
Design Pattern Directed Clustering for Understanding Open Source Code∗

Zhixiong Han, Linzhang Wang, Liqian Yu, Xin Chen, Jianhua Zhao and Xuandong Li
State Key Laboratory of Novel Software Technology

Department of Computer Science and Technology, Nanjing University
Nanjing, Jiangsu, P.R.China 210093

{hzx,yuliqian}@seg.nju.edu.cn, {lzwang,chenxin,zhaojh,lxd}@nju.edu.cn

Abstract

Program understanding plays an important role in the
maintenance and reuse of open source code. Rapid evolv-
ing and bad documentation makes the understanding and
reusing difficult. Design patterns are widely employed in
the open source code. In this paper, we propose a design
pattern directed clustering approach to help understand the
structure of open source code. According to the approach,
we have implemented a prototype tool. We also conducted
an experiment on an open source system to evaluate it.

1. Introduction

As the modern software grows large and complex, open
source becomes more and more popular nowadays. People
contribute and reuse open source code in academia, indus-
try and open source community. Open source code evolves
quite rapidly, and usually lacks of documentation or the
documents are out-of-date, which makes it hard to be reused
and maintained. Program understanding plays an important
role in aiding its reuse and maintenance.

In order to provide a high-level architectural view of
source code, based on the top-down comprehension model,
many software structure clustering approaches have been
proposed, such as [3]. They aim at identifying areas of a
system that are loosely coupled to each other according to
the structural information in the code.

It is known that design patterns [1] are widely used in
open source code. Design pattern information may help un-
derstanding the code. In this paper, we propose a new clus-
tering approach according to design pattern relationships
which are deemed to contain both structural and design in-
formation. The approach treats classes as players (i.e., par-
∗This work is supported by the National Natural Science Foundation of

China (No.90818022), the National 863 High-Tech Programme of China
(No.2009AA01Z148), and by the Jiangsu Province Research Foundation
(No.BK2007714).

Classes

Open Source Code

1. DP detector
DPIs 

(XML format)

2. DPRole-based 

clustering engine

3. Visualization 

module

C++ Java

Partitioned 

clusters

Figure 1. Overview of the approach

ticipating classes) of design pattern instance (i.e., DPI [5]),
and group them into different clusters according to the in-
herent association among the participating roles. We have
implemented a prototype tool TasteJ1 according to the ap-
proach and conducted an experiment on JHotDraw6.02 .

2. Approach

The overview of our approach is shown in Figure 1.
It consists of three main components: the design pat-
tern detector (DP detector), the design-pattern-role-based
(DPRole-based) clustering engine and the visualization
module. The DP detector [4] accepts open source code
and generates recovered DPIs. The DPRole-based cluster-
ing engine, which is the core component of the approach,
needs two inputs, one is user’s concerning classes, e.g., the
classes in a package or directory, the other is classes’ related
DPIs which are recovered by the DP detector. The engine
treats classes as players of the recovered DPIs and groups
them into clusters based on close-role sets [2], which is de-
fined by pattern rules to indicate the high degree associa-
tion among roles. Table 1 shows the default pattern rules

1http://seg.nju.edu.cn/tastej
2http://www.jhotdraw.org



Table 1. Pattern rules and close-role sets
Pattern Rule DPI Close-role set(s) Close-player set(s)

Bridge1 DPI(abstraction: ClassA; refindAbstraction: SetA; implemen-
tor: ClassI; concreteImplementor: SetI)

{abstraction,
refindAbstraction, {ClassA, SetA,

implementor, InterfaceI, SetI}
concreteImplementor}

Composite1 DPI(component: ClassC1; composite: ClassC2; leaf: SetL;
client: ClassC3)

{component, {ClassC1,
composite} ClassC2}

Adapter1 DPI(adapter: ClassA1; adaptee: ClassA2; target: ClassT; client:
ClassC)

{adapter, adaptee, {ClassA1, ClassA2,
target} ClassT}

Proxy1 DPI(proxy: ClassP; subject: ClassS; realSubject: SetS) {proxy, subject, {ClassP, ClassS,
realSubject} SetS}

Template Method1 DPI(abstractClass: ClassC1; concreteClass: ClassC2) {abstractClass, {ClassC1,
ConcreteClass} ClassC2}

Visitor1 DPI(visitor: ClassV; element: ClassE; concreteVisitor: SetV;
concreteElement: SetE; objectStructrue: ClassS)

{visitor, concreteVisitor} {ClassV, SetV}
{element, concreteElement} {ClassE, SetE}

Strategy2 DPI(context: ClassC; strategy: ClassS; concreteStrategy: SetS) {strategy, concreteStrategy} {ClassS, SetS}

State2 DPI(context: ClassC; state: ClassS; concreteState: SetS) {state, concreteState} {ClassS, SetS}
1 Rules on structure-driven patterns 2 Rules on behavior-driven patterns

and related close-role sets of several patterns. We know that
a class may play roles in different DPIs, we form a com-
pact cluster by merging the clusters that contain a common
player. In addition, as Cluster 6 through 8 in Figure 2, each
of which contains only a class, we use inheritance and sib-
ling relationships to conglutinate them with other clusters.
The visualization module visualizes the resulting clusters.

3. Preliminary results

We perform preliminary experiments on the packages of
JHotDraw6.0. Figure 2 shows clustering results of the pack-
age figures which is one of JHotDraw6.0’s big-size pack-
ages. The results give us a clear division about the pack-
age’s internal members. Cluster 1 seems to comprise too
much members, whereas its contained members apparently
have the same theme, i.e., “figure”. Similar to Cluster 1,
Cluster 2, 3, 4 and 5 also have their respective themes, i.e.,
“handle”, “tool”, “connector” and “command”. It is worth
noting that we did not use any lexical matching skills in the
clustering process. The clustering results of other packages
are described in [2]. Moreover, we compared the results
with those produced by the tool Bunch [3]. The comparison
shows that our clustering results are more recognizable.

4. Conclusion and future work

We have proposed a novel design pattern directed clus-
tering approach and developed a prototype tool to assist
open source code comprehension. Moreover, we conducted
a case study on an open source system JHotDraw6.0 to eval-
uate the approach. The preliminary results show that it is

Cluster 1: AttributeFigure, BorderDecorator, ElbowConnection, El-
lipseFigure, GroupFigure, ImageFigure, LineConnection, LineFig-
ure, NullFigure, NumberTextFigure, PolyLineFigure, RectangleFigure,
RoundRectangleFigure, TextFigure, LineDecoration, FigureAttributes;
Cluster 2: ElbowHandle, FontSizeHandle, GroupHandle, PolyLineHan-
dle, RadiusHandle;
Cluster 3: BorderTool, ConnectedTextTool, ScribbleTool, TextTool;
Cluster 4: ChopEllipseConnector, NullConnector, PolyLineConnector,
ShortestDistanceConnector;
Cluster 5: GroupCommand, InsertImageCommand, UngroupCommand;
Cluster 6 through 8: AbstractLineDecoration; ArrowTip; PolyLineLoca-
tor.

Figure 2. Preliminary clustering results

feasible and promising to generate easily understandable re-
sults. So far, the approach is applied to cluster package’s
classes. In ongoing work, we will improve the implementa-
tion to suit an entire system and conduct more experiments.

References

[1] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design
Patterns: Elements Of Reusable Object-Oriented Software.
Addison-Wesley Reading, MA, 1995.

[2] Z. Han, L. Wang, L. Yu, X. Chen, J. Zhao, and X. Li. De-
sign pattern directed clustering for understanding open source
code. Technical Report 2009-01, SEG-NJU, China, 2009.

[3] S. Mancoridis, B. Mitchell, C. Rorres, Y. Chen, and
E. Gansner. Using automatic clustering to produce high-level
system organizations of source code. In Proc. of 6th IWPC.

[4] N. Shi and R. Olsson. Reverse engineering of design patterns
from java source code. In Proc. of 21st ASE, 2006.

[5] L. Wendehals. Improving design pattern instance recognition
by dynamic analysis. In WODA, 2003.


