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Abstract

Program understanding plays an important role in the
reuse and maintenance of open source code. Rapid evolv-
ing and bad documentation makes the understanding and
reusing difficult. Many software structure clustering tech-
niques have been proposed to produce and recover architec-
tural views directly from source code to facilitate the under-
standing activities. However, most of them focus on struc-
tural information and neglect deep design information such
as design pattern relationships which might contribute more
in the understanding. Design patterns are widely employed
in software development, especially in open source projects.
In this paper, we propose a design pattern directed cluster-
ing approach to help understand open source code. First,
we use a well known design pattern detection tool to detect
design pattern instances in the source code under consider-
ation. Then, we treat classes as players of design pattern
instances, and group them into clusters according to the in-
herent association among their participating design pattern
roles. Last, we visualize the generated clusters. We have im-
plemented a prototype tool TasteJ. To justify our approach,
we also conducted an experiment on an open source system
JHotDraw6.0 with TasteJ and a state of art structure clus-
tering tool Bunch respectively. The preliminary experimen-
tal results show that our approach is feasible and promising.

1. Introduction

Program comprehension plays an important role in soft-
ware engineering activities of design, development and
maintenance. Many famous cognitive models have been
proposed to explain how programmers comprehend soft-
ware [23]: top-down comprehension model, bottom-up
comprehension model, opportunistic and systematic strate-
gies comprehension model, etc.

As the modern software growing large and complex,
open source becomes more and more popular nowadays.

People contribute and reuse open source code in academia,
industry and open source community. Open source code
evolves quite rapidly, but it often lacks of documentation
or the documents are out-of-date, which makes it hard to
comprehend, reuse and maintain.

In order to provide high-level architectural views to fa-
cilitate the understanding activities, based on the top-down
comprehension model and the “divide and conquer” prin-
ciple, many software structure clustering approaches have
been proposed [15, 18, 16, 20, 13, 11]. They aim at iden-
tifying areas of a system that are loosely coupled to each
other. Most of them treat the software structure cluster-
ing (partition) as a search or optimization problem where
hill-climbing, simulated annealing, genetic algorithms, etc.,
are used [18, 16, 20, 13]. Some approaches consider pro-
gram source code as plain text, and group software entities
based on similar terms [11, 14], e.g., file names, code iden-
tifiers and comments. The file ownership [1] and change
history [2] are also utilized by some researchers. All these
approaches have shown their merits, yet most of them fo-
cus on structural information, and ignore deep design in-
formation such as design pattern relationships which might
contribute more in the understanding.

It is well known that design patterns [7] are widely used
in practice, especially in the open source community. This
paper proposes a new clustering approach according to de-
sign pattern relationships which are deemed to contain both
structural and design information. First, we use existing de-
sign pattern detection techniques and detectors, e.g., PINOT
[21] to help recover the design pattern relationships from
concerned programs. Then, we treat clustered classes as
players (i.e., participating classes) of design pattern in-
stances [29], and group the classes into different clusters
according to the inherent association among their partici-
pating design pattern roles. Last, we visualize the generated
clusters.

The contributions of this paper are listed below.

• We use design pattern information to direct the soft-
ware structure clustering process;



• We develop a tool to automate the clustering process
and visualize the clustering results.

The rest of this paper is organized as follows. Section 2
introduces the background including design pattern detec-
tion techniques and presents a motivating example. Section
3 illustrates our proposed design pattern directed cluster-
ing approach. Section 4 presents the experiment on JHot-
Draw6.0. Section 5 reviews the related work, and Section 6
concludes the paper.

2. Background and Motivation

2.1. Design pattern detection techniques

A design pattern abstracts a reusable object-oriented de-
sign that solves a common recurring design problem in a
particular context [7]. According to literature [21], the
23 GoF patterns can be classified in a reverse-engineering
sense, into five categories: language-provided patterns,
structure-driven patterns, behavior-driven patterns, domain-
specific patterns and generic concepts. The remaining of
this paper only takes two categories of them into considera-
tion:

• Structure-driven patterns that are driven by code struc-
ture, including Bridge, Composite, Adapter, Facade,
Proxy, Template Method and Visitor; and

• Behavior-driven patterns that are driven by system be-
havior, including Singleton, Abstract Factory, Factory
Method, Flyweight, Chain of Responsibility, Decora-
tor, Strategy, State, Observer and Mediator.

In order to reveal the intent and design of a software sys-
tem, many design pattern detection approaches and tools
have been designed to directly extract design pattern in-
stances from source code (or Java byte code). These ap-
proaches identify structure-driven patterns mainly by ana-
lyzing inter-class relationships, and detect behavior-driven
patterns by using machine learning, dynamic analysis and
static program analysis [21]. Some popular design pattern
detection tools for specific languages are listed below.

• For C++: SPQR [22], DPRE [3], Columbus [6], the
detector described in [28], etc;

• For Java: Ptidej [10], FUJABA [19], PINOT [21], DP-
Miner [4], Scoring [26], etc;

• For SmallTalk: SOUL [5], etc.

A detected design pattern instance (DPI) refers to the
participating components (e.g., class, method, member
variable) that work together to satisfy the requirements

of a certain design pattern. Figure 1 describes the de-
tail of a DPI using both XML format and class diagram
format. The DPI is extracted from the detection result
produced by the tool PINOT, with JHotDraw6.0 beta1
[9] as input. It satisfies the requirements of the Strat-
egy design pattern. For brevity, the DPI can be noted
as DPI(context: WindowMenu; strategy: Command; con-
creteStrategy: {AbstractCommand, UndoableCommand,
ZoomCommand}), where class WindowMenu is the player
of the role context, Command the player of the role
strategy, AbstractComand, UndoableCommand and
ZoomCommand the players of the role concreteStrategy.
Other components are neglected as we concern the infor-
mation on participating classes only.

<strategyInstance> 

<context referenceObject = "cascadeCommand"
contextInterface = "ContextInterface">
WindowMenu </context> 

<strategy algorithmInterface = "AlgorithmInterface">
Command </strategy> 

<concreteStrategy algorithmInterface = "AlgorithmInterface">
AbstractCommand </concreteStrategy> 

<concreteStrategy algorithmInterface = "AlgorithmInterface">
UndoableCommand </concreteStrategy> 

... 

<concreteStrategy algorithmInterface = "AlgorithmInterface">
ZoomCommand </concreteStrategy>

</strategyInstance> 

 AlgorithmInterface()

Command

 AlgorithmInterface()

UndoableCommand

 ContextInterface()

WindowMenu

 AlgorithmInterface()

AbstractCommand

cascadeCommand

 AlgorithmInterface()

ZoomCommand...

Figure 1. A Strategy pattern DPI

2.2. A motivating example

In this paper, open source medium-size project JHot-
Draw6.0 beta 1 is taken as the subject program which we
would try to uncover along with the remaining discussion of
this paper. JHotDraw is a two-dimensional GUI framework
for structured drawing editors [9]. This released version is
written in Java, consisting of 484 Java files, about 70KLOC.
Its high-level package structure is outlined in Figure 2.

The high-level code storage structure of JHotDraw6.0 is
well designed. Org on the first layer and jhotdraw on the
second layer point out the property of the development or-
ganization and the project name respectively. On the third
layer the entire system is divided into 10 packages, whose
names take on their respective functionalities. For example,



…………………………………………………… 1 java file;  0 subpackage.

…………………… 1 java file;  0 subpackage.

………………………………………… 46 java files; 3 subpackages.

………………………………………… 35 java files; 0 subpackage.

……………………………… 26 java files; 0 subpackage.

…………………………………………………… 0 java file;  0 subpackage.

………………………………………… 0 java file;  5 subpackages.

……………………………… 64 java files; 0 subpackage.

……………………………………………………………… 41 java files; 1 subpackage.

……………………………………………………………… 2 java files; 6 subpackages.

Figure 2. High-level package structure of
JHotDraw6.0 beta 1

package applet and package application provide stan-
dard UI for JHotDraw applets and applications respectively,
package image stores image resources, package samples

and package test answer for samples and testing respec-
tively. Obviously, these packages just provide assistant and
peripheral entry functions for the system. They are not the
point where core functionality exists.

In fact, the core function of this software system lies
in the rest five big packages, i.e., contrib, figures,
framework, standard and util. They have a much big-
ger size than other packages, consisting of 46, 35, 26, 64
and 41 classes, respectively.

Unfortunately, no matter which package to start from, we
would immediately encounter one common problem, i.e.,
the number of classes contained by a package is so enor-
mous that we even had no idea which class or classes should
be inspected first. This is not an accidental case, which hap-
pens to many modern software systems. Based on the “di-
vide and conquer” principle, we plan to partition every big
package into smaller clusters, so as to reduce each inspec-
tion’s scope, and alleviate the intellectual effort.

We use our designed clustering approach to cluster the
classes of every big-size package above respectively. The
produced clustering results provide reasonable and helpful
layouts for us to understand the internal structure of the
packages. Related clustering results would be presented in
the experiment section (Section 4).

3. Design pattern directed approach

We suggest a design pattern directed comprehension as-
sistance approach to aid software developers and maintain-
ers in understanding the open source code implemented un-
der the guidance of design pattern intents, by clustering
classes based on the inter-role relationships.

3.1. Approach

The overview of our approach is shown in Figure 3. It
consists of three main components: the design pattern de-
tector, the design-pattern-role-based (DPRole-based) clus-
tering module and the visualization module. The design
pattern detector accepts open source code and generates
DPIs. The DPRole-based clustering module, which is the
core component of the approach, groups classes into clus-
ters using the DPRole-based clustering algorithm (Section
3.2). The algorithm needs two inputs, one is the classes
that are concerned by the user, e.g., the classes in a pack-
age or directory, the other is the classes’ related DPIs which
are recorded in XML format. With these inputs in place,
the algorithm outputs partitioned clusters. The visualiza-
tion module visualizes the partitioned clusters so that they
can be easily and conveniently inspected.

Open Source Code

1. Design 

pattern detector
DPIs 

(XML format)

2. DPRole-based 

Clustering module

3. Visualization 

module

C++ Java

Partitioned 

clusters

Figure 3. Overview of design pattern directed
clustering approach

3.2. DPRole-based clustering algorithm

We treat concerned classes as players of DPIs and group
them into different clusters according to the inherent asso-
ciation among their participating roles inspired from the de-
tected DPIs. We find that though players of a DPI always
work together for achieving a common goal, i.e., the target
pattern’s intent, the degree of their internal functional cor-
relations can be very different.

As the Strategy pattern DPIs in Figure 4, the players
of the role strategy and concreteStrategy always maintain
a high degree of correlation, e.g., for DPI1 (DPI2), the
players describe “tools”, and for DPI3, the players describe
“commands”. Whereas, the degree of correlation between
the players of the role context and strategy (concreteStrat-
egy) seems much weaker, e.g., for DPI1 and DPI2, though
they have common players on strategy (concreteStrategy),



DPI1(context: EventDispatcher; strategy: Tool; concreteS-
trategy: {CreationTool, SelectionTool, ConnectionTool,
. . .});

DPI2(context: JavaDrawViewer; strategy: Tool; concreteS-
trategy: {CreationTool, SelectionTool, ConnectionTool,
. . .});

DPI3(context: EventDispatcher; strategy: Command; con-
creteStrategy: {CopyCommand, CutCommand, Paste-
Command, . . .}).

Figure 4. Three similar Strategy pattern DPIs

their players of context can be freely exchanged, i.e.,
EventDispatcher and JavaDrawViewer. Likewise,
for DPI1 and DPI3, though they have common players on
context, their players of strategy (concreteStrategy) can
be greatly distinct. As to what make these happen, we
concluded that because there inherently exists different
degrees of correlations between various design pattern
roles, which might be useful for guiding the software
structure clustering process.

Pattern rules and close-role sets. Aspired by above dis-
covery, we cluster classes based on close-role sets, which
are declared by pattern rules so as to indicate the intrinsic
high degree correlations among design pattern roles. Sup-
pose DPI(r1 : c1; r2 : c2; r3 : c3; r4 : c4; . . . ) is an
instance of the pattern dp, whose pattern rule has declared
a close-role set {r1, r2, r4}, and then a cluster {c1, c2, c4}
can be produced according to the set. It is worth noting that
not every role of a DPI must be putted into a certain close-
role set, e.g., r3. Before explaining our clustering algorithm
in detail, next, we glad to define pattern rules and explain
close-role sets for structure-driven patterns and behavior-
driven patterns.

Structure-driven patterns establish the architecture
among classes but do not specify the behavioral details for
them. The Bridge pattern of this category is designed to
decouple an abstraction from its implementation so that the
two can vary independently on the responsibility [7]. How-
ever, the functional correlation between its role abstraction
(refinedAbstraction) and the role implementor (concreteIm-
plementor) remains intimate and compact. They depict a
common stuff at different abstract levels, and abstraction
always maintains a reference of the implementor to make a
connection between them. We grouped these closely cor-
related roles into a close-role set through defining a related
pattern rule as follows. The rule is also summarized in the
first row of Table 1 (Other pattern rules shown in Table 1
have similar definitions).

Bridge Rule. Assume there is a Bridge design pattern instance,
DPI(abstraction: ClassA; refindAbstraction: SetA;

implementor: ClassI; concreteImplementor: SetI), in
which ClassA is a player of the role abstraction, SetA a col-
lection composed by players of the role refindAbstraction,
ClassI a player of the role implementor, and SetI a collec-
tion composed by players of the role concreteImplementor.
Then there is a close-role set {abstraction, refindAbstraction,
implementor, concreteImplementor}, whose corresponding
close-player set is {ClassA, SetA, InterfaceI , SetI} (that is
a set constituted by ClassA, InterfaceI , elements in SetA and
elements in SetI).

For the Composite pattern, it is designed to compose ob-
jects into tree structures to represent part-whole hierarchies
[7]. The role component declares a public interface for both
individual objects and compositions, and the role compos-
ite represents a composite component. Generally, they have
similar function definitions and frequent interactions that
need to be taken into consideration. Therefore, we put them
into a close-role set, as shown in the second row of Table
1. However, we did not plan to bring in the role leaf, as it
usually owns many other private features except complying
with the interface declared by the component. The pattern
rules and close-role sets for the Adapter, Proxy, Template
Method, and Visitor patterns are also given in Table 1. It is
allowed to revise them or add new ones as needed in terms
of personal understanding. It is worth mentioning that all
above close-role sets do not comprise the role client since
that it usually merely represents an entry for specific pat-
terns and a detector hardly takes it into account during the
DPI recovery process.

Different from the structure-driven patterns, behavior-
driven patterns require specific actions implemented in the
method bodies. Usually, most of these patterns are used
just because of some specific aspects of the participants’ be-
havioral requirements, not the reflection of their main func-
tional requirements. For instance, the Observer pattern is
used just because of the “observing” needs from observers
to subjects, the Chain of Responsibility pattern used merely
because of the “request delivery” needs of some chained ob-
jects, the Mediator pattern used just because “colleagues”
need a “mediator” to coordinate their communication and
the Decorator pattern used because a public “wrapper” is
needed.

For the Strategy pattern, we have learned that strategy
and concreteStrategy always maintain a high degree of cor-
relation, so they ought to be grouped into a close-role set.
The structure of the State pattern is close to the Strategy
pattern. The difference between them is that the former is
used to depict “states”, and the latter is used to describe
“strategies” (i.e., algorithms). Therefore, the close-role set
declared for the State pattern is similar to that of the Strat-
egy pattern, as we can see in the last two rows of Table 1.

Our clustering algorithm incrementally groups the
classes of a package or directory into clusters in a bottom-



Table 1. Pattern rules and close-role sets
Pattern Rule DPI Close-role set(s) Close-player set(s)

Bridge1 DPI(abstraction: ClassA; refindAbstraction: SetA; im-
plementor: ClassI; concreteImplementor: SetI)

{abstraction,
refindAbstraction, {ClassA, SetA,

implementor, InterfaceI, SetI}
concreteImplementor}

Composite1 DPI(component: ClassC1; composite: ClassC2; leaf:
SetL; client: ClassC3)

{component, {ClassC1,
composite} ClassC2}

Adapter1
DPI(adapter: ClassA1; adaptee: ClassA2; target: ClassT;
client: ClassC)

{adapter, adaptee, {ClassA1, ClassA2,
target} ClassT}

Proxy1 DPI(proxy: ClassP; subject: ClassS; realSubject: SetS) {proxy, subject, {ClassP, ClassS,
realSubject} SetS}

Template Method1 DPI(abstractClass: ClassC1; concreteClass: ClassC2)
{abstractClass, {ClassC1,
ConcreteClass} ClassC2}

Visitor1
DPI(visitor: ClassV; element: ClassE; concreteVisitor:
SetV; concreteElement: SetE; objectStructrue: ClassS)

{visitor, concreteVisitor} {ClassV, SetV}
{element, concreteElement} {ClassE, SetE}

Strategy2 DPI(context: ClassC; strategy: ClassS; concreteStrategy:
SetS)

{strategy, concreteStrategy} {ClassS, SetS}

State2 DPI(context: ClassC; state: ClassS; concreteState: SetS) {state, concreteState} {ClassS, SetS}
1 Rules on structure-driven patterns 2 Rules on behavior-driven patterns

up manner based on the assumption that if class A have a
close role correlation with class B, and class B also have a
close role correlation with class C, then putting A, B and C
together would be beneficial for understanding all of them.
The algorithm is described in Figure 5.

Input: Sclass, SDPI .
Output: A set of partitioned clusters Spar cluster .

DPRoleBasedClustering(Sclass, SDPI )
Scluster ← Sclass // Initially
// Begin the clustering process
for each DPI ∈ SDPI do

if DPI.type ∈ T then
// Get close-role sets for the DPI.type pattern.
Sr ← getCloseRoleSets(DPI.type)
for each Sclose role ∈ Sr do

// Count corresponding close-player set.
Sclose player ← count(Sclose role, DPI)
// Omit redundant players from Sclose player .
Skey player ← omit(Sclose player, Sclass)
// Merge clusters that contain players in Skey player .
S′cluster ← merge(Scluster, Skey player)
Scluster ← S′cluster

end for
end if

end for
// Here, Scluster holds the partitioned result.
Spar cluster ← Scluster

return Spar cluster

Figure 5. DPRole-based clustering algorithm

The algorithm inputs a class set Sclass, and a DPI set
SDPI consisting of the detected DPIs that relate to the
classes in Sclass. Initially, for each class in Sclass, con-
struct a cluster, let the cluster contain the class only (such a
cluster which contains only one member is called unit clus-
ter), and all the initial unit clusters make up a cluster set
Scluster. In the clustering process, for each DPI in SDPI ,
if its type is one of the concerned design pattern types, i.e.,
DPI.type ∈ T , T = {bridge, composite, adapter, proxy,
visitor, template method, strategy, state}, get the de-
sign pattern’s related close-role sets from Table 1. Then, for
each close-role set Sclose role, merge the clusters that con-
tain players for the roles in it. Concretely, first, count its
corresponding close-player set Sclose player. Second, omit
the players which are not concerned, i.e., not covered by
Sclass, from Sclose player, the remaining close players are
collected in Skey player. Third, merge the clusters that con-
tain players in Skey player. Last, update cluster set Scluster

with the newly generated cluster set S′cluster. After process-
ing every input DPIs, Scluster holds the partitioned clusters,
which are assigned to Spar cluster as output.

3.3. Implementation

We have developed an automated comprehension assis-
tance tool TasteJ [25] (Tool for Aiding program under-
STanding: Java Edition) according to the clustering ap-
proach and techniques proposed in this paper. It is im-
plemented using Java based on the well-designed drawing
framework JHotDraw, so it can be easily expanded and mi-
grated. It has realized the contents rounded by the dashed



line in the approach overview figure (Figure 3). TasteJ ac-
cepts concerned Java classes and their related DPIs, and dis-
plays generated result in graphical mode. The user can in-
teractively browse the result. The GUI of it is shown in
Figure 6. Region A displays the file structure of a currently
considered system, region B displays the generated clusters
with respect to the package selected in region A. Region C
displays the internal structure of a selected cluster using a
simple class diagram that paints inheritance relations only;
at the same moment, region D lists the cluster’s related re-
lied DPIs (a DPI is considered as a relied DPI if and only if
it is exactly useful for directing classes grouped into a com-
mon cluster). While one of the listed relied DPIs is selected,
the currently considered package’s members who act roles
in it would be labeled with corresponding pattern names and
role names, as indicated in Figure 6.

A

B D

Pattern name : Role name

C

Figure 6. GUI of TasteJ

In the development of TasteJ, We applied preprocessing
to the inputted DPIs in order to improve the execution ef-
ficiency of the clustering algorithm, and postprocessing to
the outputted clusters so as to refine the result.

Preprocessing. The output of a design pattern detec-
tor is often a series of raw DPIs. We can merge the
DPIs that have both the same pattern type and players for
the roles covered by a close-role set to reduce the num-
ber of DPIs the algorithm need to process. For instance,
the DPI1 and DPI2 described in Figure 4 can be merged
into a new instance, DPI(context: {EventDispatcher,
JavaDrawViewer}; strategy: Tool; concreteStrategy:
{CreationTool, SelectionTool, ConnectionTool,
. . .}).

Postprocessing. Sometimes, the algorithmic output may
contain too many unit clusters , e.g., the clustering result of
package standard that would be discussed in the experi-
ment section(Section 4), which contains 28 clusters in total,
21 of which are unit clusters. In this case, the input package

is excessively divided. Obviously, it is not easy to handle
too many fragments. To deal with this problem, we are able
to use inheritance and sibling relationship to further process
the output as follows.

1. For a unit cluster, if a non-unit cluster exists and the
only member of the unit cluster has an inheritance or
sibling relationship with one of the non-unit cluster’s
members, we take the only member of the unit cluster
to the non-unit cluster to form a new cluster and delete
the original unit cluster from the global cluster set.

2. After the above process, if the number of the unit clus-
ters is still more than default size 10, we merge the unit
clusters whose members hold an inheritance or sibling
relationship with each other.

4. Experiment

We conducted an experiment on the project JHot-
Draw6.0, and compared our experimental results with the
results produced by the well-known software structure clus-
tering tool Bunch [15, 18].

4.1. Clustering results

This subsection describes the clustering results gener-
ated by our tool TasteJ using those big packages contained
by JHotDraw6.0 and their related DPIs which are detected
by the tool PINOT as input. The clustering results of
package figures and standard are explained in detail,
and the results of package contrib, util and framework
are briefly summarized.

Clustering result of package figures. The partitioned clus-
ters of package figures are shown in Figure 7. Its total 35
classes (and interfaces) is divided into 8 clusters, in which,
Cluster 1 contains 16 classes, Cluster 2, 3, 4, 5, 6, 7 and 8
contain 5, 4, 4, 3, 1, 1 and 1 classes respectively. The size
of Cluster 1 seems a bit large, whereas its contained classes
apparently have a common theme, i.e., “figure”. Classes
EllipseFigure, LineFigure, PolyLineFigure,
RectangleFigure and RoundRectangleFigure

depict basic geometric “figures”. ElbowConnection

and LineConnection depict connection “figures”.
BorderDecorator and LineDecoration depict dec-
oration “figures”. AttributeFigure, ImageFigure,
NumberTextFigure and TextFigure depict purpose-
oriented “figures”, each of which can be used in a particular
context. The remaining classes of cluster 1 render related
services for these “figures”, GroupFigure supplies a
way for grouping them, NullFigure provides a default
implementation for them, and FigureAttribute offers a
container for the attributes of them. Similar to Cluster 1,



  

Cluster 1: Figure Cluster 2: Handle

Cluster 3: Tool

Cluster 4: Connector

Cluster 5: Command

Cluster 6 Cluster 7 Cluster 8

Figure 7. Partitioned clusters of package figures (generated by TasteJ)

Cluster 2, 3, 4 and 5 also have their respective described
themes, i.e., “handle”, “tool”, “connector” and “command”.
The other three clusters are unit clusters. They will be
explained latter. Next, the clustering result of a larger
package is presented.

Clustering result of package standard. Because of the
space issue, we list package standard’s partitioned clus-
ters (that generated before postprocessing) below instead of
drawing them.

• Cluster 1 : AbstractCommand, AlignCommand, ChangeAt-
tributeCommand, BringToFrontCommand, CopyCommand,
CutCommand, DeleteCommand, DuplicateCommand, Fig-
ureTransferCommand, PasteCommand, SelectAllCommand,
SendToBackCommand, ToggleGridCommand;

• Cluster 2 : AbstractTool, ActionTool, ConnectionTool,
CreationTool, DragTracker, HandleTracker, NullTool, Se-
lectAreaTracker, SelectionTool;

• Cluster 3 : AbstractHandle, ChangeConnectionEndHandle,
ChangeConnectionHandle, ChangeConnectionStartHandle,
ConnectionHandle, LocatorHandle, NullHandle;

• Cluster 4 : AbstractFigure, CompositeFigure, DecoratorFig-
ure, StandardDrawing, QuadTree;

• Cluster 5 : AbstractLocator, OffsetLocator, PeripheralLoca-
tor, RelativeLocator;

• Cluster 6 : AbstractConnector, ChopBoxConnector, Loca-
torConnector;

• Cluster 7 : NullDrawingView, StandardDrawingView;

• Cluster 8 to 28: each contains only one class.

Package standard that contains 64 classes is divided
into 28 clusters, in which, Cluster 1, 2, 3, 4, 5, 6 and 7 con-
tains 13, 9, 7, 5, 4, 3 and 2 classes respectively, the other
are unit clusters. The former seven clusters concentrate on
“command”, “tool”, “handle”, “figure”, “locator”, “connec-
tor”, and “drawing view”, respectively (noting that: in Clus-
ter 2, DragTrack is a tool that implements the dragging of
a clicked figure, HandleTracker is a tool for interactions
with the handles of a figure, and SelectAreaTrack is a
tool for the rubber hand selection of an area; in Cluster 4,
StandardDrawing is a composite figure and QuadTree

is an assistant data structure for drawing figures). These
clusters already take up 43 of all 64 classes. Unfortunately,
the remaining classes are not properly grouped, making the
number of unit clusters grow rapidly. We reduced the num-
ber by further processing the partitioned clusters in accor-
dance with the inheritance and sibling relationship among
their contained classes, as discussed in Section 3.3.

After postprocessing, the number of unit clusters greatly
decreases from 21 to 7. Meanwhile, the number of total
clusters reduces from 28 to 18, whereas the impact on the
revealed described themes is tiny. As postprocessing mainly
repartitions the unit clusters’ members into existing non-
unit clusters, the non-unit clusters’ main components would
not change much.

In fact, we are also able to refine the clustering result of
package figures (shown in Figure 7) by postprocessing.
At that rate, the only class AbstractLineDecoration

of Cluster 8 would be merged into Cluster 1, and then



ArrowTip of Cluster 6 would be also merged to Cluster
1, because AbstractLineDecoration implements
the interface defined by LineDecoration who is a
member of Cluster 1 and ArrowTip extends the class
AbstractLineDecoration. Instead of further presenting
the results for the remaining packages in detail, all the
clustering results are summarized.

Summary of clustering results. As shown in Table 2, com-
pared with the number of initial unit clusters (i.e., NOC),
the number of partitioned clusters (i.e., NNC+NUC, after
postprocessing) for packages figures and standard, de-
creases from 35 to 7 and from 64 to 18 respectively, and the
corresponding reduction ratio achieves to 80% and 71.9%,
respectively. For package contrib and util, great im-
provements are also made. The number reduces from 46
to 21 and from 41 to 27 respectively, and the correspond-
ing reduction ratio achieves to 54.3% and 34.1%. Never-
theless, for package framework, the number witnesses no
any major changes, especially afore the postprocessing. In
fact, this package is constructed merely in order to provide
a high-level framework for the entire system. Almost each
one of its members represents a separate side of the system
and few direct design pattern relationships among them can
be found.

Table 2. Summarized results for packages

Package NOC1 NOD2

Before After
postprocessing postprocessing

NNC3 NUC4 RR5% NNC NUC RR%

figures 35 7 5 3 77.1 6 1 80.0
standard 64 8 7 21 43.8 11 7 71.9
contrib 46 11 6 15 54.3 6 15 54.3
util 41 4 6 28 17.0 6 21 34.1
framework 26 1 1 24 3.8 3 16 26.9

1 NOC = number of classes.
2 NOD = number of relied DPIs.
3 NNC = number of non-unit clusters.
4 NUC = number of unit clusters.
5 RR = ratio of reduced clusters, i.e., 1- (NNC + NUC) / NOC.

4.2. Comparison

This subsection compares the clustering results gener-
ated by TasteJ with those produced by Bunch [15]. Bunch
is a well-known software structure clustering tool developed
by Mitchell and Mancoridis [18]. It clusters program units
or modules such as files and classes relying on the informa-
tion contained in a module dependency file, which consists
of dependency relationships among modules, for instance,
function calls or inheritance relationships. Bunch version

3.3.6 provides three clustering methods, i.e., generic algo-
rithm, hill climbing and exhaustive search. We used its de-
fault setup (hill climbing method) to respectively cluster
the classes of above-mentioned JHotDraw6.0’s packages.
Figure 8 shows the clustering result of package figures,
which is taken as an example to illustrate the difference be-
tween the approach Bunch applied and our proposed ap-
proach.

The classes of package figures have 168 dependen-
cies between them. They are divided by the tool Bunch
into four clusters: two big clusters whose center classes
are PolyLineFigure and AttributeFigure, and two
small clusters whose center classes are BorderDecorator
and GroupFigure (NullFigure, NullConnector and
UngroupCommand of package figures are not covered
by any of these clusters since no dependency relationship
can be found among them, or between them and the other
classes within the package). The partitioned result displays
expected high cohesion and low coupling.

However, we found it is still difficult for the review-
ers to build a mental model for the internal classes of
a certain resulting cluster, especially the big-size cluster,
since Bunch solely focuses on the dependency relationship
among classes, inclines to group the hotspot class and its in-
timate neighbors into a common group, and neglects some
related design information. TasteJ provides a new perspec-
tive for clustering classes. As indicated by the cluster names
in Figure 7, the partitioned clusters are able to vividly reveal
their described subjects which are much easier to catch and
handle, since TasteJ depends on the design pattern informa-
tion that contains not only structural information on the tar-
get programs, but also the design intents left by the system
developers.

4.3. Discussion

Our approach is promising to produce more understand-
able clustering results by bringing in design pattern rela-
tionships to direct the clustering process. It is worth noting
that we did not use any lexical matching skills in the ap-
proach. Though, for certain packages, the clustering result
may contain too many unit clusters, we are able to use post-
processing to effectively reduce its size without generating
much impact on each cluster’s original described themes.
Unfortunately, our approach is not suitable for the special-
purposed package that is constructed merely for providing
a high-level skeleton or framework and contains few di-
rect design pattern relationships, e.g., package framework.
In brief, the clustering results on the project JHotDraw6.0
show that our proposed approach is feasible and promising
in most situations by taking design pattern information into
account.



Figure 8. Partitioned clusters of package figures (generated by Bunch)

5. Related work

Many software partition and clustering approaches and
tools were proposed to facilitate the understanding of a soft-
ware system. The above-mentioned tool Bunch [18, 16] de-
composed a system by partitioning a module dependency
graph. Mahdavi et al. [13] treated subsystem decomposi-
tion as a search problem and tried to solve it using a mul-
tiple hill climbing approach. Saeed et al. [20] proposed a
combined clustering approach for grouping software enti-
ties. Maletic et al. [14] and Kuhn et al. [11] clustered soft-
ware artifacts using latent semantic indexing, an informa-
tion retrieval technique, based on the assumption that parts
of the system that use similar terms are related. Beyer and
Noack [2] used file co-change information that extracted
from the version control repository to identify candidate
clusters. Andritsos and Tzerpos [1] clustered a software
system based on minimizing information loss during the
software clustering process.

Distinct from these partition and clustering approaches,
the clustered object of our approach can be part of a sys-
tem, e.g., a package, and an entire system is not always
needed; moreover, the clustering approach we designed
groups classes not according to the traditional coupling re-
lationship, but the design pattern relationships among roles;
furthermore, we did not bring in any complex computing
techniques.

In addition, Tzerpos and Holt [27] proposed a distance
metric MoJo to compare two decompositions. Mitchell and
Mancoridis [17] used similarity measurements to evaluate
different decompositions. Harman et al. [8] studied the ro-
bustness of clustering fitness functions.

Many visualization tools were also proposed to assist
program comprehension. CodeCrawler [12] used polymet-
ric views to show software entities and metrics. SHriMP
[24] used a nested graph view to provide multiple per-
spectives of information at different levels of abstraction.
CodeCity [30] used 3D visualization technique to describe
system contents through treating a code system as a virtual
city. The tool presented by literature [31] allows program-
mers to reverse engineer LePUS3 charts from Java 1.4 pro-
grams at any level of abstraction.

Our tool TasteJ is not merely a tool for visualizing clus-
tering results. It aims at providing a new perspective for
understanding source code. It displays the internal struc-
ture of a cluster using a refined class diagram and indicates
the classes’ acted roles when needed. Moreover, it provides
separate views for inspecting the internal details of DPIs.

6. Conclusion

We have proposed a novel design pattern directed
clustering approach to assist the understanding of open
source code. A prototype tool TasteJ has been developed



to facilitate understanding Java programs. Moreover, we
conducted a case study on an open source system JHot-
Draw6.0, and compared TasteJ with Bunch, a state of art
software structure clustering tool. The preliminary result
shows that the approach is feasible and promising. So far,
TasteJ is not suitable for the situation that some classes are
put together merely for building a high-level skeleton or
framework. And it might be weak for the programs none of
design patterns is considered during their development. In
the future, we will evaluate our approach with more open
source projects, and improve its scalability, extensibility
and flexibility.
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