ∧ nodesSeg(x, z) == nodesSeg(x, y) ∪ nodesSeg(y, z))

Fig. 2: Properties of acyclic singly-linked lists

at the program point i is different with the program state at
the program point j only on the memories modified by the
statement s. Suppose that m is the memory modified by s and
v is the new value stored in m after executing s. Both m and v
are evaluated at the program point i. For any memory address
x in e, the value of (x == m)?v : ∗x at the program point i
equals to the value of ∗x at the program point j, and thus we
can calculate an equivalent expression at i which is equal to
e at j. When e is a post-condition, the equivalent expression
is actually the precondition.

Basic Idea: Given a loop statement and its post-conditions,
we firstly attempt to analyze the loop body to get the memories
modified by the loop body and the new values in these
memories after executing the loop body, based on which we
then synthesize the memories modified by the loop and the new
values stored in these memories after executing the loop. With
the synthesized modified memories and the new values, the
loop is equivalent to a sequence of assignments which assigns
the new values to the modified memories.

Example. Fig. 3 gives a program that operates on two one-
dimensional arrays. The loop in the program manipulates the
arrays a and b via the loop control variable i which iterates over
the closed integer interval [0, s−1]. The program computes the
sum of the elements whose indexes range from 0 to s−1 in the
array b, and sets the k-th element of the array a with the sum
of the elements whose subscripts range from 0 to k in the array
b. Also, each element in the array b is set to the value 0. The
numbered program points of the program, together with some
formulas, are also shown. The entrance program point and the
exit program point are respectively 1 and 10. The formulas
like sum == (

∑s−1
x=0 b[x])@4 at the program point 10 are the

post-conditions of the loop, which are also the post-conditions
of the program.

{1: a �= b}
s = 100;
{2: s == 100}
i = 0;
{3: i == 0}
sum = 0;
{4: sum == 0, i == 0}
while(i < s)
{

{5: sum == (
∑i−1

x=0 b[x])@4}
sum = sum + b[i];
{6: sum == sum@5 + b[i]}
a[i] = sum;
{7: a[i] == sum}
b[i] = 0;
{8: b[i] == 0}
i = i + 1;
{9: i == i@5 + 1 }

}
{10: sum == (

∑s−1
x=0 b[x])@4,

∀x ∈ [0, s− 1].a[x] == (
∑x

y=0 b[y])@4,
∀x ∈ [0, s− 1].b[x] == 0,
∀x ∈ [1, s− 1].a[x] > a[x− 1]}

Fig. 3: The program summation

Through an analysis of the loop body, we know that the
loop body respectively assigns the new values sum + b[i],
sum + b[i], 0 and i + 1 evaluated at the program point 5 to
the memories &sum, &a[i], &b[i] and &i. As the loop control
variable i iterates over the closed integer interval [0, s−1], the
value of sum at the program point 5 is evaluated to be the

value of
∑i−1

x=0 b[x]@4. And hence in each iteration, the value
stored in the memory address &a[i] is evaluated as the value

134

For Research Only



of
∑i

x=0 b[x]@4.

Based on the result, we can synthesize the memories
modified by the loop and the corresponding new values, and
the result is as follows: the values of the variables i and sum
are respectively set to s − 1 and (

∑s−1
x=0 b[x])@4, and for

each x in the interval [0, s − 1], a[x] is set to the value of
(
∑x

y=0 b[y])@4, and b[x] is set to 0.

With the memories modified by the loop and the new values
stored in the memories, we are able to calculate preconditions
with respect to post-conditions of this loop. Take the post-
condition

∀x ∈ [1, s− 1].a[x] > a[x− 1] (1)

of the loop as an example. From the modified memories and
the new values of the loop, we know that the value of s
is not modified by the loop, and for each x in the interval
[0, s − 1], the value of a[x] at the point 10 equals to the
value of

∑x
y=0 b[y] which is evaluated at the program point 4.

By substituting the expressions a[x] and a[x− 1] in the post-

condition (1) with their values
∑x

y=0 b[y] and
∑x−1

y=0 b[y], we

get the formula ∀x ∈ [1, s−1].
∑x

y=0 b[y] >
∑x−1

y=0 b[y] which
can be simplified to

∀x ∈ [1, s− 1].b[x] > 0 (2)

The value of (2) evaluated at the program point 4 equals
to the value of (1) evaluated at the program point 10, and the
formula (2) is just the precondition of the loop with respect to
the post-condition (1).

IV. EXECUTION EFFECT

In this section, we specify the execution effect of a program
statement as the memories modified by this statement and
the new values stored in these memories after executing the
statement, which is the basis of calculating preconditions for
a statement.

Executing a program statement is to manipulate memories
related to this statement. In our work, we group the memories
into two categories which are separately defined in Definition
1 and Definition 2.

Definition 1: A single memory expression (SiM) is any
expression with the type P (t), i.e., a pointer type to a type t.
Here t can be int, boolean, or some other pointer types.

Definition 2: A set memory expression (SeM) is an
expression of the form λx.e[set], where e is a memory, set is
an expression with a set type, and x is bound in set.

The kernel (K) of a memory m, denoted as κ(m), and the
range variables (RV) of a memory m, denoted as γ(m), are
defined as follows.

• If m is a SiM, then κ(m) = {m} and γ(m) = ∅;
• If m is a SeM and of the form λx.m′[set], then κ(m) =
κ(m′) and γ(m) = {x} ∪ γ(m′).

Intuitively, the effect of executing a program statement is
assigning new values to a finite set of memories while keeping
the values of other memories unchanged. We specify the
execution effect of each program statement as a set of tuples

of memories modified by this statement and the corresponding
new values stored in these memories after executing the
statement. More formally,

Definition 3: The execution effect of a program statement
s, denoted as τ(s), is a finite set of tuples of the form
〈m, v〉 where m is a memory expression, and v is the new
value expression of m. Both m and v are evaluated at the
program point before executing s. The type of κ(m) and v are
respectively P (t) and t for some t, and the variables in γ(m)
can occur in v.

A special expression � is introduced in our work to specify
the value of v when the new value in the memory m cannot
be determined. In other words, if we know that a statement s
modifies the memory m, but we cannot get the new value in
m, then the execution effect of s is specified as {〈m, �〉}.
• If m is a SiM, then the tuple means the value stored in

the memory m is v;
• If m is a SeM and of the following form

λx1.(. . . (λxk.e[setk]) . . . )[set1]

then the tuple means that for each memory expressed
as m[v1/x1][v2/x2] . . . [vk/xk], the corresponding new
value is represented as v[v1/x1][v2/x2] . . . [vk/xk], where
vi is a value in the set seti for i = 1, 2, . . . , k.

Take the loop in Fig. 3 as an example. Its execution effect
is as follows:⎧⎪⎪⎨

⎪⎪⎩
〈&i, s〉,

〈&sum,
∑s−1

x=0 b[x]〉,〈λx.(&b[x])[0, s− 1], 0〉,
〈λx.(&a[x])[0, s− 1],

∑x
y=0 b[y]〉

⎫⎪⎪⎬
⎪⎪⎭

The first two tuples specify that the new values of the variables
i and sum are respectively the values of s and

∑s−1
x=0 b[x]

evaluated at the loop entrance point, namely at the program
point 4. The third tuple specifies that the elements indexed
from 0 to s − 1 in the array b are set to 0 while the last one
specifies that the elements indexed from 0 to s−1 of the array
a are set to the value of

∑x
y=0 b[y] evaluated at the program

point before executing the loop.

The set of memories modified by a statement s, denoted
as χ(s), is the set of memory expressions in the execution
execution τ(s). The memory expressions in χ(s) may overlap
with each other. It is required that if two memory expressions
specify two overlapped memory sets, their corresponding new-
value expressions must agree on the common memory units.
For example, the execution effect of the sequential statement
“ *p=1; *q=2; ” is specified as{ 〈p, (p == q?2 : 1)〉,

〈q, 2〉,
}

The memory units specified by p and q may be the same. When
the condition p == q holds, their new value expressions are
both evaluated to 2.

What should be highlighted here is that for any program
statement including the conditional statement and the loop
statement, its execution effect actually reduces it into a se-
quence of special assignment statements. Thus it is feasible to
calculate predictions for a loop statement in the same way as
with an assignment statement.
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V. EQUIVALENT EXPRESSION CALCULATION

In this section, we introduce the concept of equivalent
expression, and present the method to calculate and simplify
equivalent expressions.

Definition 4: If s is a program statement and e is an
expression at the program point after s, then the equivalent
expression e′ of s with respect to e is an expression at the the
program point before s, which is equivalent to the expression
e after executing the statement s. When e is a post-condition
of the statement s, e′ is the precondition of s with respect to
the post-condition e.

For example, if a[i] is an expression at the program point
after “i=j; ”, then a[j] is the equivalent expression at the
program point before “i=j; ” with respect to a[i] since the
value of a[i] at the program point after the assignment equals
to the value of a[j] at the program point before the assignment.

Note that the concept of equivalent expressions can be
viewed as a generalization of pre-conditions. A pre-condition
is in regard to a predicate while an equivalent expression is in
regard to a predicate or just a simple expression like a variable.

A. Equivalent Expression Calculation

Given a program statement s and an expression e, the
equivalent expression of s with respect to e, denoted as ε(e, s),
is calculated recursively. The calculation of ε(e, s) is reduced
based on the rules given in Table I. Column “e” lists the
formats of the expressions while Column “ε(e, s)” shows how
to calculate the equivalent expression of the statement s with
respect to the expression e.

From the table, we can see that the equivalent expression
calculation ε(e, s) is reduced to the calculations of the equiv-
alent expressions of the sub-expressions of e. Consequently,
as long as we can calculate the equivalent expression for the
expression ∗e′, the calculation of equivalent expressions for
other expressions can be solved simply.

The equivalent expression of the program statement s with
respect to the expression ∗e′, namely ε(∗e′, s), depends on
whether the memory address specified by e′ is modified by
the statement s. If so, the new value in the memory e′ is
crucial for the value of ε(∗e′, s). As mentioned in Section
IV, τ(s) represents the tuples of the memories modified by
the program statement s and the corresponding new values
after executing s. Thus ε(∗e′, s) can be derived by iteratively
calculating the equivalent expression with respect to each tuple
in τ(s). Suppose that p represents the program point before the
statement s, the equivalent expression of ∗(e′@p) with respect
to each tuple 〈m, v〉 is a conditional expression c?e′′ : ∗(e′@p),
where c tests whether the memory specified by e′@p overlaps
with the memory specified by m, and e′′ is constructed based
on the value v.

• If m is a SiM, then the equivalent expression is (m ==
e′)@p?v@p : ∗(e′@p)

• If m is a SeM, γ(m) = {x1, x2, . . . , xn} and the
corresponding sets of the variables x1, x2, . . . , xn are
respectively set1, set2, . . . , setn.

◦ If we can find n expressions e1, e2, . . . , en such that
e′ is the same as the expression derived by substitut-
ing x1, x2, . . . , xn in κ(m) with e1, e2, . . . , en, then

e′ ∈ m holds if and only if ei ∈ seti holds for
i = 1, 2, . . . , n. In this case, the equivalent expression
is as follows:

((e1 ∈ set1) ∧ (e2 ∈ set2) ∧ · · · ∧ (en ∈ setn))@p?
(v[e1/x1][e2/x2] . . . [en/xn])@p : ∗(e′@p)

◦ Otherwise, the equivalent expression is (e′ ∈ m)@p?� :
∗(e′@p)

B. Equivalent Expression Simplification

The calculated equivalent expressions may contain condi-
tional sub-expressions, program-point-specific sub-expressions
(@p), and the special expression �. These sub-expressions
should be simplified to make the equivalent expressions easy
to handle. Because the equivalent expression is evaluated at
the program point p, all the @p sub-expressions can be re-
moved after the equivalent expressions are finally constructed.
Moreover, a conditional expression c?e1 : e2 can be simplified
to e1 if the condition c holds and it can be simplified to e2 if
¬c holds. The following premises are used to check whether
c or ¬c holds.

• The given preconditions of the program statement s;
• The memory layout properties of the programming lan-

guage shown in Table II;
• The conditions enclosing the sub-expression under sim-

plification.

◦ For a conditional expression c?e1 : e2, the condition c
is used as a premiss when e1 is being simplified and
¬con is used as a premiss when e2 is being simplified;

◦ For expressions of the forms λx.e[set] and ∀x ∈ set.e,
x ∈ set is used as a premiss when the sub-expression
e is being simplified.

We design and implement a simple decision procedure
which employs the state-of the-art SMT Solver Z3 [8] to
simplify the calculated equivalent expressions. If the final
expression still contains � which means unknown as a sub-
expression, we just use � as the final result.

Considering the loop statement, denoted as L, in Fig. 3,
now we show how the equivalent expression ε(∀x ∈ [0, s −
1].a[x] > 0, L) is calculated.

In the expression ∀x ∈ [0, s − 1].a[x] > 0, the memory-
access sub-expressions are s and a[x] which are transformed
to ∗(&s) and ∗(&a[x]) respectively.

In regard to the first tuple 〈&sum,
∑s−1

x=0 b[x]〉 in τ(L), the
equivalent expression is

∀x ∈ [0, ((&sum == &s)@4?(
∑s−1

x=0 b[x])@4 : s)− 1].

((&sum == &a[x])@4?(
∑s−1

x=0 b[x])@4 : a[x]) > 0

Because the two conditions ¬(&sum == &s)@4 and
¬(&sum == &a[x])@4 hold, the equivalent expression is
simplified to itself.

Similarly, the equivalent expression is still itself after the
tuples 〈&i, s〉 and 〈λx.(&b[x])[0, s− 1], 0〉 are treated.

With regard to the last tuple 〈λx.(&a[x])[0, s −
1],

∑x
y=0 b[y]〉, the constructed equivalent expression is

∀x ∈ [0, ((&s ∈ λx.(&a[x])[0, s− 1])@4?� : s)− 1].
((x ∈ [0, s− 1])@4?(

∑x
y=0 b[y])@4 : a[x]) > 0
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TABLE I: Rules to calculate an equivalent expression

e ε(e, s) e ε(e, s)
a constant/

a quantified variable
e e0?e1 : e2 ε(e0, s)?ε(e1, s) : ε(e2, s)

e′@k(k �= j) e′@k op e′(op �= ∗) op ε(e′, s)
&v &v e1 op e2 ε(e1, s) op ε(e2, s)
∗e′ ε(∗(ε(e′, s)), s) &(e′.n) &(ε(&e′, s)→ n)
v ε(∗(&v), s) &(e′ → n) &(ε(e′, s)→ n)

e′.n ε(∗(&e′.n), s) &(e1[e2]) &(∗ε(&e1, s)[ε(e2, s)])
e′ → n ε(∗(&e′ → n), s) λx.e1[e2] λx.ε(e1, s)[ε(e2, s)]
e1[e2] ε(∗(&e1[e2]), s) ∀x ∈ e1.e2 ∀x ∈ ε(e1, s).ε(e2, s)

Since the equivalent expression is evaluated at the program
point 4, by simplifying it and removing ‘@4’, we have the final
equivalent expression ∀x ∈ [0, s− 1].

∑x
y=0 b[y] > 0.

VI. SYNTHESIS OF EXECUTION EFFECTS FOR

ASSIGNMENTS, SEQUENTIAL STATEMENTS AND

CONDITIONAL STATEMENTS

As has been pointed out in the previous section, the
execution effect is the key to the calculation of equivalent
expressions as well as preconditions. This section will explain
in detail how to synthesize execution effects of assignments,
sequential statements and conditional statements.

A. Synthesizing Execution Effects for Assignments

The execution effect of the assignment e1 = e2 is
{〈&e1, e2〉} where &e1 and e2 are evaluated at the program
point before this assignment. For example, the execution effect
of the statement “sum = sum+b[i]” is a one-element set
{〈&sum, sum+ b[i]〉}.

B. Synthesizing Execution Effects for Sequential Statements

Let s be a sequential statement s1; s2. The memories
modified by s are the union of those modified by s1 and s2.
Since χ(s2) is evaluated at the program point before s2, we
must first calculate the equivalent representation of χ(s2) at the
program point before s1 and thus χ(s) is χ(s1)∪{ε(e, s1)‖e ∈
χ(s2)}. For each memory m in χ(s), its new value in τ(s) is
calculated as ε(ε(∗(κ(m)@p), s2), s1) where p is the program

TABLE II: Axioms for memory layout and memory access

name axiom
DEREF-REF ∗&e = e
REF-DEREF e �= null⇒ & ∗ e == e

PVAR-1 &v �= null
PVAR-2 &v1 �= &v2
PVAR-3 &v �= &r → n
PVAR-4 &v �= &a[i]
REC-1 r �= null⇒ &r → n �= null
REC-2 (r1 → n = r2 → n)⇔ (r1 = r2)
REC-3 r1 → n1 �= r2 → n2

ARR-1 a �= null ∧ (0 ≤ i < c)→ &((∗a)[i] �= null
ARR-2 (&((∗a1)[i1]) = &((∗a2)[i2]))⇔

(a1 == a2 ∧ i1 == i2 ∧ 0 ≤ i1, i2 < c)
ARR-REC r1 → n1 �= r2 → n2

TABLE III: Calculation rules

condition new value
m ∈ χ(s1) ∧m ∈ χ(s2) c?v1 : v2
m ∈ χ(s1) ∧m /∈ χ(s2) c?v1 : ε(∗(κ(m)@p1), s2)
m /∈ χ(s1) ∧m ∈ χ(s2) c?ε(∗(κ(m)@p2), s1) : v2
1 v1 and v2 are separately the new values of the memory
m in τ(s1) and τ(s2)

2 p1 and p2 are separately the program points before the
else-branch and the then-branch

point before s. For example, τ(“ t = t + 2; a[t] = 0; ”) is
{〈&t, t+ 2〉, 〈&a[t+ 2], 0〉}.

C. Synthesizing Execution Effects for Conditional Statements

The execution effect of a conditional statement is synthe-
sized from the execution effects of its branches. Let s be
a conditional statement if c then s1 else s2. The modified
memories of s, i.e., χ(s), are the union of the modified
memories of the branches, i.e., χ(s1)∪χ(s2). For each memory
expression m in χ(s), the corresponding new value expression
is computed shown in Table III.

Considering the conditional statement in Fig. 4, the ex-
ecution effects of the then-branch and the else-branch are
respectively { 〈&absSum, absSum+ a[i]〉,

〈&posSum, posSum+ a[i]〉
}

and { 〈&absSum, absSum− a[i]〉,
〈&negSum, negSum+ a[i]〉

}

Based on the rules in Table III, we can get the execution effect
of the conditional statement below{ 〈&absSum, a[i] > 0?absSum+ a[i] : absSum− a[i]〉,
〈&posSum, a[i] > 0?posSum+ a[i] : posSum〉,
〈&negSum, a[i] > 0?negSum : negSum+ a[i]〉

}

VII. SYNTHESIS OF EXECUTION EFFECTS FOR LOOPS

In this section, we specify the loop statements that are dealt
with in our approach and describe how to synthesize execution
effects for such loops.
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if(a[i]>0){
absSum = absSum + a[i];
posSum = posSum + a[i];

}
else{

absSum = absSum - a[i];
negSum = negSum + a[i];

}

Fig. 4: The program summation

A. Processible Loops

Our approach is able to synthesize the execution effect of a
while-statement that is controlled by a variable which iterates
over an integer interval, or a set of acyclic singly-linked list
nodes, and the loop iterations update the memories in some
regular patterns. Nested Loops are supported in our approach.
More specifically, given a while-statement while (c) s, denoted
as L, and the program point p before this loop statement, we
require that the while-statement belongs to one of the following
two categories:

• The loop control condition c is of the forms w ∼ e or
e ∼ w, where ∼ is an operator in {<,>,≥,≤, �=}, w is
an integer-typed variable and e is an expression with the
type int. In this case, we also require:

◦ The condition ε(e, s) == e holds, which means that
the value of the expression e is not modified by the
loop body s;

◦ If c is one of the forms w < e, w ≤ e, e > w, or
e ≥ w, the condition ε(w, s) == w+1 should be met;

◦ If c is one of the forms w > e, w ≥ e, e < w, or
e ≤ w, the condition ε(w, s) == w− 1 should be met.

◦ If c is one of the forms w �= e or e �= w, the condition
ε(w, s) == w − 1 ∨ ε(w, s) == w + 1 should be met.

• The loop control condition c is of the forms w �= null or
null �= w, where w is a pointer to an acyclic singly-linked
list node. In this case, we also require:

◦ isSL(w) holds at the program point p;
◦ The condition ε(w, s) = w → link is met, which

means that the loop iterates over the nodes of the
acyclic singly-linked list one by one;

◦ For each assignment e1 = e2 in the loop body,
&e1 /∈M(isSL(sl)) holds at the program point before
the assignment where sl is the initial value of w
before entering the loop and M(isSL(sl)) contains the
memories of the field n of each list node. This formula
guarantees that the loop does not modify the field n of
all the nodes being iterated, and thus the shape of the
singly-linked list is not modified.

In both categories, w is the loop control variable. The loop
statements which satisfy the conditions in each category are
sure to terminate.

In the rest of this paper, ξ(w) is used to represent the valid
value set of the control variable w, which means that with any
value in ξ(w), we can access an element of the data structure
being iterated over. ξ(w) can be obtained by analyzing the
loop control condition and the known assertions at the program
point p. Considering the loop in Fig. 3, i is the loop control
variable and ξ(i) is [0, s@4− 1].

Through an analysis of such loops, we can see that the
memories modified by the loop body, i.e., χ(s) can be grouped
into the following two categories:

• A memory m is a fixed address (FA) if and only if the
condition ε(m, s) == m is satisfied.

• A memory m is a shifting address (SA) if and only if
the condition ε(m, s) == m[ε(w, s)|w] is satisfied.

From this, we can see that if a memory expression m is a FA,
each loop iteration updates the same memories, and if m is a
SA, each loop iteration updates different memories as the loop
control variable iterates over its valid value set. For example,
the memory &sum in Fig. 3 is a FA while the memory &a[i]
is a SA.

B. Synthesizing Execution Effects for Loops

In this subsection, we discuss how to synthesize the execu-
tion effect of a loop statement by analyzing and transforming
the execution effect of its loop body.

We will first define some predicates which will be used in
the later sections.

Let w be the loop control variable and w0 be a value in
the valid value set ξ(w). The set of values of w before w
equals to w0, denoted as μ(w,w0), is shown in Fig. 5. With
μ(w,w0), we define the predicate NB(e, w0) to specify that
an expression e is not modified by the iterations before the
iteration when the value of w equals to w0:

NB(e, w0) := (w ∈ μ(w,w0))⇒ (ε(e, s) == e)

Similarly, NA(e, w0) is defined to specify that an expres-
sion e is not modified by the iterations after the iteration when
the value of w equals to w0:

NA(e, w0) := (w ∈ ν(w,w0))⇒ (ε(e, s) == e)

where ν(w,w0) shown in Fig. 6 is the set of values of w after
w equals to w0.

Suppose that 〈m, v〉 is a tuple in the execution effect of
the loop body, namely, τ(s), the method of synthesizing the
execution effect of the loop τ(L) is discussed below.

1) m is a FA: When m is a FA, each loop iteration updates
the same memory m, and thus m is a memory modified by
the loop and it belongs to χ(L). The new value of m in τ(L)
is computed differently in the following cases:

• If ε(v, s) == v holds, then v is not modified by the
loop body, which means each loop iteration assigns the
same value v to the memory m. In this case, the tuple
corresponding to m in τ(L) is 〈m, c?v : ∗m〉

• If m is a SiM and v is one of the forms ∗m op e or
e op ∗m, where op is an operator in {+,−, ∗,÷,∨,∧},
and NB(e[w0/w], w0) holds for an arbitrary value w0 in
ξ(w), then the value stored in the memory m in τ(L) is
specified in Table IV.
Considering the tuple 〈&sum, sum+ b[i]〉 of the execu-
tion effect of the loop body in Fig. 3, the memory &sum
is a FA and its value sum+ b[i] is of the form ∗m op e.
Based on the the first rule in Table IV, we can get the

138

For Research Only



μ(v, v0) =

⎧⎨
⎩
{x|x ∈ ξ(v) ∧ x < v0} : when v is an integer-typed variable and it increases by 1 in each iteration

{x|x ∈ ξ(v) ∧ x > v0} : when v is an integer-typed variable and it decreases by 1 in each iteration

nodesSeg(v@p, v0) : when v points to an acyclic singly-linked list

Fig. 5: The value set μ(v, v0)

ν(v, v0) =

⎧⎨
⎩
{x|x ∈ ξ(v) ∧ x > v0} : when v is an integer-typed variable and it increases by 1 in each iteration

{x|x ∈ ξ(v) ∧ x < v0} : when v is an integer-typed variable and it decreases by 1 in each iteration

nodesSeg(v0, v@p) : when v points to an acyclic singly-linked list

Fig. 6: The value set ν(v, v0)

tuple 〈&sum, sum+
∑s−1

x=0 b[x]〉 for the execution effect
of the loop.

• In other cases, the new value of m cannot be computed,
and the corresponding tuple is 〈m, �〉.

TABLE IV: Construction rules for value expressions

op new value
+,− ∗m op

∑
x∈ξ(v) exp[x/v]

∗,÷ ∗m op
∏

x∈ξ(v) exp[x/v]
∨ ∗m op

∨
x∈ξ(v) exp[x/v]

∧ ∗m op
∧

x∈ξ(v) exp[x/v]

2) m is a SA: When m is a SA, each loop iteration updates
a different set of memories according to the value of the loop
control variable. Given a tuple 〈m, v〉 in τ(s), the memory
modified by the iteration w0 and the corresponding new value
after the iteration are respectively specified by the expressions
m[w0/w] and v[w0/w] evaluated when the iteration starts.

If the condition ∀w0 ∈ ξ(w).NB(κ(m)[w0/w], w0) holds,
then the expression κ(m)[w0/w] is evaluated to the same
value at the program point before the loop and the program
point before the iteration w0, and thus λx.(m[x/w])[ξ(w)] is
a memory modified by the loop.

Furthermore, if both ∀w0 ∈ ξ(w).NB(v[w0/w], w0) and
∀w0 ∈ ξ(w).NA(∗(κ(m)[w0/w], w0) hold, then v[w0/w]
is evaluated to the same value at the program point be-
fore the loop as the value ∗(κ(m)[w0/w]) evaluated at the
program point after the loop. In this case, v[w0/w] is the
new value stored in m[w0/w] after executing the loop, and
〈λx.(m[x/w])[ξ(w)], v[x/w]〉 is a tuple in the execution effect
of the loop. Otherwise, 〈λx.(m[x/w])[ξ(w)], �〉 is a tuple in
the execution effect of the loop.

Take the loop in Fig. 3 as an example, for brevity, the
loop and the loop body are respectively denoted as L and
S. The variable i is the loop control variable of the loop
and ξ(i) is [0, 99]. The tuple 〈&b[i], 0〉 is in the execution
effect of the loop body, namely, τ(S), and the three conditions
∀w0 ∈ [0, 99].NB(&b[w0], w0), ∀w0 ∈ [0, 99].NB(0, w0) and
∀w0 ∈ [0, 99].NA(∗(&b[w0], w0) are met, thus we can obtain
the tuple 〈λx.(&b[x])[0, 99], 0〉 in τ(L).

C. Incremental Synthesis

Sometimes we cannot get a tuple for a loop from a tuple
of the loop body directly since some conditions may not

hold. In some cases, such conditions can be satisfied by
substituting some sub-expressions of a value expression in a
tuple of the loop body with their equivalent sub-expressions.
Thus we propose the incremental synthesis of substituting sub-
expressions of a value expression of a tuple of the loop body
with new sub-expressions.

The sub-expression, denoted as ma exp, to be substi-
tuted is a memory-access expression and the memory being
accessed, denoted as m exp, is a memory modified by the
loop. The sub-expression, denoted as v exp′, used to substitute
ma exp is the value of m exp evaluated at the beginning
of each loop iteration. The sub-expression v exp′ is obtained
by transforming the value expression v exp of the memory
m exp in the corresponding tuple of the loop generated in
previous synthesis processes. In general, the transformation is
to substitute the range of a variable by substituting the whole
range expression in v exp with the range that covers elements
which have been iterated over. The substitution heuristics are
the same with those in our previous work [27]. The details
are omitted here because of space limitation. We do this
incremental synthesis until the result execution effect of the
loop reaches a fixed point.

Considering the loop in Fig. 3, 〈&a[i],sum + b[i]〉 and
〈&sum, sum+ b[i]〉 are two tuples in the execution effect of
the loop body. After the first synthesis of these two tuples,
we get 〈λx.(&a[x])[0, s − 1], �〉 and 〈&sum,

∑s−1
y=0 b[y]〉 for

the loop. Here, we cannot obtain the value expression for
the memory 〈λx.(&a[x])[0, s − 1] because some conditions
are not met, which triggers the second synthesis for the
tuple 〈&a[i],sum + b[i]〉. In the second synthesis, we first
substitute the range [0, s − 1] of the variable y in the value

sum+
∑s−1

y=0 b[y] with the range [0, i− 1], and get the value

expression sum +
∑i−1

y=0 b[y]. Then we use the expression

sum +
∑i−1

y=0 b[y] to substitute sum in the value expres-

sion in the tuple 〈&a[i], sum + b[i]〉 of the loop body, and

get the new tuple 〈&a[i], sum +
∑i

y=0 b[y]〉. After that, we
analyze the transformed tuple and generate the result tuple
〈λx.(&a[x])[0, s − 1],

∑x
y=0 b[y]〉 of the execution effect of

the loop.

D. Nested Loops

Precondition calculation is more difficult in the presence of
nested loops. Our approach, however, is applicable to programs
with nested loops. The execution effect of the outer loop is
synthesized with inner loops replaced with their execution
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i = 100;
L1: while(i<n){

j = 0;
{p2: }

L2: while(j<m){
c[i][j] = 0;
k = 0;
{p3 : }

L3: while(k<p){
c[i][j] = c[i][j] + a[i][k]*b[k][j];
k = k + 1;

}
j = j + 1;

}
i = i + 1;

}

Fig. 7: The program matrix multiplication

effects. The analysis of a nested loop is therefore reduced
to the analysis of a single loop. And thus the precondition
calculation for a nested loop is reduced to the calculation for
a single loop.

Considering the program in Fig. 7, L1, L2 and L3 are
respectively represent the while-statements from outside to
inside. Using our approach, we firstly get the execution effect
of the innermost loop, τ(L3):{

〈&c[i][j], (c[i][j] +
∏p−1

0 a[i][x] ∗ b[x][j])@p3〉,
〈&k, p〉

}

With τ(L3), the loop L3 is just like a sequence of assignments.

Then, as a summary of L3, τ(L3) is used in the synthesis
process of τ(L2), and the result execution effect τ(L2) is as
follows:⎧⎪⎪⎨

⎪⎪⎩
〈λx.(&c[i][x])[0,m− 1],

(
∏m−1

x=0

∏p−1
y=0 a[i][x] ∗ b[x][y])@p2〉,

〈&k, p〉,
〈&j,m〉

⎫⎪⎪⎬
⎪⎪⎭

Similarly, τ(L1) can be obtained.

VIII. IN PRACTICE

In this section, we discuss the application of the execu-
tion effect and the equivalent expression calculation, namely
inferring post-conditions, loop invariants and generating pre-
conditions for loops.

A. Inferring Post-conditions

We can infer post-conditions based on the execution effect
of a program statement since it summarizes the memories mod-
ified by this statement and the new values in these memories
after executing this statement.

Suppose that p represents the program point before a pro-
gram statement s, then for each tuple 〈m, v〉 in the execution
effect of the statement s, post-conditions of the statement s
are generated according to the following rules:

• If m is a SiM, then one post-condition is ∗m == v@p;
• If m is a SeM and of the form λx.m′[set], then one post-

condition is ∀x ∈ [set]. ∗m′ == v@p.

Considering the program in Fig. 3, 4 is the program point
before the loop statement. The tuple 〈&sum,

∑s−1
y=0 b[y]〉 is

among the execution effect of the loop and the memory
expression &sum is a SiM. Based on the first rule, we can
generate the post-condition sum == (

∑s−1
y=0 b[y])@4. In the

tuple 〈λx.(&a[x])[0, s − 1],
∑x

y=0 b[y]〉, the memory expres-

sion λx.(&a[x])[0, s−1] is a SeM. From this tuple, we generate
the post-condition ∀x ∈ [0, s − 1].a[x] == (

∑x
y=0 b[y])@4

based on the second rule.

B. Inferring Loop Invariants

Our approach infers loop invariants from post-conditions
generated in the last subsection utilizing the framework of
automatically generating suitable loop invariants with respect
to post-conditions of loops. The framework was proposed
and implemented in our previous work [27]. The framework
generates loop invariants based on the strategy of substituting
some sub-expressions of a given post-condition with some new
sub-expressions which equals to the original one at the loop
exit program point. Because of space limitation, the details are
omitted here.

For instance, the formula sum == (
∑s−1

y=0 b[y])@4 is
a post-condition of the loop in Fig. 3, From this post-
condition, we can infer the loop invariant sum == (sum +∑i−1

y=0 b[y])@4 using the framework in [27].

C. Calculating Preconditions

As already mentioned in Definition 4, when an expression
e is a post-condition of a program statement s, the equivalent
expression of s with respect to e, denoted as e′, is actually
the precondition of the statement s with respect to the post-
condition e. The post-condition e can be proved with the
presence of the calculated precondition e′.

IX. IMPLEMENTATION AND CASE STUDY

We have implemented the approach proposed in this paper
as part of the code verification tool Accumulator, which is a
Hoare-style proof system integrated with several automatic and
semi-automatic techniques including alias analysis and data
flow analysis. We make use of ANTLR as the front-end and Z3
as the back-end SMT solver to implement Accumulator. What
should be highlighted here is that we have extended Z3 to
deal with user-defined recursive data structures and high-order
formulas like lambda expressions. Because of space limitation,
the details of the extension of Z3 is not given in this paper.

We have applied our approach to generate assertions in-
cluding preconditions, post-conditions and loop invariants to
ease code verification. Some of the experimental programs are
shown in Table V. Column “Data structure” shows the type of
the data structure manipulated by the loop statement in each
program. Column “Routines” shows operations on the data
structure in the loop. The programs operating two-dimensional
arrays contain nested loops which can be handled well by
our approach. One program name shown in Table V may
represent a series of programs. For example, “count” counts
elements which satisfy some given condition like greater than
one element or being non-null, or just counts all the elements
which are iterated over. We can successfully synthesize the
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TABLE V: Experimental programs

Data Structure Routines
Closed Integer Intervals count, sum, multiply
One-dimensional Arrays copy, assign, count, sum, multiply, search, maximum, minimum

Two-dimensional Arrays
copy, assign, count, sum, multiply,
search, maximum, minimum, matrix_multiplication

Acyclic Singly-linked Lists assign, count, sum, multiply, search, maximum, minimum

execution effects of all the program statements of the programs
shown in the table and calculate preconditions, post-conditions
and loop invariants for all these programs. The process of
synthesizing execution effects and generating assertions for
each program is less than 5 seconds which includes the time
used by Z3.

Next we will illustrate the application of our approach to
the verification of a non-trivial program shown in Fig. 8(a).
This program sets the i-th element of the one-dimensional
array b to the sum of the elements in the i-th line of the two-
dimensional array a and computes the sum of all the elements
in the array a. The formula b[i] == (

∑n−1
x=0 a[i][x])@p3 at the

program point p2 and the formula ∀y ∈ [0,m − 1].b[y] > 0
at the program point p4 are respectively the post-conditions of
the inner loop and the outer loop. The two post-conditions are
among the goals of verifying this program. In this example,
we will use lb1 and lb2 to respectively represent the inner loop
body and the outer loop body.

Firstly, our approach synthesizes the execution effect of the
inner loop body lb1 which consists of two assignments and get
the following result:{ 〈&b[i], b[i] + a[i][j]〉,

〈&j, j + 1〉
}

For the inner loop, j is the loop control variable. In
the first tuple, the memory address &b[i] is a FA, and thus
it is a memory address modified by the inner loop. The
corresponding value b[i]+a[i][j] is of the form ∗m+e, and for
any arbitrary value j0 in the set ξ(j), the predicate NB(j, j0)
holds. In this case, we can obtain the value stored in &b[i] after
executing the inner loop based on Table IV, and the result value
is b[i] +

∑n−1
x=0 a[i][x]. The second tuple is treated in the same

way, and hence we get the execution effect of the inner loop
shown as follows:{

〈&b[i], b[i] +
∑n−1

x=0 a[i][x]〉,〈&j, n〉
}

Based on the synthesized execution effect, we can generate
post-conditions of the inner loop. Since &b[i] is SiM, the post-

condition b[i] == (b[i]+
∑n−1

x=0 a[i][x])@p1 is generated for the
inner loop according to the first rule given in Section VIII-A.
Similarly, we can generate the post-condition j == n. These
two post-conditions are also the intermediate assertions of the
outer loop. Through a data flow analysis which is supported in
Accumulator, we know that b[i] == 0 and ∀y ∈ [0,m−1]∀x ∈
[0, n−1].a[y][x] == a[y][x]@p3 hold at the program point p1,

and hence the post-condition b[i] == (b[i]+
∑n−1

x=0 a[i][x])@p1
is simplified as b[i] == (

∑n−1
x=0 a[i][x])@p3 which is the

assertion to be proved at the program point p2.

Then we reduce the outer loop from a nested loop to a
single loop by substituting the inner loop shown in box 1© in
Fig. 8(a) with its execution effect in box 2© in Fig. 8(b), and
the reduced outer loop is shown in Fig. 8(b). We next analyze
the reduced program in Fig. 8(b) to obtain the execution effect
of the outer loop body lb2 and the result is as follows:⎧⎪⎪⎨

⎪⎪⎩
〈&b[i],

∑n−1
x=0 a[i][x]〉,

〈&sum, sum+
∑n−1

x=0 a[i][x]〉,〈&j, n〉,
〈&i, i+ 1〉

⎫⎪⎪⎬
⎪⎪⎭

For the outer loop, i is the loop control variable. In the first
tuple, the memory address &b[i] is a SA, and the condition
∀i0 ∈ [0,m − 1].NB(&b[i0], i0) is met. Consequently, for an
arbitrary value i0, &b[i0] is evaluated to the same value at the
program point p3 and the program point before the iteration
i0. In this case, λy.(&b[y])[0,m − 1] represents a series of
memories modified by the outer loop.

For an arbitrary value i0, the two conditions ∀i0 ∈
[0,m − 1].NB(∑n−1

x=0 a[i0][x], i0) and ∀i0 ∈ [0,m −
1].NA(∗(&b[i0], i0) hold, so

∑n−1
x=0 a[i0][x] is evaluated to

the same value at the program point before the outer loop
as the value ∗(&b[i0]) evaluated at the program point after

the outer loop. In this case,
∑n−1

x=0 a[i0][x] is the new value
stored in &b[i0] in the execution effect of the outer loop,

and 〈λy.(&b[y])[0,m − 1],
∑n−1

x=0 a[y][x]]〉 is a tuple in the
execution effect of the outer loop.

In the third tuple, the memory &j is a FA and the condition
ε(n, lb2) == n holds, and thus we know that &j is a memory
modified by the outer loop and the value of &j after executing
the outer loop is n.

We deal with the second tuple and the last one just as we
do for the two tuples of the execution effect of the inner loop
body. The details are omitted here.

After the synthesis process above, we get the following
execution effect of the outer loop:⎧⎪⎪⎨

⎪⎪⎩
〈λy.(&b[y])[0,m− 1], (

∑n−1
x=0 a[y][x])@p3〉,

〈&sum, (
∑m−1

y=0

∑n−1
x=0 a[y][x])@p3〉,

〈&j, n〉,
〈&i,m〉

⎫⎪⎪⎬
⎪⎪⎭

Then we can reduce the loop shown in box 3© in Fig. 8(b)
to a sequence of special assignments shown in box 4© in
Fig. 8(c). The special assignments are just the generated
execution effect of the outer loop in the original program in
Fig. 8(a), and the reduced program is shown in Fig. 8(c). From
this, we can see that our approach is able to reduce a loop
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sum = 0;

i = 0;

��3:	∀� ∈ 
0,
 � 1�∀� ∈ 
0, � � 1�. �
��
�� � 0�

while(i<m){

b[i] = 0;

j = 0;

��1: 	�
�� �� 0, ∀� ∈ 
0,
 � 1�

																	∀� ∈ 
0, � � 1�. �
��
�� �� �
��
��@�3�

while(j<n){

b[i] = b[i] + a[i][j];

j = j + 1;

}

��2: � � �� ∑ � � 
��
���

���
�

sum = sum + b[i];

i = i + 1;

}

��4: ∀� ∈ 0,
 � 1 � � � 0�

(a)
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i = 0;
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��
�� � 0�

while(i<m){

b[i] = 0;

j = 0;
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sum = sum + b[i];

i = i + 1;

}
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 � 1 � � � 0�
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sum = 0;

i = 0;
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0,
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�� � 0�
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��4: ∀� ∈ 0,
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(c)
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Fig. 8: Case study

program to a program without loops by substituting the loops
with their execution effects.

Based on the generated execution effect of the outer loop,
we can generate the following post-conditions for the loop:
∀y ∈ [0,m − 1].b[y] == (

∑n−1
x=0 a[y][x])@p3, sum ==

(
∑m−1

y=0

∑n−1
x=0 a[y][x])@p3, j == n and i == m. Among

these, the first two post-conditions are the assertions which
should be proved to be true in order to prove the correctness
of the program in Fig. 8(a).

For the post-condition ∀y ∈ [0,m−1].b[y] > 0 of the outer
loop, our approach can calculate its precondition of the outer
loop, and the result is ∀y ∈ [0,m−1].

∑n−1
x=0 a[i][x] > 0 which

is proved to be true using Z3 with the assertion ∀y ∈ [0,m−
1]∀x ∈ [0, n − 1].a[y][x] > 0 being true at the program point
p3. Consequently, the post-condition ∀y ∈ [0,m− 1].b[y] > 0
is proved to be true. Similarly, the post-condition sum ==
(
∑m−1

y=0

∑n−1
x=0 a[y][x])@p3 can be proved.

From the above process, we can see that our approach
is effective and practical to help prove the correctness of
a program by automatically calculating preconditions and
inferring post-conditions.

X. RELATED WORK

Our approach is related to previous works closely in two
areas: precondition calculation and summarization.

A. Precondition Calculation

Many precondition calculation techniques for handling
loops have been proposed for different purposes. The works
[7], [4] generate preconditions of loops that guarantee program
termination. The papers [22], [25] derive preconditions for
safety assertions in loops. In [20], weakest preconditions of
loops are calculated and used for compiler optimizations. The
works [10], [19], [14], [23], [2] calculate preconditions to
verify the correctness of a program, which are similar to us.

Many works on the precondition calculation for loops are
based on de-sugaring loops with invariants. In [10], [19],
preconditions for loops with respect to given post-conditions
are calculated by de-sugaring loops with loop invariants. In
[23], preconditions of loops are computed or approximated
by identifying invariant relations [21] of a while loop. The

method in [2] removes all back edges in the control-flow graph
of unstructured programs to eliminate loops. Loop invariants
are added to guard loop bodies. A great number of techniques
have been proposed to automatically infer loop invariants, see
e.g., [6], [24], [29], [12], [17], [3]. Nevertheless, automatic
generation of loop invariants itself is still a complicated
problem which often requires ingenuity and human invention.
Unlike all of them, our approach can calculate preconditions
for loops without the help of loop invariants.

In [14], loops are first transformed into acyclic programs
by bounding the number of loop iterations, which may lose
accuracy. By comparison, our approach calculates precondi-
tions based on the automatically-synthesized execution effects
of program statements, which are accurate.

The work [28] generates preconditions for both intermedi-
ate assertions and post-conditions of a loop based on proposed
heuristics while this paper summarizes a loop as modified
memories of the loop and the new values after executing the
loop, and then calculate preconditions based on the summary.

B. Summarization

Automatic loop summarization has been discussed in nu-
merous papers. The work [11] presents an entirely-dynamic
method to summarize a loop as preconditions and post-
conditions while our work is completely static and the sum-
mary result is represented as memories modified by a loop
and the new values after executing the loop. By contrast,
our summary is more general and has wider applications
including inferring preconditions and post-conditions which
are the summary result of [11]. For termination analysis,
[26] summarizes loops based on abstract interpretation [5] ,
while [26] summarizes a loop by computing symbolic abstract
transformers with respect to a set of abstract domains. Unlike
[11], [26], the purpose of our summary is to automatically
generate assertions for program verification.

Many previous works have attempted to summarize pointer
programs. The work [18] presents a local inter-procedural
shape analysis to summarize procedures as transformers of
procedure-local heaps. In [15], an inter-procedural dataflow
analysis technique is proposed to summarize procedure effects
with procedure contracts which are graph transformations
capturing the overall effect of a procedure. Similarly, [13]
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employs graph grammars to abstract pointer operations. Unlike
these works, our approach summarizes program statements
operating pointers as memories modified by them and the new
values stored in these memories after executing the statements.
Such a summary reflects the result of executing a statement,
which facilitates the program analysis and code verification.

XI. CONCLUSION

Based on statistic results on loop statements that manip-
ulates commonly-used data structures from real-world pro-
grams, this paper (1) specifies the execution effect of a
statement as memories modified by the statement and new
values of these memories after executing this statement; (2)
introduces a novel and efficient way to summarize a loop
statement with its execution effect, which reduces a loop
statement into a sequence of assignments, making it easier to
analyze loop statements and generate preconditions for them;
(3) proposes an approach to synthesize execution effects of
different types of program statements, including assignments,
sequential statements, conditional statements and while-loops
manipulating commonly-used data structures; (4) presents a
method to generate preconditions, post-conditions and loop
invariants for a program statement based on its execution ef-
fect; (5) demonstrates our implemented tool, and its evaluated
results. The results show that the proposed approach improves
the efficiency and quality of code verification by generating
assertions including pre-conditions, post-conditions and loop
invariants automatically and reducing human involvement,
which has great practicability and significance.

Future Work. To ease the code verification task for more
programs, we will extend our work in several aspects. Firstly,
we will attempt to cover non-linear data structures like binary
search trees. Secondly, we are considering dealing with more
kinds of loops such as enhanced foreach loops over collections.
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